KR20110038024A - 널 프로세싱 노이즈 감산을 이용한 노이즈 억제 시스템 및 방법 - Google Patents

널 프로세싱 노이즈 감산을 이용한 노이즈 억제 시스템 및 방법 Download PDF

Info

Publication number
KR20110038024A
KR20110038024A KR1020117000440A KR20117000440A KR20110038024A KR 20110038024 A KR20110038024 A KR 20110038024A KR 1020117000440 A KR1020117000440 A KR 1020117000440A KR 20117000440 A KR20117000440 A KR 20117000440A KR 20110038024 A KR20110038024 A KR 20110038024A
Authority
KR
South Korea
Prior art keywords
signal
noise
energy ratio
subtracted
component
Prior art date
Application number
KR1020117000440A
Other languages
English (en)
Other versions
KR101610656B1 (ko
Inventor
루드게 솔바하
칼로 머지아
Original Assignee
오디언스 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오디언스 인코포레이티드 filed Critical 오디언스 인코포레이티드
Publication of KR20110038024A publication Critical patent/KR20110038024A/ko
Application granted granted Critical
Publication of KR101610656B1 publication Critical patent/KR101610656B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/20Speech recognition techniques specially adapted for robustness in adverse environments, e.g. in noise, of stress induced speech
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0272Voice signal separating
    • G10L21/0308Voice signal separating characterised by the type of parameter measurement, e.g. correlation techniques, zero crossing techniques or predictive techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • H04B15/02Reducing interference from electric apparatus by means located at or near the interfering apparatus
    • H04B15/04Reducing interference from electric apparatus by means located at or near the interfering apparatus the interference being caused by substantially sinusoidal oscillations, e.g. in a receiver or in a tape-recorder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/222Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only  for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02166Microphone arrays; Beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/01Noise reduction using microphones having different directional characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/05Noise reduction with a separate noise microphone

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

노이즈 감산 프로세싱을 사용하여 노이즈를 억제하기 위한 시스템 및 방법이 제공된다. 이러한 노이즈 감산 프로세싱은 적어도 제1 및 제2 음향 신호를 수신하는 단계를 포함한다. 요구되는 신호 성분은 노이즈 성분 신호를 얻기 위해 제2 음향 신호로부터 계산되고 감산될 수 있다. 레퍼런스 에너지 비 및 예측 에너지 비의 결정이 만들어질 수 있다. 부분적으로 레퍼런스 에너지 비 및 예측 에너지 비에 기초하여 노이즈 성분 신호를 조정할 지 여부에 대한 결정이 이루어질 수 있다. 이러한 노이즈 성분 신호는 상기 결정에 기초하여 조정되거나 동결될 수 있다. 그다음, 노이즈 성분 신호는 출력될 수 있는 노이즈 감산된 신호를 생성하기 위해 제1 음향 신호로부터 제거될 수 있다.

