KR101148428B1 - Method of preparing precursors for polyacrylonitrile-based carbon fibers - Google Patents

Method of preparing precursors for polyacrylonitrile-based carbon fibers Download PDF

Info

Publication number
KR101148428B1
KR101148428B1 KR1020090135111A KR20090135111A KR101148428B1 KR 101148428 B1 KR101148428 B1 KR 101148428B1 KR 1020090135111 A KR1020090135111 A KR 1020090135111A KR 20090135111 A KR20090135111 A KR 20090135111A KR 101148428 B1 KR101148428 B1 KR 101148428B1
Authority
KR
South Korea
Prior art keywords
dope
solution
polyacrylonitrile
carbon fibers
polymer
Prior art date
Application number
KR1020090135111A
Other languages
Korean (ko)
Other versions
KR20110078329A (en
Inventor
최미영
방윤혁
김병한
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020090135111A priority Critical patent/KR101148428B1/en
Publication of KR20110078329A publication Critical patent/KR20110078329A/en
Application granted granted Critical
Publication of KR101148428B1 publication Critical patent/KR101148428B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/42Nitriles
    • C08F20/44Acrylonitrile
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/08Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

본 발명은 도프원액의 안정성을 유지함으로써 고강도 및 고탄성을 가지는 탄소섬유의 제조에 특히 적합한 폴리아크릴로니트릴계 전구체의 제조 방법에 관한 것으로, 95중량% 이상의 아크릴로니트릴과 5중량% 미만의 코모노머를 포함하는 폴리아크릴로니트릴 중합물을 사용하여 도프원액을 제조하는 도프원액 제조단계를 포함하는 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유의 제조방법으로서, 상기 코모노머는 메틸아크릴레이트, 아크릴산, 메타크릴산, 이타콘산으로 이루어진 군에서 선택된 2종 이상으로 이루어지며, 상기 도프원액 제조단계는 25~50℃에서 실시되는 것을 특징으로 하는 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유의 제조방법을 제공한다.The present invention relates to a method for producing a polyacrylonitrile precursor which is particularly suitable for the production of carbon fibers having high strength and high elasticity by maintaining the stability of the dope stock solution, the acrylonitrile of at least 95% by weight and less than 5% by weight of comonomer A method for producing a polyacrylonitrile precursor fiber for carbon fibers comprising the step of preparing a dope solution using a polyacrylonitrile polymer comprising a polymer, wherein the comonomer is methyl acrylate, acrylic acid, methacryl It is made of two or more selected from the group consisting of acid, itaconic acid, the dope solution preparation step provides a method for producing a polyacrylonitrile precursor fiber for carbon fibers, characterized in that carried out at 25 ~ 50 ℃.

본 발명에 따르면, 도프원액의 제조시에 PAN 중합체를 저온에서 용해함으로써 도프 원액의 점도안정성을 향상시킬 수 있다. 또한, 안정한 도프원액은 쉽게 변질되지 않기 때문에 방사성이 우수하여 사절 및 모우 발생을 감소시킬 수 있다. 결국, 섬유의 내부결함이 감소함으로써 우수한 품질의 전구체 섬유 및 탄소섬유를 제조할 수 있다. 또한, 본 발명은 저온에서 도프원액을 제조함으로써 상대적으로 에너지를 절감 및 비용 절감에도 도움이 된다.According to the present invention, the viscosity stability of the dope stock solution can be improved by dissolving the PAN polymer at low temperature during the preparation of the dope stock solution. In addition, since the stable dope solution is not easily deteriorated, it is excellent in radioactivity and can reduce trimming and moor occurrence. As a result, the internal defects of the fibers are reduced, thereby making it possible to produce precursor fibers and carbon fibers of good quality. In addition, the present invention helps to save energy and reduce costs by preparing the dope solution at a low temperature.

도프원액, 점도 안정성, 모우, 사절, 전구체 섬유, 저온 용해 Dope stock, viscosity stability, paste, trimmed, precursor fiber, low temperature melting

Description

탄소섬유용 폴리아크릴로니트릴계 전구체 섬유의 제조방법{METHOD OF PREPARING PRECURSORS FOR POLYACRYLONITRILE-BASED CARBON FIBERS}Manufacturing method of polyacrylonitrile precursor fiber for carbon fiber {METHOD OF PREPARING PRECURSORS FOR POLYACRYLONITRILE-BASED CARBON FIBERS}

본 발명은 탄소섬유용 폴리아크릴로니트릴(Polyacrylonitrile, PAN)계 전구체 섬유의 제조방법에 관한 것으로, 더욱 상세하게는 도프원액의 안정성을 유지함으로써 고강도 및 고탄성을 가지는 탄소섬유의 제조에 특히 적합한 폴리아크릴로니트릴계 전구체의 제조 방법에 관한 것이다.The present invention relates to a method for producing polyacrylonitrile (PAN) -based precursor fibers for carbon fibers, and more particularly, to polyacrylonitrile (PAN) -based precursor fibers, in particular polyacrylonitrile (PAN) -based polyacrylonitrile. It relates to a method for producing a ronitrile precursor.

아크릴로니트릴(acrylonitrile)계 중합체로부터 제조되는 탄소섬유, 소위 PAN(Polyacrylonitrile)계 탄소섬유는 강도가 매우 우수하여, 탄소섬유의 원료로서 많이 사용되고 있다. 최근에는 전체 탄소섬유의 90%이상이 PAN계 탄소섬유이다. 또한, PAN계 탄소섬유는 2차전지용 탄소 전극 재료 및 탄소 필름 등에도 적용가능성이 있기 때문에, 이에 대한 연구개발도 활발하게 진행되고 있다. Carbon fibers produced from acrylonitrile polymers, so-called PAN (Polyacrylonitrile) carbon fibers, have excellent strength and are widely used as raw materials for carbon fibers. Recently, more than 90% of all carbon fibers are PAN-based carbon fibers. In addition, since PAN-based carbon fibers have applicability to carbon electrode materials for secondary batteries, carbon films, and the like, research and development on these have been actively conducted.

아크릴로니트릴계 중합체로부터 탄소섬유를 제조하는 경우에는 아크릴로니트릴계 중합체를 방사하여 얻어진 아크릴 섬유, 즉 탄소섬유용 전구체를 산화 분위기에서 200~400℃로 내염화 처리하는데, 이렇게 제조된 섬유를 내염화섬유라고 한다. In the case of producing carbon fibers from acrylonitrile-based polymers, the acrylic fibers obtained by spinning acrylonitrile-based polymers, that is, precursors for carbon fibers, are flameproofed at 200 to 400 ° C. in an oxidizing atmosphere. It is called chloride fiber.

이렇게 얻어진 내염화섬유를 불활성가스 분위기에서 800~2000℃로 탄화처리하여 탄소섬유를 제조한다. 또한, 이렇게 얻어진 탄소섬유를 더욱 고온의 불활성가스 중에서 처리하는 경우도 있는데, 이렇게 얻어진 섬유를 흑연섬유라고 한다.The flame resistant fiber thus obtained is carbonized at 800 to 2000 ° C. in an inert gas atmosphere to produce carbon fiber. In addition, the carbon fibers thus obtained are sometimes treated in a higher temperature inert gas, and the fibers thus obtained are called graphite fibers.

이러한 탄소섬유의 전구체를 제조하기 위한 도프원액(중합체 용액)을 제조하는 방법에 있어서는 도프원액의 특성인 중합체 농도, 점도, 분자량, 분자구조 등에 영향을 주는 인자를 크게 도프원액의 제조 단계에서 기인하는 것과 제조 후에 기인하는 것으로 나눌 수 있다.In the method for producing a dope stock solution (polymer solution) for producing a precursor of such carbon fiber, factors that affect polymer concentration, viscosity, molecular weight, molecular structure, etc., which are characteristics of the dope stock solution, are largely attributable to the dope stock solution. It is divided into what originates after manufacture.

도프원액의 제조 단계에서 기인하는 것으로는 원료, 첨가물, 용매의 주입량, 주입시간, 용해조 온도, 압력, 교반속도, 반응 시간 등의 기본 조건의 변동 등을 들 수 있다.Examples of the dope stock solution may include variations in basic conditions such as raw materials, additives, injection amount of solvent, injection time, dissolution tank temperature, pressure, stirring speed, reaction time, and the like.

또한, 도프원액의 제조 후에 기인하는 것으로는 중합체 용액의 저장 시간(체류시간), 열 이력의 변동 및 수반 잔존 단량체의 후중합에 의한 중합체의 농도 변화, 분자량 분포의 변동, 중합체의 변질 등을 들 수 있다.In addition, after the preparation of the dope solution, the storage time (retention time) of the polymer solution, the change in the thermal history and the change in the concentration of the polymer due to the post-polymerization of the remaining residual monomers, the change in the molecular weight distribution, the deterioration of the polymer, etc. Can be.

이와 같은 변동 및 변질은 후속 공정으로 제조되는 섬유, 필름, 수지 제품 등의 품질 변동 및 변질을 유발하며, 나아가 규격외의 제품을 발생시키는 요인으로 작용한다.Such fluctuations and deterioration cause quality fluctuations and deterioration of fibers, films, resin products, etc., which are manufactured in a subsequent process, and further act as a factor causing out of specification products.

종래부터 90중량% 이상의 아크릴로니트릴 및 공중합 가능한 비닐계 단량체로 구성되는 아크릴로니트릴계 전구체 섬유용 중합체는, 디메틸설폭사이드, 디메틸 포름아미드 또는 디메틸아세트아미드 등의 유기용제를 용매로 하는 중합체 용액에 잔존하는 중합개시제 또는 산화환원제 공정의 열이력으로 인한 환화/가교에 의하여 변질되기 쉽다. 이렇게 변질된 중합체는 중합체 용액 내에서 폴리머 고리 사이의 삼차원적인 환화/가교물을 형성하여 원사 또는 최종 제품의 내부 결함을 유발할 가능성이 크다.The polymer for acrylonitrile precursor fiber which consists of 90 weight% or more of acrylonitrile and a vinylic monomer copolymerizable is conventionally used in the polymer solution which uses an organic solvent, such as dimethyl sulfoxide, dimethyl formamide, or dimethylacetamide, as a solvent. It is susceptible to deterioration by cyclization / crosslinking due to thermal history of the remaining polymerization initiator or redox process. This altered polymer is likely to form three-dimensional cyclization / crosslinking between polymer rings in the polymer solution, causing internal defects in the yarn or final product.

본 발명은 전술한 문제점을 해결하기 위하여 안출된 것으로, 도프원액의 제조 및 저장시에 아크릴로니트릴계 중합체의 환화반응을 방지하고, 나아가 도프원액의 안정성을 유지하여 우수한 품질의 탄소섬유용 전구체를 제조하는 방법을 제공하는 것을 목적으로 한다.The present invention has been made to solve the above problems, to prevent the cyclization reaction of the acrylonitrile-based polymer during the preparation and storage of the dope stock solution, and further to maintain the stability of the dope stock solution to produce a precursor for carbon fiber of excellent quality It aims to provide a way to.

또한, 본 발명은 도프원액의 안정성을 장시간 유지시킴으로써 고강도/고탄성의 탄소섬유를 제조할 수 있는 탄소섬유용 전구체의 제조방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method for producing a precursor for a carbon fiber that can produce a high strength / high elastic carbon fiber by maintaining the stability of the dope stock solution for a long time.

전술한 문제점을 해결하기 위하여, 본 발명은 95중량% 이상의 아크릴로니트릴과 5중량% 미만의 코모노머를 포함하는 폴리아크릴로니트릴 중합물을 사용하여 도프원액을 제조하는 도프원액 제조단계를 포함하는 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유의 제조방법으로서, 상기 코모노머는 메틸아크릴레이트, 아크릴산, 메타크릴산, 이타콘산으로 이루어진 군에서 선택된 2종 이상으로 이루어지며, 상기 도프원액 제조단계는 25~50℃에서 실시되는 것을 특징으로 하는 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유의 제조방법을 제공한다.In order to solve the above problems, the present invention provides a carbon comprising a dope stock solution preparing a dope stock solution using a polyacrylonitrile polymer comprising at least 95% by weight acrylonitrile and less than 5% by weight comonomer A method for producing a polyacrylonitrile-based precursor fiber for fibers, wherein the comonomer is composed of two or more selected from the group consisting of methyl acrylate, acrylic acid, methacrylic acid and itaconic acid, and the dope stock preparation step is 25 to It provides a method for producing a polyacrylonitrile-based precursor fiber for carbon fibers, characterized in that carried out at 50 ℃.

본 발명의 탄소섬유용 PAN계 전구체 섬유의 제조방법에 따르면, 도프원액의 제조시에 PAN 중합체를 저온에서 용해함으로써 도프 원액의 점도안정성을 향상시킬 수 있다. 또한, 안정한 도프원액은 쉽게 변질되지 않기 때문에 방사성이 우수하여 사절 및 모우 발생을 감소시킬 수 있다. 결국, 섬유의 내부결함이 감소함으로써 우수한 품질의 전구체 섬유 및 탄소섬유를 제조할 수 있다. 또한, 본 발명은 저온에서 도프원액을 제조함으로써 상대적으로 에너지를 절감 및 비용 절감에도 도움이 된다.According to the manufacturing method of the PAN system precursor fiber for carbon fiber of this invention, the viscosity stability of a dope stock solution can be improved by melt | dissolving a PAN polymer at low temperature at the time of preparation of a dope stock solution. In addition, since the stable dope solution is not easily deteriorated, it is excellent in radioactivity and can reduce trimming and moor occurrence. As a result, the internal defects of the fibers are reduced, thereby making it possible to produce precursor fibers and carbon fibers of good quality. In addition, the present invention helps to save energy and reduce costs by preparing the dope solution at a low temperature.

이하 본 발명의 특징 및 장점을 상세하게 설명한다.Hereinafter, the features and advantages of the present invention will be described in detail.

본 발명에 따른 탄소섬유용 PAN계 전구체 섬유는 아크릴로니트릴계 중합체로부터 얻어진다. 상기 탄소섬유용 전구체의 특성은 기본적으로 아크릴로니트릴계 중합체의 조성에 따라 달라진다. 본 발명에 사용되는 아크릴로니트릴계 중합체의 주성분은 아크릴로니트릴 단위로서, 상기 아크릴로니트릴 단위의 함량은 전체 아크릴로니트릴계 중합체에 대하여, 90중량% 이상, 바람직하게는 95중량% 이상이다. 상기 아크릴로니트릴 단위의 함량이 너무 적으면, 소성 공정으로 얻어지는 탄소섬유의 강도가 저하되는 등, 탄소섬유의 기계적 특성이 저하될 수 있다.PAN precursor fiber for carbon fiber according to the present invention is obtained from an acrylonitrile-based polymer. The properties of the precursor for carbon fiber are basically dependent on the composition of the acrylonitrile-based polymer. The main component of the acrylonitrile polymer used in the present invention is an acrylonitrile unit, and the content of the acrylonitrile unit is 90% by weight or more, preferably 95% by weight or more based on the total acrylonitrile polymer. If the content of the acrylonitrile unit is too small, the mechanical properties of the carbon fiber may be lowered, such as the strength of the carbon fiber obtained by the firing process is lowered.

상기 아크릴로니트릴계 중합체는, 필요에 따라, 하나 이상의 공중합 성분(아크릴로니트릴 이외의 다른 보조 성분)으로서, 방사 공정에서의 치밀화 촉진성분 및 연신 촉진성분 등을 포함하는 단위; 내염화 공정에서의 내염화 촉진성분을 포함하 는 단위; 산소 투과 촉진성분을 포함하는 단위 등을 더 포함할 수 있다. 상기 추가적인 공중합 성분의 함량은 전체 아크릴로니트릴계 중합체에 대하여, 10중량% 이하, 바람직하게는 5중량% 이하이다. The acrylonitrile-based polymer may be, as necessary, a unit containing at least one copolymerization component (an auxiliary component other than acrylonitrile), including a densification accelerator component, an extension promoter component, and the like in the spinning process; A unit containing a flame resistance promoting component in the flame resistance process; It may further include a unit including an oxygen permeation promoting component. The content of the additional copolymerization component is 10% by weight or less, preferably 5% by weight or less based on the total acrylonitrile-based polymer.

상기 치밀화 촉진성분이 되는 구조 단위는 카르복실기, 설폰기, 아미드기 등의 친수성 관능기를 가지는 비닐 화합물 단량체의 공중합에 의하여 생성된다. 이 중 카르복실기를 가지는 치밀화 촉진성분 포함 단량체의 예로는, 아크릴산, 메타크릴산, 이타콘산, 크로톤산, 시트라콘산, 말레인산, 이들의 알킬에스테르(메틸아크릴레이트 등) 등을 예시할 수 있는데, 이 중에서도 아크릴산, 메타크릴산, 이타콘산 등을 사용하는 것이 바람직하다. 또한 상기 설폰기를 가지는 치밀화 촉진 성분의 구체적인 예로는 알릴 설폰산(aryl sulfonic acid), 메타릴설폰산(metharylsofonic acid), 스티렌설폰산(styrene sulfonic acid), 2-아크리아미도-2-메틸프로판설폰산(2-acrylamido-2-methyl propane sulfonic acid), 비닐 설폰산(vinyl sulfonic acid), 설포 프로필 메타크릴에이트(sulfo propyl methacrylate) 등을 들 수 있다. 상기 아미드기를 가지는 치밀화 촉진 성분의 구조 단위의 구체적인 예로는 아크릴아미드(acrylamide), 메타크릴아미드(methacrylamide), 디메틸아크릴아미드(dimethylmetacrylamide)를 들 수 있다.The structural unit which becomes the said densification promotion component is produced by copolymerization of the vinyl compound monomer which has hydrophilic functional groups, such as a carboxyl group, a sulfone group, and an amide group. Examples of the monomer containing a densification promotion component having a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, citraconic acid, maleic acid, alkyl esters thereof (methyl acrylate, etc.), and the like. Among them, acrylic acid, methacrylic acid, itaconic acid, etc. are preferably used. In addition, specific examples of the densification-promoting component having the sulfonic group include allyl sulfonic acid, metharylsofonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid (2-acrylamido-2-methyl propane sulfonic acid), vinyl sulfonic acid, and sulfo propyl methacrylate. Specific examples of the structural unit of the densification-promoting component having the amide group may include acrylamide, methacrylamide, and dimethylacrylamide.

또한, 내염화로 내에서 섬유 단사간 산소 투과성을 향상시키기 위하여, 옥틸아민(octyl amine), 도데실아민(dodecyl amine), 라우릴아민(lauryl amine) 등의 알킬아민; 디옥틸아민(dioctyl amine)등의 디알킬아민; 트리옥틸아민(trioctylamine) 등의 트리알킬아민; 에틸렌디아민(ethylene diamine), 헥사메틸 렌디아민(hexamethylene diamine) 등의 디아민(diamine) 성분을 사용할 수도 있다. 이 중에서도, 중합의 균일성을 향상시키기 위해서는 중합용매, 매체, 방사용매 등에 대한 용해성이 있는 성분을 사용하는 것이 바람직하다. In addition, alkylamines such as octyl amine, dodecyl amine and lauryl amine in order to improve oxygen permeability between single fibers in a flame resistant furnace; Dialkyl amines such as dioctyl amine; Trialkylamines such as trioctylamine; Diamine components such as ethylene diamine and hexamethylene diamine may be used. Among these, in order to improve the uniformity of polymerization, it is preferable to use a component having solubility in a polymerization solvent, a medium, a spinning solvent and the like.

또한, 상기 산소 투과 촉진성분을 포함하는 단위는 하나의 불포화 카르본산 구조의 알킬 에스테르, 예를 들면 에틸메타크릴레이트 (ethyl methacrylate) 등의 공중합에 의하여 도입될 수 있다. 이와 같은 보조성분(코모노머)과 주성분을, 통상의 방법에 따라, 무기계 레독스 촉매를 사용하여 수계 현탁 중합하면, 아크릴로니트릴계 공중합체를 얻을 수 있다. In addition, the unit including the oxygen permeation promoting component may be introduced by copolymerization of an alkyl ester of one unsaturated carboxylic acid structure, for example, ethyl methacrylate. The acrylonitrile-based copolymer can be obtained by subjecting such an auxiliary component (comonomer) and the main component to aqueous suspension polymerization using an inorganic redox catalyst according to a conventional method.

상기 아크릴로니트릴계 중합체를 방사하기 위하여, 아크릴로니트릴계 중합체를 용매에 용해시켜 도프(dope)원액을 제조한다. In order to spin the acrylonitrile-based polymer, the acrylonitrile-based polymer is dissolved in a solvent to prepare a dope stock solution.

상기 도프용액을 제조하기 위한 용매로는, 디메틸설폭시드(dimethyl sulfoxide, DMSO), 디메틸포름아미드(dimethyl formamide, DMF), 디메틸아세트아미드(dimethyl acetamide, DMAc)등 아크릴로니트릴 중합체를 용해시킬 수 있는 통상의 유기용매와 염화아연 수용액, 티오시안산나트륨 수용액등의 무기화합물의 수용액을 사용할 수 있으나, 아미드 결합을 갖지 않은 유기용매인 디메틸설폭시드를 사용하는 것이 가장 바람직하다. 상기 용매의 사용량은, 통상 아크릴로니트릴계 중합체의 중량에 대하여 18~22중량%이다. As a solvent for preparing the dope solution, acrylonitrile polymers such as dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), and dimethyl acetamide (DMAc) can be dissolved. A conventional organic solvent, an aqueous solution of an inorganic compound such as an aqueous zinc chloride solution or an aqueous sodium thiocyanate solution may be used, but dimethyl sulfoxide, which is an organic solvent having no amide bond, is most preferably used. The use amount of the said solvent is 18 to 22 weight% normally with respect to the weight of an acrylonitrile-type polymer.

다음으로, 상기 도프원액을 공지된 방사공정, 건조공정, 세척 및 연신공정을 순차로 거치게 하여 제조된 탄소섬유용 폴리아크릴로니트릴 전구체 섬유를 제조한다. Next, a polyacrylonitrile precursor fiber for carbon fibers prepared by sequentially passing the dope stock solution through a known spinning process, drying process, washing process and stretching process is prepared.

본 발명은 도프원액의 안정성을 높이기 위하여 25~50℃의 낮은 온도에서 상기 도프원액을 제조하는 것을 특징으로 한다. 만일, 상기 온도가 25℃ 미만인 경우에는 유기용매인 디메틸설폭시드가 응고되어 도프원액을 제조하기 어렵고, 제조하더라도 균일한 도프원액을 제조하지 못하므로 전구체섬유의 물성이 저하되기 때문에 고강도/고탄성 탄소섬유를 제조하기 어렵다. 또한, 상기 온도가 50℃ 초과인 경우에는 도프원액이 쉽게 변성되어 도프원액의 유효 저장기간이 단축되며, 전구체섬유의 물성이 변동되어 고강도/고탄성 탄소섬유를 제조하기 어렵다.The present invention is characterized in that the dope is prepared at a low temperature of 25 ~ 50 ℃ to increase the stability of the dope. If the temperature is less than 25 ° C., dimethyl sulfoxide, which is an organic solvent, is coagulated, and thus it is difficult to prepare a dope solution, and even if it is prepared, a uniform dope solution is not produced. It is difficult to manufacture. In addition, when the temperature is higher than 50 ℃, the dope solution is easily modified to shorten the effective storage period of the dope solution, the physical properties of the precursor fiber is difficult to produce a high strength / high elastic carbon fiber.

상기와 같이 저온에서 도프원액을 제조하고 저장하는 경우에는 분자간 또는 분자내 가교에 의한 환화 구조의 형성이감소되기 때문에 후속적인 방사 또는 소성공정에서의 사절 및 모우발생을 줄일 수 있다. As described above, when the dope is prepared and stored at a low temperature, the formation of a cyclized structure by intermolecular or intramolecular crosslinking is reduced, thereby reducing the occurrence of trimming and shaving in subsequent spinning or firing processes.

구체적으로, 본 발명에 따르면 90중량% 이상의 아크릴로니트릴과 방사공정에서의 연신 및 치밀화 촉진성분과 내염화 공정의 내염화 촉진성분 및 산소투과 촉진성분을 포함하는 아크릴로니트릴계 중합체를 이용하고 디메틸 설폭시드(Dimethyl Sulfoxide)나 디메틸 포름아미드(Dimethyl Formamide)나 디메틸 아세트아미드(Dimethyl Acetamide) 등의 유기용제를 이용하여 25~50℃의 온도에서 18%~22%의 농도로 도프 원액을 제조하는 것이 바람직하다. 상기 도프 원액을 습식 또는 건습식 방사법에 의하여 방사하고 60℃ 이상의 온수로 1차연신한 뒤, 실리콘계 유제, 변성 에폭시 유제, 암모늄 화합물을 포함하는 유제를 부여하여 스팀 등의 고온 열매로 2차연신한다. 이때, 전체 연신배율이 7~20배가 되도록 하는 것이 바람직하다. 이렇게 연신된 섬유는 섬도가 0.5~2dtex이다.Specifically, according to the present invention, an acrylonitrile-based polymer comprising at least 90% by weight of acrylonitrile and the stretching and densification promoting component in the spinning process, the flame resistance promoting component and the oxygen permeation promoting component in the flameproofing process is used, and dimethyl Preparation of the dope stock solution at a concentration of 18% to 22% at a temperature of 25 to 50 ° C. using an organic solvent such as dimethyl sulfoxide, dimethyl formamide, or dimethyl acetamide desirable. The dope stock solution is spun by a wet or dry wet spinning method, and firstly stretched with hot water of 60 ° C. or higher, and then is secondly stretched with a high temperature fruit such as steam by imparting an emulsion including a silicone-based emulsion, a modified epoxy emulsion, and an ammonium compound. At this time, it is preferable to make the total draw ratio 7 to 20 times. The elongated fibers have a fineness of 0.5 to 2 dtex.

이렇게 방사된 탄소섬유용 전구체를 통상의 방법에 따라 산소분위기 및 200~400℃에서 내염화 처리하고, 불활성분위기 및 800~2000℃에서 탄화처리함으로써, 균일한 물성을 가짐과 동시에 보이드에 의한 결함이 적은 탄소섬유를 제조할 수 있다. The spun carbon precursor is flameproofed in an oxygen atmosphere and at 200 to 400 ° C. and carbonized at an inert atmosphere and at 800 to 2000 ° C. according to a conventional method, thereby having uniform physical properties and defects caused by voids. Less carbon fiber can be produced.

본 발명에 따른 제조방법으로 제조된 전구체 섬유를 사용하여 제조한 탄소섬유는 CNG 탱크, 풍력 발전용 블레이드, 터빈 블레이드 등의 에너지 관련 기재의 형성 재료 및 도로, 교량 등의 구조물 보강재료 등으로 유용하게 사용될 수 있다.Carbon fiber prepared using the precursor fiber produced by the manufacturing method according to the invention is useful as a material for forming energy-related substrates such as CNG tanks, wind turbine blades, turbine blades and structural reinforcement materials such as roads, bridges, etc. Can be used.

이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명한다.  하기 실시예는 본 발명을 예시하기 위한 것으로써, 본 발명의 범위가 하기 실시예에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail by way of examples. The following examples are intended to illustrate the present invention, but the scope of the present invention is not limited by the following examples.

하기 실시예에서는 도프원액의 안정성을 확인하기 위하여 시간경과에 따른 도프 저장조에 있는 도프원액의 점도와 UV 투과율 변화를 확인하였다. UV 투과율은 자외선 흡광광도계(UV Spectrometer)를 사용하고, 디메틸설폭시드를 바탕용액(기준용액)으로 하여, 450nm와 550nm 파장에서의 투과율(%)을 측정하였다. 도프원액의점도는 브룩필드 (Brookfield) 점도계를 사용하고 40℃를 유지한 항온조에서의 점도를 측정하였다. 또한, 전구체 섬유의 인장강도 및 인장강도의 변화율(CV%, coefficient of variation)을 측정하여, 전구체 섬유의 균일성을 확인하였다.In the following examples, in order to confirm the stability of the dope stock solution, the viscosity and UV transmittance change of the dope stock solution in the dope storage tank were checked with time. The UV transmittance was measured using an ultraviolet spectrometer (UV spectrometer) and dimethyl sulfoxide as a base solution (reference solution), and the transmittance (%) at wavelengths of 450 nm and 550 nm was measured. Viscosity of the dope solution was measured using a Brookfield viscometer and the viscosity in a thermostat maintained at 40 ℃. In addition, the uniformity of the precursor fibers was confirmed by measuring the tensile strength and the rate of change (CV%, coefficient of variation) of the precursor fibers.

이하, 본 발명의 실시예 및 비교예를 상세하게 설명한다.Hereinafter, the Example and comparative example of this invention are demonstrated in detail.

< < 실시예Example 1 >  1> 탄소섬유Carbon fiber 전구체의 제조 Preparation of Precursors

교반기가 장착된 50리터 반응기에, 이온교환수(pH=2.5) 38.4kg을 채우고, 아 크릴로니트릴(AN) 96중량%, 메틸아크릴레이트(MA) 3중량% 및 이타콘산(IA) 1중량%를 36cc/min의 속도로 주입하였다. 상기 반응물의 총 중량에 대하여, 산성 아황산암모늄 2.0wt% 및 과황산암모늄 0.2wt%를 조합시킨 레독스계 촉매와 함께 황산 0.15wt%를 주입하고, 수비(모노머 총량 대 이온교환수의 비)를 1/5.5로 하여 연속 공급하였다. 이때, 중합온도는 55℃로 하였다. 충분한 교반을 통하여 8시간의 평균 체류시간 동안 중합반응을 수행하였다. 다음, 상기 반응기의 출구로부터 연속적으로 얻어진 중합체 수계 분산액에 이온교환수를 더하여 충분히 세척하고, 탈수하여 습윤 중합체를 얻었다. 이렇게 얻어진 습윤 중합체를 진공 건조기로 건조하여, 하기 표 1에 나타낸 아크릴로니트릴계 중합체를 얻었다.In a 50 liter reactor equipped with a stirrer, 38.4 kg of ion-exchanged water (pH = 2.5) was charged, 96% by weight of acrylonitrile (AN), 3% by weight of methyl acrylate (MA) and 1 weight of itaconic acid (IA) % Was injected at a rate of 36 cc / min. To the total weight of the reactants, 0.15 wt% of sulfuric acid was injected with a redox-based catalyst combining 2.0 wt% of acidic ammonium sulfite and 0.2wt% of ammonium persulfate, and the ratio (the ratio of total monomer to ion-exchanged water) was It fed continuously at 1 / 5.5. At this time, polymerization temperature was 55 degreeC. The polymerization was carried out for an average residence time of 8 hours through sufficient stirring. Next, ion-exchanged water was added to the polymer aqueous dispersion obtained continuously from the outlet of the reactor, followed by sufficient washing and dehydration to obtain a wet polymer. The wet polymer thus obtained was dried with a vacuum dryer to obtain an acrylonitrile-based polymer shown in Table 1 below.

상기 중합체를 건조시킨 후, 35℃로 유지한 도프원액 용해조에서 디메틸설폭시드(DMSO)에 20중량% 농도로 용해시켜 도프원액을 제조하였다. 탈포 과정을 거친 상기 도프원액을 40℃로 유지한 저장조에 보관하였다. 저장조에 보관한 후 2시간 이내에 상기 도프 원액을 45℃에서, 3000홀, 직경 0.15mm의 노즐을 사용하여, 건습식 방사한 다음, 35℃의 응고욕(35중량% DMSO 수용액)에서 응고시켰다. 이렇게 얻어진 응고사를 세척, 연신, 유제부여, 및 건조 치밀화하여 폴리아크릴로니트릴계 전구체 섬유를 얻었다. 상기 전구체 섬유의 인장강도 및 인장강도 변화율(CV%)과 방사직전의 도프원액의 점도 및 UV 투과율과 제조 후 3일 경과된 도프원액의 점도를 측정하여 표 1에 나타내었다.After drying the polymer, the dope solution was prepared by dissolving at 20 ° C. in dimethyl sulfoxide (DMSO) in a dope solution dissolution tank maintained at 35 ° C. The dope stock solution subjected to the defoaming process was stored in a reservoir maintained at 40 ℃. Within 2 hours after storage in a reservoir, the dope stock solution was spun dry at 45 ° C. using a nozzle of 3000 holes, 0.15 mm in diameter, and then solidified in a 35 ° C. coagulation bath (35 wt% DMSO aqueous solution). The coagulated yarn thus obtained was washed, stretched, emulsified, and dried and densified to obtain polyacrylonitrile precursor fiber. Tensile strength and tensile strength change rate (CV%) of the precursor fibers, the viscosity of the dope solution immediately before spinning and the UV transmittance and the viscosity of the dope solution 3 days after the production was measured and shown in Table 1.

< < 실시예Example 2 >  2> 탄소섬유Carbon fiber 전구체의 제조 Preparation of Precursors

도프원액 제조시에 용해조의 온도를 50℃로 유지한 것을 제외하고는, 실시예 1과 동일한 방법으로 폴리아크릴로니트릴계 전구체 섬유를 얻었다. 방사 직전의 도프원액의 점도 및 UV 투과율 과 도프원액 제조후, 3일 경과된 도프원액의 점도를 측정하여 표 1에 나타내었다. 또한, 전구체 섬유의 인장강도와 인장강도 변화율(CV%)을 측정하여, 그 결과를 표 1에 나타내었다.A polyacrylonitrile precursor fiber was obtained in the same manner as in Example 1 except that the temperature of the dissolution tank was maintained at 50 ° C. during the preparation of the dope solution. The viscosity of the dope stock solution immediately before spinning and the viscosity of the dope stock solution 3 days after the preparation of the dope stock solution were measured and shown in Table 1. In addition, the tensile strength and the tensile strength change rate (CV%) of the precursor fibers were measured, and the results are shown in Table 1.

< < 실시예Example 3 >  3> 탄소섬유Carbon fiber 전구체의 제조 Preparation of Precursors

도프원액 제조시에 용해조의 온도를 25℃로 유지한 것을 제외하고는, 실시예 1과 동일한 방법으로 폴리아크릴로니트릴계 전구체 섬유를 얻었다. 방사 직전의 도프원액의 점도 및 UV 투과율 과 도프원액 제조후, 3일 경과된 도프원액의 점도를 측정하여 표 1에 나타내었다. 또한, 전구체 섬유의 인장강도와 인장강도 변화율(CV%)을 측정하여, 그 결과를 표 1에 나타내었다A polyacrylonitrile precursor fiber was obtained in the same manner as in Example 1 except that the temperature of the dissolution tank was maintained at 25 ° C. during the preparation of the dope solution. The viscosity of the dope stock solution immediately before spinning and the viscosity of the dope stock solution 3 days after the preparation of the dope stock solution were measured and shown in Table 1. In addition, the tensile strength and the tensile strength change rate (CV%) of the precursor fibers were measured, and the results are shown in Table 1.

< < 비교예Comparative example >  > 탄소섬유Carbon fiber 전구체의 제조 Preparation of Precursors

도프원액 제조시에 용해조의 온도를 65℃로 유지한 것을 제외하고는, 실시예 1과 동일한 방법으로 폴리아크릴로니트릴계 전구체 섬유를 얻었다. 방사 직전의 도프원액의 점도 및 UV 투과율 과 도프원액 제조후, 3일 경과된 도프원액의 점도를 측정하여 표 1에 나타내었다. 또한, 전구체 섬유의 인장강도와 인장강도 변화율(CV%)을 측정하여, 그 결과를 표 1에 나타내었다.A polyacrylonitrile precursor fiber was obtained in the same manner as in Example 1 except that the temperature of the dissolution tank was maintained at 65 ° C. during the preparation of the dope solution. The viscosity of the dope stock solution immediately before spinning and the viscosity of the dope stock solution 3 days after the preparation of the dope stock solution were measured and shown in Table 1. In addition, the tensile strength and the tensile strength change rate (CV%) of the precursor fibers were measured, and the results are shown in Table 1.

구분division 실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예Comparative example 중합체polymer 중합조성 및
물성
Polymerization composition and
Properties
AN/MA/IA = 96/3/1
고유점도 2.0
AN / MA / IA = 96/3/1
Intrinsic Viscosity 2.0
도프원액
제조조건
Dope
Manufacture conditions
용해조 온도
(℃)
Melter temperature
(℃)
3535 5050 2525 6565


도프원액
물성


Dope
Properties
방사직전의
점도 (Poise)
Immediately before radiation
Viscosity
920920 920920 920920 930930
제조 3일 경과 후 점도(Poise)Viscosity after 3 days of manufacture 940940 950950 930930 11501150 450nm에서의
UV 투과율 (%)
At 450nm
UV transmittance (%)
6868 6565 7272 5454
550nm에서의
UV 투과율 (%)
At 550nm
UV transmittance (%)
9494 9393 9595 8585

전구체
섬유

Precursor
fiber
인장강도
(g/d)
The tensile strength
(g / d)
7.97.9 7.97.9 7.87.8 7.37.3
인장강도
변화율 (CV%)
The tensile strength
Rate of change (CV%)
3.53.5 4.54.5 6.16.1 10.210.2

표 1을 참조하여 실시예 1 내지 실시예 3 및 비교예를 비교하면, 도프원액의 제조시에 PAN 중합체를 저온, 즉 25~50℃에서 용해하면 도프 원액의 점도가 낮으며 3일 후에도 크게 변하지 않는 것을 알 수 있다. 또한, 점도안정성이 우수한 도프원액을 이용하면 인장강도가 우수한 전구체 섬유를 제조할 수 있다는 것을 확인할 수 있다.Comparing Examples 1 to 3 and Comparative Example with reference to Table 1, when the PAN polymer was dissolved at low temperature, that is, at 25 to 50 ° C. during the preparation of the dope stock solution, the viscosity of the dope stock solution was low and did not change significantly after 3 days. I can see that it does not. In addition, it can be confirmed that the precursor fiber having excellent tensile strength can be prepared by using the dope stock solution having excellent viscosity stability.

Claims (1)

95중량% 이상의 아크릴로니트릴과 5중량% 미만의 코모노머를 포함하는 폴리아크릴로니트릴 중합물을 사용하여 도프원액을 제조하는 도프원액 제조단계를 포함하는 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유의 제조방법으로서,Preparation of polyacrylonitrile precursor fiber for carbon fiber comprising the step of preparing a dope solution using a polyacrylonitrile polymer containing 95% by weight or more acrylonitrile and less than 5% by weight comonomer As a method, 상기 코모노머는 메틸아크릴레이트, 아크릴산, 메타크릴산, 이타콘산으로 이루어진 군에서 선택된 2종 이상으로 이루어지며,The comonomer is made of two or more selected from the group consisting of methyl acrylate, acrylic acid, methacrylic acid, itaconic acid, 상기 도프원액 제조단계는 25~50℃에서 실시되는 것을 특징으로 하는 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유의 제조방법.The dope preparation step of producing a polyacrylonitrile precursor fiber for carbon fibers, characterized in that carried out at 25 ~ 50 ℃.
KR1020090135111A 2009-12-31 2009-12-31 Method of preparing precursors for polyacrylonitrile-based carbon fibers KR101148428B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090135111A KR101148428B1 (en) 2009-12-31 2009-12-31 Method of preparing precursors for polyacrylonitrile-based carbon fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090135111A KR101148428B1 (en) 2009-12-31 2009-12-31 Method of preparing precursors for polyacrylonitrile-based carbon fibers

Publications (2)

Publication Number Publication Date
KR20110078329A KR20110078329A (en) 2011-07-07
KR101148428B1 true KR101148428B1 (en) 2012-05-23

Family

ID=44917803

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090135111A KR101148428B1 (en) 2009-12-31 2009-12-31 Method of preparing precursors for polyacrylonitrile-based carbon fibers

Country Status (1)

Country Link
KR (1) KR101148428B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9296889B2 (en) * 2014-01-10 2016-03-29 Montefibre Mae Technoogies S.r.l. Process for the production of acrylic fibers
CN105624819B (en) * 2014-10-27 2018-05-11 中国石油化工股份有限公司 The preparation method of hydrophilic polypropylene itrile group carbon fibre precursor
CN115506044B (en) * 2021-06-23 2024-02-27 吉林碳谷碳纤维股份有限公司 Preparation method of 50K carbon fiber precursor, precursor and carbon fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900010088A (en) * 1988-12-02 1990-07-06 원본미기재 Acrylic precursor for carbon fiber and its manufacturing method
KR0123942B1 (en) * 1995-01-20 1997-11-27 박홍기 Manufacturing process of carbon fiber
KR0134920B1 (en) * 1995-01-20 1998-04-18 Cheil Synthetics Inc Method for manufacturing high tenacity carbon fiber
JPH1181039A (en) 1997-09-08 1999-03-26 Mitsubishi Rayon Co Ltd Acrylonitrile-based precursor fiber for carbon fiber and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900010088A (en) * 1988-12-02 1990-07-06 원본미기재 Acrylic precursor for carbon fiber and its manufacturing method
KR0123942B1 (en) * 1995-01-20 1997-11-27 박홍기 Manufacturing process of carbon fiber
KR0134920B1 (en) * 1995-01-20 1998-04-18 Cheil Synthetics Inc Method for manufacturing high tenacity carbon fiber
JPH1181039A (en) 1997-09-08 1999-03-26 Mitsubishi Rayon Co Ltd Acrylonitrile-based precursor fiber for carbon fiber and its production

Also Published As

Publication number Publication date
KR20110078329A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
KR100364655B1 (en) Acrylonitrile-based precursor fiber for carbon fiber, process for producing the same, and carbon fiber obtained from the precursor fiber
JP2012082541A (en) Method for producing carbon fiber
KR101148428B1 (en) Method of preparing precursors for polyacrylonitrile-based carbon fibers
JP2010100970A (en) Method for producing carbon fiber
KR101168537B1 (en) Carbon fiber manufacturing method and Precipitating bath
KR101091415B1 (en) Polyacrylonitrile Based Precursor For Carbon Fiber And Its Preparation Method
JP2011042893A (en) Method for producing polyacrylonitrile-based fiber and method for producing carbon fiber
KR870001386B1 (en) High strength high elastic rate polyacryliro nitrilic fiber
KR101490529B1 (en) Preparation method of polyacrylonitrile precursor based carbon Fiber
JP2011017100A (en) Method for producing carbon fiber
KR20100073760A (en) Method for preparing carbon fiber precursor
KR20140074136A (en) Precursor manufacturing device of carbon fiber
JP4887219B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
JP5504678B2 (en) Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber
KR101148708B1 (en) Preparation Method Of Polyacrylonitrile Based Precursor For Carbon Fiber
KR20120077628A (en) Carbon fiber precursor and manufacturing method
KR20110078242A (en) Method of preparing polyacrylonitrile-based precursors for carbon fibers
KR101276469B1 (en) Method of preparing precursors for polyacrylonitrile-based carbon fibers
KR20110078306A (en) Process for producing precursor fiber for acrylonitrile-based carbon fiber and carbon fiber obtained from the precursor fiber
KR101021881B1 (en) Apparatus and method for preparing carbon fiber precursor using vertical spinning
JP6217342B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
KR20110079369A (en) A method of preparing doped solution of polyacrylonitrile-based precursor for carbon fiber
KR101490530B1 (en) Method of preparing precursors for polyacrylonitrile-based carbon fibers
KR101364788B1 (en) Process for treating oil on the precursor fiber for preparing a carbon fiber
KR20110130186A (en) Manufacturing method of carbon fiber

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160414

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170413

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180411

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190411

Year of fee payment: 8