KR20110051217A - 수신기에서 송신물을 수신하는 방법 및 장치 - Google Patents

수신기에서 송신물을 수신하는 방법 및 장치 Download PDF

Info

Publication number
KR20110051217A
KR20110051217A KR1020117004876A KR20117004876A KR20110051217A KR 20110051217 A KR20110051217 A KR 20110051217A KR 1020117004876 A KR1020117004876 A KR 1020117004876A KR 20117004876 A KR20117004876 A KR 20117004876A KR 20110051217 A KR20110051217 A KR 20110051217A
Authority
KR
South Korea
Prior art keywords
window duration
receive window
transmission
receiver
elapsed time
Prior art date
Application number
KR1020117004876A
Other languages
English (en)
Other versions
KR101297853B1 (ko
Inventor
조엘 벤자민 린스키
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20110051217A publication Critical patent/KR20110051217A/ko
Application granted granted Critical
Publication of KR101297853B1 publication Critical patent/KR101297853B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/10Arrangements for initial synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

본 발명의 실시형태는 수신기에서 송신물을 수신하는 방법을 포함할 수도 있다. 이 방법은 양호한 송신물을 마지막으로 수신한 이후 경과된 시간에 기초하여 송신물을 수신하기 위한 수신 윈도우 지속기간을 설정하는 단계를 포함할 수도 있다. 수신 윈도우 지속기간은 경과된 시간의 비선형 함수일 수도 있다. 이 방법은 설정된 수신 윈도우 지속기간과 동일한 시간량 동안 송신물을 청취하도록 수신 윈도우를 개방하는 단계를 더 포함할 수도 있다.

Description

수신기에서 송신물을 수신하는 방법 및 장치{METHOD AND APPARATUS FOR RECEIVING A TRANSMISSION AT A RECEIVER}
본 출원은 일반적으로 무선 통신 네트워크 내에서 수신기에서 송신물을 수신하는 것에 관한 것이고, 더 상세하게는, 송신물을 수신하는 동안 수신 윈도우 지속기간을 조정하는 것에 관한 것이다.
복수의 트랜시버를 포함하는 통신 네트워크에서, 트랜시버들이 통신에 대한 동일한 타이밍을 이용하도록 트랜시버들을 동기식으로 유지할 필요가 있을 수도 있다. 일 트랜시버가 통신 시스템에 대한 타이밍을 정의하는 마스터로서 동작할 수도 있고, 나머지 트랜시버들이 슬레이브로서 동작하고 그 마스터의 타이밍과 동기화를 유지한다. 이러한 일 네트워크는, 예를 들어, Bluetooth® 코어 시스템, v2.1 의 사양에 기술된 바와 같은 Bluetooth® 피코넷이다.
Bluetooth® 무선 기술은 휴대용 및/또는 고정 전자 디바이스들을 접속시키는 케이블(들)을 대체하도록 의도되는 주지의 단거리 무선 링크이다. 주요 특성은 강인성, 낮은 복잡도, 낮은 전력 및 저 비용이다. Bluetooth® 디바이스들은 미승인 2.4GHz ISM 대역에서 동작하고, 간섭 및 페이딩에 대항하기 위해 주파수 홉핑을 이용한다. Bluetooth® 프로토콜은 회로와 패킷 스위칭의 결합을 이용한다. 패킷을 통한 정보의 교환을 위해 슬롯화된 채널이 이용된다. 슬롯은 비동기식 동작에 이용될 수 있고, 또는 동기식 패킷들을 위해 예약될 수 있다.
Bluetooth® 시스템은 포인트-투-포인트 접속 (오직 2 개의 Bluetooth® 디바이스들이 관련됨) 또는 포인트-투-멀티포인트 접속을 제공할 수 있다. 포인트-투-멀티포인트 접속에서, 채널은 다수의 Bluetooth® 디바이스들 사이에서 공유된다. 동일한 채널을 공유하는 2 이상의 디바이스들이 피코넷을 형성한다. 하나의 Bluetooth® 디바이스는 피코넷의 마스터로서 동작하고, 나머지 디바이스(들)이 슬레이브(들)로 동작한다.
대부분의 배터리 동작 기술들에서와 같이, Bluetooth® 설계자들에게는 전력 소모가 주요한 관심사이다. 따라서, Bluetooth® 코어 사양은 스니프 (sniff) 모드를 포함하는 특정한 저 전력 모드들을 정의하고 있다.
스니프 모드는, 디바이스가 주기적으로 웨이크업하여, 마스터로부터의 송신물을 청취 (listen) 하고 자신의 클럭 오프셋을 재동기화할 수 있게 한다. 스니프 모드인 디바이스는 자신의 활성 모드 어드레스를 보유한다. 따라서, 스니프 모드는 통상적으로, 인간의 인터페이스 디바이스들, 또는 활성 콜 중이 아닌 핸드셋과 헤드셋 사이와 같이 각각의 순간에 데이터 플로우가 요구되지 않을 수도 있지만 활성 상태는 여전히 요구되는 디바이스에서 이용된다.
스니프 모드에서, 슬레이브의 청취 동작의 듀티 사이클은 감소될 수 있다. 슬레이브가 활성으로 링크에 참여하면, 슬레이브는 모든 슬롯마다 마스터 트래픽을 청취해야 한다. 그러나, 스니프 모드에서, 마스터가 특정 슬레이브로 송신을 시작할 수 있는 시간 슬롯들은 감소된다. 즉, 마스터는 오직 특정한 시간 슬롯에서만 송신을 시작할 수 있다. 이들 소위 스니프 슬롯들은 Tsniff 의 간격으로 일정하게 이격된다. 따라서, 스니프 모드는 마스터로부터의 통신이 발생할 수 있는 시간에 주기적인 순간의 제공으로서 설명될 수도 있고, 이 시간들은 정규의 동작 동안 이용가능한 것보다 더 긴 간격이다.
스니프 파라미터들, 즉, 간격 및 시도는 슬레이브 디바이스에 의해 개시될 수도 있고, 다른 팩터들 중, 애플리케이션의 데이터 레이트 및 레이턴시 요건을 충족시키도록 선택된다. 마스터는 다수의 스니프 시도 동안 스니프 간격에서 POLL 패킷을 전송함으로써 슬레이브를 폴링한다. 슬레이브는 매칭 어드레스로 패킷에 대한 스니프 슬롯들을 차례로 청취하기 시작한다 (즉, 자신의 수신기를 턴온한다). 슬레이브 디바이스가 전송할 데이터를 갖지 않으면, NULL 패킷으로 응답하고, 그렇지 않으면 데이터 패킷으로 응답한다. POLL 및 NULL 패킷들은 관련 디바이스 정보를 갖는 헤더를 갖지만 페이로드를 갖지 않는다는 점에서 유사하다. NULL 패킷에 비해, POLL 패킷은 수신자로부터의 확인을 요구한다.
동기화는 Bluetooth® 피코넷과 같은 애드혹 접속에 중요하다. 네트워크 내에서 동기화를 유지하는 일 방법은 마스터가 타이밍 정보를 갖는 무선 패킷들을 주기적으로 송신하는 것이다. Bluetooth® 시스템에서, 마스터는 패킷 헤더의 프리앰블에 68 마이크로초의 액세스 코드를 갖는 무선 패킷 메시지들을 송신한다. 이 액세스 코드는 슬레이브 수신기에 의해 검출된다. 마스터로부터 전송된 메시지의 수신은 슬레이브가 자신의 타이밍을 마스터의 타이밍과 비교할 수 있게 하고, 자신의 타이밍을 조정하여 동기화를 유지할 수 있게 한다. 이것은 슬레이브에서 이용되는 네이티브 클럭의 값에 오프셋 값을 추가함으로써 행해질 수도 있다.
마스터와 슬레이브가 상이한 네이티브 클럭들을 이용하기 때문에, 클럭들은 시간에 따라 비동기화되는 경향이 있으며, 이 현상은 클럭 드리프트로 공지되어 있다. 따라서, 슬레이브는 자신의 클럭을 마스터의 클럭과 주기적으로 재동기화해야 하고, 또한, 메시지를 청취하는 경우 2 개의 클럭들의 드리프트가 고려되어야 한다. 따라서, 슬레이브는, 메시지가 수신될 것이 예상되는 시간에 센터링된 소정의 지속기간의 수신 윈도우 (또한, 불확실도 윈도우로 지칭됨) 에서 메시지를 청취한다. 수신 윈도우의 사이즈는 통상적으로 마스터 및 슬레이브의 네이티브 클럭들의 드리프트에 기초한다.
예를 들어, Bluetooth® 코어 사양은, 슬레이브가 활성 모드에서 패킷들을 수신할 수 있을 +/- 10 마이크로초의 불확실도 윈도우를 정의한다. 그 결과, 종래의 구현예에서, 슬레이브들은 88 마이크로초 (액세스 코드에 대한 68 마이크로초 플러스 불확실도 부분에 대한 20 마이크로초) 의 수신 윈도우에서 메시지를 청취한다. 이것은, 마스터가, 슬레이브가 예상하는 것보다 10 마이크로초 이상 더 빨리 또는 더 늦게 송신하면, 슬레이브가 그 패킷을 수신하지 못할 것임을 의미한다. 마스터 및 슬레이브 모두가 대략 20 ppm (parts per million) 정도 드리프트되는 것이 허용되는 클럭들을 이용하면, 슬레이브는, 시간 tconloss = (10 마이크로초) / (20 마이크로초 + 20 마이크로초) = 250 ms 내에서 마스터로부터 패킷을 수신하지 않은 경우 접속이 종료될 수도 있다. 따라서, 최악의 경우, 마스터가 250 ms 보다 오래 슬레이브를 폴링하지 않거나 그 시간 동안 환경이 방해하면, 접속이 종료될 것이다.
스니프 모드에서, 마스터 및 슬레이브 디바이스들은 슬립으로 진행하여 저 전력 클럭으로 스위칭하는 것이 허용된다. 통상적으로, 저 전력 클럭들은 네이티브 기준 클럭보다 훨씬 큰 불확실도를 갖는다. Bluetooth® 코어 사양은 최대 +/- 250 ppm 의 저 전력 클럭 정확도를 허용한다. 이 접근방법의 이점은 양 디바이스들에서의 더 낮은 전력 소모이다.
클럭 드리프트를 강화할 수 있는 환경적 팩터들 중 하나는 온도에서의 급격한 변화이며, 이것은 종종 열 쇼크로 지칭된다. 통상적으로, 네이티브 클럭들은, 열 쇼크에 대해 양호한 저항성을 갖는 수정 발진기를 이용하여 구현되고 있다. 이들 시스템에서, 열 쇼크에 기인한 클럭 드리프트는 매우 작으며, 최적의 수신 윈도우 지속기간을 결정할 때 대부분의 경우 무시될 수 있다.
도 1a 는 마스터 디바이스의 송신 주위에 센터링된 수신 윈도우를 도시하는 타이밍도이다. 도시된 바와 같이, 마스터는 소정의 송신 지속기간에 대한 스니프 앵커 포인트에서 메시지의 송신을 시작한다. 스니프 모드인 슬레이브는 마스터 송신 주위에 센터링된 사이즈 N 의 수신 윈도우들 (102 내지 112) 에서 메시지를 청취한다.
마스터로부터의 메시지들은 열 쇼크 등에 의해 유발된 클럭 드리프트에 기인하여 슬레이브에 의해 때때로 미싱된다. 통상적으로, 소정의 스니프 시도에서 슬레이브가 청취하고 있는 수신 윈도우 동안 메시지가 수신되지 않으면, 슬레이브는 다음 스니프 시도에 대해 수신 윈도우를 선형 방식으로 확장한다.
도 1b 는 다수의 예시적인 스니프 시도에 걸친 종래의 수신 윈도우의 사이즈를 조정하는 것을 도시하는 타이밍도이다. 도시된 바와 같이, 제 1 스니프 시도의 제 1 불확실도 윈도우 (122) 의 사이즈는 도 1a 에서와 같이 N 이다. 마스터 송신의 성공적 수신을 가정하면, 제 2 스니프 시도의 제 2 불확실도 윈도우 (124) 의 사이즈는 N 으로 유지된다. 제 2 스니프 시도가 실패하면, 제 3 스니프 시도의 제 3 불확실도 윈도우 (126) 의 사이즈는 2N 으로 증가된다. 제 3 스니프 시도 또한 실패하면, 제 4 스니프 시도의 제 4 불확실도 윈도우 (128) 는 3N 으로 증가된다. 제 4 스니프 시도에서 마스터 송신의 성공적 수신을 가정하면, 제 5 스니프 시도의 제 5 불확실도 윈도우 (130) 의 사이즈는 원래의 사이즈 N 으로 다시 리셋될 것이다. 제 5 스니프 시도에서 마스터 송신의 또 다른 성공적 수신을 가정하면, 제 6 스니프 시도의 제 6 불확실도 윈도우 (132) 의 사이즈는 또한 N 으로 유지된다.
실패된 스니프 시도의 수와 수신 윈도우 지속기간 사이의 선형 관계는, 수신 윈도우 지속기간이 송신물을 마지막으로 성공적으로 수신한 이후의 시간량에 단순히 비례할 것임을 가정한다. 이 방법은, 통상적으로 Bluetooth® 칩에 이용되는 종래의 수정 발진기에서와 같이 온도에 강하게 의존적이지 않는 드리프트의 경우에 매우 적합하다.
그러나, 최근에, 비용을 감소시키기 위해, 몇몇 제조자들은 종래의 수정 발진기들을 제거하고, 그 대신 칩 상의 다른 부분에서 발견되는 기준 신호에 대한 네이티브 클럭들에 기반하고 있다. 예를 들어, 네이티브 클럭은 다른 온-칩 동작에 이용되는 이완 발진기 (relaxation oscillator) 에 기반할 수도 있다. 이 이완 발진기는 종래의 수정 발진기와 유사한 주파수를 갖는 기준 신호를 제공할 수도 있지만, 이완 발진기들은 현저하게 감소된 열 특성을 갖는다. 기준 수정 발진기는 섭씨 1 도 당 2 내지 3 ppm 정도의 온도 안정성을 가질 수도 있으며, 이완 발진기는 섭씨 1 도 당 2000 내지 3000 ppm 정도의 온도 안정성을 가질 수도 있다. 따라서, 클럭 드리프트에 대한 온도 영향은, 수정 발진기에 대해서는 본질적으로 무시될 수도 있지만, 이완 발진기와 같은 다른 온-칩 기준 신호들이 네이티브 클럭으로 이용되는 경우에는 고려되어야 한다.
이완 발진기의 더 큰 불확실도를 처리하기 위한 하나의 옵션은 수신 윈도우를 최악의 온도 변화에 기초한 지속기간 동안 개방하는 것이다. 그러나, 수신 동작의 총 전력 소모는 수신 윈도우가 얼마나 오래 개방을 유지하는지에 직접적으로 비례한다. 따라서, 이 접근방법은 원하지 않는 현저한 전력 소모를 초래한다.
본 발명의 예시적인 실시형태들은, 온도가 상대적으로 안정된 경우 전력 소모를 감소시키고, 온도가 더 급격하게 변동하는 경우 마스터 디바이스에 대한 적절한 접속성을 유지하는 방식으로 수신 윈도우 지속기간을 조정하는 시스템 및 방법을 의도한다.
따라서, 일 실시형태는 수신기에서 송신물을 수신하는 방법을 포함할 수 있고, 이 방법은: 양호한 송신물을 마지막으로 수신한 이후 경과된 시간에 기초하여 송신물을 수신하기 위한 수신 윈도우 지속기간을 설정하는 단계; 및 그 설정된 수신 윈도우 지속기간과 동일한 시간량 동안 송신물을 청취하도록 수신 윈도우를 개방하는 단계를 포함하며, 수신 윈도우 지속기간은 경과된 시간의 비선형 함수이다.
다른 실시형태는 수신기에서 송신물을 수신하는 장치를 포함할 수 있고, 이 장치는: 양호한 송신물을 마지막으로 수신한 이후 경과된 시간에 기초하여 송신물을 수신하기 위한 수신 윈도우 지속기간을 설정하도록 구성된 채널 타이머; 및 그 설정된 수신 윈도우 지속기간과 동일한 시간량 동안 송신물을 청취하도록 수신 윈도우를 개방하도록 구성된 채널 인터페이스를 포함하며, 수신 윈도우 지속기간은 경과된 시간의 비선형 함수이다.
다른 실시형태는 수신기에서 송신물을 수신하는 장치를 포함할 수 있고, 이 장치는: 양호한 송신물을 마지막으로 수신한 이후 경과된 시간에 기초하여 송신물을 수신하기 위한 수신 윈도우 지속기간을 설정하는 수단; 및 그 설정된 수신 윈도우 지속기간과 동일한 시간량 동안 송신물을 청취하도록 수신 윈도우를 개방하는 수단을 포함하며, 수신 윈도우 지속기간은 경과된 시간의 비선형 함수이다.
다른 실시형태는 수신기에서 송신물을 수신하는 장치를 포함할 수 있고, 이 장치는: 양호한 송신물을 마지막으로 수신한 이후 경과된 시간에 기초하여 송신물을 수신하기 위한 수신 윈도우 지속기간을 설정하도록 구성되고, 그 설정된 수신 윈도우 지속기간과 동일한 시간량 동안 송신물을 청취하도록 수신 윈도우를 개방하도록 구성되는 프로세서를 포함하며, 수신 윈도우 지속기간은 경과된 시간의 비선형 함수이다.
다른 실시형태는 수신기에서 송신물을 수신하기 위해 프로세서에 의해 실행가능한 명령들을 포함하는 컴퓨터 판독가능 매체를 포함할 수 있고, 이 컴퓨터 판독가능 매체는: 양호한 송신물을 마지막으로 수신한 이후 경과된 시간에 기초하여 송신물을 수신하기 위한 수신 윈도우 지속기간을 설정하기 위한, 프로세서에 의해 실행가능한 컴퓨터 판독가능 명령들의 제 1 세트; 및 그 설정된 수신 윈도우 지속기간과 동일한 시간량 동안 송신물을 청취하도록 수신 윈도우를 개방하기 위한, 프로세서에 의해 실행가능한 컴퓨터 판독가능 명령들의 제 2 세트를 포함하며, 수신 윈도우 지속기간은 경과된 시간의 비선형 함수이다.
첨부한 도면들은 본 발명의 실시형태들의 설명을 보조하도록 제공되고, 실시형태들의 제한이 아닌 오직 실시형태들의 예시를 위해서 제공된다.
도 1a 는 마스터 디바이스의 송신 주위에 센터링된 수신 윈도우를 도시하는 타이밍도이다.
도 1b 는 다수의 예시적인 스니프 시도에 걸친 종래의 수신 윈도우의 사이즈를 조정하는 것을 도시하는 타이밍도이다.
도 2 는 본 발명의 일 실시형태에 따른 수신기에서 송신물을 수신하는 방법을 도시하는 흐름도이다.
도 3 은 수신 윈도우 지속기간을 조정하는 다양한 예시적 함수들의 거동을 도시하는 그래프이다.
도 4 는 본 발명의 일 실시형태에 따른 송신물을 수신하는 예시적인 Bluetooth® 통신 디바이스를 도시한다.
도 5 는 무선 통신 시스템에서 일반적 무선 통신 디바이스의 설계에 대한 블록도를 도시한다.
본 발명의 양태들이 본 발명의 특정 실시형태들에 의도된 다음의 설명 및 관련 도면들에서 기술된다. 본 발명의 범주를 벗어나지 않고 대안적 실시형태들이 고안될 수도 있다. 또한, 본 발명의 주지의 엘리먼트들은 본 발명의 관련 세부사항들을 모호하게 하지 않도록 상세히 설명되지 않거나 생략될 것이다.
본 명세서에서 "예시적인" 이라는 용어는 "예, 예시, 또는 예증으로서 기능하는"의 의미로 사용된다. "예시적인" 것으로서 본 명세서에서 설명되는 임의의 실시형태는 다른 실시형태에 비하여 반드시 바람직하거나 유리한 것으로서 해석할 필요는 없다. 유사하게, "본 발명의 실시형태" 라는 용어는 본 발명의 모든 실시형태가 설명된 특성, 이점 또는 동작 모드를 포함하는 것을 요구하지 않는다. 용어 "불확실도 윈도우" 및 "수신 윈도우" 는 본 명세서에서 교환가능하게 사용되고, 특정 디바이스가 예상된 송신물을 활성으로 청취하는 시간 길이를 지칭한다.
본 명세서에서 사용된 용어는 오직 특정한 실시형태들을 설명하는 목적을 위한 것이며, 본 발명의 실시형태의 제한을 의도하지는 않는다. 본 명세서에서 사용되는 바와 같이, 단수형 "a", "an" 및 "the" 는 콘텍스트가 명확하게 다른 것을 나타내지 않으면, 복수형을 또한 포함하는 것으로 의도된다. 또한, 본 명세서에서 사용될 경우, "구비하는", "구비", "포함하는" 및/또는 "포함" 이라는 용어들은 기술된 특성들, 정수들, 단계들, 동작들, 엘리먼트들, 및/또는 컴포넌트들의 존재를 특정하지만, 하나 이상의 다른 특성들, 정수들, 단계들, 동작들, 엘리먼트들, 컴포넌트들, 및/또는 그들의 그룹의 존재 또는 부가를 배제하지는 않는다는 것을 이해할 것이다.
또한, 많은 실시형태들은, 예를 들어, 연산 디바이스의 엘리먼트들에 의해 수행될 액션들의 시퀀스의 관점에서 설명된다. 본 명세서에서 설명된 다양한 액션들이, 특정한 회로 (예를 들어, 주문형 집적 회로 (ASIC)) 에 의해, 하나 이상의 프로세서들에 의해 실행되는 프로그램 명령들에 의해, 또는 이들의 조합에 의해 수행될 수 있음을 인식할 것이다. 또한, 본 명세서에서 설명된 액션들의 이들 시퀀스는, 실행시에 관련 프로세서로 하여금 본 명세서에 설명된 기능을 수행하게 하는 컴퓨터 명령들의 대응하는 세트를 저장한 컴퓨터 판독가능 매체의 임의의 형태 내에서 전체로 수록되는 것으로 고려될 수 있다. 따라서, 본 발명의 다양한 양태들은 다수의 상이한 형태로 수록될 수도 있으며, 이들 모두는 청구된 사항의 범위내에 있는 것으로 고려된다. 또한, 여기에 설명된 실시형태들의 각각에 대해, 임의의 그러한 실시형태들의 대응하는 형태는, 예를 들어, 설명된 액션을 수행하도록 "구성된 로직" 으로서 설명될 수도 있다.
배경기술에서 설명된 바와 같이, 이완 발진기는 수정 발진기에 비해 열 특성이 축소되어, 더 높은 비율의 클럭 드리프트 또는 불확실도를 초래한다. 네이티브 클럭에서 이완 발진기를 수정 발진기 대신 이용하는 종래의 트랜시버는 통상적으로 온도 변동의 최악의 시나리오에 기초한 시간량 동안 수신 윈도우 (또는 불확실도 윈도우) 를 개방함으로써 마스터와의 시간 동기화를 유지한다. 이것은, 트랜시버가 극단적인 조건에서도 마스터와 접속성을 유지할 것을 보장한다. 그러나, 이것은 또한 전력 소모의 관점에서는 비효율적이고 정규의 동작 하에서 시스템에 잠재적으로 불필요한 전력 요구를 부과하는 시간 동기화 방법을 초래한다.
극단적 조건에서 온도는 최악의 시나리오의 추정이 허용하는 만큼 넓게 변할 수도 있지만, 대부분의 동작에 있어서의 온도는 비교적 안정적으로 유지되고, 종래의 트랜시버에서 이용되는 큰 수신 윈도우는 마스터와의 접속을 유지하는데 불필요하다. 따라서, 본 발명의 실시형태들은, 온도가 비교적 안정적인 경우 전력 소모를 감소시키고, 온도가 더 급격하게 변동하는 경우 마스터 디바이스와의 적절한 접속성을 유지하는 방식으로 수신 윈도우 지속기간을 조정하는 것을 제공한다. 더 큰 온도 변화가 발생하고 마스터 송신물이 미싱되는 경우, 본 발명의 실시형태들은, 마스터로부터 마지막으로 양호한 송신물이 수신된 이후 경과된 시간 Trx 와 수신 윈도우 지속기간 사이에서 비선형 함수를 이용하여 수신 윈도우 지속기간을 증가시킴으로써 네트워크 접속성을 유지하는 것을 제공한다. 이것은, 일시적으로 증가된 전력 소모 및 우발적으로 미싱된 송신을 초래할 수도 있지만, 전반적 전력 소모가 감소될 수도 있고, 미싱된 송신은 호출하는 애플리케이션의 특정 요건에 따라 효과적으로 복원될 수도 있다.
도 2 는 본 발명의 일 실시형태에 따른 수신기에서 송신물을 수신하는 방법을 도시하는 흐름도이다.
도시된 바와 같이, 양호한 송신물을 마지막으로 수신한 이후 경과된 시간 Trx 는 초기에, 예상된 송신물들 사이의 시간 간격에 대응하는 디폴트 값으로 설정된다 (블록 220). Bluetooth® 시스템에서, 디폴트 값은, 슬레이브가 스니프 모드이고 접속성 및 시간 동기화를 유지하기 위해 마스터로부터 POLL 또는 NULL 패킷들과 같은 주기적 송신을 예상하는 경우, 스니프 시도들 사이의 시간 간격 Tsniff 와 동일할 수도 있다.
다음 송신물을 수신하는데 이용되는 수신 윈도우 지속기간은 그 경과된 시간 Trx 에 기초하여 설정된다 (블록 220). 배경기술에서 설명된 바와 같이, 경과된 시간 Trx 에 기초한 수신 윈도우의 선형 확장은 수정 발진기에는 양호하게 적합하지만, 이완 발진기에는 반드시 적합하지만은 않은 것으로 판명되었다. 다양한 실시형태에 따르면, 수신 윈도우 지속기간은 경과된 시간 Trx 의 비선형 함수를 이용하여 설정된다. 수신 윈도우 지속기간, 즉, 수신 윈도우를 얼마나 오래 개방 상태로 둘 지를 계산하는데 이용되는 특정 함수는, 예상된 송신물이 수신되지 않은 경우 시스템이 마스터와의 동기화를 얼마나 신속하게 재획득할 수 있는지를 결정한다. 수신 윈도우가 더 오래 개방될수록, 다음 송신물이 수신될 가능성은 더 커지고, 송신물이 미싱된 경우 시스템이 마스터와의 동기화를 더 신속하게 재획득할 수 있을 것이다. 그러나, 배경기술에서 설명한 바와 같이, 수신 윈도우 지속기간은 전력 소모에 직접적으로 비례한다. 즉, 더 긴 지속기간 동안 수신 윈도우를 개방하는 것은 더 큰 전력을 요구한다.
수신 윈도우 지속기간을 계산하는데 이용된 특정 함수는, 호출 애플리케이션의 동기화 요건에 의존하기 때문에 애플리케이션 특정적이다. 예를 들어, 각각의 마스터 송신물을 수신하는 것이 매우 중요하면, 잠재적으로 더 큰 전력을 소모하더라도, 경과된 시간 Trx 가 증가함에 따라 수신 윈도우가 매우 신속하게 증가하도록 함수가 선택될 수도 있다. 반대로, 몇몇 또는 다수의 연속적인 마스터 송신을 미싱하는 것이 허용될 수 있으면, 경과된 시간 Trx 가 증가함에 따라 수신 윈도우가 비교적 느리게 증가하여 잠재적으로 전력 소모를 감소시키도록 함수가 선택될 수도 있다. 일 실시형태에서, 함수는 계단 함수일 수 있다. 계단 함수는, 소정의 시간 주기 동안 초기의 수신 윈도우 지속기간을 이용하고, 그 후, 수신 윈도우를 후속적으로 더 큰 값으로 확장시키는 것을 제공한다. 이것은, 수신 윈도우가 원하는 지속기간까지 더 신속하게 확장되는 것을 허용할 수 있고, 이것은 특정 애플리케이션에 적절할 수도 있다.
테이블 1 은 애플리케이션에 따라 이용될 수도 있는 다수의 예시적인 비선형 수식을 도시한다. 테이블 1 은 포괄적 리스트가 아니며, 수신 윈도우 지속기간을 조정하기 위한 다양한 애플리케이션에 유용할 수도 있는 다수의 다른 함수들이 존재한다. 테이블 1 은 오직 예시를 위해 제공되고, 본 발명의 다양한 실시형태들의 범주를 한정하도록 의도되지 않는다. 또한, 함수 결과는 동적으로 계산될 수도 있고, 룩업 테이블 등에 저장될 수도 있다.
테이블 1
Figure pct00001
테이블 1 에 도시된 바와 같이, 수신 윈도우 지속기간은 경과된 시간 Trx 의 지수 함수로서 설정될 수도 있다. 예를 들어, 수신 윈도우 지속기간은 ΔT*δ*2Trx 와 동일할 수도 있다. 여기서, ΔT 는 추정된 온도 변량을 나타내고, δ 는 수신기에 의해 이용되는 네이티브 클럭과 연관된 불확실도를 나타내고, Trx 는 경과된 시간을 나타낸다. 네이티브 클럭은 전술한 바와 같은 이완 발진기일 수도 있지만 이에 한정되는 것은 아니다.
또한 테이블 1 에 나타낸 바와 같이, 수신 윈도우 지속기간은 경과된 시간 Trx 의 소정의 거듭 제곱의 함수로서 설정될 수도 있다. 예를 들어, 수신 윈도우 지속기간은 ΔT*δ*Trx 2 과 동일할 수도 있다. 대안적으로, 수신 윈도우 지속기간은 ΔT*δ*Trx 1.75 와 동일할 수도 있다.
전술한 예시적인 함수에서, 수신 윈도우 지속기간은 추정된 온도 변량 ΔT 및 수신기에 의해 이용된 네이티브 클럭과 연관된 불확실도 δ 에 비례하도록 설정된다. 배경기술에서 설명된 바와 같이, 이것은 수신 윈도우 지속기간을 수신기의 네이티브 클럭의 빌트-인 불확실도에 관련시키지만, 비례 상수에 포함될 수도 있는 팩터들만 존재하는 것으로 제안하려는 의도가 아니다.
도 3 은 수신 윈도우 지속기간을 조정하는 다양한 예시적인 함수들의 거동을 도시하는 그래프이다. 예시적인 함수들은, 섭씨 1 도 당 3,000 ppm (parts per million), (정규의 동작 조건 하에서 적절할 수도 있는) 초 당 섭씨 0.05 도의 추정된 온도 변량, 및 1 초의 스니프 간격 Tsniff 에 대해 도시되어 있다. 테이블 1 의 예시적인 함수들은 배경기술에서 설명된 종래의 트랜시버 방법과의 비교를 위해, 경과된 시간 Trx 의 선형 함수에 대해 도시되어 있다.
경과된 시간 Trx 가 증가함에 따라, 2Trx 에 비례하는 수신 윈도우 지속기간이 가장 빠르게 증가하고, 더 많은 전력을 소모하지만 더 빠른 재동기화를 제공한다. Trx 2 또는 Trx 1.75 에 비례하는 수신 윈도우 지속기간은 더 완만하게 증가하고, 더 완만한 전력을 소모하면서 더 완만한 재동기화를 제공한다. Trx 에 대해 선형 방식으로 비례하는 수신 윈도우 지속기간이 가장 느리게 증가하고, 실제로는 부적절한 재동기화를 제공할 수도 있다. 예를 들어, 이것은 더 적은 전력을 소모하지만, 이 선형 확장은 이완 발진기의 더 큰 클럭 드리프트를 따라가지 못할 수도 있어서, 재동기화가 달성불가능하게 (또는 비실용적) 된다.
도 2 로 되돌아가서, 수신 윈도우 지속기간이 설정되면 (블록 220), 그 설정된 수신 윈도우 지속기간과 동일한 시간량 동안 송신물을 청취하도록 수신 윈도우가 개방된다 (블록 230). 예상된 마스터 송신물이 성공적으로 수신되면 (블록 240), 경과된 시간 Trx 은 디폴트 값으로 재설정된다 (블록 210). 그러나, 예상된 마스터 송신물이 성공적으로 수신되지 않으면 (블록 240), 경과된 시간 Trx 은 증가된다 (블록 250). 예를 들어, Bluetooth® 시스템에서, Trx 는 그 경과된 시간 Trx 의 이전 값에 스니프 간격 Tsniff 를 가산함으로써 반복적으로 증가될 수도 있다 (예를 들어, Trx = Trx + Tsniff). 그 후, 수신 윈도우 지속기간은 원하는 비선형 함수를 이용하여 Trx 의 새로운 값에 기초하여 조정되고 (블록 220), 그 설정된 수신 윈도우 지속기간에 대한 수신 윈도우를 개방함으로써 다음에 예상되는 송신 시도에서 청취가 다시 재개된다 (블록 250). 이러한 조정 및 청취 동작은, 성공적인 마스터 송신물이 수신되어, 경과된 시간 Trx 가 리셋될 수 있을 때까지 (블록 210), 반복된다 (블록 220 내지 250).
본 발명의 몇몇 실시형태에서, 전술한 동작은 하드웨어로 구현될 수도 있다.
도 4 는 본 발명의 일 실시형태에 따른 송신물을 수신하는 예시적인 Bluetooth® 통신 디바이스를 도시한다. 통신 디바이스 (400) 는 Bluetooth® 표준에 따른 피코넷에서 다른 Bluetooth® 디바이스들로 패킷을 송신하고 그 디바이스들로부터 패킷을 수신할 수 있다.
도시된 바와 같이, 통신 디바이스 (400) 는, 메모리 (410), 프로세서 (420), 패킷 데이터 버퍼 (430), 패킷 포맷터/디코더 (440), 채널 타이머 (450), 채널 인터페이스 회로 (460) 및/또는 안테나 (470) 를 포함할 수도 있다. 당업자에게 인식되는 바와 같이, 통신 디바이스 (400) 의 다양한 예시적인 블록들은 오직 예시적인 목적으로 도시되었고, Bluetooth® 통신 디바이스의 다른 구성이 가능하다.
메모리 (410) 는 프로세서 (420) 에 의한 실행을 위한 실행가능 명령들을 저장하고, 또한 다양한 애플리케이션에 대한 데이터를 저장한다. 메모리 (410) 는 랜덤 액세스 메모리 (RAM), 판독 전용 메모리 (ROM) 등을 포함할 수도 있다. 대안적으로 메모리 (410) 는 다른 구성으로 프로세서 (420) 의 일부로서 내부적으로 구현될 수도 있다. 프로세서 (420) 는 메모리 (410) 에 저장된 명령들을 실행하고, 메모리 (410) 로부터/로 데이터를 판독/기록한다.
프로세서 (420) 는 또한 송신 동작 동안 데이터를 패킷 데이터 버퍼 (430) 에 배치하고, 수신 동작 동안 패킷 데이터 버퍼 (430) 로부터 데이터를 판독한다. 송신 동작에 있어서, 패킷 포맷터/디코더 (440) 가 패킷 데이터 버퍼 (430) 로부터 데이터를 판독하고, 송신 패킷을 포맷한다. 수신 동작 동안, 패킷 포맷터/디코더 (440) 는 수신된 패킷을 디코딩하고, 그 데이터를 패킷 데이터 버퍼 (430) 에 저장한다.
채널 인터페이스 (460) 는 패킷 포맷터/디코더 (440) 와 안테나 (470) 사이의 송신 및 수신 통신을 인터페이싱한다. 채널 인터페이스 (460) 는 안테나 (470) 와 커플링되어 물리 채널을 제공한다. 안테나 (470) 는 연관된 피코넷 (미도시) 의 통신 링크를 따라 무선 신호를 전파한다. 채널 인터페이스 (460) 는 Bluetooth® 표준에 따라 2400 내지 2483.5 MHz 의 주파수 대역 내에서 무선 주파수 (RF) 무선 통신을 구현한다. 채널 타이머 (450) 는, 스니프 시도와 같은 마스터로부터의 송신물을 수신하는 소정의 기간의 수신 윈도우를 개방하는 것을 포함하여, Bluetooth® 채널 타이밍 구조에 따른 패킷들의 송신 및 수신을 통합한다.
도시된 실시형태에서, 채널 타이머 (450) 는 또한 도 2 의 흐름도를 참조하여 실질적으로 전술한 동작과 유사한 동작에 따라 수신 윈도우 지속기간을 조정하도록 구성된다.
더 상세하게는, 통신 디바이스 (400) 가 스니프 모드에서 동작하는 동안, 채널 타이머 (450) 는 초기에, 경과된 시간 Trx 을 스니프 간격 Tsniff 에 대응하는 디폴트 값으로 설정한다. 그 후, 채널 타이머 (450) 는 경과된 시간 Trx 의 비선형 함수에 기초하여 다음 송신물을 수신하는데 이용되는 수신 윈도우 지속기간을 설정한다. 수신 윈도우 지속기간을 계산하는데 이용된 특정 함수는 또한 애플리케이션 특정적이고, 테이블 1 에 나열된 함수들 중 임의의 함수일 수도 있고, 또는 특정한 애플리케이션의 동기화 요건에 적합한 다른 비선형 함수일 수도 있다. 채널 타이머 (450) 는 또한 수신 윈도우 지속기간을, 통신 디바이스 (400) 에 의해 이용된 네이티브 클럭 (미도시) 과 연관된 불확실도 δ 및 추정된 온도 변량 ΔT 에 비례하도록 설정한다.
수신 윈도우 지속기간이 설정되면, 채널 타이머 (450) 는, 채널 인터페이스 회로 (460) 로 하여금 그 수신 윈도우 지속기간과 동일한 시간량 동안 송신물을 청취하도록 수신 윈도우를 개방하게 한다. 예상된 마스터 송신물이 성공적으로 수신되면, 채널 타이머 (450) 는 경과된 시간 Trx 을 디폴트 값으로 리셋한다. 그러나, 예상된 마스터 송신물이 성공적으로 수신되지 않으면, 채널 타이머 (450) 는 경과된 시간 Trx 의 이전 값에 스니프 간격 Tsniff 을 가산함으로써 그 경과된 시간 Trx 을 반복적으로 증가시킨다 (예를 들어, Trx = Trx + Tsniff). 그 후, 채널 타이머 (450) 는 원하는 비선형 함수를 이용하여 Trx 의 새로운 값에 기초하여 수신 윈도우 지속기간을 조정하고, 채널 인터페이스 회로 (460) 로 하여금 그 설정된 수신 윈도우 지속기간 동안 수신 윈도우를 개방함으로써 다음에 예상되는 송신 시도의 청취를 재개하게 한다. 채널 타이머는, 성공적 마스터 송신물이 수신되어 경과된 시간 Trx 이 리셋될 수도 있을 때까지 채널 인터페이스 회로가 청취하도록 조정 및 명령을 반복한다.
특정 실시형태들이 Bluetooth® 통신 시스템과 관련하여 도시했지만, 본 명세서에 개시된 기술들은, 특정 디바이스들이 다른 디바이스들로부터의 정규의 송신의 수신 기회들 사이에서 저 전력 동작 모드로 진입하는 임의의 일반적 무선 통신 시스템에 더 일반적으로 적용될 수 있음을 당업자는 인식할 것이다.
도 5 는 무선 통신 시스템에서 일반적 무선 통신 디바이스 (500) 의 설계에 대한 블록도를 도시한다. 무선 디바이스 (500) 는 셀룰러 폰, 단말기, 핸드셋, 개인 휴대 정보 단말기 (PDA) 등일 수도 있다. 무선 통신 시스템은 코드 분할 다중 접속 (CDMA), GSM (Global System for Mobile Communications) 시스템 등일 수도 있다.
무선 디바이스 (500) 는 수신 경로 및 송신 경로를 통해 양방향 통신을 제공할 수 있다. 수신 경로를 통해, 기지국 (미도시) 에 의해 송신된 신호들은 안테나 (512) 에 의해 수신되고, 수신기 (RCVR; 514) 에 제공된다. 수신기 (514) 는 그 수신된 신호를 컨디셔닝하고, 주문형 집적 회로 (ASIC; 520) 에 아날로그 입력 신호를 제공한다. 송신 경로를 통해, 송신기 (TMTR; 516) 는 ASIC (520) 로부터 아날로그 출력 신호를 수신 및 컨디셔닝하고, 안테나 (512) 를 통해 기지국으로 송신되는 변조된 신호를 발생시킨다.
ASIC (520) 는, 예를 들어, 수신 ADC (Rx ADC; 522), 송신 DAC (Tx DAC; 524), 모뎀 프로세서 (526), 축소된 명령 세트 연산 (RISC) 프로세서 (528), 제어기/프로세서 (530), 내부 메모리 (532), 외부 버스 인터페이스 (534), 입력/출력 (I/O) 드라이버 (536), 오디오 DAC/드라이버 (538) 및 비디오 DAC/드라이버 (540) 와 같은 다양한 프로세싱, 인터페이스 및 메모리 유닛을 포함할 수도 있다. Rx ADC (522) 는 수신기 (514) 로부터의 아날로그 입력 신호를 디지털화하고, 모뎀 프로세서 (526) 에 샘플을 제공한다. Tx DAC (524) 는 모뎀 프로세서 (526) 로부터의 출력 칩을 디지털로부터 아날로그로 변환하고, 송신기 (516) 에 아날로그 출력 신호를 제공한다. 모뎀 프로세서 (526) 는, 예를 들어, 인코딩, 변조, 복조, 디코딩 등과 같은 데이터 송신 및 수신을 위한 프로세싱을 수행한다. RISC 프로세서 (528) 는, 예를 들어, 비디오, 그래픽, 상위 계층 애플리케이션 등을 위한 프로세싱과 같은 무선 디바이스 (500) 를 위한 다양한 타입의 프로세싱을 수행할 수도 있다. 제어기/프로세서 (530) 는 ASIC (520) 내의 다양한 프로세싱 및 인터페이스 유닛들의 동작을 명령할 수도 있다. 내부 메모리 (532) 는 ASIC (520) 내의 다양한 유닛들에 대한 데이터 및/또는 명령들을 저장한다.
EBI (534) 는 ASIC (520) 와 메인 메모리 (544) 사이의 데이터 전송을 용이하게 한다. I/O 드라이버 (536) 는 아날로그 또는 디지털 인터페이스를 통해 I/O 디바이스 (546) 를 구동시킨다. 오디오 DAC/드라이버 (538) 는, 스피커, 헤드셋, 이어피스 등일 수도 있는 오디오 디바이스 (548) 를 구동시킨다. 비디오 DAC/드라이버 (540) 는, 액정 디스플레이 (LCD) 등일 수도 있는 디스플레이 유닛 (550) 을 구동시킨다.
제어기/프로세서 (530) 및/또는 기타 유닛들은 수신 윈도우 지속기간을 조정하기 위해 본 명세서에서 설명된 기술을 구현하도록 구성될 수도 있다. 예를 들어, 제어기/프로세서 (530) 는, 도 2 의 흐름도를 참조하여 실질적으로 전술한 바와 같이, 또는 도 4 를 참조하여 전술한 채널 타이머 (450) 와 유사한 방식으로 수신 윈도우 지속기간을 조정하도록 구성될 수도 있다.
대안적으로, 본 발명의 다른 실시형태에서, 전술한 동작들이 소프트웨어로 구현될 수도 있다.
이러한 실시형태에서, 도 4 에 도시된 Bluetooth® 통신 디바이스 (400) 의 메모리 (410) 는 수신 윈도우 지속기간을 조정하도록 프로세서 (420) 에 의해 실행가능한 컴퓨터 판독가능 명령들을 포함할 수도 있다. 다른 이러한 실시형태에서는, 도 5 에 도시된 일반적 무선 통신 디바이스 (500) 의 내부 메모리 (532) 또는 메인 메모리 (544) 가 수신 윈도우 지속기간을 조정하기 위해 제어기/프로세서 (530) 또는 RISC 프로세서 (528) 에 의해 실행가능한 컴퓨터 판독가능 명령들을 포함할 수도 있다. 예를 들어, 컴퓨터 판독가능 명령들은 프로세서 (420) 에 의해 실행가능한 컴퓨터 판독가능 명령들의 세트를 포함하여, 도 2 의 흐름도를 참조하여 실질적으로 전술한 동작들을 수행할 수도 있다.
당업자는 다양한 서로 다른 기술들 및 기법들 중 임의의 기술 또는 기법을 이용하여 정보 및 신호를 나타낼 수도 있음을 알 수 있다. 예를 들어, 상기의 설명 전반에 걸쳐 참조될 수도 있는 데이터, 명령, 커맨드 (commands), 정보, 신호, 비트, 심볼, 및 칩은 전압, 전류, 전자기파, 자계 또는 자성 입자, 광계 또는 광자, 또는 이들의 임의의 조합으로 나타낼 수도 있다.
또한, 전술한 바와 같이, 당업자는 여기에서 개시된 실시형태들과 관련하여 설명된 다양한 예시적인 논리 블록들, 모듈들, 회로들, 및 알고리즘 단계들을 전자 하드웨어, 컴퓨터 소프트웨어, 또는 이들의 조합으로 구현할 수도 있음을 알 수 있다. 하드웨어와 소프트웨어의 이러한 대체 가능성을 분명히 설명하기 위하여, 다양한 예시적인 컴포넌트들, 블록들, 모듈들, 회로들 및 단계들을 주로 그들의 기능의 관점에서 상술하였다. 그러한 기능이 하드웨어로 구현될지 소프트웨어로 구현될지는 전체 시스템에 부과된 특정한 애플리케이션 및 설계 제약조건들에 의존한다. 당업자는 설명된 기능을 각각의 특정한 애플리케이션에 대하여 다양한 방식으로 구현할 수도 있지만, 그러한 구현의 결정이 본 발명의 범위를 벗어나도록 하는 것으로 해석하지는 않아야 한다.
하나 이상의 예시적인 실시형태에서, 설명된 기능들은 하드웨어, 소프트웨어 펌웨어 또는 이들의 임의의 조합으로 구현될 수도 있다. 소프트웨어로 구현되면, 기능들은 컴퓨터-판독가능 매체 상에서 하나 이상의 명령들 또는 코드로 저장될 수도 있고 이를 통해 송신될 수도 있다. 컴퓨터-판독가능 매체는 컴퓨터 저장 매체, 및 하나의 장소로부터 다른 장소로 컴퓨터 프로그램의 이송을 용이하게 하는 임의의 매체를 포함하는 통신 매체 모두를 포함한다. 저장 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수도 있다. 한정이 아닌 예시로서, 이러한 컴퓨터-판독가능 매체는 ROM, RAM, EEPROM, CD-ROM 또는 기타 광학 디스크 저장 매체, 자기 디스크 저장 매체 또는 기타 자기 저장 디바이스, 또는 원하는 프로그램 코드를 컴퓨터에 의해 액세스가능한 명령들 또는 데이터 구조들의 형태로 반송하거나 저장하는데 이용될 수 있는 임의의 다른 매체를 포함할 수 있다. 또한, 임의의 접속이 컴퓨터-판독가능 매체로 적절하게 지칭된다. 예를 들어, 동축 케이블, 광섬유 케이블, 트위스트 쌍, 디지털 가입자 라인 (DSL), 또는 적외선, 무선 및 전자파와 같은 무선 기술을 이용하여 소프트웨어가 웹사이트, 서버 또는 기타 원격 소스로부터 송신되면, 그 동축 케이블, 광섬유 케이블, 트위스트 쌍, DSL, 또는 적외선, 무선 및 전자파와 같은 무선 기술이 매체의 정의에 포함된다. 여기서 사용되는 바와 같이, 디스크 (Disk 및 disc) 는 컴팩트 디스크 (CD), 레이져 디스크, 광 디스크, DVD, 플로피 디스크 및 통상적으로 데이터를 자기적으로 재생성하는 블루 레이 디스크를 포함하며, 디스크는 레이져를 이용하여 데이터를 광학적으로 재생성한다. 또한, 전술한 매체들의 조합이 컴퓨터-판독가능 매체의 범주 내에 포함될 것이다.
따라서, 본 발명의 실시형태는, 수신기에서 송신물을 수신하는 방법을 구현하는 컴퓨터 판독가능 매체를 포함할 수 있다. 따라서, 본 발명은 예시적인 실시예에 한정되지 않으며, 본 명세서에서 설명한 기능을 수행하는 임의의 수단이 본 발명의 실시형태에 포함된다.
전술한 개시가 본 발명의 예시적인 실시형태를 나타내지만, 첨부된 청구항에 의해 정의되는 본 발명의 범주를 벗어나지 않으면서 다양한 변경예 및 변형예가 행해질 수 있음을 유의해야 한다. 본 명세서에서 설명하는 본 발명의 실시형태에 따른 방법 청구항의 기능, 단계 및/또는 동작이 임의의 특정한 순서로 수행될 필요는 없다. 또한, 본 발명의 엘리먼트들이 단수로 설명되거나 주장될 수도 있지만, 단수에 대한 한정이 명백히 기술되지 않으면 복수가 고려된다.

Claims (58)

  1. 양호한 송신물을 마지막으로 수신한 이후 경과된 시간에 기초하여 송신물을 수신하기 위한 수신 윈도우 지속기간을 설정하는 단계; 및
    상기 설정된 수신 윈도우 지속기간과 동일한 시간량 동안 송신물을 청취하도록 수신 윈도우를 개방하는 단계를 포함하며,
    상기 수신 윈도우 지속기간은 상기 경과된 시간의 비선형 함수인, 수신기에서 송신물을 수신하는 방법.
  2. 제 1 항에 있어서,
    예상된 송신물들 사이의 시간 간격에 기초하여, 초기에 상기 수신 윈도우 지속기간을 디폴트 값으로 설정하는 단계를 더 포함하는, 수신기에서 송신물을 수신하는 방법.
  3. 제 2 항에 있어서,
    상기 송신물이 성공적으로 수신되면, 상기 수신 윈도우 지속기간을 상기 디폴트 값으로 리셋하는 단계를 더 포함하는, 수신기에서 송신물을 수신하는 방법.
  4. 제 2 항에 있어서,
    상기 수신기는 2.4 GHz ISM 대역 수신기이고, 상기 디폴트 값은, 2.4 GHz ISM 대역에서 동작하는 시스템에서의 스니프 (sniff) 시도들 사이의 시간 간격에 기초하는, 수신기에서 송신물을 수신하는 방법.
  5. 제 1 항에 있어서,
    상기 수신 윈도우 지속기간을, 상기 수신기에 의해 이용된 네이티브 클럭과 연관되는 불확실도 및 추정된 온도 변량에 비례하도록 설정하는 단계를 더 포함하는, 수신기에서 송신물을 수신하는 방법.
  6. 제 5 항에 있어서,
    상기 추정된 온도 변량은 초 당 약 섭씨 0.05 도인, 수신기에서 송신물을 수신하는 방법.
  7. 제 5 항에 있어서,
    저전력 클럭은 이완 발진기 (relaxation oscillator) 인, 수신기에서 송신물을 수신하는 방법.
  8. 제 5 항에 있어서,
    상기 불확실도는 섭씨 1 도 당 약 3,000 ppm (parts per million) 인, 수신기에서 송신물을 수신하는 방법.
  9. 제 1 항에 있어서,
    상기 수신 윈도우 지속기간은 상기 경과된 시간의 지수 함수로서 설정되는, 수신기에서 송신물을 수신하는 방법.
  10. 제 9 항에 있어서,
    상기 수신 윈도우 지속기간은 ΔT*δ*2Trx 와 동일하고, ΔT 는 추정된 온도 변량이고, δ 는 상기 수신기에 의해 이용된 네이티브 클럭과 연관된 불확실도이고, Trx 는 상기 경과된 시간인, 수신기에서 송신물을 수신하는 방법.
  11. 제 1 항에 있어서,
    상기 수신 윈도우 지속기간은 상기 경과된 시간의 소정의 거듭제곱의 함수로서 설정되는, 수신기에서 송신물을 수신하는 방법.
  12. 제 11 항에 있어서,
    상기 수신 윈도우 지속기간은 ΔT*δ*Trx n 과 동일하고, ΔT 는 추정된 온도 변량이고, δ 는 상기 수신기에 의해 이용된 네이티브 클럭과 연관된 불확실도이고, Trx 는 상기 경과된 시간이고, n 은 1 보다 큰 분수 또는 정수인, 수신기에서 송신물을 수신하는 방법.
  13. 제 12 항에 있어서,
    상기 n 은 2 와 동일한, 수신기에서 송신물을 수신하는 방법.
  14. 제 12 항에 있어서,
    상기 n 은 1.75 와 동일한, 수신기에서 송신물을 수신하는 방법.
  15. 제 1 항에 있어서,
    상기 비선형 함수의 결과는 동적으로 계산되는, 수신기에서 송신물을 수신하는 방법.
  16. 제 1 항에 있어서,
    상기 비선형 함수의 결과는 룩업 테이블에 저장되는, 수신기에서 송신물을 수신하는 방법.
  17. 제 1 항에 있어서,
    상기 비선형 함수는, 소정의 시간 주기 동안 제 1 수신 윈도우 지속기간, 및 상기 소정의 시간 주기 이후 제 2 수신 윈도우 지속기간을 제공하는 계단 함수이고, 상기 제 2 수신 윈도우 지속기간은 상기 제 1 수신 윈도우 지속기간보다 큰, 수신기에서 송신물을 수신하는 방법.
  18. 양호한 송신물을 마지막으로 수신한 이후 경과된 시간에 기초하여 송신물을 수신하기 위한 수신 윈도우 지속기간을 설정하도록 구성되는 채널 타이머; 및
    상기 설정된 수신 윈도우 지속기간과 동일한 시간량 동안 송신물을 청취하도록 수신 윈도우를 개방하도록 구성되는 채널 인터페이스를 포함하며,
    상기 수신 윈도우 지속기간은 상기 경과된 시간의 비선형 함수인, 수신기에서 송신물을 수신하는 장치.
  19. 제 18 항에 있어서,
    상기 채널 타이머는 또한, 예상된 송신물들 사이의 시간 간격에 기초하여, 초기에 상기 수신 윈도우 지속기간을 디폴트 값으로 설정하도록 구성되는, 수신기에서 송신물을 수신하는 장치.
  20. 제 19 항에 있어서,
    상기 채널 타이머는 또한, 상기 송신물이 성공적으로 수신되면, 상기 수신 윈도우 지속기간을 상기 디폴트 값으로 리셋하도록 구성되는, 수신기에서 송신물을 수신하는 장치.
  21. 제 19 항에 있어서,
    상기 수신기는 2.4 GHz ISM 대역 수신기이고, 상기 디폴트 값은, 2.4 GHz ISM 대역에서 동작하는 시스템에서의 스니프 시도들 사이의 시간 간격에 기초하는, 수신기에서 송신물을 수신하는 장치.
  22. 제 18 항에 있어서,
    상기 채널 타이머는 또한, 상기 수신 윈도우 지속기간을, 상기 수신기에 의해 이용된 네이티브 클럭과 연관되는 불확실도 및 추정된 온도 변량에 비례하게 설정하도록 구성되는, 수신기에서 송신물을 수신하는 장치.
  23. 제 18 항에 있어서,
    상기 수신 윈도우 지속기간은 상기 경과된 시간의 지수 함수로서 설정되는, 수신기에서 송신물을 수신하는 장치.
  24. 제 23 항에 있어서,
    상기 수신 윈도우 지속기간은 ΔT*δ*2Trx 와 동일하고, ΔT 는 추정된 온도 변량이고, δ 는 상기 수신기에 의해 이용된 네이티브 클럭과 연관된 불확실도이고, Trx 는 상기 경과된 시간인, 수신기에서 송신물을 수신하는 장치.
  25. 제 18 항에 있어서,
    상기 수신 윈도우 지속기간은 상기 경과된 시간의 소정의 거듭제곱의 함수로서 설정되는, 수신기에서 송신물을 수신하는 장치.
  26. 제 25 항에 있어서,
    상기 수신 윈도우 지속기간은 ΔT*δ*Trx n 과 동일하고, ΔT 는 추정된 온도 변량이고, δ 는 상기 수신기에 의해 이용된 네이티브 클럭과 연관된 불확실도이고, Trx 는 상기 경과된 시간이고, n 은 1 보다 큰 분수 또는 정수인, 수신기에서 송신물을 수신하는 장치.
  27. 제 26 항에 있어서,
    상기 n 은 2 와 동일한, 수신기에서 송신물을 수신하는 장치.
  28. 제 26 항에 있어서,
    상기 n 은 1.75 와 동일한, 수신기에서 송신물을 수신하는 장치.
  29. 양호한 송신물을 마지막으로 수신한 이후 경과된 시간에 기초하여 송신물을 수신하기 위한 수신 윈도우 지속기간을 설정하는 수단; 및
    상기 설정된 수신 윈도우 지속기간과 동일한 시간량 동안 송신물을 청취하도록 수신 윈도우를 개방하는 수단을 포함하며,
    상기 수신 윈도우 지속기간은 상기 경과된 시간의 비선형 함수인, 수신기에서 송신물을 수신하는 장치.
  30. 제 29 항에 있어서,
    상기 수신 윈도우 지속기간을 설정하는 수단은, 예상된 송신물들 사이의 시간 간격에 기초하여, 초기에 상기 수신 윈도우 지속기간을 디폴트 값으로 설정하는, 수신기에서 송신물을 수신하는 장치.
  31. 제 30 항에 있어서,
    상기 수신 윈도우 지속기간을 설정하는 수단은, 상기 송신물이 성공적으로 수신되면, 상기 수신 윈도우 지속기간을 상기 디폴트 값으로 리셋하는, 수신기에서 송신물을 수신하는 장치.
  32. 제 30 항에 있어서,
    상기 수신 윈도우 지속기간을 설정하는 수단은, 상기 수신 윈도우 지속기간을, 상기 수신기에 의해 이용된 네이티브 클럭과 연관되는 불확실도 및 추정된 온도 변량에 비례하도록 설정하는, 수신기에서 송신물을 수신하는 장치.
  33. 제 29 항에 있어서,
    상기 수신 윈도우 지속기간은 상기 경과된 시간의 지수 함수로서 설정되는, 수신기에서 송신물을 수신하는 장치.
  34. 제 33 항에 있어서,
    상기 수신 윈도우 지속기간은 ΔT*δ*2Trx 와 동일하고, ΔT 는 추정된 온도 변량이고, δ 는 상기 수신기에 의해 이용된 네이티브 클럭과 연관된 불확실도이고, Trx 는 상기 경과된 시간인, 수신기에서 송신물을 수신하는 장치.
  35. 제 29 항에 있어서,
    상기 수신 윈도우 지속기간은 상기 경과된 시간의 소정의 거듭 제곱의 함수로서 설정되는, 수신기에서 송신물을 수신하는 장치.
  36. 제 35 항에 있어서,
    상기 수신 윈도우 지속기간은 ΔT*δ*Trx n 과 동일하고, ΔT 는 추정된 온도 변량이고, δ 는 상기 수신기에 의해 이용된 네이티브 클럭과 연관된 불확실도이고, Trx 는 상기 경과된 시간이고, n 은 1 보다 큰 분수 또는 정수인, 수신기에서 송신물을 수신하는 장치.
  37. 제 36 항에 있어서,
    상기 n 은 2 와 동일한, 수신기에서 송신물을 수신하는 장치.
  38. 제 36 항에 있어서,
    상기 n 은 1.75 와 동일한, 수신기에서 송신물을 수신하는 장치.
  39. 양호한 송신물을 마지막으로 수신한 이후 경과된 시간에 기초하여 송신물을 수신하기 위한 수신 윈도우 지속기간을 설정하도록 구성되고, 상기 설정된 수신 윈도우 지속기간과 동일한 시간량 동안 송신물을 청취하도록 수신 윈도우를 개방하도록 구성되는 프로세서를 포함하며,
    상기 수신 윈도우 지속기간은 상기 경과된 시간의 비선형 함수인, 수신기에서 송신물을 수신하는 장치.
  40. 제 39 항에 있어서,
    상기 프로세서는 또한, 예상된 송신물들 사이의 시간 간격에 기초하여, 초기에 상기 수신 윈도우 지속기간을 디폴트 값으로 설정하도록 구성되는, 수신기에서 송신물을 수신하는 장치.
  41. 제 40 항에 있어서,
    상기 프로세서는 또한, 상기 송신물이 성공적으로 수신되면, 상기 수신 윈도우 지속기간을 상기 디폴트 값으로 리셋하도록 구성되는, 수신기에서 송신물을 수신하는 장치.
  42. 제 39 항에 있어서,
    상기 프로세서는 또한, 상기 수신 윈도우 지속기간을, 상기 수신기에 의해 이용된 네이티브 클럭과 연관되는 불확실도 및 추정된 온도 변량에 비례하게 설정하도록 구성되는, 수신기에서 송신물을 수신하는 장치.
  43. 제 39 항에 있어서,
    상기 수신 윈도우 지속기간은 상기 경과된 시간의 지수 함수로서 설정되는, 수신기에서 송신물을 수신하는 장치.
  44. 제 43 항에 있어서,
    상기 수신 윈도우 지속기간은 ΔT*δ*2Trx 와 동일하고, ΔT 는 추정된 온도 변량이고, δ 는 상기 수신기에 의해 이용된 네이티브 클럭과 연관된 불확실도이고, Trx 는 상기 경과된 시간인, 수신기에서 송신물을 수신하는 장치.
  45. 제 39 항에 있어서,
    상기 수신 윈도우 지속기간은 상기 경과된 시간의 소정의 거듭제곱의 함수로서 설정되는, 수신기에서 송신물을 수신하는 장치.
  46. 제 45 항에 있어서,
    상기 수신 윈도우 지속기간은 ΔT*δ*Trx n 과 동일하고, ΔT 는 추정된 온도 변량이고, δ 는 상기 수신기에 의해 이용된 네이티브 클럭과 연관된 불확실도이고, Trx 는 상기 경과된 시간이고, n 은 1 보다 큰 분수 또는 정수인, 수신기에서 송신물을 수신하는 장치.
  47. 제 46 항에 있어서,
    상기 n 은 2 와 동일한, 수신기에서 송신물을 수신하는 장치.
  48. 제 46 항에 있어서,
    상기 n 은 1.75 와 동일한, 수신기에서 송신물을 수신하는 장치.
  49. 수신기에서 송신물을 수신하기 위해 프로세서에 의해 실행가능한 명령들을 포함하는 컴퓨터 판독가능 매체로서,
    상기 컴퓨터 판독가능 매체는,
    양호한 송신물을 마지막으로 수신한 이후 경과된 시간에 기초하여 송신물을 수신하기 위한 수신 윈도우 지속기간을 설정하기 위한, 상기 프로세서에 의해 실행가능한 컴퓨터 판독가능 명령들의 제 1 세트; 및
    상기 설정된 수신 윈도우 지속기간과 동일한 시간량 동안 송신물을 청취하도록 수신 윈도우를 개방하기 위한, 상기 프로세서에 의해 실행가능한 컴퓨터 판독가능 명령들의 제 2 세트를 포함하며,
    상기 수신 윈도우 지속기간은 경과된 시간의 비선형 함수인, 컴퓨터 판독가능 매체.
  50. 제 50 항에 있어서,
    예상된 송신물들 사이의 시간 간격에 기초하여, 초기에 상기 수신 윈도우 지속기간을 디폴트 값으로 설정하기 위한, 상기 프로세서에 의해 실행가능한 컴퓨터 판독가능 명령들의 제 3 세트를 더 포함하는, 컴퓨터 판독가능 매체.
  51. 제 51 항에 있어서,
    상기 송신물이 성공적으로 수신되면, 상기 수신 윈도우 지속기간을 상기 디폴트 값으로 리셋하기 위한, 상기 프로세서에 의해 실행가능한 컴퓨터 판독가능 명령들의 제 4 세트를 더 포함하는, 컴퓨터 판독가능 매체.
  52. 제 50 항에 있어서,
    상기 수신 윈도우 지속기간을, 상기 수신기에 의해 이용된 네이티브 클럭과 연관되는 불확실도 및 추정된 온도 변량에 비례하도록 설정하기 위한, 상기 프로세서에 의해 실행가능한 컴퓨터 판독가능 명령들의 제 5 세트를 더 포함하는, 컴퓨터 판독가능 매체.
  53. 제 50 항에 있어서,
    상기 수신 윈도우 지속기간은 상기 경과된 시간의 지수 함수로서 설정되는, 컴퓨터 판독가능 매체.
  54. 제 54 항에 있어서,
    상기 수신 윈도우 지속기간은 ΔT*δ*2Trx 와 동일하고, ΔT 는 추정된 온도 변량이고, δ 는 상기 수신기에 의해 이용된 네이티브 클럭과 연관된 불확실도이고, Trx 는 상기 경과된 시간인, 컴퓨터 판독가능 매체.
  55. 제 50 항에 있어서,
    상기 수신 윈도우 지속기간은 상기 경과된 시간의 소정의 거듭제곱의 함수로서 설정되는, 컴퓨터 판독가능 매체.
  56. 제 56 항에 있어서,
    상기 수신 윈도우 지속기간은 ΔT*δ*Trx n 과 동일하고, ΔT 는 추정된 온도 변량이고, δ 는 상기 수신기에 의해 이용된 네이티브 클럭과 연관된 불확실도이고, Trx 는 상기 경과된 시간이고, n 은 1 보다 큰 분수 또는 정수인, 컴퓨터 판독가능 매체.
  57. 제 57 항에 있어서,
    상기 n 은 2 와 동일한, 컴퓨터 판독가능 매체.
  58. 제 57 항에 있어서,
    상기 n 은 1.75 와 동일한, 컴퓨터 판독가능 매체.
KR1020117004876A 2008-08-01 2009-08-03 수신기에서 송신물을 수신하는 방법 및 장치 KR101297853B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/184,694 US8170482B2 (en) 2008-08-01 2008-08-01 Method and apparatus for receiving a transmission at a receiver
US12/184,694 2008-08-01
PCT/US2009/052592 WO2010014992A1 (en) 2008-08-01 2009-08-03 Method and apparatus for receiving a transmission at a receiver

Publications (2)

Publication Number Publication Date
KR20110051217A true KR20110051217A (ko) 2011-05-17
KR101297853B1 KR101297853B1 (ko) 2013-08-20

Family

ID=41226835

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117004876A KR101297853B1 (ko) 2008-08-01 2009-08-03 수신기에서 송신물을 수신하는 방법 및 장치

Country Status (7)

Country Link
US (1) US8170482B2 (ko)
EP (1) EP2311288A1 (ko)
JP (1) JP5180377B2 (ko)
KR (1) KR101297853B1 (ko)
CN (1) CN102113388B (ko)
TW (1) TW201025981A (ko)
WO (1) WO2010014992A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140060570A (ko) * 2011-09-08 2014-05-20 노르딕 세미컨덕터 에이에스에이 무선 통신 시스템

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8279991B2 (en) 2008-10-03 2012-10-02 Motorola Solutions, Inc. Method of efficiently synchronizing to a desired timeslot in a time division multiple access communication system
EP2457332B1 (en) * 2009-07-23 2019-05-01 Nokia Technologies Oy Method and apparatus for reduced power consumption when operating as a bluetooth low energy device
US8599826B2 (en) * 2010-04-15 2013-12-03 Motorola Solutions, Inc. Method for synchronizing direct mode time division multiple access (TDMA) transmissions
US9030971B2 (en) 2010-07-20 2015-05-12 Qualcomm Incorporated Simultaneous operation of short range wireless systems with a mobile wireless broadband system
JP5475720B2 (ja) * 2011-07-04 2014-04-16 日本電信電話株式会社 伝送システムにおける通信装置
US8838072B2 (en) * 2011-08-11 2014-09-16 Samsung Electronics Co., Ltd. Apparatus and method for mobile personal assistant
JP5940353B2 (ja) * 2012-04-11 2016-06-29 オリンパス株式会社 無線通信装置、メモリ装置、無線通信システム、無線通信方法、およびプログラム
CN104080060B (zh) * 2013-03-25 2018-06-22 展讯通信(上海)有限公司 移动终端发送防盗短信的方法
US9204405B2 (en) * 2013-12-09 2015-12-01 Itron, Inc. Synchronization methods and apparatus
JP6357796B2 (ja) * 2014-02-24 2018-07-18 沖電気工業株式会社 無線通信装置、無線通信装置の同期方法、無線通信プログラム及び無線通信システム
US10897763B2 (en) * 2015-01-30 2021-01-19 Itron Networked Solutions, Inc. Techniques for managing heterogenous nodes configured to support a homogeneous communication protocol
EP3593473A4 (en) * 2017-03-07 2021-01-06 Itron Networked Solutions, Inc. TIME DISTRIBUTION SCHEME FOR WIRELESS MESH NETWORKS
US10477500B2 (en) 2017-03-07 2019-11-12 Itron Networked Solutions, Inc. Time distribution scheme for wireless mesh networks
US10506536B2 (en) 2017-03-07 2019-12-10 Itron Networked Solutions, Inc. Time distribution scheme for wireless mesh networks
US20190289543A1 (en) * 2018-03-15 2019-09-19 Qualcomm Incorporated Sniff early termination indication to reduce power consumption for wireless devices
CN111356212B (zh) * 2018-12-20 2022-11-29 阿里巴巴集团控股有限公司 数据传输方法、装置、设备及存储介质
CN114980322A (zh) * 2021-02-26 2022-08-30 恩智浦有限公司 改进的窗口加宽
CN117793962B (zh) * 2024-02-23 2024-05-07 昱兆微电子科技(上海)有限公司 一种用于低功耗蓝牙系统调整射频接收窗口的方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19905316A1 (de) 1999-02-09 2000-08-10 Horst Ziegler Datenübertragungssystem, insbesondere zur Verbrauchsdatenerfassung
US20050047363A1 (en) * 2003-08-25 2005-03-03 Sam Shiaw-Shiang Jiang Method and apparatus of controlling data delivery in a wireless communication system for digesting data units outside a reconfigured transmitting window and a reconfigured receiving window
WO2006069067A2 (en) * 2004-12-20 2006-06-29 Sensicast Systems Method for reporting and accumulating data in a wireless communication network
TWI299620B (en) * 2005-04-05 2008-08-01 Innovative Sonic Ltd Method and related apparatus for reconfiguring size of a receiving window in a communication system
US7394782B2 (en) * 2005-07-14 2008-07-01 Honeywell International Inc. Reduced power time synchronization in wireless communication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140060570A (ko) * 2011-09-08 2014-05-20 노르딕 세미컨덕터 에이에스에이 무선 통신 시스템

Also Published As

Publication number Publication date
JP2011530245A (ja) 2011-12-15
CN102113388A (zh) 2011-06-29
CN102113388B (zh) 2014-01-08
WO2010014992A1 (en) 2010-02-04
TW201025981A (en) 2010-07-01
US8170482B2 (en) 2012-05-01
EP2311288A1 (en) 2011-04-20
JP5180377B2 (ja) 2013-04-10
US20100029230A1 (en) 2010-02-04
KR101297853B1 (ko) 2013-08-20

Similar Documents

Publication Publication Date Title
KR101297853B1 (ko) 수신기에서 송신물을 수신하는 방법 및 장치
CN113348675B (zh) 蓝牙真无线立体声(tws)耳塞式耳机之间的快速角色切换
KR101600370B1 (ko) 다중 병치 무선장치의 공존을 위한 방법 및 시스템
US9369965B2 (en) Communication apparatus
EP3326391B1 (en) Bluetooth low energy combined listen and scan window
CN112313977B (zh) 利用通信共存的低时延音频流式传输
EP2803223B1 (en) Systems and methods to transmit configuration change messages between an access point and a station
US8583057B2 (en) Techniques to control a shared antenna architecture for multiple co-located radio modules
US8018885B2 (en) Code keying in a power savings mode
CN101652766B (zh) 自组织网络功率节省系统和方法
US8755747B2 (en) Techniques to control transmit power for a shared antenna architecture
KR101946109B1 (ko) 무선 신호의 특성의 변화의 미리 정의된 시퀀스를 통한 무선 통신을 위한 방법 및 장치
US20130090151A1 (en) Method and apparatus for advanced motion detection in wireless communications systems
US20170026777A1 (en) Bluetooth low energy interlaced advertising and scanning
JP4897875B2 (ja) 無線ネットワークにおいて通信をイニシエートする方法および装置
WO2020143479A1 (zh) Bwp的调整方法和装置
JP2010045536A (ja) 無線通信装置
TWI523554B (zh) 傳訊一同步訊框發送請求之技術

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160629

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee