KR20110072313A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
KR20110072313A
KR20110072313A KR1020090129189A KR20090129189A KR20110072313A KR 20110072313 A KR20110072313 A KR 20110072313A KR 1020090129189 A KR1020090129189 A KR 1020090129189A KR 20090129189 A KR20090129189 A KR 20090129189A KR 20110072313 A KR20110072313 A KR 20110072313A
Authority
KR
South Korea
Prior art keywords
vane
spring
groove
cylinder
rolling piston
Prior art date
Application number
KR1020090129189A
Other languages
Korean (ko)
Other versions
KR101667710B1 (en
Inventor
최윤성
이장우
이승준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020090129189A priority Critical patent/KR101667710B1/en
Publication of KR20110072313A publication Critical patent/KR20110072313A/en
Application granted granted Critical
Publication of KR101667710B1 publication Critical patent/KR101667710B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3445Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the vanes having the form of rollers, slippers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/04Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/18Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3446Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • F04C18/3447Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface the vanes having the form of rollers, slippers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3566Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along more than line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE: A rotary compressor is provided to reduce the noise of a compressor by skipping a process, in which each vane looks for a sealing groove on each rolling piston when the compressor starts operating. CONSTITUTION: A rotary compressor comprises a cylinder, a rolling piston(320), a vane(330) and a vane spring(340). The cylinder comprises a compression space. The rolling piston is coupled to a crank shaft in the compression space of the cylinder and makes pivot movement. The vane is sliding-coupled to a sealing groove(321) on the outer circumferential surface of the rolling piston. The vane compresses refrigerant, reciprocating along the rolling piston. The vane spring elastically supports the vane to the rolling piston. A spring groove(314) is formed on the cylinder. The vane spring is inserted into the spring groove.

Description

로터리 압축기{ROTARY COMPRESSOR}Rotary compressors {ROTARY COMPRESSOR}

본 발명은 로터리 압축기에 관한 것으로, 특히 베인이 롤링피스톤의 외주면에 삽입 결합되는 로터리 압축기에 관한 것이다.The present invention relates to a rotary compressor, and more particularly to a rotary compressor in which the vane is inserted into the outer peripheral surface of the rolling piston.

일반적으로 냉매 압축기는 냉장고나 에어콘과 같은 증기압축식 냉동사이클(이하, 냉동사이클로 약칭함)에 적용되고 있다. 상기 냉매 압축기는 일정한 속도로 구동되는 등속형 압축기 또는 회전 속도가 제어되는 인버터형 압축기가 소개되고 있다. Generally, a refrigerant compressor is applied to a vapor compression refrigeration cycle (hereinafter, referred to as a refrigeration cycle) such as a refrigerator or an air conditioner. The refrigerant compressor has been introduced is a constant-speed compressor that is driven at a constant speed or an inverter compressor of which the rotational speed is controlled.

상기 냉매 압축기는 통상 전동기인 구동모터와 그 구동모터에 의해 작동되는 압축부가 밀폐된 케이싱의 내부공간에 함께 설치되는 경우를 밀폐형 압축기라고 하고, 상기 구동모터가 케이싱의 외부에 별도로 설치되는 경우를 개방형 압축기라고 할 수 있다. 가정용 또는 업소용 냉동기기는 대부분 밀폐형 압축기가 사용되고 있다. 그리고 상기 냉매 압축기는 냉매를 압축하는 방식에 따라 왕복동식, 스크롤식, 로터리식 등으로 구분될 수 있다. The refrigerant compressor is a hermetic compressor, in which a drive motor which is a motor and a compression unit operated by the drive motor are installed together in an inner space of a closed casing, is called a hermetic compressor. It can be called a compressor. Most domestic or commercial refrigeration equipment is a hermetic compressor. The refrigerant compressor may be classified into a reciprocating type, a scroll type, a rotary type, and the like according to a method of compressing the refrigerant.

상기 로터리 압축기는 실린더의 압축공간에서 편심 회전운동을 하는 롤링피스톤과 그 롤링피스톤의 외주면에 접하여 상기 실린더의 압축공간을 흡입실과 토출 실로 구획하는 베인을 이용하여 냉매를 압축하는 방식이다. The rotary compressor is a method of compressing a refrigerant by using a rolling piston that performs an eccentric rotation in a compression space of a cylinder and a vane that contacts the outer circumferential surface of the rolling piston and divides the compression space of the cylinder into a suction chamber and a discharge chamber.

하지만, 상기 베인이 롤링피스톤의 외주면에 선접촉하는 경우에는 그 베인과 롤링피스톤 사이의 실링면적이 좁아 상대적으로 고압인 토출공간에서 상대적으로 저압인 흡입공간으로 냉매의 누설이 발생되면서 압축기의 성능이 크게 저하될 수 있다.However, when the vane is in linear contact with the outer circumferential surface of the rolling piston, the sealing area between the vane and the rolling piston is narrow, so that refrigerant is leaked from the relatively high pressure discharge space to the relatively low pressure suction space, thereby improving the performance of the compressor. It can be greatly reduced.

이를 감안하여, 종래에는 상기 롤링피스톤의 외주면에 축방향으로 실링홈을 형성하여 그 실링홈에 상기 베인의 선단면이 삽입되어 결합되도록 함으로써 상기 베인과 롤링피스톤 사이의 실링면적을 넓히고 이를 통해 상기 롤링피스톤과 베인의 접촉면을 통해 냉매가 토출공간에서 흡입공간으로 누설되는 것을 줄이고자 하는 기술이 알려져 있다.In view of this, in the related art, a sealing groove is formed on the outer circumferential surface of the rolling piston in an axial direction so that the end surface of the vane is inserted into and coupled to the sealing groove, thereby widening the sealing area between the vane and the rolling piston and thereby rolling the rolling groove. Techniques for reducing the leakage of refrigerant from the discharge space to the suction space through the contact surface of the piston and vanes are known.

그러나, 상기와 같은 종래의 로터리 압축기에 있어서는, 상기 베인이 베인스프링에 의해 탄력 지지되어 롤링피스톤에 압접되도록 하는 것이나, 실제 압축기를 조립할 때에는 상기 베인스프링을 나중에 조립하게 됨에 따라 상기 롤링피스톤의 실링홈에 베인이 결합되지 못한 상태로 결합되므로 압축기가 일정 시간 동안 기동운전을 하는 과정에서 상기 롤링피스톤의 실링홈에 베인이 후조립되게 된다. 따라서 상기 롤링피스톤의 실링홈에 베인이 자리를 잡기까지 이상소음이 발생되어 압축기의 신뢰성이 저하되는 문제점이 있었다.However, in the conventional rotary compressor as described above, the vane is elastically supported by the vane spring so as to be pressed against the rolling piston, but when assembling the actual compressor, the vane spring is later assembled to seal the groove of the rolling piston. Since the vanes are coupled in a state in which the vanes are not coupled, the vanes are post-assembled in the sealing groove of the rolling piston in the process of starting the compressor for a predetermined time. Therefore, abnormal noise is generated until the vane is seated in the sealing groove of the rolling piston, thereby reducing the reliability of the compressor.

본 발명의 목적은, 압축기의 조립시 상기 롤링피스톤의 실링홈에 베인이 삽입되어 결합된 상태로 조립될 수 있도록 함으로써 압축기의 기동운전시 발생되는 이상소음을 줄일 수 있는 로터리 압축기를 제공하려는데 있다.An object of the present invention is to provide a rotary compressor that can reduce the abnormal noise generated during the start-up operation of the compressor by allowing the vane is inserted into the sealing groove of the rolling piston when the compressor is assembled.

본 발명의 목적을 달성하기 위하여, 압축공간이 형성되는 실린더; 상기 실린더의 압축공간에서 크랭크축에 결합되어 선회운동을 하는 롤링피스톤; 상기 롤링피스톤의 외주면에 구비된 실링홈에 미끄러지게 삽입 결합되어 그 롤링피스톤을 따라 왕복운동을 하면서 냉매를 압축하는 베인; 및 상기 실린더에 결합되어 상기 베인을 롤링피스톤 방향으로 탄력 지지하는 베인스프링;을 포함하고, 상기 실린더에는 상기 베인스프링이 삽입되도록 스프링홈이 반경방향으로 형성되고, 상기 베인스프링은 상기 실린더의 스프링홈에 삽입되어 고정 결합되는 로터리 압축기가 제공된다.In order to achieve the object of the present invention, the compression space is formed cylinder; A rolling piston coupled to the crankshaft in a compression space of the cylinder to make a pivoting movement; A vane slidably inserted into a sealing groove provided on an outer circumferential surface of the rolling piston to compress the refrigerant while reciprocating along the rolling piston; And a vane spring coupled to the cylinder to elastically support the vane in a rolling piston direction, wherein the cylinder includes a spring groove radially inserted to insert the vane spring, and the vane spring is a spring groove of the cylinder. A rotary compressor is inserted and fixedly coupled thereto.

본 발명에 의한 로터리 압축기는, 작업자가 각각의 압축부를 케이싱에 결합할 때 상기 베인스프링의 끝단을 눌러 지지하지 않더라도 상기 제1 베인스프링과 제2 베인스프링이 제1 베인과 제2 베인을 각각 제1 롤링피스톤과 제2 롤링피스톤 쪽으로 가세하여 압접된 상태를 유지함에 따라 압축기 기동시 각각의 베인이 각각의 롤링피스톤에 구비된 실링홈을 찾아들어가는 과정이 삭제되어 그만큼 압축기 소음을 미연에 줄일 수 있다.In the rotary compressor according to the present invention, the first vane spring and the second vane spring remove the first vane and the second vane, respectively, even if the operator does not press the end of the vane spring to support each compression unit. By maintaining the pressure contact in addition to the first and second rolling pistons, the process of each vane entering the sealing groove provided in each rolling piston at the start of the compressor is eliminated, thus reducing the compressor noise. .

이하, 본 발명에 의한 로터리 압축기를 첨부도면에 도시된 실시예에 의거하여 상세하게 설명한다. Hereinafter, the rotary compressor according to the present invention will be described in detail based on the embodiment shown in the accompanying drawings.

도 1은 본 발명 복식 용량가변 로터리 압축기를 보인 종단면도이고, 도 2는 도 1에 따른 로터리 압축기의 압축기구부를 보인 종단면도이며, 도 3은 도 2에서 제1 실린더를 상측에서 보인 횡단면도이고, 도 4는 도 3의 "A"부를 보인 확대도이며, 도 5 내지 도 7은 도 4에서 베인스프링을 고정하기 위한 각각의 실시예들을 보인 확대도이다.1 is a longitudinal cross-sectional view showing a double displacement variable rotary compressor of the present invention, Figure 2 is a longitudinal sectional view showing a compression mechanism of the rotary compressor according to Figure 1, Figure 3 is a cross-sectional view showing a first cylinder in Figure 2, 4 is an enlarged view illustrating part “A” of FIG. 3, and FIGS. 5 to 7 are enlarged views showing respective embodiments for fixing the vane spring in FIG. 4.

이에 도시된 바와 같이, 본 발명에 의한 로터리 압축기(1)는 응축기(2), 팽창변(3), 그리고 증발기(4)로 이어지는 폐루프 냉동사이클의 일부를 이루도록 상기 증발기(4)의 출구측에 흡입측이 연결되는 동시에 상기 응축기(2)의 입구측에 토출측이 연결된다. 그리고 상기 증발기(4)의 출구측과 압축기(1)의 입구측 사이에는 상기 증발기(4)에서 압축기(1)로 전달되는 냉매에서 가스냉매와 액냉매를 분리할 수 있도록 어큐뮬레이터(5)가 연결된다.As shown therein, the rotary compressor 1 according to the invention is located at the outlet side of the evaporator 4 to form part of a closed loop refrigeration cycle leading to the condenser 2, the expansion valve 3, and the evaporator 4. The suction side is connected and the discharge side is connected to the inlet side of the condenser 2. The accumulator 5 is connected between the outlet side of the evaporator 4 and the inlet side of the compressor 1 to separate the gas refrigerant and the liquid refrigerant from the refrigerant transferred from the evaporator 4 to the compressor 1. do.

상기 압축기(1)는 밀폐된 케이싱(100)의 내부공간 상측에 구동력을 발생하는 전동부(200)가 설치되고, 상기 케이싱(100)의 내부공간 하측에는 상기 전동부(200)에서 발생된 동력으로 냉매를 압축하는 제1 압축부(300)와 제2 압축부(400)가 설치된다. The compressor 1 is provided with a transmission unit 200 for generating a driving force in the upper inner space of the closed casing 100, the power generated by the transmission unit 200 in the lower inner space of the casing 100. The first compression unit 300 and the second compression unit 400 for compressing the refrigerant is installed.

상기 케이싱(100)은 그 내부공간이 상기 제1 압축부(300)와 제2 압축부(400) 또는 제1 압축부(300)에서 토출되는 냉매에 의해 토출압의 상태를 유지하고, 상기 케이싱(100)의 하반부 주면에는 제1 압축부(300)와 제2 압축부(400)의 사이로 냉매가 흡입되도록 한 개의 가스흡입관(140)이 연결되며, 상기 케이싱(100)의 상단에는 제1 압축부(300)와 제2 압축부(400)에서 압축되어 토출된 냉매가 냉동시스템으로 전달되도록 한 개의 가스토출관(150)이 연결된다. 상기 가스흡입관(140)은 후술할 중간플레이트(130)의 연통유로(131)에 삽입되는 중간연결관(미도시)에 삽입되어 용접 결합된다.The casing 100 maintains a state of the discharge pressure by the refrigerant discharged from the first compression unit 300 and the second compression unit 400 or the first compression unit 300, the inner space of the casing 100, One gas suction pipe 140 is connected to the lower main surface of the lower portion 100 so that the refrigerant is sucked between the first compression unit 300 and the second compression unit 400, and the first compression unit is connected to the upper end of the casing 100. One gas discharge pipe 150 is connected to deliver the refrigerant compressed and discharged by the unit 300 and the second compression unit 400 to the refrigeration system. The gas suction pipe 140 is inserted into the intermediate connecting pipe (not shown) inserted into the communication passage 131 of the intermediate plate 130 to be described later is welded.

상기 전동부(200)는 상기 케이싱(100)의 내주면에 고정되는 고정자(210)와, 상기 고정자(210)의 내부에 회전 가능하게 배치되는 회전자(220)와, 상기 회전자(220)에 열박음 되어 함께 회전을 하는 크랭크축(230)으로 이루어진다. 상기 전동부(200)는 정속모터일 수도 있고 인버터모터일 수도 있다. 하지만, 비용을 고려하면 상기 전동부(200)는 정속모터를 이용하면서도 상기 제1 압축부(300)와 제2 압축부(400) 중에서 어느 한 쪽 압축부를 필요시 공회전시켜 압축기의 운전모드를 가변할 수 있다.The transmission unit 200 is a stator 210 fixed to the inner circumferential surface of the casing 100, a rotor 220 rotatably disposed inside the stator 210, and the rotor 220 It is made of a crank shaft 230 which is shrinked and rotated together. The electric motor 200 may be a constant speed motor or an inverter motor. However, in consideration of the cost, the electric motor 200 may vary the operation mode of the compressor by idling one of the first compression unit 300 and the second compression unit 400, if necessary, while using the constant speed motor. can do.

그리고 상기 크랭크축(230)은 회전자(220)에 결합되는 축부(231)와, 그 축부(231)의 하단부에 좌우 양측으로 편심지게 형성되는 제1 편심부(232)와 제2 편심부(233)로 이루어진다. 상기 제1 편심부(232)와 제2 편심부(233)는 대략 180°의 위상차를 두고 대칭되게 형성되고 후술할 제1 롤링피스톤(340)과 제2 롤링피스톤(430)이 각각 회전 가능하게 결합된다.The crankshaft 230 includes a shaft portion 231 coupled to the rotor 220 and a first eccentric portion 232 and a second eccentric portion eccentrically formed at both ends of the shaft portion 231 at left and right sides thereof. 233). The first eccentric portion 232 and the second eccentric portion 233 are formed symmetrically with a phase difference of approximately 180 °, and the first rolling piston 340 and the second rolling piston 430, which will be described later, are rotatable, respectively. Combined.

상기 제1 압축부(300)는 환형으로 형성되고 상기 케이싱(100)의 내부에 설치되는 제1 실린더(310)와, 상기 크랭크축(230)의 제1 편심부(232)에 회전 가능하게 결합되고 상기 제1 실린더(310)의 제1 압축공간(V1)에서 선회하면서 냉매를 압축하는 제1 롤링피스톤(320)과, 상기 제1 실린더(310)에 반경방향으로 이동 가능하게 결합되어 그 일측의 실링면이 상기 제1 롤링피스톤(320)의 외주면에 접촉되고 상기 제1 실린더(310)의 제1 압축공간(V1)을 제1 흡입실과 제1 토출실로 각각 구획하는 제1 베인(330)과, 상기 제1 베인(330)의 후방측을 탄력 지지하도록 압축스프링으로 된 베인스프링(340)을 포함한다. The first compression unit 300 is formed in an annular shape and rotatably coupled to the first cylinder 310 installed inside the casing 100 and the first eccentric portion 232 of the crankshaft 230. And a first rolling piston 320 that compresses the refrigerant while turning in the first compression space V1 of the first cylinder 310, and is movably coupled to the first cylinder 310 in a radial direction. The first vane 330 is in contact with the outer peripheral surface of the first rolling piston 320 and partitions the first compression space (V1) of the first cylinder 310 into a first suction chamber and a first discharge chamber, respectively. And a vane spring 340 made of a compression spring to elastically support the rear side of the first vane 330.

상기 제2 압축부(400)는 환형으로 형성되고 상기 케이싱(100) 내부에서 상기 제1 실린더(310) 하측에 설치되는 제2 실린더(410)와, 상기 크랭크축(230)의 제2 편심부(233)에 회전 가능하게 결합되고 상기 제2 실린더(410)의 제2 압축공간(V2)에서 선회하면서 냉매를 압축하는 제2 롤링피스톤(420)과, 상기 제2 실린더(410)에 반경방향으로 이동 가능하게 결합되고 상기 제2 롤링피스톤(420)의 외주면에 접촉되어 상기 제2 실린더(410)의 제2 압축공간(V2)이 제2 흡입실과 제2 토출실로 각각 구획되거나 또는 상기 제2 롤링피스톤(420)의 외주면에서 이격되어 상기 제2 흡입 실과 제2 토출실이 서로 연통되도록 하는 제2 베인(430)과, 상기 제2 베인(430)의 후방측을 탄력 지지하도록 압축스프링으로 된 베인스프링(440)을 포함한다.The second compression unit 400 is formed in an annular shape, the second cylinder 410 and the second eccentric portion of the crankshaft 230 which is installed below the first cylinder 310 in the casing 100. A second rolling piston 420 rotatably coupled to 233 and compressing the refrigerant while turning in the second compression space V2 of the second cylinder 410, and a radial direction to the second cylinder 410; The second compression space V2 of the second cylinder 410 is divided into a second suction chamber and a second discharge chamber, respectively, so as to be coupled to the second rolling piston 420 and to be in contact with an outer circumferential surface of the second rolling piston 420. A second vane 430 spaced apart from the outer circumferential surface of the rolling piston 420 so that the second suction chamber and the second discharge chamber communicate with each other, and a compression spring to elastically support the rear side of the second vane 430. The vane spring 440 is included.

여기서, 상기 제1 실린더(310)와 제2 실린더(410)는 상기 제1 압축공간(V1)과 제2 압축공간(V2)을 이루는 각 내주면의 일측에 상기 제1 베인(330)과 제2 베인(430)이 직선 왕복운동을 하도록 제1 베인슬롯(311)과 제2 베인슬롯(411)이 형성되고, 상기 제1 베인슬롯(311)과 제2 베인슬롯(411)의 일측에는 냉매를 제1 압축공간(V1)과 제2 압축공간(V2)으로 유도하는 제1 흡입홈(312)와 제2 흡입홈(412)가 각각 형성된다.Here, the first cylinder 310 and the second cylinder 410 is the first vane 330 and the second on one side of each inner peripheral surface constituting the first compression space (V1) and the second compression space (V2). A first vane slot 311 and a second vane slot 411 are formed such that the vanes 430 linearly reciprocate, and refrigerant is provided at one side of the first vane slot 311 and the second vane slot 411. A first suction groove 312 and a second suction groove 412 are formed to guide the first compression space V1 and the second compression space V2, respectively.

상기 제1 흡입홈(312)과 제2 흡입홈(412)은 후술할 중간플레이트(130)의 분지구멍(133)(134)들의 상측 끝단과 하측 끝단에 각각 접하는 제1 실린더(310)와 제2 실린더(41)의 하면 모서리와 상면 모서리에서 상기 제1 실린더(310)와 제2 실린더(410)의 내주면을 향하도록 모따기하여 경사지게 형성된다. The first suction groove 312 and the second suction groove 412 are formed of a first cylinder 310 and a first contacting the upper and lower ends of the branch holes 133 and 134 of the intermediate plate 130, which will be described later. The two cylinders 41 are formed to be inclined by chamfering toward the inner circumferential surfaces of the first cylinder 310 and the second cylinder 410 at the bottom and top edges.

상기 제1 실린더(310)의 상측에는 상부베어링플레이트(이하,상부베어링)(110)가 복개되고, 상기 제2 실린더(410)의 하측에는 하부베어링플레이트(이하, 하부베어링)(120)가 복개되며, 상기 제1 실린더(310)의 하측과 제2 실린더(410)의 상측 사이에는 양측 베어링과 함께 제1 압축공간(V1)과 제2 압축공간(V2)을 형성하는 중간플레이트(130)가 설치된다.An upper bearing plate (hereinafter, upper bearing) 110 is covered on the upper side of the first cylinder 310, and a lower bearing plate (hereinafter, lower bearing) 120 is opened on the lower side of the second cylinder 410. An intermediate plate 130 is formed between the lower side of the first cylinder 310 and the upper side of the second cylinder 410 to form a first compression space V1 and a second compression space V2 together with both bearings. Is installed.

상기 상부베어링(110)과 하부베어링(120)은 원판모양으로 형성되고, 상기 상부베어링(110)과 하부베어링(120)의 중앙에는 각각 상기 크랭크축(230)의 축부(231)가 반경방향으로 지지되도록 축구멍(111)(121)을 갖는 제1 축수부(112)와 제2 축수부(122)가 돌출 형성된다. The upper bearing 110 and the lower bearing 120 are formed in a disc shape, the shaft portion 231 of the crank shaft 230 in the center of the upper bearing 110 and the lower bearing 120 in the radial direction, respectively The first bearing part 112 and the second bearing part 122 having the shaft holes 111 and 121 are protruded to be supported.

상기 중간플레이트(130)는 상기 크랭크축(230)의 편심부가 관통하는 정도의 내경을 가지는 환형으로 형성되고, 그 일측에는 상기 가스흡입관(140)이 후술할 제1 흡입홈(312)와 제2 흡입홈(412)에 연통되도록 하는 흡입유로(131)가 형성된다. 상기 흡입유로(131)는 상기 가스흡입관(140)과 연통되는 흡입구멍(132)과, 상기 흡입구멍(132)의 끝단에 형성되어 상기 제1 흡입홈(312)과 제2 흡입홈(412)이 상기 흡입구멍(132)과 연통되도록 하는 제1 분지구멍(133)과 제2 분지구멍(134)으로 이루어진다. The intermediate plate 130 is formed in an annular shape having an inner diameter such that the eccentric portion of the crankshaft 230 penetrates, and at one side thereof, the gas suction pipe 140 and the first suction groove 312 and the second which will be described later. A suction passage 131 is formed to communicate with the suction groove 412. The suction passage 131 is formed at a suction hole 132 in communication with the gas suction pipe 140 and at an end of the suction hole 132 and the first suction groove 312 and the second suction groove 412. The first branch hole 133 and the second branch hole 134 communicate with the suction hole 132.

상기 흡입구멍(132)은 상기 중간 플레이트(130)의 외주면에서 반경방향으로 소정의 깊이를 갖도록 형성된다. The suction hole 132 is formed to have a predetermined depth in the radial direction on the outer circumferential surface of the intermediate plate 130.

상기 제1 분지구멍(133)과 제2 분지구멍(134)은 상기 흡입구멍(132)의 안쪽 끝단부에서 상기 제1 흡입홈(312)과 제2 흡입홈(412)을 향해 소정의 각도, 즉 상기 흡입구멍의 중심선을 기준으로 대략 0°~ 90°정도, 더 정확하게는 30°~ 60°정도가 되도록 경사지게 형성된다.The first branch hole 133 and the second branch hole 134 have a predetermined angle toward the first suction groove 312 and the second suction groove 412 at the inner end of the suction hole 132. That is, it is formed to be inclined so as to be approximately 0 ° to 90 °, more precisely 30 ° to 60 ° based on the center line of the suction hole.

도면중 미설명 부호인 350은 제1 토출밸브, 360은 제1 머플러, 450은 제2 토출밸브, 460은 제2 머플러이다.In the drawings, reference numeral 350 denotes a first discharge valve, 360 denotes a first muffler, 450 denotes a second discharge valve, and 460 denotes a second muffler.

상기와 같은 본 발명에 의한 로터리 압축기에서 냉매가 각 압축공간에서 압축되는 과정은 다음과 같다.In the rotary compressor according to the present invention as described above, the process of compressing the refrigerant in each compression space is as follows.

즉, 상기 전동부(200)의 고정자(210)에 전원을 인가하여 상기 회전자(220)가 회전하면, 상기 크랭크축(230)이 상기 회전자(220)와 함께 회전하면서 상기 전동 부(200)의 회전력을 상기 제1 압축부(300)와 제2 압축부(400)에 전달하고, 상기 제1 압축부(300)와 제2 압축부(400)에서는 각각 제1 롤링피스톤(320)과 제2 롤링피스톤(420)이 상기 각 제1 압축공간(V1)과 제2 압축공간(V2)에서 편심 회전운동을 하며, 상기 제1 베인(330)과 제2 베인(430)이 상기 제1 및 제2 롤링피스톤(320)(420)과 함께 180°의 위상차를 가지는 압축공간들(V1)(V2)을 각각 형성하면서 냉매를 압축하게 된다.That is, when the rotor 220 rotates by applying power to the stator 210 of the transmission unit 200, the crank shaft 230 rotates together with the rotor 220 while the transmission unit 200 is rotated. The rotational force of) is transmitted to the first compression unit 300 and the second compression unit 400, the first compression unit 300 and the second compression unit 400, respectively, the first rolling piston 320 and The second rolling piston 420 makes an eccentric rotational movement in each of the first and second compression spaces V1 and V2, and the first and second vanes 330 and 430 are respectively disposed in the first and second compression spaces V1 and V2. And the second rolling pistons 320 and 420 to form the compression spaces V1 and V2 having a phase difference of 180 °, respectively, to compress the refrigerant.

예컨대, 상기 제1 압축공간(V1)이 흡입행정을 시작하면, 냉매가 어큐뮬레이터(5)와 흡입관(140)을 통해 상기 중간플레이트(130)의 흡입유로(131)로 유입되고, 이 냉매는 상기 제1 실린더(310)의 제1 흡입홈(312)을 통해 제1 압축공간(V1)으로 흡입되어 압축된다. For example, when the first compression space V1 starts the suction stroke, the refrigerant flows into the suction passage 131 of the intermediate plate 130 through the accumulator 5 and the suction pipe 140, and the refrigerant flows into the suction path 131. It is sucked into the first compression space (V1) through the first suction groove 312 of the first cylinder 310 and is compressed.

그리고, 상기 제1 압축공간(V1)이 압축행정을 진행하는 동안에 그 제1 압축공간(V1)과 180°의 위상차를 가지는 상기 제2 실린더(410)의 제2 압축공간(V2)은 흡입행정을 시작하게 된다. 그러면, 상기 제2 실린더(410)의 제2 흡입홈(412)이 상기 흡입유로(131)와 연통되면서 냉매가 상기 제2 실린더(410)의 제2 흡입홈(412)을 통해 상기 제2 압축공간(V2)으로 흡입되어 압축된다.The second compression space V2 of the second cylinder 410 having a phase difference of 180 ° with the first compression space V1 is the suction stroke while the first compression space V1 is in the compression stroke process. Will start. Then, while the second suction groove 412 of the second cylinder 410 is in communication with the suction flow path 131, the refrigerant is compressed through the second suction groove 412 of the second cylinder 410. It is sucked into the space V2 and compressed.

여기서, 상기 제1 롤링피스톤(320)과 제2 롤링피스톤(420)에는 각각 제1 실링홈(321)과 제2 실링홈(421)이 형성되어 그 각각의 실링홈(321)(421)에 상기 제1 베인(330)과 제2 베인(430)이 삽입됨에 따라 각 롤링피스톤(320)(420)과 베인(330)(430) 사이의 실링면적이 향상될 수 있고 이를 통해 상기 제1 압축공간(V1)의 흡입영역과 제2 압축공간(V2)의 흡입영역에서 압축되는 냉매가 각 압축공 간(V1)(V2)의 토출영역으로 누설되는 것을 방지할 수 있다. Here, a first sealing groove 321 and a second sealing groove 421 are formed in the first rolling piston 320 and the second rolling piston 420, respectively, in the respective sealing grooves 321 and 421. As the first vane 330 and the second vane 430 are inserted, the sealing area between each of the rolling pistons 320 and 420 and the vanes 330 and 430 may be improved, and thus the first compression may be performed. The refrigerant compressed in the suction region of the space V1 and the suction region of the second compression space V2 may be prevented from leaking into the discharge regions of the respective compression spaces V1 and V2.

하지만, 상기 롤링피스톤(320)(420)들에 실링홈(321)(421)이 형성되고, 그 실링홈(321)(421)들에 각각 제1 베인(330)과 제2 베인(430)이 삽입되는 구조에서는 상기 롤링피스톤(320)(420)들과 베인(330(430)들을 포함한 압축부(300)(400)들을 조립할 때 상기 롤링피스톤(320)(420)들의 실링홈(321)(421)에 각 베인(330)(430)들이 삽입된 상태를 유지하지 못할 경우 압축기의 기동운전시 상기 베인(330)(430)들이 각 롤링피스톤(320)(420)들의 실링홈(321)(421)에 삽입되는 과정에서 심한 소음이 발생될 수 있다. 이를 감안하여 본 발명은 상기 압축부(300)(400)들을 조립할 때 상기 롤링피스톤(320)(420)들의 각 실링홈(321)(421)에 베인(330)(430)들이 삽입된 상태를 유지할 수 있도록 하는 구조를 제공하고자 하는 것이다. 여기서, 상기 제1 압축부와 제2 압축부가 동일하므로 이하에서는 제1 압축부를 중심으로 설명하고 제2 압축부에 대해서는 제1 압축부의 구성을 준용한다.However, sealing grooves 321 and 421 are formed in the rolling pistons 320 and 420, and the first vane 330 and the second vane 430 are formed in the sealing grooves 321 and 421, respectively. In the inserted structure, the sealing grooves 321 of the rolling pistons 320 and 420 when assembling the compression units 300 and 400 including the rolling pistons 320 and 420 and the vanes 330 and 430. When vanes 330 and 430 are not maintained in the inserted state 421, the vanes 330 and 430 may seal the grooves 321 of the rolling pistons 320 and 420 during the start-up operation of the compressor. Severe noise may be generated in the process of being inserted into 421. In view of this, the present invention provides the sealing grooves 321 of the rolling pistons 320 and 420 when the compression units 300 and 400 are assembled. It is intended to provide a structure for maintaining the inserted state of the vanes 330 and 430 at 421. Here, since the first compression unit and the second compression unit are the same, the first compression unit will be described below. As it described, and a configuration to be applied for the first compressed portion to the second compression unit.

예를 들어, 도 3에서와 같이 상기 제1 베인슬롯(311)은 상기 제1 베인(330)이 왕복운동을 하도록 상기 제1 실린더(310)의 내주면에 반경방향으로 소정의 깊이만큼 절개하여 형성된다. 그리고 상기 제1 실린더(310)에는 상기 제1 베인슬롯(311)의 외곽측에 연결되고 상기 케이싱(100)의 내부공간과 연통되도록 축방향 관통구멍(313)이 형성되고, 상기 제1 실린더(310)의 외주면에는 상기 제1 베인스프링(340)이 삽입되는 제1 스프링홈(314)이 상기 제1 베인슬롯(311)과 연결되도록 반경방향으로 소정의 깊이만큼 형성된다. For example, as shown in FIG. 3, the first vane slot 311 is formed by cutting a predetermined depth in a radial direction on the inner circumferential surface of the first cylinder 310 such that the first vane 330 reciprocates. do. In addition, an axial through hole 313 is formed in the first cylinder 310 so as to be connected to an outer side of the first vane slot 311 and communicate with an inner space of the casing 100. A first spring groove 314 into which the first vane spring 340 is inserted is formed at an outer circumferential surface of the 310 so as to be connected to the first vane slot 311 by a predetermined depth in a radial direction.

그리고, 도 4에서와 같이 상기 제1 스프링홈(314)은 그 내주면에 상기 제1 베인스프링(340)을 반경방향으로 지지할 수 있도록 제1 고정홈(315)이 형성된다. 예를 들어, 상기 제1 베인스프링(340)이 나사산 형상을 갖는 압축 코일 스프링으로 이루어짐에 따라 그 제1 베인스프링(340)이 상기 제1 스프링홈(314)에 나사 결합될 수 있도록 그 제1 스프링홈(314)의 내주면에는 상기 제1 베인스프링(340)의 형상과 유사하게 나사산 형상으로 상기 제1 고정홈(315)이 형성될 수 있다. 이 경우, 상기 제1 고정홈(315)은 상기 제1 스프링홈(314)의 일부에만 형성되어야 상기 제1 베인스프링(340)의 일부가 탄성을 가질 수 있어 바람직하다. 그리고 상기 제1 베인스프링(340)은 양단 사이의 외경을 동일하게 형성할 수도 있지만 이 경우 상기 제1 고정홈(315) 이외의 제1 스프링홈(314)의 내경이 상기 제1 고정홈(315)에서의 내경보다 크게 형성되어야 하므로 그만큼 가공이 난해할 수 있다. 따라서, 상기 제1 스프링홈(315)의 내경을 거의 동일하게 형성하고 그 대신 상기 제1 베인스프링(340)의 외경을 제1 베인(330)쪽으로 갈수록 작게 형성하는 것이 가공측면에서 바람직할 수 있다.As shown in FIG. 4, the first spring groove 314 has a first fixing groove 315 formed on its inner circumferential surface so as to radially support the first vane spring 340. For example, as the first vane spring 340 is formed of a compression coil spring having a threaded shape, the first vane spring 340 may be screwed into the first spring groove 314. The first fixing groove 315 may be formed on the inner circumferential surface of the spring groove 314 in a threaded shape similar to the shape of the first vane spring 340. In this case, the first fixing groove 315 may be formed only in a part of the first spring groove 314, so that a part of the first vane spring 340 may have elasticity. The first vane spring 340 may have the same outer diameter between both ends, but in this case, the inner diameter of the first spring groove 314 other than the first fixing groove 315 is equal to the first fixing groove 315. It must be larger than the inner diameter in) so that the processing can be difficult. Accordingly, it may be desirable to form the inner diameter of the first spring groove 315 to be substantially the same, and instead, to form the outer diameter of the first vane spring 340 toward the first vane 330 toward the first vane 330. .

한편, 상기 제1 베인스프링(340)을 지지하기 위해서는 도 5에서와 같이 상기 제1 스프링홈(314)의 내주면에 링홈(314a)을 형성하고 그 링홈(314a)에 탄성링(316)을 삽입하여 상기 제1 베인스프링(340)이 상기 제1 베인스프링(340)의 끝단을 지지하도록 할 수도 있고, 도 6에서와 같이 상기 제1 스프링홈(314)의 끝단에 고정캡(317)을 압입하거나 또는 삽입시켜 용접하거나 또는 삽입시켜 나사 결합할 수도 있으며, 도 7에서와 같이 상기 제1 스프링홈(314)의 끝단에서 그 제1 스프링홈(314)에 엇갈리도록 핀구멍(314b)을 형성하고 그 핀구멍(314b)에 고정핀(318)을 삽입하여 상기 제1 베인스프링(314)의 끝단을 지지하도록 할 수도 있다. 그 외에 상기 베인스프링을 고정하기 위한 구조는 각각의 베인스프링을 케이싱에 조립하기 전에 각각의 스프링홈에 삽입하여 고정할 수 있는 구조이면 어떠한 형태이든 족하다.Meanwhile, in order to support the first vane spring 340, as shown in FIG. 5, a ring groove 314a is formed in the inner circumferential surface of the first spring groove 314 and an elastic ring 316 is inserted into the ring groove 314a. Thus, the first vane spring 340 may support the end of the first vane spring 340, and press-fit the fixing cap 317 to the end of the first spring groove 314 as shown in FIG. Or by inserting, welding, or inserting and screwing together, as shown in FIG. 7, at the end of the first spring groove 314, the pin hole 314b is formed to be staggered with the first spring groove 314. A fixing pin 318 may be inserted into the pin hole 314b to support the end of the first vane spring 314. In addition, the structure for fixing the vane spring may be any shape as long as it is a structure that can be fixed by inserting each vane spring into each spring groove before assembling the casing.

상기와 같은 본 발명에 의한 로터리 압축기를 조립하는 과정은 다음과 같다.The process of assembling the rotary compressor according to the present invention as described above is as follows.

즉, 상기 케이싱(100)에 전동부(200)의 고정자(210)를 삽입하여 고정하고, 상기 크랭크축(230)의 상단에는 전동부(200)의 회전자(220)를 조립하고 상기 크랭크축(230)의 하단에는 제1 압축부(300)와 제2 압축부(400) 등을 각각 조립한다. 그리고 상기 회전자(220)가 고정자(210)의 안쪽에 삽입되도록 하는 동시에 상기 제1 압축부(300)와 제2 압축부(400)가 케이싱(100)에 삽입되도록 하여 고정한다.That is, the stator 210 of the transmission unit 200 is inserted into and fixed to the casing 100, and the rotor 220 of the transmission unit 200 is assembled to the upper end of the crank shaft 230, and the crank shaft is assembled. At the lower end of the 230, the first compression unit 300 and the second compression unit 400 and the like are assembled, respectively. The rotor 220 is inserted into the stator 210 and the first compression unit 300 and the second compression unit 400 are inserted into the casing 100 and fixed.

여기서, 상기 제1 압축부(300)와 제2 압축부(400)를 각각 조립할 때에는 상기 크랭크축(230)의 제1 편심부(232)와 제2 편심부(233)에 각각 제1 롤링피스톤(320)과 제2 롤링피스톤(420)을 삽입하고, 그 제1 롤링피스톤(320)과 제2 롤링피스톤(420)의 외주면에 구비된 제1 실링홈(321)과 제2 실링홈(421)에 각각 제1 베인(330)과 제2 베인(430)의 선단면이 삽입되도록 한다. 그리고 상기 제1 베인(330)과 제2 베인(430)의 후방단은 각각 제1 베인스프링(340)과 제2 베인스프링(440)으로 가압하여 그 제1 베인(330)과 제2 베인(430)이 상기 제1 롤링피스톤(320)의 제1 실링홈(321)과 제2 롤링피스톤(420)의 제2 실링홈(421)에서 이격되지 않도록 한다.Here, when assembling the first compression unit 300 and the second compression unit 400, respectively, the first rolling pistons on the first eccentric portion 232 and the second eccentric portion 233 of the crankshaft 230, respectively. Inserting the 320 and the second rolling piston 420, the first sealing groove 321 and the second sealing groove 421 provided on the outer circumferential surface of the first rolling piston 320 and the second rolling piston 420 The front end surface of each of the first vane 330 and the second vane 430 is inserted into. The rear ends of the first vane 330 and the second vane 430 are pressed by the first vane spring 340 and the second vane spring 440, respectively, so that the first vane 330 and the second vane ( The 430 may not be spaced apart from the first sealing groove 321 of the first rolling piston 320 and the second sealing groove 421 of the second rolling piston 420.

이때, 상기 제1 실린더(310)의 제1 스프링홈(314)과 제2 실린더(410)의 제2 스프링홈(414)에는 각각 나사산으로 된 고정홈(315)(미도시)이 형성됨에 따라 상기 제1 스프링홈(314)과 제2 스프링홈(414)에 제1 베인스프링(340)과 제2 베인스프링(440)을 삽입할 때 그 각각의 스프링홈(314)(414)에 나사산으로 구비된 고정홈(315)(미도시)에 각 베인스프링(340)(440)이 체결되도록 함으로써 상기 각 베인스프링(340)(440)이 각 베인(330)(430)을 탄력 지지한 상태를 유지할 수 있도록 하는 것이다. At this time, as the first spring groove 314 of the first cylinder 310 and the second spring groove 414 of the second cylinder 410 are formed with a fixing groove 315 (not shown) made of thread, respectively. When inserting the first vane spring 340 and the second vane spring 440 into the first spring groove 314 and the second spring groove 414, the respective spring grooves 314 and 414 are threaded. The vanes springs 340 and 440 are elastically supported by the vanes 330 and 430 by fastening the vanes springs 340 and 440 to the fixing grooves 315 (not shown). To keep it.

이렇게 하여, 작업자가 각각의 압축부를 케이싱에 결합할 때 상기 베인스프링의 끝단을 눌러 지지하지 않더라도 상기 제1 베인스프링과 제2 베인스프링이 제1 베인과 제2 베인을 각각 제1 롤링피스톤과 제2 롤링피스톤 쪽으로 가세하여 압접된 상태를 유지함에 따라 압축기 기동시 각각의 베인이 각각의 롤링피스톤에 구비된 실링홈을 찾아들어가는 과정이 삭제되어 그만큼 압축기 소음을 미연에 줄일 수 있다.In this way, the first vane spring and the second vane spring are the first rolling piston and the second vane, respectively, even if the operator does not press the end of the vane spring to support each compression unit to the casing. 2 By maintaining the pressure contact in addition to the rolling piston, the process of each vane entering the sealing groove provided in each rolling piston at the start of the compressor can be eliminated, thereby reducing the compressor noise.

한편, 도면으로 도시하지는 않았으나, 상기와 같은 로터리 압축기는 단식 로터리 압축기에도 동일하게 적용할 수 있다. 그리고 도 8에서와 같이 복식 로터리 압축기 중에서 한 쪽 압축부(도면에선 제2 압축부)(400)의 베인(430)의 후방측에 케이싱(100)과 분리되는 베인챔버(413)가 형성되고 그 베인챔버(413)에 흡입압 또는 토출압을 선택적으로 공급하는 모드전환유닛(500)이 연결되며 상기 베인(430)의 움직임을 선택적으로 구속하는 구속유닛(미부호)이 구비되는 용량가변형 로터리 압축기에서도 동일하게 적용될 수 있다.On the other hand, although not shown in the drawings, the rotary compressor as described above can be equally applied to a single rotary compressor. And a vane chamber 413 which is separated from the casing 100 is formed on the rear side of the vane 430 of one compression unit (second compression unit in the drawing) 400 of the double rotary compressor as shown in FIG. A mode switching unit 500 is connected to the vane chamber 413 to selectively supply the suction pressure or the discharge pressure, and the variable displacement rotary compressor is provided with a restraining unit (unsigned) to selectively restrain the movement of the vane 430. The same can be applied to.

본 발명에 의한 용량 가변형 로터리 압축기는 가정용 또는 산업용 에어콘과 같은 냉동기기에 고르게 적용할 수 있다.The variable displacement rotary compressor according to the present invention can be evenly applied to a refrigerating device such as a home or industrial air conditioner.

도 1은 본 발명 복식 용량가변 로터리 압축기를 보인 종단면도,1 is a longitudinal sectional view showing a double displacement variable rotary compressor of the present invention;

도 2는 도 1에 따른 로터리 압축기의 압축기구부를 보인 종단면도,2 is a longitudinal sectional view showing a compression mechanism of the rotary compressor according to FIG. 1;

도 3은 도 2에서 제1 실린더를 상측에서 보인 횡단면도,3 is a cross-sectional view of the first cylinder shown in FIG. 2 from above;

도 4는 도 3의 "A"부를 보인 확대도,4 is an enlarged view illustrating part “A” of FIG. 3;

도 5 내지 도 7은 도 4에서 베인스프링을 고정하기 위한 각각의 실시예들을 보인 확대도,5 to 7 are enlarged views showing respective embodiments for fixing the vane spring in FIG. 4,

도 8은 도 1에 따른 로터리 압축기에서 제2 베인을 구속하기 위한 구속유닛을 갖는 복식 로터리 압축기를 보인 종단면도.8 is a longitudinal sectional view showing a double rotary compressor having a restraining unit for restraining a second vane in the rotary compressor according to FIG. 1;

** 도면중 주요부분에 대한 부호의 설명 **** Explanation of symbols for main parts of the drawing **

100 : 케이싱 130 : 중간베어링100: casing 130: intermediate bearing

131 : 연통유로 140 : 가스흡입관131: communication passage 140: gas suction pipe

310 : 제1 실린더 312 : 제1 흡입구310: first cylinder 312: first suction port

314 : 스프링홈 315 : 고정홈314: spring groove 315: fixed groove

316 : 고정링 317 : 고정캡316: fixing ring 317: fixing cap

318 : 고정핀 320,420 : 롤링피스톤318: fixing pin 320,420: rolling piston

321,421 : 실링홈 330,430 : 베인321,421: sealing groove 330,430: vane

Claims (5)

압축공간이 형성되는 실린더;A cylinder in which a compression space is formed; 상기 실린더의 압축공간에서 크랭크축에 결합되어 선회운동을 하는 롤링피스톤;A rolling piston coupled to the crankshaft in a compression space of the cylinder to make a pivoting movement; 상기 롤링피스톤의 외주면에 구비된 실링홈에 미끄러지게 삽입 결합되어 그 롤링피스톤을 따라 왕복운동을 하면서 냉매를 압축하는 베인; 및A vane slidably inserted into a sealing groove provided on an outer circumferential surface of the rolling piston to compress the refrigerant while reciprocating along the rolling piston; And 상기 실린더에 결합되어 상기 베인을 롤링피스톤 방향으로 탄력 지지하는 베인스프링;을 포함하고,And a vanes spring coupled to the cylinder to elastically support the vanes in a rolling piston direction. 상기 실린더에는 상기 베인스프링이 삽입되도록 스프링홈이 반경방향으로 형성되고, 상기 베인스프링은 상기 실린더의 스프링홈에 삽입되어 고정 결합되는 로터리 압축기.The cylinder has a spring groove is formed in the radial direction so that the vanes spring is inserted, the vane spring is inserted into the spring groove of the cylinder is fixed to the rotary compressor. 제1항에 있어서,The method of claim 1, 상기 스프링홈의 내주면에는 나사산이 형성되고, 상기 스프링홈의 나사산에 상기 베인스프링이 맞물려 고정 결합되는 로터리 압축기.A thread is formed on an inner circumferential surface of the spring groove, and the vane spring is engaged with and fixed to the thread of the spring groove. 제1항에 있어서,The method of claim 1, 상기 스프링홈의 내주면에는 링홈이 형성되고, 상기 링홈에 탄성링이 삽입되어 그 탄성링이 상기 베인스프링의 끝단을 지지하는 로터리 압축기.A ring groove is formed on an inner circumferential surface of the spring groove, and an elastic ring is inserted into the ring groove so that the elastic ring supports the end of the vane spring. 제1항에 있어서,The method of claim 1, 상기 스프링홈의 끝단에는 상기 베인스프링을 지지하는 고정부재가 삽입되어 고정되는 로터리 압축기.Rotary compressor is fixed to the end of the spring groove is inserted into the fixing member for supporting the vane spring. 제1항에 있어서,The method of claim 1, 상기 스프링홈의 끝단에는 그 스프링홈에 엇갈리도록 핀구멍이 형성되고, 상기 핀구멍에 핀부재가 삽입되어 상기 베인스프링의 끝단을 지지하는 로터리 압축기.A pin hole is formed at the end of the spring groove so as to cross the spring groove, and a pin member is inserted into the pin hole to support the end of the vane spring.
KR1020090129189A 2009-12-22 2009-12-22 Rotary compressor KR101667710B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090129189A KR101667710B1 (en) 2009-12-22 2009-12-22 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090129189A KR101667710B1 (en) 2009-12-22 2009-12-22 Rotary compressor

Publications (2)

Publication Number Publication Date
KR20110072313A true KR20110072313A (en) 2011-06-29
KR101667710B1 KR101667710B1 (en) 2016-10-28

Family

ID=44403247

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090129189A KR101667710B1 (en) 2009-12-22 2009-12-22 Rotary compressor

Country Status (1)

Country Link
KR (1) KR101667710B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105216586A (en) * 2015-11-11 2016-01-06 天津商业大学 A kind of vehicle air compression set driven based on braking
CN105422458A (en) * 2015-12-16 2016-03-23 珠海凌达压缩机有限公司 Compressor and air conditioner
CN110410321A (en) * 2019-07-31 2019-11-05 桂林航天工业学院 A kind of rotary pressure matcher
CN112283109A (en) * 2020-11-13 2021-01-29 比泽尔旋转压缩机(江苏)有限公司 Air cylinder assembly with double-spring structure and using method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102186604B1 (en) * 2019-07-17 2020-12-03 엘지전자 주식회사 Twin Rotary Compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890002533A (en) * 1987-07-24 1989-04-10 클라우스 포스,빌프리트 뵈르 Fuel Injection Pumps for Internal Combustion Engines
JPH1061576A (en) * 1996-08-27 1998-03-03 Matsushita Refrig Co Ltd Rotary compressor
KR20050098172A (en) * 2004-04-06 2005-10-11 엘지전자 주식회사 Structure for reducing gas leakage of rotary compressor
KR100677522B1 (en) * 2005-05-19 2007-02-02 엘지전자 주식회사 Modulation apparatus for rotary compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890002533A (en) * 1987-07-24 1989-04-10 클라우스 포스,빌프리트 뵈르 Fuel Injection Pumps for Internal Combustion Engines
JPH1061576A (en) * 1996-08-27 1998-03-03 Matsushita Refrig Co Ltd Rotary compressor
KR20050098172A (en) * 2004-04-06 2005-10-11 엘지전자 주식회사 Structure for reducing gas leakage of rotary compressor
KR100677522B1 (en) * 2005-05-19 2007-02-02 엘지전자 주식회사 Modulation apparatus for rotary compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105216586A (en) * 2015-11-11 2016-01-06 天津商业大学 A kind of vehicle air compression set driven based on braking
CN105422458A (en) * 2015-12-16 2016-03-23 珠海凌达压缩机有限公司 Compressor and air conditioner
CN110410321A (en) * 2019-07-31 2019-11-05 桂林航天工业学院 A kind of rotary pressure matcher
CN112283109A (en) * 2020-11-13 2021-01-29 比泽尔旋转压缩机(江苏)有限公司 Air cylinder assembly with double-spring structure and using method thereof

Also Published As

Publication number Publication date
KR101667710B1 (en) 2016-10-28

Similar Documents

Publication Publication Date Title
US8419395B2 (en) Compressor and refrigeration apparatus
KR101637446B1 (en) Rotary compressor
US8517702B2 (en) Rotary compressor with enhanced sealing between mode switching device and chamber thereof
KR101667710B1 (en) Rotary compressor
KR20100036130A (en) Crank shaft and hermetic compressor having the same and refrigerator having the same
KR20100000369A (en) Rotary compressor
KR20100023634A (en) Hermetic compressor and refrigerator having the same
KR101587174B1 (en) Rotary compressor
KR20030042766A (en) Hermetic type compressor
KR101587170B1 (en) Rotary compressor
KR101549863B1 (en) Hermetic compressor having the same and refrigerator having the same
KR20090125645A (en) Variable capacity type rotary compressor
KR20100081810A (en) Rotary compressor
KR101462935B1 (en) Hermetic compressor and refrigerator having the same
KR100608863B1 (en) Bypassvalve structure of rotary compressor
KR101442550B1 (en) Rotary compressor
US8651841B2 (en) Rotary compressor with improved connection
KR101463826B1 (en) Rotary compressor
KR101462933B1 (en) Rotary compressor
KR101978960B1 (en) Compressor
KR20100008281A (en) Variable capacity type rotary compressor
KR20100010294A (en) Variable capacity type rotary compressor
KR101587168B1 (en) Rotary compressor
KR20100000368A (en) Variable capacity type rotary compressor
KR20100011792A (en) Variable capacity type rotary compressor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant