KR20100092096A - 고강도 및 도전성 동합금 및 그 제조방법 - Google Patents

고강도 및 도전성 동합금 및 그 제조방법 Download PDF

Info

Publication number
KR20100092096A
KR20100092096A KR1020090011285A KR20090011285A KR20100092096A KR 20100092096 A KR20100092096 A KR 20100092096A KR 1020090011285 A KR1020090011285 A KR 1020090011285A KR 20090011285 A KR20090011285 A KR 20090011285A KR 20100092096 A KR20100092096 A KR 20100092096A
Authority
KR
South Korea
Prior art keywords
weight
copper alloy
present
ingot
conductivity
Prior art date
Application number
KR1020090011285A
Other languages
English (en)
Other versions
KR101208578B1 (ko
Inventor
곽원신
조영래
황인엽
렌세이 후타츠카
Original Assignee
주식회사 풍산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 풍산 filed Critical 주식회사 풍산
Priority to KR1020090011285A priority Critical patent/KR101208578B1/ko
Publication of KR20100092096A publication Critical patent/KR20100092096A/ko
Application granted granted Critical
Publication of KR101208578B1 publication Critical patent/KR101208578B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 Cu룰 주성분으로 하는 동합금에 Ni, Si, Mg, Sn, Zn, Mn함유량을 적절히 조성하여 고인장강도, 적절한 도전성, 도금내열박리성, 응력완화성 등을 동시에 얻을 수 있는 동 합금 및 그 제조방법에 관한 것이다.
이에 따른 구성은 100중량%로써, Ni 3.2∼4.0중량%, Si 0.7∼1.0중량%, Mg 0.05∼0.15중량%, Sn 0.05∼0.2중량%, Zn 0.05∼0.25중량%, Mn 0.05∼0.2중량% 이고, 나머지가 Cu 및 불가피한 불순물로 조성됨을 특징으로 하는 인장강도, 연신율,전기전도도를 갖는 동합금으로 이루어지고, 상기 동합금을 제조함에 있어서는 상기 조성된 용탕을 얻는 단계, 주괴를 얻는 단계, 상기 주괴를 850∼1000℃온도에서 열간압연하는 단계, 냉간압연하는 단계, 시효처리(350∼550℃에서 1∼10시간) 또는 시효처리 전에 용체화처리하는 단계로 이루어짐을 특징으로 하는 동합금 제조방법으로 이루어진다.
동합금. 인장강도. 전기전도도

Description

고강도 및 도전성 동합금 및 그 제조방법{copper alloy with high strength and moderate conductivity, and method of manufacturing thereof}
본 발명은 반도체용 리드프레임재, 단자, 콘넥터재, 스위치재 등에 적합한 동합금 및 그 제조방법에 관한 것이다.
종래로부터 단자, 콘넥터재 등에는 황동, 인청동, Cu-Fe계 합금, Cu-Ni-Si계 합금 등의 동합금이 많이 사용되어 왔지만, 자동차용 단자 및 콘넥터는 소형화가 현저하고, 엔진룸 내에서는 가혹한 환경으로 사용되기 때문에 종래 합금으로는 대응이 곤란한 현상이다.
이와 같은 사용 환경에 대응하기 위하여 단자, 콘넥터용 동합금에 요구되는 특성은 기계적 강도, 도전성(전기 및 열전도성), 도금내열박리성, 응력완화성, 내연화성, 굽힘가공성, 마이그레이숀성 등 다양하며, 그 중에서도 기계적 강도, 도전성, Sn도금 내열박리성 및 응력완화성은 특히 중요한 특성이다.
이러한 엄격한 특성을 만족시키기 위하여 최근 Cu-Ni-Si계 합금이 주목되고 있으며, 여러가지의 특성 향상 제안이 실시되어 왔다.
그러나 고강도화를 위하여 Cu중의 Ni 및 Si를 증가시키면 도전성은 점차 저 하한다. 한편, 인장강도와 도전성 뿐만아니라 동시에 도금내열박리성, 응력완화성 등의 요구 특성을 만족시키려면 Ni과 Si 이외의 첨가원소를 필요로 하지만, 다른 첨가 원소를 증가시키면 Cu중의 조성 총량이 늘어 도전성은 특히 저하한다.
본 발명과 관련한 공지 기술을 살펴보면, 일본 특개평5-59468호(이하" 선 기술1" 이라 함)는 청구범위에서는 Ni, Si, Mg, Zn, S을 필수 성분으로 하고, 부성분으로써 12종류의 성분(P, B, As, Fe, Co, Cr, Al, Sn, Ti, Zr, In, Mn ) 중 선택한 1종 이상을 포함하는 것으로 되어 있고. 나머지는 Cu 및 불가피한 불순물로 이루어지고, 상기 조성을 갖는 용탕을 주조하여 주괴를 얻고, 주괴를 열간압연, 냉간압연, 열처리, 냉간압연, 시효처리하므로써 인장강도(TS)611∼741N/mm2, 연신율
(El)5.2∼13.3%, 전기전도도(EC)37∼49%IACS와 같은 특성을 얻고 있다.
일본 특개평11-222641호(이하" 선 기술2"라 함)는 청구범위에서는 Ni, Si , Mg, Sn, Zn, S, O 를 필수 성분으로 하고, 부성분으로써 8종류의 성분(Ag, Mn, Fe, Cr, Co, P, Pb, Bi) 중 선택한 1종 이상을 포함하는 것으로 되어 있고, 나머지는 Cu 및 불가피한 불순물로 조성됨을 특징으로 하는 도전성 스프링용 동합금으로 이루어져 있고, 상기 조성을 이용한 제품 제조에 있어서는 상기 조성을 갖는 용탕을 주조하여 주괴를 얻고, 주괴를 열간압연, 냉간압연, 열처리, 냉간압연, 시효처리하므로써 인장강도(TS)610∼710N/mm2, 연신율(El) 13∼17%, 전기전도도(EC) 31∼42% IACS와 같은 특성을 얻고 있다.
일본 특개소63-262448호(이하" 선 기술3" 이라 함)는 청구범위에서는 Ni, Si 를 필수 성분으로 하고, 부성분으로서 20종(Zn, P, Sn, As, Cr, Mg, Mn, Sb, Fe, Co, Al, Ti, Zr, Be, Ag, Pb, B, Hf, In, 란탄원소) 중 선택한 1종 또는 2종 이상을 포함하는 것으로 되어 있고, 나머지는 Cu 및 불가피한 불순물로 됨을 특징으로 하는 주석 및 주석합금 도금의 내열박리성에 우수한 동합금으로 되어 있고, 상기 조성을 이용한 제조방법에 있어서는 열간압연, 냉간압연, 소둔, 냉간압연, 시효처리, 냉간압연, 소둔하여 인장강도 45.6∼78.4kg/mm2(447∼768N/mm2), 연신율(El) 9.3∼14.2%, 도전율(EC)39∼66%AICS와 같은 특성을 얻고 있다.
일본 특개2006-176886호(이하" 선 기술4"라 함)는 청구범위에서는 Ni, Si, Mg, Sn, Zn, S 이고, 나머지는 Cu 및 불기피한 불순물로 됨을 특징으로 하는 단자 내지는 콘넥터용 동합금으로 되어 있다.
상기 선 기술1은 부성분으로써 12종류의 성분 중 적어도 1종 이상을 포함하는 것으로 되어 있고, 선 기술2는 부성분으로써 8종류의 성분 중 적어도 1종 이상을 포함하는 것으로 되어 있고, 선 기술3은 부성분으로써 20여 종류의 성분을 망라 하는 것으로 되어 있으나, 상기한 선 기술들의 실시예에서는 본 발명과 대비할 수 있는 원소가 모두 충족되어 있지 않고 일부 원소만이 중복되고 있으므로서, 선 기술들은 모두 균등 작용 효과를 수반하는 원소로 볼 수 없는 등 실시가 의문시 되는 포괄적인 원소의 나열에 불과함을 알 수 있다.
즉, 선 기술1은 그 실시예를 나타낸 (표1)에서는 주 성분으로서 Cu를 비롯하여 필수 성분으로서 Ni, Si, Mg, O, S, Zn을 대상으로 하고 있으나, 시료번호(1 ∼5)는 Zn을 포함하지 않고 있으며, 부성분으로서 1종은 Co만을, 2종은 Cr과 Zr, Ti과 Al, Sn과 P 만을 대상으로 한정한데 불과하다.
또한 Zn을 포함하고 있는 시료번호(6∼10)에서는 1종은 Mn의 경우만이 나타나 있고, 2종은 B와 Al, Fe와 Ti, In과 As 만을 대상으로 하고 있음에 불과하다.
선 기술2는 그 실시예를 나타낸 (표1)에서는 주성분으로서 Cu를 비롯하여 Ni,Si, Mg, Sn, Zn, S,O 를 필수 성분으로 하고, 부성분으로서는 1종으로써 Co, Ag, Pb, Cr에 대해서만 대상으로 한정하고 있다.
선 기술3은 그 실시예를 나타낸 (표1)에서는 Cu를 비롯하여 필수 성분으로서 Ni, Si, Zn, O, S 를 대상으로 하고 있으나, 부성분으로서 1종 내지 2종만을 한정하고 있는 등 본 발명과 대비할 수 있는 성분이 모두 충족되고 있지 않다.
선 기술4는 Ni이 1.0∼3.0중량%로써 본 발명과 다르고, 또한 Mn 없음이 본 발명과 다르다.
이상과 같이 상기한 선 기술들은 부성분으로서의 수많은 원소들을 기술적 구성에 포함하는 것으로 기재하고 있으나, 모두 동일 내지는 유사한 작용 효과를 갖는 균등물 내지는 임계치 범위를 갖는 원소로 인정될 수 없음을 알 수 있다.
따라서 상기 선 기술에서는 추구하고자 하는 목적 달성을 위한 구성과 관계없이 수많은 부성분들을 나열하므로서 당해 기술분야에서 향후 모든 출원에 대해 진보성을 인정받지 못하게 하는 등의 실효성없는 원소들의 나열에 따른 문제점을 갖게하는 선 기술들에 상당하다.
본 발명은 상기한 종래의 문제점을 해결하기 위한 것으로, Ni, Si, Mg, Sn, Zn, Mn함유량을 적절히 조성하여 인장강도, 도전성, 도금내열박리성, 응력완화성 등을 동시에 얻을 수 있는 동 합금 및 그 제조방법을 제공하고자 하는데 목적이 있다.
상기한 목적 달성을 위한 본 발명은 100중량%로써, Ni 3.2∼4.0중량%, Si 0.7∼1.0중량%, Mg 0.05∼0.15중량%, Sn 0.05∼0.2중량%, Zn 0.05∼0.25중량%, Mn 0.05∼0.2중량% 이고, 나머지가 Cu 및 불가피한 불순물로 조성됨을 특징으로 하는 도전성 동합금으로 이루어진다.
상기 조성에서 Cu 중의 Ni과 Si는 주로 Ni2Si상으로 이루어지는 Ni-Si화합물로서 Cu매트릭스에 석출하면 도전율을 너무 저하시키지 않고 강도를 현저하게 개선한다.
Ni을 3.2∼4.0중량%로 한 것은 3.2중량% 미만에서는 석출량이 적기 때문에 원하는 기계적 강도가 얻어지지 않고, 3.9중량% 초과하면 주조나 열간압연시에 강도에 기여하지 않는 석출물이 생성하는 동시에 열간압연 크랙(crack)이 많이 발생되기 때문이다.
Si를 0.7∼1.0중량%로 한 것은 Ni2Si상의 생성에 의해 Ni 첨가량에 대하여 최적인 Si량이 스스로 정해지기 때문이다.
Mg, Sn, Zn, Mn은 기계적 강도 외에 도금내열박리성, 응력완화성, 마이그레이숀성 등의 요구 특성 개선에 덧붙여 제조 용이성(주조성, 열간압연성 및 리턴스크랩 허용)에 관계되는 중요한 첨가 원소이다.
Mg을 0.05∼0.15중량%로 한 것은 0.05중량% 미만에서는 원하는 응력완화성을 만족하지 못하고, 0.15중량%를 초과하면 용해주조성이 곤란하게 되기 때문이다. 용해에서 S함유량은 20ppm 포함되는 경우도 있지만, 응력완화성 향상 목적으로 첨가하는 Mg의 함유 범위 내에 있어서 탈황에도 효과가 있다.
Sn은 Mg와 함께 응력완화성을 향상시키는 외에 10중량% 미만의 저압연 가공율에서의 경화능(硬化能)을 높이고, Sn 도금 리턴 스크랩의 Sn부분을 허용하는 것에 의한 코스트 저가에 도움이 된다. Sn을 0.05∼0.2중량%로 정한 것은 0.05중량% 미만에서는 그 효과가 없고, 0.2중량%를 초과하여 함유시키면 도전율이 저하하고, 응력부식 크랙(crack) 감수성도 증대하기 때문이다.
Zn은 Mn과 함께 Sn도금 내열박리성이나 마이그레이숀성을 향상시키는 것 외에 용해 주조에서의 탈가스에 도움이 된다. Zn을 0.05∼0.25중량%로 정한 것은 0.05중량% 미만에서는 그 효과가 없고, 0.25중량%를 초과하면 도전율이 저하하기 때문이다.
Mn은 Zn과의 공첨 효과에 의해 적은 첨가라도 Sn도금 내열박리성이나 마이그레이숀성을 향상시키는 것 외에 Mn 자체는 시효경화나 Mg와 함께 탈황에 기여하고, 잔류 S와 MnS를 생성하는 것에 의해 S를 무해화하여 주조성이나 열간압연성을 개선 한다.
Mn을 0.05∼0.2중량%로 정한 것은 0.05중량% 미만에서는 그 효과가 없고, 0.2중량% 초과하면 도전성이 저하하기 때문이다.
상기한 본 발명의 조성을 이용한 동합금의 제조에 있어서는 근대적 설비를 갖춘 신동공장에서 적절한 조건하에 설비를 사용하여 문제없이 제조할 수 있다. 예를 들면, 용해에 있어서 제조 코스트를 상승시키는 진공 용해로를 사용하여도 특별한 제한은 없다.
본 발명의 제조방법을 보다 구체적으로 설명하면, 고주파, 중주파 또는 저주파 등의 용해로를 사용하여 상기한 소정의 성분 조성을 갖는 용탕을 준비하고, 반연속 또는 연속주조에 의해 주괴를 얻어 적당한 길이로 절단한 주괴를 가열 후 850∼1000℃에서 열간압연하고, 열간압연 후의 가공공정에 있어서 Ni2Si상의 완전고용 및 모상(matrix)의 재결정에 의한 재질 개선을 겸하여 냉간압연·시효처리 또는 시효처리 전에 850∼1000℃에서 10∼200초, 바람직하게는 900℃ 이상의 온도에서 용체화처리하고, 필요에 따라 응력제거 소둔처리한다.
본 발명은 상기 가공공정을 반복 실시하는 것에 따라 마무리 압연 두께를 갖는 본 발명의 도전성 고강도 동합금 strip을 제조할 수 있다.
상기 시효처리를 함에 있어서는 350∼550℃에서 1∼10시간의 조건으로 실시하는 것이 바람직하다. 350℃미만에서는 시효처리 시간이 길어지면 경제적이지 않으며, 550℃를 초과하면 과시효가 되기 쉽고, 최적의 시효경화를 실현하기 어렵기 때문이다.
한편 응력제거소둔처리시 스트립 연속소둔로에서는 300∼500℃에서 10∼80초의 조건으로 실시하는 것이 바람직하다. 저온·단시간에서는 응력제거가 불충분하고, 고온·장시간에서는 연화 등의 현상이 생기기 때문이다.
또한 응력제거소둔처리시 batch식 응력제거 소둔로에서는 150∼300℃에서 30분∼10시간 실시하는 것이 바람직하다. 단시간에서는 응력제거가 불충분하고, 장시간에서는 경제성이 뒤떨어지기 때문이다.
상기한 본 발명의 도전성 고강도 동합금 특성을 최적화하기 위해서는 열간압연 후의 가공공정에 있어서 적어도 1회 연속스트립 소둔로에서 용체화-급냉(急冷)처리를 실시한다. 용체화에 있어서는 혼립을 피하고, 결정입도를 25㎛이하의 조정하는 것에 따라 양호한 응력완화성이나 굽힘가공성을 얻을 수 있다.
연속스트립 소둔로에 의한 고온·단시간의 용체화처리는 저온·장시간의 용체화처리에 비하여 처리 후의 잔류 석출물 및 결정입도의 산포가 적고, 생산성도 높다.
본 발명은 인장강도(TS)850N/mm2이상과 적절한 전기전도도, Sn도금 내열박리성 및 응력완화성을 동시에 충족시킬수 있는 동합금으로써, 차량 탑재용의 가혹한 사용에 감당할 수 있는 단자·콘넥터재로서만이 아니고, 기타 전기 및 전자기기 부 품재에도 적합한 현저한 효과를 갖는 동합금을 제공한다.
이하 본 발명을 실시예에 따라 상세하게 설명한다.
하기 (표 1)에 나타낸 본 발명의 성분조성을 갖는 합금을 고주파 용해로에서 용해하고, 산화방지를 위하여 목탄이나 흑연분말로 피복하면서 반연속 주조장치를 사용하여 두께 180mm×폭600mm×길이7000mm의 주괴를 주조하였다.
주괴top과 bottom의 주조가 불안정한 부분을 절단하고, 주괴 가열 후 열간압연 개시온도 950℃에서 열간압연을 실시하였다. 열간압연 종료 두께 12mm의 열간압연 strip을 조속한 스프레이에 의한 수냉을 실시하여 상온까지 냉각한 후 코일을 감아서 꺼내었다. 그 후 표면 스케일을 제거하기 위하여 양면 1mm를 면삭하였다.
이어서 두께 1.0mm가 되게 냉간압연한 후 900∼950℃ × 30∼80초간 용체화처리하고, 0.33mm가 되게 냉간압연, 450℃ × 3시간 시효처리, 0.25mm가 되게 다시 냉간압연, 400℃ × 1∼2시간 시효처리 공정을 거쳐 압연 strip을 얻었다.
더우기 상기 용체화 및 시효처리 후 표면 클리닝을 실시하는 동시에 2번째의 시효처리 후에는 표면 클리닝에 이어서 텐션레벨링에 의한 교정가공 및 스트립 연속소둔로에 의한 응력제거 소둔을 480℃×50초 실시하였다.
본 발명은 상기한 제조공정은 이것에 한정되는 것은 아니다. 즉, 개별 고객의 요구품질에 대응하기 위하여 신동공장에서 통상 실시하는 바와 같이 열간압연 후에 있어서 냉간압연, 용체화처리, 시효처리, 표면클리닝, 응력제거소둔, 텐션레 벨링 등의 공정을 취사 선택하여 필요에 따라 편성할 수 있다.
비교예는 본 발명의 조성범위를 벗어난 예를 나타낸 것으로 상기와 같은 제조공정을 통하여 동합금 strip을 제조하였다.
상기와 같이 제조한 시편을 꺼내어 인장강도(TS) N/mm2, 연신율(El) %, 도전율(EC) %IACS, Sn도금 내열박리성 및 응력완화율(SRR)%를 조사하였다. 그 결과를 (표2)에 나타내었다.

구분
시료
번호
성분(중량%)
Ni Si Mg Sn Zn Mn






1 3.22 0.76 0.063 0.074 0.075 0.059
2 3.21 0.75 0.14 0.19 0.23 0.18
3 3.49 0.84 0.11 0.12 0.082 0.18
4 3.51 0.84 0.099 0.12 0.18 0.12
5 3.52 0.84 0.098 0.13 0.23 0.054
6 3.78 0.89 0.11 0.13 0.19 0.12
7 3.84 0.92 0.14 0.17 0.17 0.13

비교예
8 *3.02 0.72 *0.042 *0.039 *0.033 *0.04
9 *2.97 0.71 0.13 0.18 0.17 0.12
10 *4.23 *1.01 0.095 0.12 0.18 0.13
특개평
5-59468
5 3.5 0.80 0.049 0.35 - P:0.007
11 1.29 0.33 0.022 - 3.16 0.51
특개평
11-222641
1
∼21
1.5
∼3.0
0.34
∼0.75
0.03
∼0.08
0.29
∼0.87
0.09
∼1.1

없음
특개소63-
262448
2 1.70 0.41 - 1.35 0.25 ** O, S
12 2.28 0.51 0.08 P: 0.02 0.44 ** O, S
(주1) * 본 발명외의 성분조성
(주2) ** O,S는 모두 0.0013중량% 임.

구분
시료
번호
TS
N/mm2
El
%
EC
%IACS
Sn도금
내열박리성
SRR
%






1 860 6 44
2 890 7 40
3 910 7 37
4 890 6 39
5 880 6 41
6 910 7 37
7 920 7 36

비교예
8 800 5 48 × ×
9 830 6 45
10 열간압연 crack 발생으로 평가불가
특개평
5-59468
5 724 5.2 37
11 611 11.1 42
특개평
11-222641
1
∼21
610
∼710
13
∼17
31
∼42

14
∼22
특개소63-
262448
2 711 9.9 39
12 638 9.8 48
(주1) Sn 도금박리 없음: ○ 박리발생: ×
(주2) SRR% ○: 21%미만으로 양호, × : 21% 이상으로 불량
상기 (표2)에 따른 본 발명의 물리적 및 기계적 실험을 함에 있어서는 인장강도 및 연신율은 KSB0802에 준하고, 열 및 전기전도성에 관계되는 도전율은 KSD0240에 준하여 측정하였다. Sn도금 내열박리성은 1㎛ 두께의 광택 Sn도금을 한 시험편을 150℃에서 1,000시간 대기 가열한 후 180℃ 밀착굽힘성, 이어서 급힘을 원위치하고, 굽힘을 편 부분의 도금박리 유무를 육안 관찰하여 평가하였다.
응력완화성 평가는 일본신동협회 JCBA R303에 준하여 실시하였다. 한쪽지지 굽힘계수 측정방법을 채용하고, 표면 최대응력이 450MPa가 되도록 부하응력을 설정하고, 150℃ 항온조에 1,000시간의 가열시험을 하였다. 가열 후 블록으로부터 빼낸 시험편의 굽힘을 측정하고, 응력완화율을 구하였다. (표2)에 1,000시간 가열 후의 SRR을 나타내었다. SRR은 21% 미만을 양호, 21% 이상을 불량이라고 하였다.
상기 (표2)에서 알 수 있는 바와 같이, 본 발명의 실시예(시료번호1∼7)는 본 발명의 범위를 벗어난 비교예(시료번호8∼10)에 비해 우수한 평가특성을 나타냈다.
즉, 본 발명은 목표 특성인 인장강도 850N/mm2이상, 연신율 5% 이상, 도전율 35%IACS 이상, Sn도금 내열박리성 150℃×1000시간 가열 후 박리발생 없고, 응력완화율 150℃×1,000시간 가열 후 21% 미만 등을 모두 만족하는 것에 비해, 비교예는 상기 특성이 모두 뒤떨어지는 결과를 나타내었다.
한편, 본 발명과 비교되는 선기술1(특개평5-59648호)은 시료번호 1∼11을 모두 보면, 인장강도 534∼741N/mm2로써, 시료번호5 및 11에서 시료번호5(본 발명에 해당되는 Zn 및 Mn 없고, P함유)는 724N/mm2이고, 시료번호11(본 발명에 해당되는 Sn이 없고, Zn은 범위외 이고, Ni함유량은 1.29중량%로써 본 발명과 현격한 차이가 있음)611N/mm2이고, 연신율은 5.2∼13.3%로써, 시료번호5 및 11은 각각 5.2%와 11.1%로 나타나 있고, 전기전도도에 있어서는 37∼49%IACS로 나타나 있고, 시료번호5 및 11은 각각 37%IACS와 42%IACS로 나타나 있다.
선기술1의 성분조성 범위는 본 발명의 성분조성 범위와 일치하지 않는 상태에서 물리적 및 기계적 특성을 대비한 것으로써, 특성 대비에 실익이 없다 할 수 있으나, 그 중 일부 시료번호5 및 11에 대해 비교하여도 인장강도에서 현격한 차이를 나타내고 있음과 함께 전기전도도에 있어서도 37%IACS과 42%IACS로서 36∼44% IACS범위를 갖는 본 발명과 다름을 알 수 있다.
즉, 본 발명은 선기술1에 대해 도전율은 동등하지만 고강도를 달성하고 있다.
따라서 인장강도와 연신율, 전기전도도 등 목표특성을 동시에 충족시키고 있는 본 발명의 요구 특성과 다름을 알 수 있다.
또한 선기술2(특개평11-222641호)의 시료번호1∼21을 살펴보면, Ni함량 1.5∼3.0중량%인데 반해 본 발명은 3.22∼3.84중량%로써 차이가 있고, Si 0.34∼0.75중량%인데 반해 본 발명은 0.75∼0.92중량%로써 차이가 있고, Sn 0.29∼0.87중량% 인데 반해 본 발명은 0.074∼0.19중량%로써 차이가 있고, Zn 0.09∼1.1중량% 인데 반해 본 발명은 0.075∼0.23중량%로써 차이가 있고, Mn에 대해서는 실시예가 없는데 반해 본 발명은 0.054∼0.18중량%로써 차이가 있다.
상기와 같은 성분조성(성분+성분비 범위)의 차이에 따라 요구 특성을 대비할 실익이 없다 하여도, 물리적 및 기계적 특성을 대비하면, 선기술2는 인장강도가 610∼710N/mm2 인데 반해, 본 발명은 860∼920N/mm2으로써 현격한 차이가 있고, 연신율에서도 선기술2는 13∼16% 인데 반해 본 발명은 6∼7%로써 차이가 있고, 전기전도도에 있어서는 선기술2는 31∼42%IACS이고, 본 발명은 36∼44%IACS로 나타나므로써 전체 범위로 봐서는 유사하다 판단할 수도 있으나, 당해분야에서 특성범위는 중복되는 부분이 있기 마련이기 때문에 진보성 유무를 판단함에 있어서는 중복되는 부분이외에 상.하 범위의 격차가 어떻게 이루어지는 지를 주요 판단의 대상으로 하여야 한다.
따라서 그와 같은 관점에서 대비하면, 전기전도도의 하한에서 선기술2는 31%IACS까지 이고, 본 발명은 36%IACS이므로 현격한 차이가 있고, 상한에서도 선기술2는 42%IACS까지 이나, 본 발명은 44%IACS이다.
선기술3은 전체 시료(1∼18)에서 인장강도 45.6∼78.4kg/mm2로 되어 있으며, 이에 대해 본 발명에서는 인장강도 단위를 N/mm2 로 표기하므로서, 직접대비할 수 없어 kg/mm2 단위를 N/mm2 로 환산하면 447∼768N/mm2 에 해당(1kg/mm2은 약 9.8N/mm2 에 상당)되므로서 본 발명의 860∼920N/mm2 에 비해 현격히 떨어짐을 알 수 있고, 연신율에서는 9.3∼14.2%로서 본 발명인 6∼7%와 다름을 알 수 있다.
이상에서와 같이 본 발명은 인장강도와 연신율, 전기전도도를 동시에 충족할 수 있는 공업상 현저한 작용효과를 갖는 진보된 발명이라 할 수 있다.

Claims (7)

100중량%로써, Ni 3.2∼4.0중량%, Si 0.7∼1.0중량%, Mg 0.05∼0.15중량%, Sn 0.05∼0.2중량%, Zn 0.05∼0.25중량%, Mn 0.05∼0.2중량% 이고, 나머지가 Cu 및 불가피한 불순물로 조성됨을 특징으로 하는 인장강도, 연신율, 전기전도도를 갖는 동합금.
100중량%로써, Ni 3.2∼4.0중량%, Si 0.7∼1.0중량%, Mg 0.05∼0.15중량%, Sn 0.05∼0.2중량%, Zn 0.05∼0.25중량%, Mn 0.05∼0.2중량% 이고, 나머지가 Cu 및 불가피한 불순물로 조성된 용탕을 얻는 단계, 주괴를 얻는 단계, 상기 주괴를 850∼1000℃온도로 가열하여 열간압연하는 단계, 냉간압연하는 단계, 시효처리(350∼550℃에서 1∼10시간)하는 단계로 이루어짐을 특징으로 하는 인장강도, 연신율, 전기전도도를 갖는 동합금의 제조방법.
제 2항에 있어서,
상기 냉간압연 단계와 시효처리 단계 사이에 용체화처리(850∼1000℃에서 10∼200초)하는 단계를 포함하는 동합금의 제조방법.
제2항 내지 제3항 중 어느 한 항에 있어서,
시효처리 단계에 이어서 응력제거소둔(300∼500℃에서 10∼80초)단계를 포함 하는 동합금의 제조방법.
제4항에 있어서,
응력제거소둔이 연속소둔로에서 행하여짐을 특징으로 하는 동합금의 제조방법.
제2항 내지 제3항 중 어느 한 항에 있어서,
시효처리 단계에 이어서 응력제거소둔(150∼300℃에서 30분∼10시간)단계를 포함하는 동합금의 제조방법.
제6항에 있어서,
응력제거소둔이 batch소둔로에서 행하여짐을 특징으로 하는 동합금의 제조방법.
KR1020090011285A 2009-02-12 2009-02-12 고강도 및 도전성 동합금 및 그 제조방법 KR101208578B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090011285A KR101208578B1 (ko) 2009-02-12 2009-02-12 고강도 및 도전성 동합금 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090011285A KR101208578B1 (ko) 2009-02-12 2009-02-12 고강도 및 도전성 동합금 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20100092096A true KR20100092096A (ko) 2010-08-20
KR101208578B1 KR101208578B1 (ko) 2012-12-06

Family

ID=42757040

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090011285A KR101208578B1 (ko) 2009-02-12 2009-02-12 고강도 및 도전성 동합금 및 그 제조방법

Country Status (1)

Country Link
KR (1) KR101208578B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108602097A (zh) * 2015-12-28 2018-09-28 株式会社豊山 用于汽车及电气电子元器件的铜合金材料及其生产方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4255330B2 (ja) * 2003-07-31 2009-04-15 日鉱金属株式会社 疲労特性に優れたCu−Ni−Si系合金部材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108602097A (zh) * 2015-12-28 2018-09-28 株式会社豊山 用于汽车及电气电子元器件的铜合金材料及其生产方法
CN108602097B (zh) * 2015-12-28 2020-02-11 株式会社豊山 用于汽车及电气电子元器件的铜合金材料及其生产方法
US11091827B2 (en) 2015-12-28 2021-08-17 Poongsan Corporation Copper alloy material for automobile and electrical and electronic components and method of producing the same

Also Published As

Publication number Publication date
KR101208578B1 (ko) 2012-12-06

Similar Documents

Publication Publication Date Title
EP1873267B1 (en) Copper alloy for electronic material
JP5170881B2 (ja) 電気・電子機器用銅合金材およびその製造方法
KR100515804B1 (ko) 고강도 티탄 구리 합금 및 그 제조법 및 그것을 사용한단자ㆍ커넥터
KR102126731B1 (ko) 구리합금 판재 및 구리합금 판재의 제조 방법
KR101260911B1 (ko) 고강도, 고전도성을 갖는 동합금 및 그 제조방법
KR101114116B1 (ko) 전기전자기기용 동합금 재료 및 전기전자부품
KR101917416B1 (ko) 전자 재료용 Cu-Co-Si 계 합금
EP2267172A1 (en) Copper alloy material for electric and electronic components
JP3904118B2 (ja) 電気、電子部品用銅合金とその製造方法
CN111868276B (zh) 铜合金板材及其制造方法
JP3800269B2 (ja) スタンピング加工性及び銀めっき性に優れる高力銅合金
JP6927844B2 (ja) 銅合金板材およびその製造方法
JPH10195562A (ja) 打抜加工性に優れた電気電子機器用銅合金およびその製造方法
KR101208578B1 (ko) 고강도 및 도전성 동합금 및 그 제조방법
JPH1081926A (ja) 電子機器用銅合金
JP3807387B2 (ja) 端子・コネクタ用銅合金及びその製造方法
JP2011190469A (ja) 銅合金材、及びその製造方法
KR20160001634A (ko) 구리합금재, 구리합금재의 제조방법, 리드프레임 및 커넥터
KR20160043674A (ko) 고강도, 고내열성, 고내식성 및 우수한 굽힘가공성을 가진 자동차 커넥터용 동합금재 및 이의 제조방법
JP2945208B2 (ja) 電気電子機器用銅合金の製造方法
JP4653239B2 (ja) 電気電子機器用銅合金材料および電気電子部品
JP6246454B2 (ja) Cu−Ni−Si系合金及びその製造方法
KR102345805B1 (ko) 강도와 압연 평행 방향 및 압연 직각 방향의 굽힘 가공성이 우수한 Cu-Ni-Si계 합금 스트립
JP3519888B2 (ja) 電子機器用銅合金及びその製造方法
JP3800268B2 (ja) スタンピング加工性及び銀めっき性に優れる高力銅合金

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151019

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161018

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171017

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191016

Year of fee payment: 8