Description

널 프로세싱 노이즈 감산을 이용한 노이즈 억제 시스템 및 방법{SYSTEM AND METHOD FOR PROVIDING NOISE SUPPRESSION UTILIZING NULL PROCESSING NOISE SUBTRACTION}
본 발명은 일반적으로 오디오 처리에 관한 것이고 보다 상세하게는 오디오 신호의 적응성 노이즈 억제에 관한 것이다.
현재, 부정적인 오디오 환경 내의 배경 잡음을 줄이는 다양한 방법이 존재한다. 하나의 이러한 방법은 정적(stationary) 노이즈 억제 시스템을 사용하는 것이다. 정적 노이즈 억제 시스템은 항상 입력 노이즈보다 낮고 고정된 크기인 출력 노이즈를 제공할 것이다. 전형적으로 정적 노이즈 억제는 12-13 데시벨(dB)의 범위이다. 노이즈 억제는 더 높은 노이즈 억제에서 분명해질 수 있는 음성 왜곡 발생을 피하기 위해, 이러한 보수적인(conservative) 레벨로 고정된다.
더 높은 노이즈 억제를 위해, 신호대잡음비(SNR)를 기초로 한 동적 노이즈 억제 시스템이 사용되어 왔다. 이 SNR은 억제 값을 결정하기 위해 사용될 수 있다. 불행하게도, SNR은 오디오 환경 내의 상이한 노이즈 타입의 존재로 인해 그 자체로 음성 왜곡의 매우 우수한 예측자는 아니다. SNR은 음성이 노이즈보다 얼마나 더 큰지의 비율이다. 그러나, 음성은 계속 변하고 무음(pause)을 포함하는 정적인 신호일 수 있다. 전형적으로, 일정 기간에 걸친 음성 에너지는, 워드, 무음, 워드, 무음 등을 포함할 것이다. 또한, 정적인 노이즈 및 동적인 노이즈가 오디오 환경에 존재할 수 있다. SNR은 모든 이러한 비정적인 음성 및 노이즈, 및 정적인 음성 및 노이즈를 평균낸다. 노이즈 신호의 통계는 고려하지 않으며, 오직 노이즈의 전체 레벨이 무엇인지만 고려한다.
몇몇 종래기술의 시스템에서, 강화 필터가 노이즈 스펙트럼의 추정값을 기초로 유도될 수 있다. 하나의 일반적인 강화 필터는 위너(Wiener) 필터이다. 강화 필터는 전형적으로 사용자의 인지 여부를 고려하지 않고, 임의의 수학적인 에러 양을 최소화도록 구성된다는 점이 단점이다. 그 결과, 노이즈 억제의 부작용으로 어느 정도의 크기의 음성 열화가 도입된다. 이러한 음성 열화는 노이즈 레벨이 높아질수록, 그리고 더 많은 노이즈 억제가 적용될수록, 더 심해질 것이다. 이것은 더 많은 음성 손실 왜곡 및 음성 열화를 도입시킨다.
일부 종래 시스템은 일반화된 사이드-로브 상쇄기를 사용한다. 이러한 일반화된 사이드-로브 상쇄기는 요구되는 신호를 식별하고 수신된 신호에 의해 포함된 신호에 간섭하는데 사용된다. 요구되는 신호는 요구되는 로케이션으로부터 전파하고, 간섭하는 신호는 다른 로케이션으로부터 전파한다. 간섭하는 신호는 간섭 상쇄를 위해, 수신된 신호로부터 감산된다.
많은 노이즈 억제 프로세스가 마스킹 이득을 계산하고 이러한 마스킹 이득을 입력 신호에 적용한다. 따라서, 오디오 신호가 대부분 노이즈라면 낮은 값인 마스킹 이득이 오디오 신호에 적용될 수 있다(즉, 승산될 수 있다). 반대로, 오디오 신호가 대부분 요구되는 음성과 같은 사운드라면, 높은 값의 이득 마스크가 오디오 신호에 적용될 수 있다. 이러한 프로세스는 승산 노이즈 억제로 불린다.
본 발명의 실시예는 노이즈 억제와 음성 강화와 연관된 종래 문제를 극복하거나 실질적으로 완화시킨다. 실시예에서, 적어도 제1 및 제2 음향 신호는 마이크로폰 어레이에 의해 수신된다. 이러한 마이크로폰 어레이는 클로즈 마이크로폰 어레이 또는 스프레드 마이크로폰 어레이를 포함할 수 있다.
노이즈 성분 신호는 제2 음향 신호로부터 복소값 계수 σ에 의해 가중된 제1 음향 신호를 감산함으로써 마이크로폰에 의해 수신된 신호의 각 서브밴드에서 결저오딜 수 있다. 그다음, 또 다른 복소값 계수 α에 의해 가중된 노이즈 성분 신호는 제1 음향 신호로부터 감산되어 타겟 신호의 추정값(즉, 노이즈 감산된 신호)을 산출한다.
α를 조정할 지에 대한 결정이 이루어질 수 있다. 실시예에서, 이러한 결정은 레퍼런스 에너지 비(g1) 및 예측 에너지 비(g2)에 기초하여 이루어질 수 있다. 복소값 계수 α는 노이즈 성분 신호를 조정하기 위해 예측 에너지 비가 레퍼런스 에너지 비보다 클 때 적응될 수 있다. 반대로, 이러한 적응 계수는 예측 에너지 비가 레퍼런스 에너지 비 보다 적을 때 동결될 수 있다. 그다음, 이러한 노이즈 성분 신호는 제1 음향 신호로부터 제거되어, 출력될 수 있는 노이즈 감산된 신호를 생성할 수 있다.
도 1은 본 발명의 실시예가 실시될 수 있는 환경이다.
도 2는 본 발명의 실시예를 구현하는 오디오 디바이스의 예의 블록도이다.
도 3은 스프레드 마이크로폰 어레이를 사용하는 오디오 처리 시스템의 예의 블록도이다.
도 4은 도 3의 오디오 처리 시스템의 오디오 억제 시스템의 예의 블록도이다.
도 5는 클로즈 마이크로폰 어레이를 사용하는 오디오 처리 시스템의 예의 블록도이다.
도 6은 도 5의 오디오 처리 시스템의 노이즈 억제 시스템의 예의 블록도이다.
도 7a는 노이즈 감산 엔진의 예의 블록도이다.
도 7b는 노이즈 감산 엔진의 동작을 설명하는 대략도이다.
도 8은 오디오 디바이스에서의 노이즈를 억제하기 위한 방법예의 순서도이다.
도 9은 노이즈 감산 처리를 행하기 위한 방법예의 순서도.
본 발명은 오디오 신호에서의 노이즈의 적응성 억제를 위한 시스템 및 방법예를 제공한다. 실시예는 음성 열화량을 최소로 하거나 전혀 없게 노이즈 억제량의 균형 맞추도록 시도한다. 실시예는 노이즈 억제는 순수한 승산의 노이즈 억제 프로세서와 달리 오디오 로케이션에 기초하고 감산성 노이즈 억제 프로세스를 적용한다.
본 발명의 실시예는 휴대폰, 폰 핸드셋, 헤드셋 및 화상 시스템과 같은 사운드를 수신하도록 구성된 임의의 오디오 디바이스에 실현될 수 있고, 이러한 오디오 디바이스에 제한되지 않는다. 실시예가 음성 왜곡을 최소화하면서 향상된 노이즈 억제를 제공하도록 구성되는 것이 유리하다. 본 발명의 일부 실시예가 휴대폰상의 동작에 대해 설명될 것이지만, 본 발명은 임의의 오디오 디바이스에서 실시될 수 있다.
도 1에 본 발명의 실시예가 실시될 수 있는 환경이 도시되어 있다. 사용자는 오디오 디바이스(104)로의 음성 소스(102)로서 작용한다. 오디오 디바이스(104)의 예는 마이크로폰 어레이를 포함할 수 있다. 마이크로폰 어레이는 클록즈 마이크로폰 어레이 또는 스프레드 마이크로폰 어레이를 포함할 수 있다.
실시예에서, 마이크로폰 어레이는 오디오 소스(102)에 관련된 제1 마이크로폰(106) 및 제1 마이크로폰(106)으로부터 먼 거리에 위치된 제2 마이크로폰(108)을 포함할 수 있다. 본 발명의 실시예가 2개의 마이크로폰(106, 108)을 갖는 것에 대해 설명될 것이지만, 마이크로폰 어레이내에 임의의 수의 마이크로폰 또는 음향 센서를 갖는 대안의 실시예를 생각해볼 수 있다. 일부 실시예에서, 마이크로폰(106, 108)은 옴니-디렉셔널 마이크로폰을 포함할 수 있다.
마이크로폰(106, 108)이 오디오 소스(102)로부터 사운드(즉, 음향 신호)를 수신하지만, 마이크로폰(106, 108)은 또한 노이즈(110)를 픽업한다. 노이즈(110)가 도 1의 단일 로케이션으로부터 나오는 것으로 도시되어 있지만, 노이즈(110)는 오디오 소스(102)와 상이한 하나 이상의 로케이션으로부터 임의의 사운드를 포함할 수 있고, 반향 및 에코를 포함할 수 있다. 노이즈(110)는 정적일 수 있고, 비정적인 또는, 정적인 노이즈 및 비정적인 노이즈의 조합일 수 있다.
도 2에서, 오디오 디바이스(104)의 예가 보다 상세하게 도시되어 있다. 실시예에서, 오디오 디바이스(104)는 프로세서(202), 제1 마이크로폰(106), 제2 마이크로폰(108), 오디오 처리 시스템(204), 및 출력 디바이스(206)를 포함하는 오디오 수신 디바이스이다. 이러한 오디오 디바이스(104)는 오디오 디바이스(104) 동작을 위해 필요한 컴포넌트(도시되지 않음)를 더 포함할 수 있다. 오디오 처리 시스템(204)은 도 3에서 보다 상세하게 설명될 것이다.
실시예에서, 제1 및 제2 마이크로폰(106, 108)은 이들간에 레벨차를 허용하기 위해 이격되어 있다. 마이크로폰(106, 108)에 의한 수신시에, 음향 신호는 전기 신호(즉, 제1 전기 신호 및 제2 전기 신호)로 전환될 수 있다. 전기 신호는 그 자체가 일부 실시예에 따른 처리를 위해 아날로그-디지털 컨버터(도시되지 않음)에 의해 디지털 신호로 전환될 수 있다. 음향 신호를 구별하기 위해, 제1 마이크로폰(106)에 의해 수신된 음향 신호는 여기에서 제1 음향 신호로 불리고, 제2 마이크로폰(108)에 의해 수신된 음향 신호는 여기에서 제2 음향 신호로 불린다.
출력 디바이스(206)는 오디오 출력을 사용자에게 제공하는 임의의 디바이스이다. 예를 들어, 출력 디바이스(206)는 헤드셋 또는 핸드셋의 이어피스 또는 컨퍼런싱 디바이스의 스피커를 포함할 수 있다.
도 3은 본 발명의 하나의 실시예에 따른 오디오 처리 시스템(204a)의 상세한 블록도이다. 실시예에서, 오디오 처리 시스템(204a)은 메모리 디바이스내에 구현된다. 도 3의 오디오 처리 시스템은 스프레드 마이크로폰 어레이를 포함하는 실시예에서 사용될 수 있다.
동작에서, 제1 및 제2 마이크로폰(106, 108)으로부터 수신된 음향 신호는 주파수 분석 모듈(302)을 통해 전기 신호로 전환되고 처리된다. 하나의 실시예에서, 이러한 주파수 분석 모듈(302)은 음향 신호를 취하고 필터 뱅크에 의해 시뮬레이팅된 와우의 주파수 분석(즉, 와우 도메인)을 모방한다. 하나의 예에서, 주파수 분석 모듈(302)은 음향 신호를 주파수 서브밴드로 분리한다. 대안으로, 단시간 푸리에 변환(STFT), 서브밴드 필터 뱅크, 모듈레이팅된 컴플렉스 래핑된 변환, 와우 모델, 웨이블렛등과 같은 다른 필터가 주파수 분석 및 합성을 위해 사용될 수 있다. 대부분의 사운드(예를 들어, 음향 신호)가 복잡하고 하나 보다 많은 주파수를 포함하기 때문에, 음향 신호에 대한 서브밴드 분석은 프레임(예를 들어, 사전결정된 기간) 동안 복잡한 음향 신호에 어떤한 개별 주파수가 존재하는지를 결정한다. 하나의 실시예에 따라, 프레임은 8ms 길이를 갖는다. 대안의 실시예는 다른 프레임 길이를 사용하거나 프레임을 전혀 사용하지 않을 수 있다. 이러한 결과는 고속 와우 트랜스폼(FCT) 도메인에 서브밴드 신호를 포함할 수 있다.
일단 서브밴드 신호가 결정되면, 이러한 서브밴드 신호는 노이즈 감산 엔진(304)으로 전송된다. 이러한 노이즈 감산 엔진(304)의 예는 각 서브밴드에 대한 제1 음향신호로부터 노이즈 성분을 적응식 감산하도록 구성된다. 노이즈 감산 엔진(304)의 출력은 노이즈 감산된 서브밴드 신호로 구성된 노이즈 감산된 신호이다. 노이즈 감산 엔진(304)은 도 7a 및 도 7b와 함께 보다 상세하게 설명될 것이다. 노이즈 감산된 서브밴드 신호는 음성 또는 비음성(예를 들어, 음악)인 요구되는 오디오를 포함할 수 있다는 것에 주목해야 한다. 노이즈 감산 엔진(304)의 결과는 사용자에게 출력되거나 추가 노이즈 억제 시스템(예를 들어, 노이즈 억제 엔진(306))을 통해 처리될 수 있다. 설명을 위해, 본 발명의 실시예는 노이즈 감산 엔진(304)의 출력이 추가 노이즈 억제 시스템을 통해 처리되는 실시예를 설명할 것이다.
그다음, 제2 음향 신호의 서브밴드 신호를 따른 노이즈 감산된 버스-밴드 신호가 노이즈 억제 엔진(306a)에 제공된다. 실시예에 따라, 노이즈 억제 엔진(306a)은 노이즈 감산된 음성 신호에 남아 있는 노이즈 성분을 더 감소시키기 위해, 노이즈 감산된 버스-밴드 신호에 적용되도록 이득 마스크를 생성한다. 이러한 노이즈 억제 엔진(306a)은 아래의 도 4를 통해 보다 상세하게 설명될 것이다.
그다음 노이즈 억제 엔진(306a)에 의해 결정된 이득 마스크는 마스킹 모듈(308)내의 노이드 감산된 신호에 적용될 수 있다. 이에 따라, 각 이득 마스크는 마스킹된 주파수 서브밴드를 생성학 위해, 연관된 노이즈 감산된 주파수 서브밴드에 적용될 수 있다. 도 3에 도시된 바와 같이, 승산 노이즈 억제 시스템(312a)은 노이즈 억제 엔진(306a) 및 마스킹 모듈(308)을 포함한다.
다음으로, 마스킹된 주파수 서브밴드는 와우 도메인으로부터 시간 도멘으로 역변환된다. 이러한 변환은 마스킹된 주파수 서브밴드를 취하고 주파수 합성 모듈(310)내의 와우 채널의 위상 전이된 신호를 함께 더하는 단계를 포함할 수 있다. 대안으로, 이러한 변환은 마스킹된 주파수 서브밴드를 취하는 단계 및 이것을 주파수 합성 모듈(310)내의 와우 채널의 역주파수와 승산하는 단계를 포함할 수 있다. 하나의 변환이 완료되면, 합성된 음향 신호는 사용자에게 출력될 수 있다.
이제 도 4에서, 도 3의 노이즈 억제 엔진(306a)이 설명된다. 노이즈 억제 엔진(306a)의 예는 에너지 모듈(402), 인터-마이크로폰 레벨 차(ILD) 모듈(404), 적응성 분류기(406), 노이즈 산정 모듈(408), 및 적응성 인텔리전트 억제(AIS) 제너레이터(410)를 포함한다. 노이즈 억제 엔진(306a)은 예이고 여기에 언급되어 통합된 미국 특허 출원 11/343,524에 도시되고 설명된 것과 같은 모듈의 다른 조합을 포함할 수 있다는 것에 주목해야 한다.
본 발명의 실시예에 따라, AIS 제너레이터(410)는 노이즈 감사된 신호내의 노이즈를 억제하고 음성을 강화하기 위해 마스킹 모듈(308)에 의해 사용된 타임 및 주파수 변화 이득 또는 이득 마스크를 유도한다. 그러나, 이러한 이득 마스크를 유도하기 위해, 특정 입력이 AIS 제너레이터(410)에 대해 필요하다. 이러한 입력은 노이즈의 파워 스펙트럼 밀도(즉, 노이즈 스펙트럼), 노이즈 감산된 신호의 파워 스펙트럼 밀도(여기에서 제1 스펙트럼으로 부른다), 및 인터-마이크로폰 레벨차(ILD)를 포함한다.
실시예에 따라, 노이즈 감산 엔진(304)으로부터 나오는 노이즈 감산된 신호(c'(k)) 및 제2 음향 신호(f'(k))는 음향 신호의 각 주파수 밴드에 대한 타임 인터발 동안 에너지/파워 추정값(즉, 파워 추정값)을 계산하는 에너지 모듈(402)에 전송된다. 도 7b에 도시된 바와 같이, f'(k)는 선택적으로 f(k)와 동일할 수 있다. 결과로서, 모든 주파수 밴드에 걸친 제1 스펙트럼(즉, 노이즈 감산된 신호의 파워 스펙트럼 밀도)는 에너지 모듈(402)에 의해 결정될 수 있다. 이러한 제1 스펙트럼은 AIS 제너레이터(4100 및 ILD 모듈(404; 아래에 더 설명된다)에 공급될 수 있다. 마찬가지로, 에너지 모듈(402)은 ILD 모듈(404)에 공급된 모든 주파수 밴드에 걸친 제2 스펙트럼(즉, 제2 음향 신호의 파워 스펙트럼 밀도)를 결정한다. 파워 추정값 및 파워 스펙트럼의 계산에 대한 상세한 내용은 여기에 언급되어 통합된, 공동 계류중인 미국 특허 출원 11/343,524 및 공동 계류중인 미국 특허 출원 11/699,732에서 발견될 수 있다.
2개의 마이크로폰 실시예에서, 파워 스펙트럼은 제1 및 제2 마이크로폰(106, 108) 사이의 에너지 비를 결정하도록 인터-마이크로폰 레벨차(ILD) 모듈(404)에 의해 사용된다. 실시예에서, 이러한 ILD는 시간 및 주파수 변화 ILD일 수 있다. 제1 및 제2 마이크로폰(106, 108)이 특별한 방법으로 방위결정될 수 있기 때문에, 특정 레벨차가 음성이 활성일 때 발생할 수 있고 다른 레벨차가 노이즈가 활성일 때 발생할 수 있다. 그후에, ILD는 적응성 분류기(406) 및 AIS 제너레이터(410)로 전송된다. ILD를 계산하기 위한 하나의 실시예에 대한 보다 상세한 내용은 여기에 언급되어 통합된, 공동 계류중인 미국 특허 출원 11/343,524 및 공동 계류중인 미국 특허 출원 11/699,732에서 발견될 수 있다. 다른 실시예에서, 다른 형태의 ILD 나제1 및 제2 마이크로폰(106, 108) 사이의 에너지차가 사용될 수 있다. 예를 들어, 제1 및 제2 마이크로폰(106, 108)의 에너지의 비가 사용될 수 있다. 또한, 대안의 실시예는 적응성 분류 및 노이즈 억제를 위한 ILD 이외의 큐를 사용할 수 있다(즉, 이득 마스크 계산). 예를 들어, 노이즈 플로어 임계값이 사용될 수 있다. ILD의 사용에 대한 언급은 다른 큐에 적용가능한 것으로 해석될 수 있다.
적응성 분류기(406)예는 각 프레임내의 각 주파수 밴드에 대한 음향 신호내의 음성으로부터 노이즈 및 디스토터(예를 들어, 네가티브 ILD를 갖는 소스)를 구별하도록 구성된다. 이러한 적응성 분류기(406)는 특징(예를 들어, 음성, 노이즈 및 디스토터)이 변하고 환경내 음향 상태에 종속되기 때문에 적응성을 갖는 것으로 생각된다. 예를 들어, 하나의 상황에서의 음성을 나타내는 ILD는 또 다른 상황에서의 노이즈를 나타낼 수 있다. 따라서, 적응성 분류기(406)는 ILD에 기초하여 분류화 바운더리를 조정할 수 있다.
실시예에 따라, 적응성 분류기(406)는 음성으로부터 노이즈 및 디스토터를 구별하고, 이러한 결과를 노이즈 추정값을 유도하는 노이즈 추정 모듈(408)에 제공한다. 처음에, 이러한 적응성 분류기(406)는 각 주파수에서의 채널 사이의 최대 에너지를 결정할 수 있다. 각 주파수에 대한 로컬 ILD가 또한 결정된다. 글로벌 ILD가 로컬 ILD에 에너지를 적용시킴으로써 계산될 수 있다. 새롭게 계산된 글로벌 ILD에 기초하여, ILD 관찰용 러닝 평균 글로벌 ILD 및/또는 러닝 수단 및 버라이언스(즉, 글로벌 클러스터)가 갱신될 수 있다. 그다음, 프레임 타입은 글로벌 클러스터에 대해 글로벌 ILD의 위치에 기초하여 분류될 수 있다. 이러한 프레임 타입은 소스, 백그라운드 및 디스토터를 포함할 수 있다.
일단 이러한 프레임 타입이 결정되면, 적응성 분류기(406)는 소스, 백그라운드 및 디스토터를 위한 글로벌 평균 러닝 수단 및 버라이언스(즉, 클러스터)를 갱신할 수 있다. 하나의 실시예에서, 이러한 프레임이 소스, 백그라운드 또는 디스토터로서 분류된다면, 상응하는 글로벌 클러스터는 활성인 것으로 생각되고 글로벌 ILD로 이동된다. 프레임 타입과 매칭하지 않는 글로벌 소스, 백그라운드 및 디스토터 글로벌 클러스는 비활성인 것으로 생각된다. 사전결정된 기간 동안 비활성인 것으로 남아 있는 소스 및 디스토터 글로벌 클러스터는 백그라운드 글로벌 클러스터쪽으로 이동할 수 있다. 백그라운드 글로벌 클러스터가 사전결정된 기간동안 비활성인 것으로 남아 있다면, 백그라운드 글로벌 클러스터는 글로벌 평균으로 이동한다.
일단 이러한 프레임 타입이 결정되면, 적응성 분류기(406)는 또한 소스, 백그라운드 및 디스토터에 대한 로컬 평균 러닝 수단 및 버라이언스(즉, 클러스터)를 갱신할 수 있다. 이러한 로컬 활성 및 비활성 클러스터를 갱신하는 프로세스는 글로벌 활성 및 비활성 클러스터를 갱신하는 프로세스와 유사하다.
소스 및 백그라운드 클러스터의 위치에 기초하여, 에너지 스펙트럼내의 포인트는 소스 또는 노이즈로서 분류되고, 이러한 결과는 노이즈 추정 모듈(408)에 전달된다.
대안의 실시예에서, 적응성 분류기(406)의 예는 최소 통계 추정기를 사용하여 각 주파수 밴드내의 최소 ILD를 추적하는 것을 포함한다. 분류화 임계값은 각 밴드내의 최소 ILD 위의 고정된 거리(예를 들어, 3dB)에 배치될 수 있다. 대안으로, 이러한 임계값은 각 밴드에서 관찰되는 ILD 값의 최근 관찰된 범위에 의존하여, 각 밴드내의 최소 ILD 위의 가변 거리에 배치될 수 있다. 예를 들어, ILD의 관찰된 범위가 6dB 위에 있다면, 임계값은 특정 주기(예를 들어, 2초) 동안 각 밴드에서 관찰되는 최소 및 최대 ILD 사이의 중간에 있도록 배치될 수 있다. 이러한 적응성 분류기는 여기에 언급되어 통합된, "System and Method for Adaptive Intelligent Noise Suppression" 표제의 2007년 7월 6일 출원된 미국 논프로비저널 출원 11/825,563에 더 설명되어 있다.
실시예에서, 노이즈 추정값은 제1 마이크로폰(106)으로부터의 음향 신호 및 적응성 분류기(406)로부터의 결과에 기초하고 있다. 노이즈 추정 모듈(408)의 예는 본 발명의 하나의 실시예에 따라,
Figure pct00001
에 의해 수학적으로 근사화될 수 있는 성분인 노이즈 추정값을 생성한다. 볼 수 있는 바와 같이, 이러한 실시예의 노이즈 추정값은 제1 음향 신호의 현 에너지 추정값, E 1 (t,ω) 및 이전 타임 프레임의 노이즈 추정값, N(t-1,ω)의 최소 통계값에 기초한다. 결과로서, 노이즈 추정이 효율적으로 그리고 낮은 레이턴시로 수행된다.
상기 등식내의 λ 1 (t,ω)
Figure pct00002
로서, ILD 모듈(404)에 의해 근사화된 ILD로부터 유도될 수 있다.
즉, 제1 마이크로폰(106)이 음성이 위에 있을 것으로 예상되는 임계값 (예를 들어, threshold=0.5) 보다 작다면, λ 1 이 작고, 따라서, 노이즈 추정 모듈(408)은 노이즈에 근접하게 따른다. ILD가 상승으로 출발할 때(예를 들어, 음성이 큰 ILD 영역내에 존재함으로 해서), λ 1 이 증가한다. 결과적으로, 노이즈 추정 모듈(408)은 노이즈 추정 프로세스를 슬로우 다운하고 음성 에너지는 최종 노이즈 추정값에 상당히 기여하지 않는다. 대안의 실시예에는 노이즈 추정값 또는 노이즈 스펙트럼을 결정하기 위한 다른 방법을 생각할 수 있다. 그다음, 노이즈 스펙트럼(즉, 음향 신호의 모든 주파수 대역에 대한 노이즈 추정값)은 AIS 제너레이터(410)로 전송될 수 있다.
AIS 제너레이터(410)는 에너지 모듈(402)로부터 제1 스펙트럼의 음성 에너지를 수신한다. 이러한 제1 스펙트럼은 또한 노이드 감산 엔진(304)에 의해 처리 후에 일부 노이즈가 남아 있을 수 있다. AIS 제너레이터(410)는 또한 노이즈 추정 모듈(408)로부터 노이즈 스펙트럼을 수신할 수 있다. 이러한 입력 및 ILD 모듈(404)로부터의 선택적 ILD에 기초하여, 음성 스펙트럼이 추정될 수 있다. 하나의 실시예에서, 음성 스펙트럼은 제1 스펙트럼의 파워 추정값으로부터 노이즈 스펙트럼의 노이즈 추정값을 감산함으로써 추정된다. 연속으로, AIS 제너레이터(410)는 제1 음향 신호에 적용하기 위한 이득 마스크를 결정할 수 있다. 이러한 AIS 제너레이터(410)의 보다 상세한 설명은 적응성 분류기는 여기에 언급되어 통합된, "System and Method for Adaptive Intelligent Noise Suppression" 표제의 2007년 7월 6일 출원된 미국 출원 번호 11/825,563에 발견될 수 있다. 실시예에서, 시간과 주파수에 종속된, AIS 제너레이터(410)로부터 출력된 이득 마스크는 음성 손실 왜곡을 억제하면서 노이즈 억제를 최대화할 것이다.
노이즈 억제 엔진(306a)의 시스템 구조는 단지 예에 불과하다는 것에 주목해야 한다. 대안의 실시예는 보다 많은 컴포넌트, 보다 적은 컴포넌트 또는 등가의 컴포넌트를 포함할 수 있고 본 발명의 실시예의 범위에 있을 수 있다. 노이즈 억제 엔진(306a)의 다양한 모듈이 단일 모듈로 조합될 수 있다. 예를 들어, ILD 모듈(404)의 기능은 에너지 모듈(304)의 기능과 조합될 수 있다.
이제 도 5에서, 대안의 오디오 처리 시스템(204b)의 상세한 블록도가 도시된다. 도 3의 오디오 처리 시스템(204a)에 대조적으로, 도 5의 오디오 처리 시스템(204b)은 클로즈 마이크로폰 어레이를 포함하는 실시예에서 사용될 수 있다. 주파수 분석 모듈(302), 마스킹 모듈(308) 및 주파수 합성 모듈(310)의 기능은 도 3의 오디오 처리 시스템(204a)에 대하여 설명된 것과 동일하고 상세하게 설명되지 않을 것이다.
주파수 분석 모듈(302)에 의해 결정된 서브밴드 신호는 노이즈 감산 엔진(304) 및 어레이 처리 엔진(502)에 전송될 수 있다. 노이즈 감산 엔진(304)의 예는 각 서브밴드에 대하여 제1 음향 신호로부터 노이즈 성분을 적응식 감산하도록 구성되어 있다. 노이즈 감산 엔진(304)의 출력은 노이즈 감산된 서브밴드 신호로 구성된 노이즈 감산된 신호이다. 본 실시예에서, 노이즈 감산 엔진(304)은 노이즈 억제 엔진(306a)에 널 처리(NP) 이득을 제공한다. 이러한 NP 이득은 노이즈 감산된 신호로부터 얼마나 많은 제1 신호가 상쇄되었는지를 나타내는 에너지비를 포함한다. 제1 신호가 노이즈에 의해 지배된다면, NP 이득은 커질 것이다. 반대로, 제1 신호가 음성에 의해 지배된다면, NP 이득은 제로에 가까워질 것이다. 노이즈 감산 엔진(304)은 아래의 도 7a 및 도 7b에 함께 보다 상세하게 설명될 것이다.
실시예에서, 어레이 처리 엔진(502)은 클로즈 마이크로폰 어레이(예를 들어, 제1 및 제2 마이크로폰(106, 108)에 대한 방향성 패턴(즉, 합성 방향성 마이크로폰 응답)을 생성하기 위해 제1 및 제2 신호의 서브밴드 신호를 적응식으로 처리하도록 구성된다. 방향성 패턴은 제1 음향 (서브밴드) 신호에 기초한 포워드-페이싱 카디오이드 패턴 및 제2 (서브밴드) 음향 신호에 기초한 백워드-페이싱 카디오이드 패턴을 포함할 수 있다. 하나의 실시예에서, 서브밴드 신호는 백워드-페이싱 카디오이드 패턴의 널이 오디오 소스(102)쪽으로 지향되도록 적용될 수 있다. 어레이 처리 엔진(502)의 구현 및 기능에 대한 보다 상세한 내용은 여기에 언급되어 통합된, "System and Method for Providing Close-Microphone Array Noise Reduction" 표제의 미국 특허 출원 12/080,115에서 발견될 수 있다(적응성 어레이 처리 엔진으로 불린다). 이러한 카디오이드 신호(즉, 포워드-페이싱 카디오이드 패턴을 구현하는 신호 및 백워드-페이싱 카디오이드 패턴을 구현하는 신호)는 그다음 어레이 처리 엔진(502)에 의해 노이즈 억제 엔진(306b)에 제공된다.
노이즈 억제 엔진(306b)은 카디오이드 신호를 따라 NP 이득을 수신한다. 실시예에 따라, 노이즈 억제 엔진(306b)은 노이즈 감산된 음성 신호에 남을 수 있는 임의의 노이즈 성분을 더 감소시키기 위해 노이즈 감산 엔진(304)로부터 노이즈 감산된 서브밴드 신호에 적용되도록 이득 마스크를 생성한다. 노이즈 억제 엔진(306b)은 아래의 도 6과 함께 보다 상세하게 설명될 것이다.
그다음, 노이즈 억제 엔진(306b)에 의해 결정된 이득 마스크는 마스킹 모듈(308)내의 노이즈 감산된 신호에 적용될 수 있다. 이에 따라, 각 이득 마스크는 마스킹된 주파수 서브밴드를 생성하기 위해, 연관된 노이즈 감산된 주파수 서브밴드에 적용될 수 있다. 이어서, 마스킹된 주파수 서브밴드는 주파수 합성 모듈(310)에 의해 와우 도메인으로부터 시간 도메인으로 다시 변환된다. 일단 변환이 완료되면, 합성된 음향 신호는 사용자에게 출력될 수 있다. 도 5에 도시된 바와 같이, 승산 노이즈 억제 시스템(312b)은 어레이 처리 엔진(502), 노이즈 억제 엔진(306b), 및 마스킹 모듈(308)을 포함한다.
이제 도 6에서, 노이즈 억제 엔진(306b)의 예가 보다 상세하게 도시되어 있다. 노이즈 억제 엔진(306b)의 예는 에너지 모듈(402), 인터-마이크로폰 레벨차(ILD) 모듈(404), 적응성 분류기(406), 노이즈 추정 모듈(408), 및 적응성 인텔리전트 억제(AIS) 제너레이터(410)를 포함한다. 노이즈 억제 엔진(306b)의 다양한 모듈이 노이즈 억제 엔진(306a)내의 모듈과 유사하게 기능한다는 것에 주목해야 한다.
본 발명에서, 제1 음향 신호(c"(k)) 및 제2 음향 신호(f"(k))는 음향 신호의 각 주파수 밴드(즉, 파워 추정치)에 대한 시간 인터벌 동안 에너지/파워 추정값을 계산하는 에너지 모듈(402)에 의해 수신된다. 결과적으로, 모든 주파수 밴드에 걸친 제1 스펙트럼(즉, 제1 서브밴드 신호의 파워 스펙트럼 밀도)가 에너지 모듈(402)에 의해 결정될 수 있다. 이러한 제1 스펙트럼은 AIS 제너레이터(410) 및 ILD 모듈(404)에 공급될 수 있다. 이와 마찬가지로, 에너지 모듈(402)은 ILD 모듈(404)에 공급된 모든 주파수 밴드에 거친 제2 스펙트럼(즉, 제2 서브밴드 신호의 파워 스펙트럼 밀도)을 결정한다. 파워 추정값 및 파워 스펙트럼의 계산에 관한 보다 상세한 내용은 여기에 언급되어 통합된, 공동 계류중인 미국 특허 출원 11/343,524 및 공동 계류중인 미국 특허 출원 11/699,732에서 발견될 수 있다.
이전에 설명된 바와 같이, 파워 스펙트럼이 제1 및 제2 마이크로폰(106, 108) 사이의 에너지차를 결정하기 위해 ILD 모듈(404)에 의해 사용될 수 있다. 그다음, ILD는 적응성 분류기(406)와 AIS 제너레이터(410)에 전송될 수 있다. 대안의 실시예에서, 다른 형태의 ILD 또는 제1 및 제2 마이크로폰(106, 108) 사이의 에너지차가 사용될 수 있다. 예를 들어, 제1 및 제2 마이크로폰(106, 108)의 에너지의 비가 사용될 수 있다. 또한, 대안의 실시예가 적응성 분류 및 노이즈 억제를 위해 ILD 이외의 큐를 사용할 수 있다는 것에 주목해야 한다(즉, 이득 마스크 계산). 예를 들어, 노이즈 플로어 임계값이 사용될 수 있다. ILD의 사용에 대한 레퍼런스는 다른 큐에 적용가능한 것으로 생각될 수 있다.
적응성 분류기(406) 및 노이즈 추정 모듈(408)의 예는 도 4에 따라 설명된 것과 동일한 기능을 수행한다. 즉, 적응성 분류기는 음성으로부터 노이즈 및 디스트랙터를 구별하고 그 결과를, 노이즈 추정값을 유도하는 노이즈 추정 모듈(408)에 제공한다.
AIS 제너레이터(410)는 에너지 모듈(402)로부터 제1 스펙트럼의 음성 에너지를 수신한다. AIS 제너레이터(410)는 또한 노이즈 추정 모듈(408)로부터 노이즈 스펙트럼을 수신할 수 있다. 이러한 입력 및 ILD 모듈(404)로부터의 선택적 ILD에 기초하여, 음성 스펙트럼이 추정될 수 있다. 하나의 실시예에서, 음성 스펙트럼은 제1 스펙트럼의 파워 추정값으로부터 노이즈 스펙트럼의 노이즈 추정값을 감산함으로써 추정된다. 또한, AIS 제너레이터(410)는 제1 음향 신호에 적용하는 이득 마스크를 결정하기 위해 신호가 노이즈 억제 엔진(306b)에 도달하는 시각까지 얼마나 많은 노이즈가 이미 상쇄되었는지를 나타내는 NP 이득(즉, 승산 마스크)을 사용한다. 하나의 예에서, NP 이득이 증가함에 따라, 입력에 대한 추정된 SNR이 감소된다. 실시예에서, 시간 및 주파수 종속된, AIS 제너레이터(410)로부터 출력된 이득 마스크는 음성 손실 왜곡을 억제하면서 노이즈 억제를 최대화할 수 있다.
노이즈 억제 엔진(306b)의 시스템 구조는 예시된 것임에 주목해야 한다. 대안의 실시예는 보다 많은 컴포넌트, 보다 적은 컴포넌트 또는 등가의 컴포넌트를 포함할 수 있고, 여전히 본 발명의 실시예의 범위내에 있을 수 있다.
도 7a는 노이즈 감산 엔진(304)의 예의 블록도이다. 이러한 노이즈 감산 엔진(304)의 예는 감산 프로세스를 사용하여 노이즈를 억제하도록 구성되어 있다. 노이즈 감산 엔진(304)은 노이즈 성분을 얻도록 제1 브런치내의 제1 신호로부터 원하는 성분(예를 들어, 원하는 음성 성분)을 처음에 감산함으로써 노이즈 감산된 신호를 결정할 수 있다. 그다음, 제1 신호로부터 노이즈 성분을 상쇄시키기 위해 제2 브런치에서 적응이 실행될 수 있다. 실시예에서, 노이즈 감산 엔진(304)은 신호 감산을 실행하도록 구성된 이득 모듈(702), 분석 모듈(704), 적응 모듈(706), 및 적어도 하나의 합산 모듈(708)을 포함한다. 다양한 모듈(702-708)의 기능은 도 7a과 함께 설명될 것이고 도 7b에 함께 더 설명될 것이다.
도 7a에서, 이득 모듈(702)의 예가 노이즈 감산 엔진(304)에 의해 사용된 다양한 이득을 결정하도록 구성되어 있다. 본 발명의 목적을 위해, 이러한 이득은 에너지 비를 나타낸다. 제1 브런치에서, 얼마나 많은 원하는 성분이 제1 신호로부터 제거되는지의 레퍼런스 에너지 비(g1)가 결정될 수 있다. 이러한 제2 브런치에서, 얼마나 많은 에너지가 제1 브런치의 결과로부터 노이즈 감산 엔진(304)의 출력에서 감소되었는지의 예측 에너지 비(g2)가 결정될 수 있다. 또한, 노이즈 감산 엔진(304)에 의해 제1 신호로부터 얼마나 많은 노이즈가 상쇄되었는지를 나타내는 에너지 비를 나타내는 에너지 비(즉, NP 이득)가 결정될 수 있다. 이전에 설명된 바와 같이, NP 이득은 이득 마스크를 조정하기 위해 클로즈 마이크로폰 실시예에서 AIS 제너레이터(410)에 의해 사용될 수 있다.
분석 모듈(704)의 예는 노이즈 감산 엔진(304)의 제1 브런치내의 분석을 실행하도록 구성되어 있고, 적응 모듈(306)의 예가 노이즈 감산 엔진(304)의 제2 브런치에서의 적응을 실행하기 위해 구성되어 있다.
도 7b에서, 노이즈 감산 엔진(304)의 동작을 설명하는 개략도가 도시되어 있다. 제1 마이크로폰 신호 c(k) 및 제2 마이크로폰 신호 f(k)의 서브밴드 신호가 노이즈 감산 엔진(304)에 의해 수신되고, 여기에서 k는 이산 시간 또는 샘플 인덴스를 나티낸다. c(k)는 음성 신호 s(k) 및 노이즈 신호 n(k)의 수퍼포지션을 나타낸다. f(k)는 복소값 계수 σ에 의해 스케일링된 음성 신호 s(k) 및 복소값 계수 ν에 의해 스케일링된 노이즈 신호 n(k)의 수퍼포지션으로서 모델링된다. ν는 제1 신호내의 얼마나 많은 노이즈가 제2 신호에 있는 지를 나타낸다. 실시예에서, ν는 노이즈의 소스가 다이내믹할 수 있기 때문에 알려져 있지 않다.
실시예에서, σ는 음성의 로케이션(예를 들어, 오디오 소스 로케이션)을 나타내는 고정 계수이다. 실시예에 따라, σ는 보정을 통해 결정될 수 있다. 톨러런스가 하나 보다 많은 위치에 기초한 보정함으로써 보정에 포함될 수 있다. 클로즈 마이크로폰에 대해, σ의 크기는 1에 근접할 수 있다. 스프레드 마이크로폰에 대해, σ의 크기는 오디오 디바이스(102)가 화자의 입에 대해 어디에 위치하는지에 종속될 수 있다. σ의 크기 및 위상은 각각의 서브밴드에 의해 나타난 주파수에서 화자의 입 위치에 대한 인터-채널 크로스-스펙트럼을 나타낼 수 있다(예를 들어, 와우 탭). 노이즈 감산 엔진(304)가 σ가 무엇인지를 알 수 있기 때문에, 분석 모듈(704)은 σ를 제1 신호에 적용할 수 있고(즉, σ(s(k)+n(k))) 이러한 결과를 제2 신호로 감산하여(즉, σs(k)+ν(k)), 합산 모듈(708)로부터 노이즈 성분을 얻는 제2 신호로부터 음성 성분 σ s(k)(원하는 성분)을 상쇄시킨다. 음성이 없는 실시예에서, α는 대략 1/(ν-σ)이고, 적응 모듈(706)은 자유롭게 적응할 수 있다.
화자의 입 위치를 σ에 의해 충분히 표현하면, f(k) - σc(k) = (ν-σ)n(k)이다. 이러한 등식은 (적응 계수 α(k)를 적용하는) 적응 모듈(706)로 공급되는 합산 모듈(708)의 출력에서의 신호에 σ에 의해 표현되는 위치로부터 나오는 신호(예를 들어, 원하는 음성 신호)가 전혀 없음을 가리킨다. 실시예에서, 분석 모듈(704)은 σ를 신호 f(k)에 적용하고 이러한 결과를 c(k)로부터 감산한다. (여기에서 "노이즈 성분 신호"로 불리는) 합산 모듈(708)로부터 남아 있는 신호는 제2 브런치에서 상쇄될 수 있다.
적응 모듈(706)은 제1 신호가 (σ로 표현된) 음성 위치에서 아닌 오디오 소스(102)에 의해 지배될 때 적응할 수 있다. 제1 신호가 σ에 의해 표현된 바와 같이 음성 위치로부터 나오는 신호에 지배된다면, 적응은 동결될 수 있다. 실시예에서, 적응 모듈(706)은 신호 c(k)로부터 노이즈 성부 n(k)을 상쇄하기 위해 공통 최소자승법중 하나를 사용하여 적응할 수 있다. 이러한 계수는 하나의 실시예에 따른 프레인 레이트에서 갱신될 수 있다.
n(k)가 화이트이고 s(k)와 n(k) 사이의 상관이 프레임내에서 제로인 실시예에서, 노이즈 n(k)가 완전하게 상쇄되고 음성 s(k)가 완전하게 영향받지 않은 모든 프레임에서 적응이 발생할 수 있다. 그러나, 이러한 조건은, 특히 프레임 사이즈가 짧다면, 실제 충족될 수 있는 가능성은 낮다. 따라서, 제약을 적응에 적용하는 것이 바람직하다. 실시예에서, 적응 계수 α(k)는 레퍼런스 에너지 비 g1 및 예측 에너지 비 g2가 다음의 조건을 만족시킬 때 탭/프레임 마다 갱신될 수 있다.
g2ㆍγ>g1
여기에서, γ>0이다. 예를 들어,
Figure pct00003
이고 s(k) 및 n(k)는 상관되지 않는다고 가정할 때, 다음이 얻어질 수 있다.
Figure pct00004
그리고,
Figure pct00005
여기에서, E{...}는 예측된 값이고, S는 신호 에너지이고, N은 노이즈 에너지이다. 이전의 3개의 등식으로부터 다음을 얻을 수 있다.
Figure pct00006
여기에서, SNR =S/N이다. 노이즈가 타겟 음성과 동일한 위치에 있다면(즉, σ=ν), 이러한 조건은 만족될 수 없고, 그래서, SNR에 관계없이 적응은 절대 일어날 수 없다. 소스가 타겟 로케이션으로부터 멀수록, 여전히 노이즈를 상쇄하려는 시도하려는 적응이 있는 동안 보다 큰 |γ-σ|4 및 보다 큰 SNR이 허용된다.
실시예에서, 적응은 보다 많은 신호가 제1 브런치와 반대로 제2 브런치에서 상쇄되는 프레임에서 발생할 수 있다. 따라서, 에너지는 제1 브런치가 이득 모듈(702) 및 g1에 의해 결정된 후에 계산될 수 있다. 에너지 계산은 또한 α가 적응 허용되는지를 가리킬 수 있는 g2를 결정하기 위해 실행될 수 있다. γ2|γ-σ|4 > SNR2 + SNR4가 사실이라면, α의 적응이 실행될 수 있다. 그러나, 이러한 등식이 사실이 아니라면, α는 적응되지 않는다.
계수 γ는 α의 적응 및 비적응 사이의 바운더리를 정의하도록 선택될 수 있다. 파필드 소스가 마이크로폰(106, 108) 사이의 직선에 대하여 90도의 각도를 갖는 실시예에서, 이러한 실시예에서, 신호는 양 마이크로폰(106, 108) 사이의 동일한 파워 및 제로 위상을 가질 수 있다(예를 들어, ν=1). SNR=1이라면, γ2|γ-σ|4=2이고, 이것은 γ=√(2/|γ-σ|4)이다.
이러한 값에 대한 γ를 낮춤으로써 노이즈 누설값이 증가하는 댓가로 니어엔드 소스가 상쇄되지 않도록 보호하는 것을 향상시킬 수 있고, γ를 올림으로써 그 역효과를 얻을 수 있다. 마이크로폰(106, 108)에서, γ=1는 파필드/90 도 상황의 충분히 양호한 근사값일 아닐 수 있고 교정 측정값으로부터 얻어진 값으로 대체될 수 있다는 것에 주목해야 한다.
도 8은 오디오 디바이스내의 노이즈를 억제하기 위한 방법예의 순서도(800)이다. 단계(802)에서, 오디오 신호는 오디오 디바이스(102)에 의해 수신된다. 실시예에서, 복수의 마이크로폰(예를 들어, 제1 및 제2 마이크로폰(106, 108))이 오디오 신호를 수신한다. 복수의 마이크로폰은 클로즈 마이크로폰 어레이 또는 스프레드 마이크로폰 어레이를 포함할 수 있다.
단계(804)에서, 제1 및 제2 음향신호에 대한 주파수 분석이 실행될 수 있다. 하나의 실시예에서, 주파수 분석 모듈(302)은 제1 및 제2 음향 신호에 대한 주파수 서브밴드를 결정하기 위해 필터 뱅크를 사용한다.
노이즈 감산 처리는 단계(806)에서 실행된다. 단계(806)는 아래의 도 9와 함께 보다 상세하게 설명될 것이다.
그다음, 노이즈 억제 처리는 단계(808)에서 실행될 수 있다. 하나의 실시예에서, 노이즈 억제 처리는 먼저 제1 또는 노이즈 감산된 신호 및 제2 신호에 대한 에너지 스펙트럼을 계산할 수 있다. 그다음, 2개의 신호사이의 에너지차가 결정될 수 있다. 이어서, 음성 및 노이즈 성분이 하나의 실시예에 따라 적응식 분류될 수 있다. 노이즈 스펙트림이 그다음 결정될 수 있다. 하나의 실시예에서, 노이즈 추정값은 노이즈 성분에 기초할 수 있다. 노이즈 추정값에 기초하여 이득 마스크가 적응식으로 결정될 수 있다.
그다음, 이득 마스크가 단계(810)에서 적용될 수 있다. 하나의 실시예에서, 이득 마스크가 서브밴드 신호마다 마스킹 모듈(308)에 의해 적용될 수 있다. 일부 실시예에서, 이득 마스크는 노이즈 감산된 신호에 적용될 수 있다. 그다음, 서브 밴드는 출력을 생성하기위해 단계(812)에서 합상될 수 있다. 하나의 실시예에서, 서브 밴드 신호는 주파수 도메인으로부터 시간 도메인으로 다시 전환될 수 있다. 일단 전환되면, 오디오 신호는 단계(814)에서 사용자에게 출력될 수 있다. 이러한 출력은 스피커, 이어피스 또는 다른 유사한 디바이스를 통할 수 있다.
도 9에, 노이즈 감산 처리(단계(806))를 행하기 위한 방법예의 순서도가 도시되어 있다. 단계(902)에서, 주파수 분석된 신호(예를 들어, 주파수 서브밴드 신호 또는 제1 신호)가 노이즈 감산 엔진(304)에 의해 수신된다. 제1 음향 신호는 c(k)=s(k)+n(k)로서 표현될 수 있고, s(k)는 요구되는 신호(예를 들어, 음성 신호)를 나타내고, n(k)는 노이즈 신호를 나타낸다. 제2 주파수 분석된 신호(예를 들어, 제2 신호)는 f(k)=σs(k)+νn(k)로서 표현될 수 있다.
단계(904)에서, σ는 분석 모듈(704)에 의해 제1 신호에 적용될 수 있다. 그다음, 제1 신호에 σ를 적용한 결과는 합산 모듈(708)에 의해 단계(906)에서 제2 신호로부터 감산될 수 있다. 이러한 결과를 노이즈 성분 신호를 포함한다.
단계(908)에서, 이득은 이득 모듈(702)에 의해 계산될 수 있다. 이러한 이득은 다양한 신호의 에너지 비를 나타낸다. 제1 브런치에서, 얼마나 많은 요구되는 성분이 제1 신호로부터 제거되는지의 레퍼런스 에너지 비(g1)이 결정될 수 있다. 제2 브런치에서, 얼마나 많은 에너지가 제1 브런치의 결과로부터 노이즈 감산 엔진(304)의 출력에서 감소될 수 있는지의 예측 에너지 비(g2)가 결정될 수 있다.
단계(910)에서, α가 적응되어야 하는지가 결정된다. 하나의 실시예에 따라, SNR2 + SNR < γ2|γ-σ|4가 사실이라면, α의 적응은 단계(912)에서 실행될 수 있다. 그러나, 이러한 등식이 사실이 아니라면, α는 단계(914)에서 적응되지 않고 동결된다.
노이즈 성분 신호는 적응되건 말건 합산 모듈(708)에 의해 단계(916)에서 제1 신호로부터 감산된다. 이러한 결과는 노이즈 감산된 신호이다. 일부 실시예에서, 노이즈 감산된 신호는 승산 노이즈 억제 프로세스를 통한 추가 노이즈 억제 처리를 위해 노이즈 억제 엔진(306)에 제공될 수 있다. 다른 실시예에서, 노이즈 감산된 신호는 추가 노이즈 억제 처리 없이 사용자에게 출력될 수 있다. 하나 보다 많은 합산 모듈(708)이 (예를 들어, 노이즈 감산 엔진(304)의 각 브런치에 대해 하나씩) 제공될 수 있다는 것에 주목해야 한다. 단계(918)에서, NP 이득이 계산될 수 있다. 이러한 NP 이득은 얼마나 많은 제1 신호가 노이즈 감산된 신호로부터 상쇄되었는지를 나타내는 에너지 비를 포함한다. 단계(918)가 (예를 들어, 클로즈 마이크로폰 시스템에서) 선택사항일 수 있다는 것에 주목해야 한다.
상술된 모듈은 머신 판독가능 매체(예를 들어, 컴퓨터 판독가능 매체)와 같은 저장 매체에 저장되는 명령어로 구성될 수 있다. 이러한 명령어는 프로세서(202)에 의해 검색되고 실행될 수 있다. 일부 명령어의 예는 소프트웨어, 프로그램 코드 및 펌웨어를 포함한다. 일부 저장 매체의 예는 메모리 디바이스 및 집적 회로를 포함한다. 이러한 명령어는 프로세서(202)가 본 발명의 실시예에 따라 동작하도록 지시하기 위해 프로세서(202)에 의해 실행될 때 동작한다. 당업자에게 명령어, 프로세서 및 저장 매체는 공지된 사항이다.
본 발명이 실시예를 참고하여 위에 설명되었다. 다양한 수정이 만들어질 수 있고 다른 실시예가 본 발명의 보다 넓은 범위로부터 벗어남 없이 사용될 수 있다는 것은 당업자에게 명백할 것이다. 예를 들어, 여기에 설명된 마이크로폰 어레이는 제1 및 제2 마이크로폰(106, 108)을 포함한다. 그러나, 대안의 실시예는 마이크로폰 어레이에 보다 마이크로폰을 사용하는 것을 생각할 수 있다. 따라서, 이러한 실시예에 대한 여러 변형은 본 발명에 의해 포함되어 있다.

Claims (21)

  1. 적어도 제1 및 제2 음향 신호를 수신하는 단계;
    노이즈 성분 신호를 얻기 위해 상기 제2 음향 신호로부터, 요구되는 신호 성분을 감산하는 단계;
    상기 요구되는 신호 성분 및 노이즈 성분 신호에 대한 적어도 하나의 에너지 비의 제1 결정을 실행하는 단계;
    상기 적어도 하나의 에너지 비에 기초하여 상기 노이즈 성분 신호를 조정할 지 여부에 대한 제2 결정을 실행하는 단계;
    상기 제2 결정에 기초하여 상기 노이즈 성분 신호를 조정하는 단계;
    노이즈 감산된 신호를 생성하기 위해 상기 제1 음향 신호로부터 상기 노이즈 성분 신호를 감산하는 단계; 및
    상기 노이즈 감산된 신호를 출력하는 단계;를 포함하는 것을 특징으로 하는 노이즈 억제 방법.
  2. 제1항에 있어서, 상기 요구되는 신호 성분을 감산하는 단계는 상기 요구되는 신호 성분을 생성하기 위해 상기 제1 음향 신호에 소스 로케이션을 나타내는 계수를 적용하는 단계를 포함하는 것을 특징으로 하는 노이즈 억제 방법.
  3. 제1항에 있어서, 상기 적어도 하나의 에너지 비는 레퍼런스 에너지 비 및 예측 에너지 비를 포함하는 것을 특징으로 하는 노이즈 억제 방법.
  4. 제3항에 있어서, 상기 예측 에너지 비가 상기 레퍼런스 에너지 비 보다 클 때 상기 노이즈 성분 신호에 적용된 적응 계수를 적응시키는 단계를 더 포함하는 것을 특징으로 하는 노이즈 억제 방법.
  5. 제3항에 있어서, 상기 예측 에너지 비가 상기 레퍼런스 에너지 비보다 작을 때 상기 노이즈 성분 신호에 적용된 적응 계수를 동결시키는 단계를 더 포함하는 것을 특징으로 하는 노이즈 억제 방법.
  6. 제1항에 있어서, 상기 노이즈 감산된 신호로부터 얼마나 많은 상기 제1 음향 신호가 상쇄되었는지를 나타내는 적어도 하나의 에너지 비에 기초하여 NP 이득을 결정하는 단계를 더 포함하는 것을 특징으로 하는 노이즈 억제 방법.
  7. 제6항에 있어서, 상기 NP 이득을 승산 노이즈 억제 시스템에 제공하는 단계를 더 포함하는 것을 특징으로 하는 노이즈 억제 방법.
  8. 제1항에 있어서, 상기 제1 및 제2 음향 신호는 서브밴드 신호로 분리되는 것을 특징으로 하는 노이즈 억제 방법.
  9. 제1항에 있어서, 상기 노이즈 감산된 신호를 출력하는 단계는 상기 노이즈 감산된 신호를 승산 노이즈 억제 시스템에 출력하는 단계를 포함하는 것을 특징으로 하는 노이즈 억제 방법.
  10. 제9항에 있어서, 상기 승산 노이즈 억제 시스템은 적어도 상기 노이즈 감산된 신호에 기초하여 이득 마스크를 생성하는 단계를 포함하는 것을 특징으로 하는 노이즈 억제 방법.
  11. 제10항에 있어서, 상기 이득 마스크를 상기 노이즈 감산된 신호에 적용하여 오디오 출력 신호를 생성하는 단계를 더 포함하는 것을 특징으로 하는 노이즈 억제 방법.
  12. 적어도 제1 및 제2 음향 신호를 수신하도록 구성된 마이크로폰 어레이;
    노이즈 성분 신호를 얻기 위해 상기 제2 음향 신호로부터 감산될 수 있는 요구되는 신호 성분을 생성하도록 구성된 분석 모듈;
    상기 요구되는 신호 성분 및 상기 노이즈 성분 신호에 관련된 적어도 하나의 에너지 비의 제1 결정을 실행하도록 구성된 이득 모듈;
    상기 적어도 하나의 에너지 비에 기초하여 상기 노이즈 성분 신호를 조정할 지 여부에 대한 제2 결정을 실행하도록 구성되고, 상기 제2 결정에 기초하여 상기 노이즈 성분 신호를 조정하도록 구성된 적응 모듈; 및
    상기 제2 음향 신호로부터 상기 요구되는 신호 성분을 감산하고 상기 제1 음향 신호로부터 상기 노이즈 성분 신호를 감산하여 노이즈 감산된 신호를 생성하도록 구성된 적어도 하나의 합산 모듈;을 포함하는 것을 특징으로 하는 노이즈 억제 시스템.
  13. 제12항에 있어서, 상기 분석 모듈은 상기 요구되는 신호 성분을 생성하기 위해 상기 제1 음향 신호에 소스 로케이션을 나타내는 계수를 적용하도록 구성된 것을 특징으로 하는 노이즈 억제 시스템.
  14. 제12항에 있어서, 상기 적어도 하나의 에너지 비는 레퍼런스 에너지 비 및 예측 에너지 비를 포함하는 것을 특징으로 하는 노이즈 억제 시스템.
  15. 제14항에 있어서, 상기 적응 모듈은 상기 예측 에너지 비가 상기 레퍼런스 에너지 비 보다 클 때 상기 노이즈 성분 신호에 적용되는 적응 계수를 적응시키도록 구성된 것을 특징으로 하는 노이즈 억제 시스템.
  16. 제14항에 있어서, 상기 적응 모듈은 상기 예측 에너지 비가 상기 레퍼런스 에너지 비 보다 작을 때 상기 노이즈 성분 신호에 적용된 적응 계수를 동결시키도록 구성된 것을 특징으로 하는 노이즈 억제 시스템.
  17. 제12항에 있어서, 얼마나 많은 상기 제1 음향 신호가 상기 노이즈 감산된 신호로부터 상쇄되었는지를 나타내는 적어도 하나의 에너지 비에 기초하여 NP 이득을 결정하도록 구성된 이득 모듈을 더 포함하는 것을 특징으로 하는 노이즈 억제 시스템.
  18. 프로그램이 내장된 기계 판독가능 매체로서, 상기 프로그램은 노이즈 감산 프로세싱을 사용하여 노이즈를 억제하기 위한 방법에 대한 명령어를 제공하고, 상기 상기 노이즈를 억제하기 위한 방법은,
    적어도 제1 및 제2 음향 신호를 수신하는 단계;
    노이즈 성분 신호를 얻기 위해 상기 제2 음향 신호로부터, 요구되는 신호 성분을 감산하는 단계;
    상기 요구되는 신호 성분 및 노이즈 성분 신호에 대한 적어도 하나의 에너지 비의 제1 결정을 실행하는 단계;
    상기 적어도 하나의 에너지 비에 기초하여 상기 노이즈 성분 신호를 조정할 지 여부에 대한 제2 결정을 실행하는 단계;
    상기 제2 결정에 기초하여 상기 노이즈 성분 신호를 조정하는 단계;
    노이즈 감산된 신호를 생성하기 위해 상기 제1 음향 신호로부터 상기 노이즈 성분 신호를 감산하는 단계; 및
    상기 노이즈 감산된 신호를 출력하는 단계;를 포함하는 것을 특징으로 하는 기계 판독가능 매체.
  19. 제18항에 있어서, 상기 적어도 하나의 에너지 비는 레퍼런스 에너지 비 및 예측 에너지 비를 포함하는 것을 특징으로 하는 기계 판독가능 매체.
  20. 제19항에 있어서, 상기 예측 에너지 비가 상기 레퍼런스 에너지 비 보다 클 때 상기 노이즈 성분 신호에 적용된 적응 계수를 적응시키는 단계를 더 포함하는 것을 특징으로 하는 기계 판독가능 매체.
  21. 제19항에 있어서, 상기 예측 에너지 비가 상기 레퍼런스 에너지 비보다 작을 때 상기 노이즈 성분 신호에 적용된 적응 계수를 동결시키는 단계를 더 포함하는 것을 특징으로 하는 기계 판독가능 매체.
KR1020117000440A 2008-06-30 2009-06-26 널 프로세싱 노이즈 감산을 이용한 노이즈 억제 시스템 및 방법 KR101610656B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/215,980 US9185487B2 (en) 2006-01-30 2008-06-30 System and method for providing noise suppression utilizing null processing noise subtraction
US12/215,980 2008-06-30

Publications (2)

Publication Number Publication Date
KR20110038024A true KR20110038024A (ko) 2011-04-13
KR101610656B1 KR101610656B1 (ko) 2016-04-08

Family

ID=41447473

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117000440A KR101610656B1 (ko) 2008-06-30 2009-06-26 널 프로세싱 노이즈 감산을 이용한 노이즈 억제 시스템 및 방법

Country Status (6)

Country Link
US (2) US9185487B2 (ko)
JP (1) JP5762956B2 (ko)
KR (1) KR101610656B1 (ko)
FI (1) FI20100431A (ko)
TW (1) TWI488179B (ko)
WO (1) WO2010005493A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9536540B2 (en) 2013-07-19 2017-01-03 Knowles Electronics, Llc Speech signal separation and synthesis based on auditory scene analysis and speech modeling
US9558755B1 (en) 2010-05-20 2017-01-31 Knowles Electronics, Llc Noise suppression assisted automatic speech recognition
US9640194B1 (en) 2012-10-04 2017-05-02 Knowles Electronics, Llc Noise suppression for speech processing based on machine-learning mask estimation
US9799330B2 (en) 2014-08-28 2017-10-24 Knowles Electronics, Llc Multi-sourced noise suppression
US9830899B1 (en) 2006-05-25 2017-11-28 Knowles Electronics, Llc Adaptive noise cancellation
US10257611B2 (en) 2016-05-02 2019-04-09 Knowles Electronics, Llc Stereo separation and directional suppression with omni-directional microphones

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8098844B2 (en) * 2002-02-05 2012-01-17 Mh Acoustics, Llc Dual-microphone spatial noise suppression
US8345890B2 (en) 2006-01-05 2013-01-01 Audience, Inc. System and method for utilizing inter-microphone level differences for speech enhancement
US8204252B1 (en) 2006-10-10 2012-06-19 Audience, Inc. System and method for providing close microphone adaptive array processing
US8744844B2 (en) 2007-07-06 2014-06-03 Audience, Inc. System and method for adaptive intelligent noise suppression
US8194880B2 (en) 2006-01-30 2012-06-05 Audience, Inc. System and method for utilizing omni-directional microphones for speech enhancement
US9185487B2 (en) 2006-01-30 2015-11-10 Audience, Inc. System and method for providing noise suppression utilizing null processing noise subtraction
EP1994788B1 (en) 2006-03-10 2014-05-07 MH Acoustics, LLC Noise-reducing directional microphone array
US8150065B2 (en) 2006-05-25 2012-04-03 Audience, Inc. System and method for processing an audio signal
US8849231B1 (en) 2007-08-08 2014-09-30 Audience, Inc. System and method for adaptive power control
US8204253B1 (en) 2008-06-30 2012-06-19 Audience, Inc. Self calibration of audio device
US8934641B2 (en) 2006-05-25 2015-01-13 Audience, Inc. Systems and methods for reconstructing decomposed audio signals
US8259926B1 (en) 2007-02-23 2012-09-04 Audience, Inc. System and method for 2-channel and 3-channel acoustic echo cancellation
US8189766B1 (en) 2007-07-26 2012-05-29 Audience, Inc. System and method for blind subband acoustic echo cancellation postfiltering
US8180064B1 (en) 2007-12-21 2012-05-15 Audience, Inc. System and method for providing voice equalization
US8143620B1 (en) 2007-12-21 2012-03-27 Audience, Inc. System and method for adaptive classification of audio sources
US8194882B2 (en) 2008-02-29 2012-06-05 Audience, Inc. System and method for providing single microphone noise suppression fallback
US8355511B2 (en) 2008-03-18 2013-01-15 Audience, Inc. System and method for envelope-based acoustic echo cancellation
US8774423B1 (en) 2008-06-30 2014-07-08 Audience, Inc. System and method for controlling adaptivity of signal modification using a phantom coefficient
US8521530B1 (en) 2008-06-30 2013-08-27 Audience, Inc. System and method for enhancing a monaural audio signal
US8756055B2 (en) * 2008-12-19 2014-06-17 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for improving the intelligibility of speech in a noisy environment
US9202456B2 (en) * 2009-04-23 2015-12-01 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for automatic control of active noise cancellation
US20100278354A1 (en) * 2009-05-01 2010-11-04 Fortemedia, Inc. Voice recording method, digital processor and microphone array system
US20110096942A1 (en) * 2009-10-23 2011-04-28 Broadcom Corporation Noise suppression system and method
US9210503B2 (en) * 2009-12-02 2015-12-08 Audience, Inc. Audio zoom
US9838784B2 (en) 2009-12-02 2017-12-05 Knowles Electronics, Llc Directional audio capture
US20110178800A1 (en) * 2010-01-19 2011-07-21 Lloyd Watts Distortion Measurement for Noise Suppression System
US8718290B2 (en) * 2010-01-26 2014-05-06 Audience, Inc. Adaptive noise reduction using level cues
US9008329B1 (en) * 2010-01-26 2015-04-14 Audience, Inc. Noise reduction using multi-feature cluster tracker
US8538035B2 (en) 2010-04-29 2013-09-17 Audience, Inc. Multi-microphone robust noise suppression
US8473287B2 (en) 2010-04-19 2013-06-25 Audience, Inc. Method for jointly optimizing noise reduction and voice quality in a mono or multi-microphone system
US8798290B1 (en) * 2010-04-21 2014-08-05 Audience, Inc. Systems and methods for adaptive signal equalization
US8781137B1 (en) 2010-04-27 2014-07-15 Audience, Inc. Wind noise detection and suppression
US9378754B1 (en) * 2010-04-28 2016-06-28 Knowles Electronics, Llc Adaptive spatial classifier for multi-microphone systems
US9245538B1 (en) * 2010-05-20 2016-01-26 Audience, Inc. Bandwidth enhancement of speech signals assisted by noise reduction
US9053697B2 (en) 2010-06-01 2015-06-09 Qualcomm Incorporated Systems, methods, devices, apparatus, and computer program products for audio equalization
US8447596B2 (en) 2010-07-12 2013-05-21 Audience, Inc. Monaural noise suppression based on computational auditory scene analysis
US10353495B2 (en) 2010-08-20 2019-07-16 Knowles Electronics, Llc Personalized operation of a mobile device using sensor signatures
US9772815B1 (en) 2013-11-14 2017-09-26 Knowles Electronics, Llc Personalized operation of a mobile device using acoustic and non-acoustic information
US8682006B1 (en) 2010-10-20 2014-03-25 Audience, Inc. Noise suppression based on null coherence
US8831937B2 (en) * 2010-11-12 2014-09-09 Audience, Inc. Post-noise suppression processing to improve voice quality
EP2652737B1 (en) 2010-12-15 2014-06-04 Koninklijke Philips N.V. Noise reduction system with remote noise detector
MY178710A (en) 2012-12-21 2020-10-20 Fraunhofer Ges Forschung Comfort noise addition for modeling background noise at low bit-rates
US9117457B2 (en) * 2013-02-28 2015-08-25 Signal Processing, Inc. Compact plug-in noise cancellation device
US10204638B2 (en) 2013-03-12 2019-02-12 Aaware, Inc. Integrated sensor-array processor
US20140278393A1 (en) 2013-03-12 2014-09-18 Motorola Mobility Llc Apparatus and Method for Power Efficient Signal Conditioning for a Voice Recognition System
US20140270249A1 (en) * 2013-03-12 2014-09-18 Motorola Mobility Llc Method and Apparatus for Estimating Variability of Background Noise for Noise Suppression
US10049685B2 (en) 2013-03-12 2018-08-14 Aaware, Inc. Integrated sensor-array processor
WO2014165032A1 (en) * 2013-03-12 2014-10-09 Aawtend, Inc. Integrated sensor-array processor
US9570087B2 (en) 2013-03-15 2017-02-14 Broadcom Corporation Single channel suppression of interfering sources
US20180317019A1 (en) 2013-05-23 2018-11-01 Knowles Electronics, Llc Acoustic activity detecting microphone
US9508345B1 (en) 2013-09-24 2016-11-29 Knowles Electronics, Llc Continuous voice sensing
WO2015065362A1 (en) * 2013-10-30 2015-05-07 Nuance Communications, Inc Methods and apparatus for selective microphone signal combining
US9781106B1 (en) 2013-11-20 2017-10-03 Knowles Electronics, Llc Method for modeling user possession of mobile device for user authentication framework
US9953634B1 (en) 2013-12-17 2018-04-24 Knowles Electronics, Llc Passive training for automatic speech recognition
US9500739B2 (en) 2014-03-28 2016-11-22 Knowles Electronics, Llc Estimating and tracking multiple attributes of multiple objects from multi-sensor data
US9437188B1 (en) 2014-03-28 2016-09-06 Knowles Electronics, Llc Buffered reprocessing for multi-microphone automatic speech recognition assist
US9807725B1 (en) 2014-04-10 2017-10-31 Knowles Electronics, Llc Determining a spatial relationship between different user contexts
US10149047B2 (en) * 2014-06-18 2018-12-04 Cirrus Logic Inc. Multi-aural MMSE analysis techniques for clarifying audio signals
CN107112025A (zh) * 2014-09-12 2017-08-29 美商楼氏电子有限公司 用于恢复语音分量的系统和方法
US9712915B2 (en) 2014-11-25 2017-07-18 Knowles Electronics, Llc Reference microphone for non-linear and time variant echo cancellation
WO2016112113A1 (en) 2015-01-07 2016-07-14 Knowles Electronics, Llc Utilizing digital microphones for low power keyword detection and noise suppression
DE112016000545B4 (de) 2015-01-30 2019-08-22 Knowles Electronics, Llc Kontextabhängiges schalten von mikrofonen
US10032462B2 (en) * 2015-02-26 2018-07-24 Indian Institute Of Technology Bombay Method and system for suppressing noise in speech signals in hearing aids and speech communication devices
US9401158B1 (en) 2015-09-14 2016-07-26 Knowles Electronics, Llc Microphone signal fusion
WO2017096174A1 (en) 2015-12-04 2017-06-08 Knowles Electronics, Llc Multi-microphone feedforward active noise cancellation
US9779716B2 (en) 2015-12-30 2017-10-03 Knowles Electronics, Llc Occlusion reduction and active noise reduction based on seal quality
US9830930B2 (en) 2015-12-30 2017-11-28 Knowles Electronics, Llc Voice-enhanced awareness mode
US20170206898A1 (en) 2016-01-14 2017-07-20 Knowles Electronics, Llc Systems and methods for assisting automatic speech recognition
WO2017127646A1 (en) 2016-01-22 2017-07-27 Knowles Electronics, Llc Shared secret voice authentication
US9812149B2 (en) 2016-01-28 2017-11-07 Knowles Electronics, Llc Methods and systems for providing consistency in noise reduction during speech and non-speech periods
US10378997B2 (en) 2016-05-06 2019-08-13 International Business Machines Corporation Change detection using directional statistics
WO2018037643A1 (ja) * 2016-08-23 2018-03-01 ソニー株式会社 情報処理装置、情報処理方法及びプログラム
CN107026934B (zh) * 2016-10-27 2019-09-27 华为技术有限公司 一种声源定位方法和装置
US10262673B2 (en) 2017-02-13 2019-04-16 Knowles Electronics, Llc Soft-talk audio capture for mobile devices
US10468020B2 (en) * 2017-06-06 2019-11-05 Cypress Semiconductor Corporation Systems and methods for removing interference for audio pattern recognition
DE102018117558A1 (de) * 2017-07-31 2019-01-31 Harman Becker Automotive Systems Gmbh Adaptives nachfiltern
WO2020044377A1 (en) * 2018-08-31 2020-03-05 Indian Institute Of Technology, Bombay Personal communication device as a hearing aid with real-time interactive user interface
US10839821B1 (en) * 2019-07-23 2020-11-17 Bose Corporation Systems and methods for estimating noise
US11053017B1 (en) * 2020-08-20 2021-07-06 Kitty Hawk Corporation Rotor noise reduction using signal processing
CN112700786B (zh) * 2020-12-29 2024-03-12 西安讯飞超脑信息科技有限公司 语音增强方法、装置、电子设备和存储介质
GB2620965A (en) * 2022-07-28 2024-01-31 Nokia Technologies Oy Estimating noise levels

Family Cites Families (265)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976863A (en) 1974-07-01 1976-08-24 Alfred Engel Optimal decoder for non-stationary signals
US3978287A (en) 1974-12-11 1976-08-31 Nasa Real time analysis of voiced sounds
US4137510A (en) 1976-01-22 1979-01-30 Victor Company Of Japan, Ltd. Frequency band dividing filter
GB2102254B (en) 1981-05-11 1985-08-07 Kokusai Denshin Denwa Co Ltd A speech analysis-synthesis system
US4433604A (en) 1981-09-22 1984-02-28 Texas Instruments Incorporated Frequency domain digital encoding technique for musical signals
JPS5876899A (ja) 1981-10-31 1983-05-10 株式会社東芝 音声区間検出装置
US4536844A (en) 1983-04-26 1985-08-20 Fairchild Camera And Instrument Corporation Method and apparatus for simulating aural response information
US5054085A (en) 1983-05-18 1991-10-01 Speech Systems, Inc. Preprocessing system for speech recognition
US4674125A (en) 1983-06-27 1987-06-16 Rca Corporation Real-time hierarchal pyramid signal processing apparatus
US4581758A (en) 1983-11-04 1986-04-08 At&T Bell Laboratories Acoustic direction identification system
GB2158980B (en) 1984-03-23 1989-01-05 Ricoh Kk Extraction of phonemic information
US4649505A (en) 1984-07-02 1987-03-10 General Electric Company Two-input crosstalk-resistant adaptive noise canceller
GB8429879D0 (en) 1984-11-27 1985-01-03 Rca Corp Signal processing apparatus
US4630304A (en) 1985-07-01 1986-12-16 Motorola, Inc. Automatic background noise estimator for a noise suppression system
US4628529A (en) 1985-07-01 1986-12-09 Motorola, Inc. Noise suppression system
US4658426A (en) 1985-10-10 1987-04-14 Harold Antin Adaptive noise suppressor
JPH0211482Y2 (ko) 1985-12-25 1990-03-23
GB8612453D0 (en) 1986-05-22 1986-07-02 Inmos Ltd Multistage digital signal multiplication & addition
US4812996A (en) 1986-11-26 1989-03-14 Tektronix, Inc. Signal viewing instrumentation control system
US4811404A (en) 1987-10-01 1989-03-07 Motorola, Inc. Noise suppression system
IL84902A (en) 1987-12-21 1991-12-15 D S P Group Israel Ltd Digital autocorrelation system for detecting speech in noisy audio signal
US5027410A (en) 1988-11-10 1991-06-25 Wisconsin Alumni Research Foundation Adaptive, programmable signal processing and filtering for hearing aids
US5099738A (en) 1989-01-03 1992-03-31 Hotz Instruments Technology, Inc. MIDI musical translator
EP0386765B1 (en) 1989-03-10 1994-08-24 Nippon Telegraph And Telephone Corporation Method of detecting acoustic signal
US5187776A (en) 1989-06-16 1993-02-16 International Business Machines Corp. Image editor zoom function
EP0427953B1 (en) 1989-10-06 1996-01-17 Matsushita Electric Industrial Co., Ltd. Apparatus and method for speech rate modification
US5142961A (en) 1989-11-07 1992-09-01 Fred Paroutaud Method and apparatus for stimulation of acoustic musical instruments
GB2239971B (en) 1989-12-06 1993-09-29 Ca Nat Research Council System for separating speech from background noise
US5058419A (en) 1990-04-10 1991-10-22 Earl H. Ruble Method and apparatus for determining the location of a sound source
JPH0454100A (ja) 1990-06-22 1992-02-21 Clarion Co Ltd 音声信号補償回路
JPH04152719A (ja) 1990-10-16 1992-05-26 Fujitsu Ltd 音声検出回路
US5119711A (en) 1990-11-01 1992-06-09 International Business Machines Corporation Midi file translation
JP2962572B2 (ja) 1990-11-19 1999-10-12 日本電信電話株式会社 雑音除去装置
US5224170A (en) 1991-04-15 1993-06-29 Hewlett-Packard Company Time domain compensation for transducer mismatch
US5210366A (en) 1991-06-10 1993-05-11 Sykes Jr Richard O Method and device for detecting and separating voices in a complex musical composition
US5175769A (en) 1991-07-23 1992-12-29 Rolm Systems Method for time-scale modification of signals
DE69228211T2 (de) 1991-08-09 1999-07-08 Koninklijke Philips Electronics N.V., Eindhoven Verfahren und Apparat zur Handhabung von Höhe und Dauer eines physikalischen Audiosignals
EP0559348A3 (en) 1992-03-02 1993-11-03 AT&T Corp. Rate control loop processor for perceptual encoder/decoder
JP3176474B2 (ja) 1992-06-03 2001-06-18 沖電気工業株式会社 適応ノイズキャンセラ装置
US5381512A (en) 1992-06-24 1995-01-10 Moscom Corporation Method and apparatus for speech feature recognition based on models of auditory signal processing
US5402496A (en) 1992-07-13 1995-03-28 Minnesota Mining And Manufacturing Company Auditory prosthesis, noise suppression apparatus and feedback suppression apparatus having focused adaptive filtering
US5381473A (en) 1992-10-29 1995-01-10 Andrea Electronics Corporation Noise cancellation apparatus
US5732143A (en) 1992-10-29 1998-03-24 Andrea Electronics Corp. Noise cancellation apparatus
US5402493A (en) 1992-11-02 1995-03-28 Central Institute For The Deaf Electronic simulator of non-linear and active cochlear spectrum analysis
JP2508574B2 (ja) 1992-11-10 1996-06-19 日本電気株式会社 多チャンネルエコ―除去装置
US5355329A (en) 1992-12-14 1994-10-11 Apple Computer, Inc. Digital filter having independent damping and frequency parameters
US5400409A (en) 1992-12-23 1995-03-21 Daimler-Benz Ag Noise-reduction method for noise-affected voice channels
US5473759A (en) 1993-02-22 1995-12-05 Apple Computer, Inc. Sound analysis and resynthesis using correlograms
JP3154151B2 (ja) 1993-03-10 2001-04-09 ソニー株式会社 マイクロホン装置
US5590241A (en) 1993-04-30 1996-12-31 Motorola Inc. Speech processing system and method for enhancing a speech signal in a noisy environment
DE4316297C1 (de) 1993-05-14 1994-04-07 Fraunhofer Ges Forschung Frequenzanalyseverfahren
DE4330243A1 (de) 1993-09-07 1995-03-09 Philips Patentverwaltung Sprachverarbeitungseinrichtung
US5675778A (en) 1993-10-04 1997-10-07 Fostex Corporation Of America Method and apparatus for audio editing incorporating visual comparison
JP3353994B2 (ja) 1994-03-08 2002-12-09 三菱電機株式会社 雑音抑圧音声分析装置及び雑音抑圧音声合成装置及び音声伝送システム
US5574824A (en) 1994-04-11 1996-11-12 The United States Of America As Represented By The Secretary Of The Air Force Analysis/synthesis-based microphone array speech enhancer with variable signal distortion
US5471195A (en) 1994-05-16 1995-11-28 C & K Systems, Inc. Direction-sensing acoustic glass break detecting system
US5544250A (en) 1994-07-18 1996-08-06 Motorola Noise suppression system and method therefor
JPH0896514A (ja) 1994-07-28 1996-04-12 Sony Corp オーディオ信号処理装置
US5729612A (en) 1994-08-05 1998-03-17 Aureal Semiconductor Inc. Method and apparatus for measuring head-related transfer functions
US5774846A (en) 1994-12-19 1998-06-30 Matsushita Electric Industrial Co., Ltd. Speech coding apparatus, linear prediction coefficient analyzing apparatus and noise reducing apparatus
SE505156C2 (sv) 1995-01-30 1997-07-07 Ericsson Telefon Ab L M Förfarande för bullerundertryckning genom spektral subtraktion
US5682463A (en) 1995-02-06 1997-10-28 Lucent Technologies Inc. Perceptual audio compression based on loudness uncertainty
US5920840A (en) 1995-02-28 1999-07-06 Motorola, Inc. Communication system and method using a speaker dependent time-scaling technique
US5587998A (en) 1995-03-03 1996-12-24 At&T Method and apparatus for reducing residual far-end echo in voice communication networks
US5706395A (en) 1995-04-19 1998-01-06 Texas Instruments Incorporated Adaptive weiner filtering using a dynamic suppression factor
US6263307B1 (en) 1995-04-19 2001-07-17 Texas Instruments Incorporated Adaptive weiner filtering using line spectral frequencies
JP3580917B2 (ja) 1995-08-30 2004-10-27 本田技研工業株式会社 燃料電池
US5774837A (en) 1995-09-13 1998-06-30 Voxware, Inc. Speech coding system and method using voicing probability determination
US5809463A (en) 1995-09-15 1998-09-15 Hughes Electronics Method of detecting double talk in an echo canceller
US5694474A (en) 1995-09-18 1997-12-02 Interval Research Corporation Adaptive filter for signal processing and method therefor
US6002776A (en) 1995-09-18 1999-12-14 Interval Research Corporation Directional acoustic signal processor and method therefor
US5792971A (en) 1995-09-29 1998-08-11 Opcode Systems, Inc. Method and system for editing digital audio information with music-like parameters
US5819215A (en) 1995-10-13 1998-10-06 Dobson; Kurt Method and apparatus for wavelet based data compression having adaptive bit rate control for compression of digital audio or other sensory data
IT1281001B1 (it) 1995-10-27 1998-02-11 Cselt Centro Studi Lab Telecom Procedimento e apparecchiatura per codificare, manipolare e decodificare segnali audio.
US5956674A (en) 1995-12-01 1999-09-21 Digital Theater Systems, Inc. Multi-channel predictive subband audio coder using psychoacoustic adaptive bit allocation in frequency, time and over the multiple channels
FI100840B (fi) 1995-12-12 1998-02-27 Nokia Mobile Phones Ltd Kohinanvaimennin ja menetelmä taustakohinan vaimentamiseksi kohinaises ta puheesta sekä matkaviestin
US5732189A (en) 1995-12-22 1998-03-24 Lucent Technologies Inc. Audio signal coding with a signal adaptive filterbank
JPH09212196A (ja) 1996-01-31 1997-08-15 Nippon Telegr & Teleph Corp <Ntt> 雑音抑圧装置
US5749064A (en) 1996-03-01 1998-05-05 Texas Instruments Incorporated Method and system for time scale modification utilizing feature vectors about zero crossing points
US5825320A (en) 1996-03-19 1998-10-20 Sony Corporation Gain control method for audio encoding device
US6222927B1 (en) 1996-06-19 2001-04-24 The University Of Illinois Binaural signal processing system and method
US6978159B2 (en) 1996-06-19 2005-12-20 Board Of Trustees Of The University Of Illinois Binaural signal processing using multiple acoustic sensors and digital filtering
US6072881A (en) 1996-07-08 2000-06-06 Chiefs Voice Incorporated Microphone noise rejection system
US5796819A (en) 1996-07-24 1998-08-18 Ericsson Inc. Echo canceller for non-linear circuits
US5806025A (en) 1996-08-07 1998-09-08 U S West, Inc. Method and system for adaptive filtering of speech signals using signal-to-noise ratio to choose subband filter bank
JPH1054855A (ja) 1996-08-09 1998-02-24 Advantest Corp スペクトラムアナライザ
AU4238697A (en) 1996-08-29 1998-03-19 Cisco Technology, Inc. Spatio-temporal processing for communication
JP3355598B2 (ja) 1996-09-18 2002-12-09 日本電信電話株式会社 音源分離方法、装置及び記録媒体
US6097820A (en) 1996-12-23 2000-08-01 Lucent Technologies Inc. System and method for suppressing noise in digitally represented voice signals
JP2930101B2 (ja) * 1997-01-29 1999-08-03 日本電気株式会社 雑音消去装置
US5933495A (en) 1997-02-07 1999-08-03 Texas Instruments Incorporated Subband acoustic noise suppression
DK1326479T4 (en) 1997-04-16 2018-09-03 Semiconductor Components Ind Llc Method and apparatus for noise reduction, especially in hearing aids.
ATE248459T1 (de) 1997-05-01 2003-09-15 Med El Elektromed Geraete Gmbh Verfahren und gerät für eine digitale filterbank mit geringem stromverbrauch
US6151397A (en) 1997-05-16 2000-11-21 Motorola, Inc. Method and system for reducing undesired signals in a communication environment
JP3541339B2 (ja) 1997-06-26 2004-07-07 富士通株式会社 マイクロホンアレイ装置
EP0889588B1 (de) 1997-07-02 2003-06-11 Micronas Semiconductor Holding AG Filterkombination zur Abtastratenumsetzung
US6430295B1 (en) 1997-07-11 2002-08-06 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for measuring signal level and delay at multiple sensors
JP3216704B2 (ja) * 1997-08-01 2001-10-09 日本電気株式会社 適応アレイ装置
US6216103B1 (en) 1997-10-20 2001-04-10 Sony Corporation Method for implementing a speech recognition system to determine speech endpoints during conditions with background noise
US6134524A (en) 1997-10-24 2000-10-17 Nortel Networks Corporation Method and apparatus to detect and delimit foreground speech
US20020002455A1 (en) 1998-01-09 2002-01-03 At&T Corporation Core estimator and adaptive gains from signal to noise ratio in a hybrid speech enhancement system
JP3435686B2 (ja) 1998-03-02 2003-08-11 日本電信電話株式会社 収音装置
US6717991B1 (en) 1998-05-27 2004-04-06 Telefonaktiebolaget Lm Ericsson (Publ) System and method for dual microphone signal noise reduction using spectral subtraction
US6549586B2 (en) 1999-04-12 2003-04-15 Telefonaktiebolaget L M Ericsson System and method for dual microphone signal noise reduction using spectral subtraction
US5990405A (en) 1998-07-08 1999-11-23 Gibson Guitar Corp. System and method for generating and controlling a simulated musical concert experience
US7209567B1 (en) 1998-07-09 2007-04-24 Purdue Research Foundation Communication system with adaptive noise suppression
JP4163294B2 (ja) * 1998-07-31 2008-10-08 株式会社東芝 雑音抑圧処理装置および雑音抑圧処理方法
US6173255B1 (en) 1998-08-18 2001-01-09 Lockheed Martin Corporation Synchronized overlap add voice processing using windows and one bit correlators
US6223090B1 (en) 1998-08-24 2001-04-24 The United States Of America As Represented By The Secretary Of The Air Force Manikin positioning for acoustic measuring
US6122610A (en) 1998-09-23 2000-09-19 Verance Corporation Noise suppression for low bitrate speech coder
US7003120B1 (en) 1998-10-29 2006-02-21 Paul Reed Smith Guitars, Inc. Method of modifying harmonic content of a complex waveform
US6469732B1 (en) 1998-11-06 2002-10-22 Vtel Corporation Acoustic source location using a microphone array
US6266633B1 (en) 1998-12-22 2001-07-24 Itt Manufacturing Enterprises Noise suppression and channel equalization preprocessor for speech and speaker recognizers: method and apparatus
US6381570B2 (en) 1999-02-12 2002-04-30 Telogy Networks, Inc. Adaptive two-threshold method for discriminating noise from speech in a communication signal
US6363345B1 (en) 1999-02-18 2002-03-26 Andrea Electronics Corporation System, method and apparatus for cancelling noise
US6496795B1 (en) 1999-05-05 2002-12-17 Microsoft Corporation Modulated complex lapped transform for integrated signal enhancement and coding
WO2000057671A2 (de) 1999-03-19 2000-09-28 Siemens Aktiengesellschaft Verfahren und einrichtung zum aufnehmen und bearbeiten von audiosignalen in einer störschallerfüllten umgebung
GB2348350B (en) 1999-03-26 2004-02-18 Mitel Corp Echo cancelling/suppression for handsets
US6487257B1 (en) 1999-04-12 2002-11-26 Telefonaktiebolaget L M Ericsson Signal noise reduction by time-domain spectral subtraction using fixed filters
US7146013B1 (en) * 1999-04-28 2006-12-05 Alpine Electronics, Inc. Microphone system
GB9911737D0 (en) 1999-05-21 1999-07-21 Philips Electronics Nv Audio signal time scale modification
US6226616B1 (en) 1999-06-21 2001-05-01 Digital Theater Systems, Inc. Sound quality of established low bit-rate audio coding systems without loss of decoder compatibility
US20060072768A1 (en) 1999-06-24 2006-04-06 Schwartz Stephen R Complementary-pair equalizer
US6355869B1 (en) 1999-08-19 2002-03-12 Duane Mitton Method and system for creating musical scores from musical recordings
GB9922654D0 (en) 1999-09-27 1999-11-24 Jaber Marwan Noise suppression system
FI116643B (fi) 1999-11-15 2006-01-13 Nokia Corp Kohinan vaimennus
US6513004B1 (en) 1999-11-24 2003-01-28 Matsushita Electric Industrial Co., Ltd. Optimized local feature extraction for automatic speech recognition
US7058572B1 (en) 2000-01-28 2006-06-06 Nortel Networks Limited Reducing acoustic noise in wireless and landline based telephony
US6549630B1 (en) 2000-02-04 2003-04-15 Plantronics, Inc. Signal expander with discrimination between close and distant acoustic source
AU4574001A (en) 2000-03-14 2001-09-24 Audia Technology Inc Adaptive microphone matching in multi-microphone directional system
US7076315B1 (en) 2000-03-24 2006-07-11 Audience, Inc. Efficient computation of log-frequency-scale digital filter cascade
US6434417B1 (en) 2000-03-28 2002-08-13 Cardiac Pacemakers, Inc. Method and system for detecting cardiac depolarization
US20020009203A1 (en) 2000-03-31 2002-01-24 Gamze Erten Method and apparatus for voice signal extraction
JP2001296343A (ja) 2000-04-11 2001-10-26 Nec Corp 音源方位設定装置及びそれを備えた撮像装置、送信システム
US7225001B1 (en) 2000-04-24 2007-05-29 Telefonaktiebolaget Lm Ericsson (Publ) System and method for distributed noise suppression
AU2001261344A1 (en) 2000-05-10 2001-11-20 The Board Of Trustees Of The University Of Illinois Interference suppression techniques
WO2001091513A2 (en) 2000-05-26 2001-11-29 Koninklijke Philips Electronics N.V. Method for noise suppression in an adaptive beamformer
US6622030B1 (en) 2000-06-29 2003-09-16 Ericsson Inc. Echo suppression using adaptive gain based on residual echo energy
US7246058B2 (en) 2001-05-30 2007-07-17 Aliph, Inc. Detecting voiced and unvoiced speech using both acoustic and nonacoustic sensors
US8019091B2 (en) 2000-07-19 2011-09-13 Aliphcom, Inc. Voice activity detector (VAD) -based multiple-microphone acoustic noise suppression
US6718309B1 (en) 2000-07-26 2004-04-06 Ssi Corporation Continuously variable time scale modification of digital audio signals
JP4815661B2 (ja) 2000-08-24 2011-11-16 ソニー株式会社 信号処理装置及び信号処理方法
DE10045197C1 (de) 2000-09-13 2002-03-07 Siemens Audiologische Technik Verfahren zum Betrieb eines Hörhilfegerätes oder Hörgerätessystems sowie Hörhilfegerät oder Hörgerätesystem
US7020605B2 (en) 2000-09-15 2006-03-28 Mindspeed Technologies, Inc. Speech coding system with time-domain noise attenuation
US20020116187A1 (en) 2000-10-04 2002-08-22 Gamze Erten Speech detection
US7092882B2 (en) 2000-12-06 2006-08-15 Ncr Corporation Noise suppression in beam-steered microphone array
US20020133334A1 (en) 2001-02-02 2002-09-19 Geert Coorman Time scale modification of digitally sampled waveforms in the time domain
US7617099B2 (en) 2001-02-12 2009-11-10 FortMedia Inc. Noise suppression by two-channel tandem spectrum modification for speech signal in an automobile
US7206418B2 (en) 2001-02-12 2007-04-17 Fortemedia, Inc. Noise suppression for a wireless communication device
US6915264B2 (en) 2001-02-22 2005-07-05 Lucent Technologies Inc. Cochlear filter bank structure for determining masked thresholds for use in perceptual audio coding
EP1376539B8 (en) 2001-03-28 2010-12-15 Mitsubishi Denki Kabushiki Kaisha Noise suppressor
SE0101175D0 (sv) 2001-04-02 2001-04-02 Coding Technologies Sweden Ab Aliasing reduction using complex-exponential-modulated filterbanks
ATE338333T1 (de) 2001-04-05 2006-09-15 Koninkl Philips Electronics Nv Zeitskalenmodifikation von signalen mit spezifischem verfahren je nach ermitteltem signaltyp
DE10119277A1 (de) 2001-04-20 2002-10-24 Alcatel Sa Verfahren zur Maskierung von Geräuschmodulationen und Störgeräuschen bei der Sprachübertragung
DE60104091T2 (de) 2001-04-27 2005-08-25 CSEM Centre Suisse d`Electronique et de Microtechnique S.A. - Recherche et Développement Verfahren und Vorrichtung zur Sprachverbesserung in verrauschte Umgebung
GB2375688B (en) 2001-05-14 2004-09-29 Motorola Ltd Telephone apparatus and a communication method using such apparatus
JP3457293B2 (ja) 2001-06-06 2003-10-14 三菱電機株式会社 雑音抑圧装置及び雑音抑圧方法
US6493668B1 (en) 2001-06-15 2002-12-10 Yigal Brandman Speech feature extraction system
AUPR612001A0 (en) 2001-07-04 2001-07-26 Soundscience@Wm Pty Ltd System and method for directional noise monitoring
US7142677B2 (en) 2001-07-17 2006-11-28 Clarity Technologies, Inc. Directional sound acquisition
US6584203B2 (en) 2001-07-18 2003-06-24 Agere Systems Inc. Second-order adaptive differential microphone array
KR20040019362A (ko) 2001-07-20 2004-03-05 코닌클리케 필립스 일렉트로닉스 엔.브이. 후처리기로서 멀티 마이크로폰 에코 억제기를 가지는 음향보강 시스템
CA2354858A1 (en) 2001-08-08 2003-02-08 Dspfactory Ltd. Subband directional audio signal processing using an oversampled filterbank
US20030061032A1 (en) 2001-09-24 2003-03-27 Clarity, Llc Selective sound enhancement
TW526468B (en) 2001-10-19 2003-04-01 Chunghwa Telecom Co Ltd System and method for eliminating background noise of voice signal
US6937978B2 (en) * 2001-10-30 2005-08-30 Chungwa Telecom Co., Ltd. Suppression system of background noise of speech signals and the method thereof
US6792118B2 (en) 2001-11-14 2004-09-14 Applied Neurosystems Corporation Computation of multi-sensor time delays
US6785381B2 (en) 2001-11-27 2004-08-31 Siemens Information And Communication Networks, Inc. Telephone having improved hands free operation audio quality and method of operation thereof
US20030103632A1 (en) 2001-12-03 2003-06-05 Rafik Goubran Adaptive sound masking system and method
US7315623B2 (en) 2001-12-04 2008-01-01 Harman Becker Automotive Systems Gmbh Method for supressing surrounding noise in a hands-free device and hands-free device
US7065485B1 (en) 2002-01-09 2006-06-20 At&T Corp Enhancing speech intelligibility using variable-rate time-scale modification
US7171008B2 (en) 2002-02-05 2007-01-30 Mh Acoustics, Llc Reducing noise in audio systems
US8098844B2 (en) 2002-02-05 2012-01-17 Mh Acoustics, Llc Dual-microphone spatial noise suppression
US20050228518A1 (en) 2002-02-13 2005-10-13 Applied Neurosystems Corporation Filter set for frequency analysis
US7409068B2 (en) * 2002-03-08 2008-08-05 Sound Design Technologies, Ltd. Low-noise directional microphone system
JP2003271191A (ja) * 2002-03-15 2003-09-25 Toshiba Corp 音声認識用雑音抑圧装置及び方法、音声認識装置及び方法並びにプログラム
WO2003084103A1 (en) 2002-03-22 2003-10-09 Georgia Tech Research Corporation Analog audio enhancement system using a noise suppression algorithm
CA2479758A1 (en) 2002-03-27 2003-10-09 Aliphcom Microphone and voice activity detection (vad) configurations for use with communication systems
US7065486B1 (en) 2002-04-11 2006-06-20 Mindspeed Technologies, Inc. Linear prediction based noise suppression
JP2004023481A (ja) 2002-06-17 2004-01-22 Alpine Electronics Inc 音響信号処理装置及び方法並びにオーディオ装置
US7242762B2 (en) 2002-06-24 2007-07-10 Freescale Semiconductor, Inc. Monitoring and control of an adaptive filter in a communication system
JP4227772B2 (ja) 2002-07-19 2009-02-18 日本電気株式会社 オーディオ復号装置と復号方法およびプログラム
DE60327039D1 (de) 2002-07-19 2009-05-20 Nec Corp Audiodekodierungseinrichtung, dekodierungsverfahren und programm
US20040078199A1 (en) 2002-08-20 2004-04-22 Hanoh Kremer Method for auditory based noise reduction and an apparatus for auditory based noise reduction
US7574352B2 (en) 2002-09-06 2009-08-11 Massachusetts Institute Of Technology 2-D processing of speech
US6917688B2 (en) 2002-09-11 2005-07-12 Nanyang Technological University Adaptive noise cancelling microphone system
US7062040B2 (en) 2002-09-20 2006-06-13 Agere Systems Inc. Suppression of echo signals and the like
WO2004034734A1 (ja) 2002-10-08 2004-04-22 Nec Corporation アレイ装置および携帯端末
US7146316B2 (en) 2002-10-17 2006-12-05 Clarity Technologies, Inc. Noise reduction in subbanded speech signals
US7092529B2 (en) 2002-11-01 2006-08-15 Nanyang Technological University Adaptive control system for noise cancellation
US7174022B1 (en) 2002-11-15 2007-02-06 Fortemedia, Inc. Small array microphone for beam-forming and noise suppression
US8271279B2 (en) 2003-02-21 2012-09-18 Qnx Software Systems Limited Signature noise removal
US7885420B2 (en) 2003-02-21 2011-02-08 Qnx Software Systems Co. Wind noise suppression system
US7949522B2 (en) 2003-02-21 2011-05-24 Qnx Software Systems Co. System for suppressing rain noise
FR2851879A1 (fr) 2003-02-27 2004-09-03 France Telecom Procede de traitement de donnees sonores compressees, pour spatialisation.
GB2398913B (en) 2003-02-27 2005-08-17 Motorola Inc Noise estimation in speech recognition
US7233832B2 (en) 2003-04-04 2007-06-19 Apple Inc. Method and apparatus for expanding audio data
US7428000B2 (en) 2003-06-26 2008-09-23 Microsoft Corp. System and method for distributed meetings
TWI221561B (en) 2003-07-23 2004-10-01 Ali Corp Nonlinear overlap method for time scaling
EP1513137A1 (en) 2003-08-22 2005-03-09 MicronasNIT LCC, Novi Sad Institute of Information Technologies Speech processing system and method with multi-pulse excitation
US7516067B2 (en) 2003-08-25 2009-04-07 Microsoft Corporation Method and apparatus using harmonic-model-based front end for robust speech recognition
DE10339973A1 (de) 2003-08-29 2005-03-17 Daimlerchrysler Ag Intelligentes akustisches Mikrofon-Frontend mit Spracherkenner-Feedback
US7099821B2 (en) 2003-09-12 2006-08-29 Softmax, Inc. Separation of target acoustic signals in a multi-transducer arrangement
JP2007506986A (ja) 2003-09-17 2007-03-22 北京阜国数字技術有限公司 マルチ解像度ベクトル量子化のオーディオcodec方法及びその装置
JP2005110127A (ja) 2003-10-01 2005-04-21 Canon Inc 風雑音検出装置及びそれを有するビデオカメラ装置
JP4396233B2 (ja) 2003-11-13 2010-01-13 パナソニック株式会社 複素指数変調フィルタバンクの信号分析方法、信号合成方法、そのプログラム及びその記録媒体
US6982377B2 (en) 2003-12-18 2006-01-03 Texas Instruments Incorporated Time-scale modification of music signals based on polyphase filterbanks and constrained time-domain processing
CA2454296A1 (en) 2003-12-29 2005-06-29 Nokia Corporation Method and device for speech enhancement in the presence of background noise
JP4162604B2 (ja) 2004-01-08 2008-10-08 株式会社東芝 雑音抑圧装置及び雑音抑圧方法
US7499686B2 (en) 2004-02-24 2009-03-03 Microsoft Corporation Method and apparatus for multi-sensory speech enhancement on a mobile device
EP1581026B1 (en) 2004-03-17 2015-11-11 Nuance Communications, Inc. Method for detecting and reducing noise from a microphone array
GB0408856D0 (en) 2004-04-21 2004-05-26 Nokia Corp Signal encoding
US7649988B2 (en) 2004-06-15 2010-01-19 Acoustic Technologies, Inc. Comfort noise generator using modified Doblinger noise estimate
US20050288923A1 (en) 2004-06-25 2005-12-29 The Hong Kong University Of Science And Technology Speech enhancement by noise masking
US7254535B2 (en) 2004-06-30 2007-08-07 Motorola, Inc. Method and apparatus for equalizing a speech signal generated within a pressurized air delivery system
US8340309B2 (en) 2004-08-06 2012-12-25 Aliphcom, Inc. Noise suppressing multi-microphone headset
US20070230712A1 (en) 2004-09-07 2007-10-04 Koninklijke Philips Electronics, N.V. Telephony Device with Improved Noise Suppression
ATE405925T1 (de) 2004-09-23 2008-09-15 Harman Becker Automotive Sys Mehrkanalige adaptive sprachsignalverarbeitung mit rauschunterdrückung
US7383179B2 (en) 2004-09-28 2008-06-03 Clarity Technologies, Inc. Method of cascading noise reduction algorithms to avoid speech distortion
US8170879B2 (en) 2004-10-26 2012-05-01 Qnx Software Systems Limited Periodic signal enhancement system
US20060133621A1 (en) 2004-12-22 2006-06-22 Broadcom Corporation Wireless telephone having multiple microphones
US20070116300A1 (en) 2004-12-22 2007-05-24 Broadcom Corporation Channel decoding for wireless telephones with multiple microphones and multiple description transmission
US20060149535A1 (en) 2004-12-30 2006-07-06 Lg Electronics Inc. Method for controlling speed of audio signals
US20060184363A1 (en) 2005-02-17 2006-08-17 Mccree Alan Noise suppression
US8311819B2 (en) 2005-06-15 2012-11-13 Qnx Software Systems Limited System for detecting speech with background voice estimates and noise estimates
WO2007003683A1 (en) 2005-06-30 2007-01-11 Nokia Corporation System for conference call and corresponding devices, method and program products
US7464029B2 (en) 2005-07-22 2008-12-09 Qualcomm Incorporated Robust separation of speech signals in a noisy environment
JP4765461B2 (ja) 2005-07-27 2011-09-07 日本電気株式会社 雑音抑圧システムと方法及びプログラム
US7917561B2 (en) 2005-09-16 2011-03-29 Coding Technologies Ab Partially complex modulated filter bank
US7957960B2 (en) 2005-10-20 2011-06-07 Broadcom Corporation Audio time scale modification using decimation-based synchronized overlap-add algorithm
EP1942583B1 (en) * 2005-10-26 2016-10-12 NEC Corporation Echo suppressing method and device
US7565288B2 (en) 2005-12-22 2009-07-21 Microsoft Corporation Spatial noise suppression for a microphone array
US8345890B2 (en) * 2006-01-05 2013-01-01 Audience, Inc. System and method for utilizing inter-microphone level differences for speech enhancement
CN1809105B (zh) 2006-01-13 2010-05-12 北京中星微电子有限公司 适用于小型移动通信设备的双麦克语音增强方法及系统
US8194880B2 (en) * 2006-01-30 2012-06-05 Audience, Inc. System and method for utilizing omni-directional microphones for speech enhancement
US8744844B2 (en) 2007-07-06 2014-06-03 Audience, Inc. System and method for adaptive intelligent noise suppression
US9185487B2 (en) 2006-01-30 2015-11-10 Audience, Inc. System and method for providing noise suppression utilizing null processing noise subtraction
US20070195968A1 (en) 2006-02-07 2007-08-23 Jaber Associates, L.L.C. Noise suppression method and system with single microphone
US8934641B2 (en) 2006-05-25 2015-01-13 Audience, Inc. Systems and methods for reconstructing decomposed audio signals
US8150065B2 (en) 2006-05-25 2012-04-03 Audience, Inc. System and method for processing an audio signal
JP5053587B2 (ja) 2006-07-31 2012-10-17 東亞合成株式会社 水酸化アルカリ金属の高純度製造方法
KR100883652B1 (ko) 2006-08-03 2009-02-18 삼성전자주식회사 음성 구간 검출 방법 및 장치, 및 이를 이용한 음성 인식시스템
JP2007006525A (ja) 2006-08-24 2007-01-11 Nec Corp ノイズ除去の方法及び装置
JP2008135933A (ja) * 2006-11-28 2008-06-12 Tohoku Univ 音声強調処理システム
TWI312500B (en) 2006-12-08 2009-07-21 Micro Star Int Co Ltd Method of varying speech speed
US8213597B2 (en) 2007-02-15 2012-07-03 Infineon Technologies Ag Audio communication device and methods for reducing echoes by inserting a training sequence under a spectral mask
US7925502B2 (en) 2007-03-01 2011-04-12 Microsoft Corporation Pitch model for noise estimation
CN101266797B (zh) 2007-03-16 2011-06-01 展讯通信(上海)有限公司 语音信号后处理滤波方法
US8488803B2 (en) 2007-05-25 2013-07-16 Aliphcom Wind suppression/replacement component for use with electronic systems
US20090012786A1 (en) 2007-07-06 2009-01-08 Texas Instruments Incorporated Adaptive Noise Cancellation
US8175871B2 (en) 2007-09-28 2012-05-08 Qualcomm Incorporated Apparatus and method of noise and echo reduction in multiple microphone audio systems
KR101444100B1 (ko) 2007-11-15 2014-09-26 삼성전자주식회사 혼합 사운드로부터 잡음을 제거하는 방법 및 장치
US8175291B2 (en) 2007-12-19 2012-05-08 Qualcomm Incorporated Systems, methods, and apparatus for multi-microphone based speech enhancement
US8194882B2 (en) 2008-02-29 2012-06-05 Audience, Inc. System and method for providing single microphone noise suppression fallback
US8355511B2 (en) 2008-03-18 2013-01-15 Audience, Inc. System and method for envelope-based acoustic echo cancellation
US8131541B2 (en) 2008-04-25 2012-03-06 Cambridge Silicon Radio Limited Two microphone noise reduction system
US8774423B1 (en) 2008-06-30 2014-07-08 Audience, Inc. System and method for controlling adaptivity of signal modification using a phantom coefficient
EP2151821B1 (en) 2008-08-07 2011-12-14 Nuance Communications, Inc. Noise-reduction processing of speech signals
US20100094622A1 (en) 2008-10-10 2010-04-15 Nexidia Inc. Feature normalization for speech and audio processing
US8660281B2 (en) 2009-02-03 2014-02-25 University Of Ottawa Method and system for a multi-microphone noise reduction
EP2237271B1 (en) 2009-03-31 2021-01-20 Cerence Operating Company Method for determining a signal component for reducing noise in an input signal
JP5535198B2 (ja) 2009-04-02 2014-07-02 三菱電機株式会社 雑音抑圧装置
US20110178800A1 (en) 2010-01-19 2011-07-21 Lloyd Watts Distortion Measurement for Noise Suppression System
US8718290B2 (en) 2010-01-26 2014-05-06 Audience, Inc. Adaptive noise reduction using level cues
CN102859591B (zh) 2010-04-12 2015-02-18 瑞典爱立信有限公司 用于语音编码器中的噪声消除的方法和装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9830899B1 (en) 2006-05-25 2017-11-28 Knowles Electronics, Llc Adaptive noise cancellation
US9558755B1 (en) 2010-05-20 2017-01-31 Knowles Electronics, Llc Noise suppression assisted automatic speech recognition
US9640194B1 (en) 2012-10-04 2017-05-02 Knowles Electronics, Llc Noise suppression for speech processing based on machine-learning mask estimation
US9536540B2 (en) 2013-07-19 2017-01-03 Knowles Electronics, Llc Speech signal separation and synthesis based on auditory scene analysis and speech modeling
US9799330B2 (en) 2014-08-28 2017-10-24 Knowles Electronics, Llc Multi-sourced noise suppression
US10257611B2 (en) 2016-05-02 2019-04-09 Knowles Electronics, Llc Stereo separation and directional suppression with omni-directional microphones

Also Published As

Publication number Publication date
US9185487B2 (en) 2015-11-10
JP5762956B2 (ja) 2015-08-12
WO2010005493A1 (en) 2010-01-14
TWI488179B (zh) 2015-06-11
KR101610656B1 (ko) 2016-04-08
US20090323982A1 (en) 2009-12-31
FI20100431A (fi) 2010-12-30
TW201009817A (en) 2010-03-01
JP2011527025A (ja) 2011-10-20
US20160027451A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
KR101610656B1 (ko) 널 프로세싱 노이즈 감산을 이용한 노이즈 억제 시스템 및 방법
US8204253B1 (en) Self calibration of audio device
US9438992B2 (en) Multi-microphone robust noise suppression
US20160066087A1 (en) Joint noise suppression and acoustic echo cancellation
US8131541B2 (en) Two microphone noise reduction system
US8718290B2 (en) Adaptive noise reduction using level cues
US8712069B1 (en) Selection of system parameters based on non-acoustic sensor information
US8046219B2 (en) Robust two microphone noise suppression system
US8606571B1 (en) Spatial selectivity noise reduction tradeoff for multi-microphone systems
TWI463817B (zh) 可適性智慧雜訊抑制系統及方法
US8204252B1 (en) System and method for providing close microphone adaptive array processing
KR101463324B1 (ko) 오디오 등화를 위한 시스템들, 방법들, 디바이스들, 장치, 및 컴퓨터 프로그램 제품들
US9699554B1 (en) Adaptive signal equalization
US8774423B1 (en) System and method for controlling adaptivity of signal modification using a phantom coefficient
KR20130061673A (ko) 모노 또는 다중 마이크로폰 시스템 내의 잡음 제거 및 음성 품질을 공동으로 최적화하는 방법
WO2008045476A2 (en) System and method for utilizing omni-directional microphones for speech enhancement
Zhang et al. A frequency domain approach for speech enhancement with directionality using compact microphone array.

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant