KR20100053571A - 순수 제조장치 및 순수 제조방법 - Google Patents

순수 제조장치 및 순수 제조방법 Download PDF

Info

Publication number
KR20100053571A
KR20100053571A KR1020107003898A KR20107003898A KR20100053571A KR 20100053571 A KR20100053571 A KR 20100053571A KR 1020107003898 A KR1020107003898 A KR 1020107003898A KR 20107003898 A KR20107003898 A KR 20107003898A KR 20100053571 A KR20100053571 A KR 20100053571A
Authority
KR
South Korea
Prior art keywords
water
concentration
electric
electric deionizer
boron
Prior art date
Application number
KR1020107003898A
Other languages
English (en)
Other versions
KR101563169B1 (ko
Inventor
쿠니히로 이와사키
Original Assignee
쿠리타 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쿠리타 고교 가부시키가이샤 filed Critical 쿠리타 고교 가부시키가이샤
Publication of KR20100053571A publication Critical patent/KR20100053571A/ko
Application granted granted Critical
Publication of KR101563169B1 publication Critical patent/KR101563169B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • C02F9/20Portable or detachable small-scale multistage treatment devices, e.g. point of use or laboratory water purification systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

붕소 농도가 낮은 순수를 효율적으로 제조하기 위하여, 초순수 제조장치는, 활성탄장치(1)와, 히터(2)와, 막식 여과장치(3)와, 원수 탱크(4)와, 전처리장치(5)와, 전기탈이온장치(6)와, 일차 순수의 서브 탱크(7)로 구성되어 있고, 전처리장치(5)는, 제 1 역침투막(RO)장치(8)와, 제 2 역침투막(RO)장치(9)와, 탈탄산막장치(10)에 의해 구성되고, 이 전처리장치(5)가, 원수(W0)의 수질에 따라서, 염화물 이온 농도 100ppb이하의 처리수(W1)를 전기탈이온장치(6)의 탈염실로 도입할 수 있도록 설계되어 있다.

Description

순수 제조장치 및 순수 제조방법{PURE WATER PRODUCTION APPARATUS AND PURE WATER PRODUCTION METHOD}
본 발명은, 초순수 제조 시스템 등을 조립하는데 호적한 순수 제조장치에 관한 것으로서, 특히 붕소 농도가 낮은 순수를 제조하기 위한 순수 제조장치에 관한 것이다. 또한, 본 발명은, 초순수 제조 시스템 등에 호적한 순수 제조방법에 관한 것으로서, 특히 붕소 농도가 낮은 순수를 제조하기 위한 순수 제조방법에 관한 것이다.
초순수 제조 시스템은, 통상, 전처리 시스템, 일차 순수 시스템 및 서브 시스템으로 구성된다. 전처리 시스템은, 응집 여과, MF막(정밀 여과막), UF막(한외 여과막) 등에 의한 제탁 처리장치, 활성탄 등에 의한 탈염소 처리장치에 의해 구성된다.
일차 순수 시스템은, RO(역침투막)장치, 탈기막장치, 전기탈이온장치 등에 의해 구성되어, 대부분의 이온성분이나 TOC성분이 제거된다. 또한, 서브 시스템은, UV장치(자외선 산화장치), 비재생형 이온 교환장치, UF장치(한외 여과장치) 등에 의해 구성되어, 미량 이온의 제거, 특히 저분자의 미량 유기물의 제거, 미립자의 제거가 실시된다. 상기 서브 시스템으로 만들어진 초순수는, 사용 포인트에 송수되고, 잉여의 초순수는 서브 시스템의 전단의 탱크로 반송되는 것이 일반적이다.
그렇지만, 초순수의 요구 수질은 매년 엄격해져서, 현재, 최첨단의 전자 산업 분야에서는 붕소 농도 10ppt이하의 초순수가 요구되고 있다. 상기 붕소는, 초순수 중에서는 대부분 붕산 이온으로서 존재하지만, 상기 붕산 이온은, 약이온이기 때문에 제거하는 것이 어렵다. 여기에서 붕소 농도가 낮은 순수를 제조하기 위하여, RO장치의 급수를 pH10이상으로 하여 RO장치에서의 붕소 제거율을 향상시키는 것이 제안되고 있다(특허문헌1 참조).
또한, 전처리후의 처리수를 붕소 선택성 이온교환수지와 접촉시키는 것(특허문헌2 참조), 원수를 RO장치 등의 탈염장치에서 탈염한 후, 붕소 흡착 수지탑에 통수하는 것이 제안되고 있다(특허문헌3 참조).
나아가, 원수를 전처리장치, 2단 RO장치, 전기 재생식 탈염장치 등을 통수한 처리수를, 붕소 선택성 이온교환수지에 접촉시키는 초순수 제조장치가 제안되고 있다(특허문헌4 참조).
특허문헌 1: 특허 제 3321179호 공보
특허문헌 2: 특허 제 3200301호 공보
특허문헌 3: 특개 평8-89956호 공보
특허문헌 4: 특개 평9-192661호 공보
특허문헌 1에 기재된 순수 제조방법에서는, RO장치의 급수를 pH10이상으로 조정하기 위하여 알카리를 사용하던지, 음이온 교환 수지탑을 설치할 필요가 있고, 약품 비용 또는 장치적 부하가 드는 데다가, 연속 운전을 할 수 없다는 문제점이 있다.
또한, 특허문헌 2~4에 기재된 순수 제조방법은, 처리수를 붕소 선택성 이온교환수지나 붕소 흡착수지에 유통함으로써, 붕소를 제거하는 것이지만, 피처리수의 붕소 농도가 높으면, 이러한 붕소 흡착수지 등이 단기간에 지나치게 파과(破過)되는 한편, 피처리수의 붕소 농도가, 예를 들어 10ppb이하 정도의 저농도이면 제거율이 저하되는 문제점이 있다. 나아가 붕소 흡착수지로부터의 TOC의 용출의 우려가 있으므로, 붕소 흡착수지의 세정, 컨디셔닝이 필요한 문제점도 있다.
나아가, 전기탈이온장치에 의해, 음이온인 붕산 이온을 동시에 제거해야 하는 경우가 고려되지만, 붕산 이온은 약이온이므로, 전기탈이온장치의 전류 밀도를 올려서 운전하여도 제거율을 90%이상으로 하는 것은 곤란하다. 또한, RO장치를 조합하여도 붕소 제거율을 98%이상으로 할 수는 없다.
즉, 최근, 초순수의 요구 수질은 매년 엄격해져, 붕소 농도 100ppt이하, 최첨단의 전자 산업 분야에서는 붕소 농도 10ppt이하, 경우에 따라서는 1ppt이하의 수질이 요구되는 것에 상관없이, 간단한 구조로 이를 달성할 수 있는 순수 제조장치는 없었다. 이를 전기탈이온장치에서 달성하기 위해서는 적어도 전기탈이온장치에서의 붕소 제거율을 99%이상, 특히 99.5%이상으로 하는 것이 필요하다.
본 발명은, 상기 과제에 비추어 이루어진 것으로, 붕소 농도가 낮은 순수를 효율적으로 제조할 수 있는 순수 제조장치를 제공하는 것을 목적으로 한다. 또한, 본 발명은, 붕소 농도가 낮은 순수를 효율적으로 제조할 수 있는 순수 제조방법을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위하여, 첫번째로 본 발명은, 전처리장치와, 상기 전처리장치의 처리수를 탈염실로 받아들여서 탈이온처리를 실시하는 전기탈이온장치를 갖는 순수 제조장치로서, 상기 전처리장치가, 상기 전기탈이온장치의 탈염실로 도입하는 처리수의 염화물 이온 농도를 100ppb이하로 하는 것을 특징으로 하는 순수 제조장치를 제공한다(발명 1).
상기 발명(발명1)에 따르면, 염화물 이온은 붕소보다도 그 제거가 용이하고, 전기탈이온장치로 도입하는 처리수의 염화물 이온 농도를 100ppb이하로 함으로써, 전기탈이온장치에서의 붕소의 제거율을 99%이상으로 대폭 향상시킬 수 있다.
상기 발명(발명 1)에서는, 상기 전처리장치가, 하나 또는 둘이상의 RO막장치를 구비하여, 상기 전기탈이온장치의 탈염실로 도입하는 처리수의 탄산 농도를 1ppm이하로 하는 것이 바람직하고(발명2), 이러한 발명(발명2)에서는, 상기 전처리장치가, 하나 또는 둘 이상의 이온 교환수지탑을 더 구비하는 것이 바람직하며(발명 3), 이러한 발명(발명 3)에서는, 상기 전처리장치가, 탈탄산막장치, 탈탄산탑 또는 진공탈기탑을 더 구비하는 것이 바람직하다(발명 4).
상기 발명(발명 2~4)에 따르면, 전기탈이온장치의 탈염실로 도입되는 처리수의 염화물 이온 농도 및 탄산이온 농도를 더 저감할 수 있고, 전기탈이온장치에서의 붕소의 제거율을 더 향상시킬 수 있다.
상기 발명(발명 1~4)에서는, 상기 전기탈이온장치의 탈염수의 일부를, 상기 전기탈이온장치의 농축실로 상기 탈염실로의 처리수의 도입방향과 반대방향에서 도입하는 것이 바람직하다(발명 5).
상기 발명(발명 5)에 따르면, 수질이 양호한 탈염실의 배출수(탈염수)를 탈염실의 출구측으로부터 입구측의 방향을 향해서 농축실로 유통함으로써, 탈염실과 농축실의 사이의 붕소의 농도 구배가 완화되므로, 전기탈이온장치에서의 붕소의 제거율을 더 향상시킬 수 있다.
상기 발명(발명 1~5)에서는, 상기 전기탈이온장치가, 복수단 직렬로 설치되어 있는 것이 바람직하다(발명 6). 이러한 발명(발명 6)에 따르면, 붕소의 제거율을 99.99%까지 높일 수 있기 때문에, 붕소이온 농도 1ppt이하의 초순수의 공급도 가능하게 된다.
두번째로 본 발명은, 원수를 전처리장치에서 처리하고, 이 처리수를 전기탈이온장치의 탈염실로 도입하여 탈이온처리를 실시하는 순수의 제조방법으로서, 상기 전처리장치에서 염화물 이온 농도를 100ppb이하로 한 처리수를, 상기 전기탈이온장치의 탈염실로 도입하는 것을 특징으로 하는 순수 제조방법을 제공한다(발명 7).
상기 발명(발명 7)에 따르면, 염화물 이온은 붕소보다도 그 제거가 용이하며, 전기탈이온장치로 도입하는 처리수의 염화물 이온 농도를 100ppb이하로 함으로써, 전기탈이온장치에서의 붕소의 제거율을 99%이상으로 대폭 향상시킬 수 있다.
상기 발명(발명 7)에서는, 상기 전기탈이온장치의 탈염수의 일부를, 상기 전기탈이온장치의 농축실로 상기 탈염실로의 처리수의 도입방향과 반대방향에서 도입하는 것이 바람직하다(발명 8).
상기 발명(발명 8)에 따르면, 수질이 양호한 탈염실의 배출수(탈염수)를 탈염실의 출구측으로부터 입구측의 방향을 향하여 농축실로 유통함으로써, 탈염실과 농축실의 사이의 붕소의 농도 구배가 완화되므로, 전기탈이온장치에서의 붕소의 제거율을 더 향상시킬 수 있다.
상기 발명(발명 7, 8)에서는, 상기 전기탈이온장치가, 복수단 직렬로 설치되어 있는 것이 바람직하다(발명 9). 이러한 발명(발명 9)에 따르면, 붕소의 제거율을 99.99%까지 높일 수 있기 때문에, 붕소이온 농도 1ppt이하의 초순수의 공급도 가능하게 된다.
상기 발명(발명 9)에서는, 상기 복수단의 전기탈이온장치 중 최후단의 전기탈이온장치의 농축수를, 상기 처리수와 함께 첫번째 단의 전기탈이온장치의 탈염실로 도입하는 것이 바람직하다(발명 10).
상기 발명(발명 10)에 따르면, 최후의 전기탈이온장치의 농축수는, 전처리장치에서 처리한 후의 처리수보다도 붕소 농도가 낮을 뿐만 아니라, 염화물 이온 농도가 대폭 낮기 때문에, 이를 첫번째 단의 전기탈이온장치의 탈염실로 도입함으로써, 장치의 기본 구성은 그 상태에서 첫번째 단의 전기탈이온장치의 탈염실로부터의 처리수의 붕소 농도를 더 개선할 수 있다.
본 발명의 순수 제조장치에 따르면, 염화물 이온은 붕소보다도 그 제거가 용이하며, 전기탈이온장치로 도입하는 처리수의 염화물 이온 농도를 100ppb이하로 함으로써, 전기탈이온장치에서의 붕소의 제거율을 99%이상으로 대폭 향상시킬 수 있다. 본 발명에 따르면, 전기탈이온장치에 의해 붕소의 대폭적인 제거가 가능하기 때문에, 연속 운전이 가능하게 되는 것은 물론, 알카리 등의 약품을 사용하지 않으므로 환경 부하가 적고, 급수(원수)의 붕소 농도가 넓은 영역에 대응할 수 있다. 또한, 붕소 흡착수지 등에 비하여 파과가 발생하지 않기 때문에, 수년간에 걸쳐 안정적으로 붕소 농도가 낮은 순수의 공급이 가능하게 된다. 게다가, 전기탈이온장치를 복수단 직렬로 설치함으로써, 붕소이온 농도를 1ppt이하의 초순수도 공급할 수 있다.
도 1은 본 발명의 제 1 실시형태에 따른 순수 제조장치를 도시한 플로우 도면.
도 2는 본 발명의 제 1 실시형태의 전기탈이온장치의 탈염실 및 농축실을 도시한 개략 구성도.
도 3은 본 발명의 제 2 실시형태에 따른 순수 제조장치를 도시한 플로우 도면.
도 4는 비교예 1의 순수 제조장치를 도시한 플로우 도면.
[제 1 실시형태]
이하, 본 발명의 순수 제조장치의 제 1 실시형태에 대하여, 도면에 기초하여 상세히 설명한다.
도 1은, 본 실시형태에 따른 순수 제조장치를 나타낸 플로우 도면이고, 도 2는, 본 실시형태에서의 전기탈이온장치를 나타낸 개략 구성도이다.
도 1에 나타낸 바와 같이, 초순수 제조장치는, 활성탄장치(1)와, 히터(2)와, 막식 여과장치(3)와, 원수 탱크(4)와, 전처리장치(5)와, 전기탈이온장치(6)와, 1차 순수의 서브 탱크(7)로 구성되어 있다. 그리고, 본 실시형태에서는, 전처리장치(5)는, 제 1 역침투막(RO)장치(8)와, 제 2 역침투막(RO)장치(9)와, 탈탄산막장치(10)로 구성되어 있다. 상기 전처리장치(5)는, 원수(W0)의 수질에 따라서, 염화물 이온 농도 100ppb이하의 처리수(W1)가 전기탈이온장치(6)의 탈염실로 도입되도록 설치되어 있다.
상술한 바와 같이 초순수 제조장치에서, 전기탈이온장치(6)는, 도 2에 나타낸 바와 같이 탈염실(11)과 농축실(12)을 구비하고, 탈염실(11)에는, 전처리장치(5)의 처리수(W1)의 유로(R1)가 접속되는 한편, 탈염실(11)의 출구측은 탈염수(W2)의 유로(R2)로 되어 있다. 상기 유로(R2)로부터는 분기 유로(R3)가 분기되어 있고, 탈염실(11)의 탈염수(W2)의 일부를, 탈염실(11)의 출구측으로부터 입구측의 방향을 향하여 농축실(12)로 도입하는, 즉 탈염실(11)에서의 처리수(W1)의 유통 방향과 반대 방향으로부터 농축실(12)로 도입하여 농축수(W3)를 토출하는 구성으로 되어 있다.
이와 같은 구성을 갖는 초순수 제조장치에 대하여, 그 작용을 설명한다.
먼저, 원수(W0)를 활성탄장치(1)에서 유기물을 제거한 후, 히터(2)에서 소정의 온도로까지 가온한 후, 막식 여과장치(3)에서 고체 미립자를 제거하여 원수 탱크(4)에 일단 저장한다. 이어서, 이 원수(W0)에 대하여 전처리장치(5)에서 처리를 실시한다.
상기 전처리장치(5)에서는, 제 1 역침투막(RO)장치(8)와, 제 2 역침투막(RO)장치(9)에 의해 강이온성의 불순물이 제거되고, 나아가 탈탄산막장치(10)에 의해 탄산이온(CO2)이 제거된다.
상기 전처리장치(5)는, 처리수(W1) 중의 염화물 이온 농도가 100ppb이하, 바람직하게는 50ppb이하, 특히 바람직하게는 30ppb이하가 되도록 설계한다. 처리수(W1) 중의 염화물 이온 농도가 100ppb를 넘으면, 후속의 전기탈이온장치(6)에서의 붕소의 제거율을 99%이상으로 할 수 없게 된다.
또한, 처리수(W1) 중의 CO2농도는 1ppm이하로 하는 것이 바람직하다. 처리수(W1) 중의 CO2 농도가 1ppm을 넘으면, 붕소의 제거율이 99%미만, 경우에 따라서는 90%미만까지 저하될 우려가 있다.
그리고, 이와 같은 처리수(W1)를 전기탈이온 장치(6)에서 처리한다. 이 전기탈이온 장치(6)에서는,전류 밀도 300mA/dm2이상으로 운전하는 것이 바람직하다.이와 같은 전류 밀도로 운전을 실시함으로써, 전기탈이온 장치의 성능에도 의존하지만, 종래의 전기탈이온 장치에서는 달성할 수 없었던 99%이상, 특히 99.5%이상의 붕소 제거율로 할 수 있다.
이와 같이 본 실시형태에 따른 순수 제조장치에 따르면, 처리수(W1)의 붕소 농도가 10ppb이하이면 확실히 붕소 농도 100ppt이하의 탈염수(W2)를 얻을 수 있다. 또한, 본 실시형태에 따른 순수 제조장치의 붕소 제거율이 99.5%이면, 처리수(W1)의 붕소 농도가 20ppb에서, 나아가 붕소 제거율이 99.8%이상이면, 처리수(W1)의 붕소 농도가 50ppb에서 붕소 농도 100ppt이하의 탈염수(W2)를 얻을 수 있다. 게다가, 전기탈이온장치(6)에 의해 붕소의 충분한 제거가 가능하게 되므로, 연속 운전이 가능하게 되는 것은 물론, 알카리 등의 약품을 사용하지 않으므로 환경 부하가 적다. 게다가, 급수(원수)의 붕소 농도가 넓은 영역에 대응 가능하며, 또한, 붕소 흡착 수지 등에 비하여 파과가 발생하지 않으므로, 수년간에 걸쳐 안정적으로 붕소 농도가 낮은 순수의 공급이 가능하게 된다.
[제 2 실시형태]
다음으로 본 발명의 순수 제조장치의 제 2 실시형태에 대하여, 도 3에 기초하여 설명한다.
도 3은 제 2 실시형태에 따른 순수 제조장치를 나타낸 플로우 도면이다.
제 2 실시형태에 따른 순수 제조장치는, 전술한 제 1 실시형태에서의 전기탈이온장치를, 제 1 전기탈이온장치(6A) 및 제 2 전기탈이온장치(6B)의 2단 직렬로 배치하고, 제 2 전기탈이온장치(6B)의 농축수(W3)를 제 1 전기탈이온장치(6A)의 전단에 설치된 처리수 탱크(T)로 반송하는 이외에는 동일한 구성을 갖는다.
이와 같은 구성을 갖는 초순수 제조장치에 대하여, 그 작용을 설명한다.
먼저, 원수(W0)에 대하여, 활성탄장치(1)에서 유기물의 제거처리를 한 후, 히터(2)에서 소정의 온도로까지 가온한 후, 막식 여과장치(3)에서 고체 미립자를 제거하여 원수 탱크(4)에 일단 저장한다. 그리고, 상기 원수(W0)에 대하여 전처리장치(5)에서 처리를 실시한다.
상기 전처리장치(5)에서는, 제 1 역침투막(RO)장치(8)와, 제 2 역침투막(RO)장치(9)에 의해 강이온성의 불순물이 제거되고, 나아가 탈탄산막장치(10)에 의해 탄산이온(CO2)이 제거된다.
상기 전처리장치(5)는, 처리수(W1) 중의 염화물 이온 농도는 100ppb이하, 바람직하게는 50ppb이하, 특히 바람직하게는 30ppb이하가 되도록 설계한다. 처리수(W1) 중의 염화물 이온 농도가 100ppb를 넘으면, 후속의 전기탈이온장치(6A)에서의 붕소 농도의 제거율을 99%이상으로 할 수 없게 된다.
그리고, 이와 같은 처리수(W1)를 제 1 전기탈이온장치(6A) 및 제 2 전기탈이온장치(6B)에서 연속적으로 처리하는 동시에, 농축수(W3)를 제 1 전기탈이온장치(6A)의 전단에 설치된 처리수 탱크(T)로 반송한다.
상기 전기탈이온장치(6A),(6B)를, 전류 밀도 300mA/dm2이상으로 운전하는 것이 바람직하다. 전류 밀도 300mA/dm2미만에서는, 붕소 제거율이 99%미만이 되므로 바람직하지 않다. 구체적으로는, 제 1 전기탈이온장치(6A)에서는, 99%이상의 붕소가, 또한 제 2 전기탈이온장치(6B)에서는 99%이상의 붕소가 제거되는 것이 된다.
특히, 본 실시형태에서는 제 2 전기탈이온장치(6B)의 농축수(W3)를 제 1 전기탈이온장치(6A)의 전단에 설치된 처리수 탱크(T)로 반송하고 있고, 이 농축수(W3)는 처리수(W1)보다도 붕소 농도가 낮으므로, 경시적으로는 처리수 탱크(T)에서는, 처리수(W1)보다도 염화물이온 농도 및 붕소 농도가 더 낮기 때문에, 붕소 농도 1ppt이하의 초순수를 얻는 것도 가능하게 된다.
이상, 본 실시형태에 따른 순수 제조 시스템에 대하여 도면에 기초하여 설명하였지만, 본 발명은 상기 실시형태에 한정되는 것은 아니며, 다양한 변경 실시가 가능하다.
예를 들어 전처리장치(5)는, 전기탈이온장치(6)에 100ppb이하의 염화물 이온 농도의 처리수(W1)를 공급할 수 있고, 또한 소망으로 하는 붕소 농도의 순수가 얻어지도록, 원수(W0)의 수질에 따라서 다양하게 설정할 수 있다.
구체적으로는, 전처리장치(5)를
(1)RO장치+탈탄산막장치
(2)제 1의 RO장치+제 2의 RO장치+탈탄산막장치
(3)이온 교환수지장치(2B3T)+RO장치+탈탄산막장치
(4)이온 교환수지장치(4B5T)+RO장치+탈탄산막장치
등으로 할 수 있다.
또한, 전기탈이온장치(6)는, 1단이어도 좋고, 2단 또는 3단 이상을 직렬로 설치해도 좋고, 3단 이상 설치된 경우에는, 최종단의 전기탈이온장치(6)의 농축수(W3)를 1단째의 전기탈이온장치의 처리수(W1)에 합류시키면 좋다.
나아가 전기탈이온장치(6)로서는 특별히 제한은 없지만, 수직측면은 물을 투과하지 않지만, 경사면은 물을 투과하는 육각형의 부재를 탈염실(11)에 설치한 것을 알맞게 사용할 수 있다.
[실시예]
이하, 실시예 및 비교예를 들어 본 발명을 보다 구체적으로 설명한다.
또한, 본 실시예 및 비교예에서는, 하기의 시험장치를 사용했다.
·전기탈이온장치(쿠리타 공업사 제품, 제품명: KCDI-UPz-150H, 처리수량:150㎥/hr)
·역침투막장치(일동전공사 제품, 제품명: ES-20)
·탈탄산막장치(리키셀사 제품, 제품명: X-50)
[실시예1]
도 1 및 도 2에 나타낸 바와 같이, 전처리장치(5)를 제 1 역침투막(RO)장치(8)와, 제 2 역침투막(RO)장치(9)와, 탈탄산막장치(10)에 의해 구성하고, 전기탈이온장치(6)를 1단으로 배치하여 순수 제조장치를 제조했다.
상기 순수 제조장치에 의해 붕소 농도가 25ppb, 염화물 이온 농도가 11000ppb, CO2 농도가 8ppm의 원수(W0)를 처리한 결과, 전처리장치(5)의 처리수(W1)의 붕소 농도는 25ppb, 염화물 이온 농도는 10ppb, CO2 농도는 1ppm이하였다.
그리고, 상기 처리수(W1)를 전기탈이온장치(6)에서 처리한 결과, 붕소 농도가 50ppt, 염화물 이온 농도가 0.5ppb이하, CO2 농도가 0.01ppm이하의 탈염수(W2)가 얻어진다. 이 때, 전기탈이온장치(6)에서의 붕소 제거율은 99.8%였다.
[비교예 1]
도 4에 나타낸 바와 같이 실시예 1에서, 역침투막(RO)장치를 1단 구성으로 한 이외에는 동일한 장치 구성으로 순수 제조장치를 제조했다.
상기 순수 제조장치에 의해, 실시예 1과 동일 원수(WO)를 처리한 결과, 전처리장치(5)의 처리수(W1)의 붕소 농도는 25ppb, 염화물 이온 농도는 150ppb, CO2 농도는 1ppm이하였다.
그리고, 상기 처리수(W1)를 전기탈이온장치(6)에서 처리한 결과, 붕소 농도가 500ppt, 염화물 이온 농도가 0.5ppb이하, CO2 농도가 0.01ppm이하의 탈염수(W2)가 얻어졌다. 이 때, 전기탈이온장치(6)에서의 붕소 제거율은 98%였다.
[비교예 2]
실시예1에서, 처리수(W1)에 염화나트륨을 첨가하여 전처리장치(5)의 처리수(W1)의 염화물 이온 농도를 150ppb로 한 이외에는 동일하게 해서 처리를 실시한 결과, 붕소 농도가 400ppt, 염화물 이온 농도가 0.5ppb이하, CO2 농도가 0.01ppm이하의 탈염수(W2)가 얻어진다. 전기탈이온장치(6)에서의 붕소 제거율은 98.4%였다.
[실시예 2]
도 3에 나타낸 바와 같이, 전처리장치(5)를 제 1 역침투막(RO)장치(8)와, 제 2 역침투막(RO)장치(9)와, 탈탄산막장치(10)에 의해 구성하고, 전기탈이온장치를 6A, 6B의 2단으로 직렬로 배치하여, 제 2 전기탈이온장치(6B)의 농축수(W3)를 제 1 전기탈이온장치(6A)의 전단에 설치된 처리수 탱크(T)로 반송하는 구성으로서 순수 제조장치를 제조했다.
상기 순수 제조장치에 의해, 붕소 농도가 25ppb, 염화물 이온 농도가 11000ppb, CO2 농도가 8ppm의 원수(W0)를 처리한 결과, 전처리장치(5)의 처리수(W1)의 붕소 농도는 25ppb, 염화물 이온 농도는 30ppb, CO2 농도는 1ppm이하였다.
그리고, 상기 처리수(W1)를 전기탈이온장치(6A),(6B)에서 연속적으로 처리한 결과, 15시간 경과후에는, 처리수 탱크(T)의 처리수의 붕소 농도는 20ppb, 염화물 이온 농도는 24ppb, CO2 농도는 0.6ppm이며, 첫번째단의 전기탈이온장치(6A)의 탈염수의 붕소 농도는 40ppt, 염화물 이온 농도는 0.5ppb이하, CO2 농도는 0.1ppm이하이며, 전기탈이온장치(6A)에서의 붕소 제거율은 99.8%였다. 나아가 두번째단의 전기탈이온장치(6B)의 탈염수의 붕소 농도는 0.4ppt, 염화물 이온 농도는 0.5ppb이하, CO2 농도는 0.01ppm이하이며, 전기탈이온장치(6B)에서의 붕소 제거율은 99%였다.
[비교예3]
실시예 2에서, 처리수 탱크(T)에 염화나트륨을 첨가하여 전기탈이온장치(6)의 처리수(W1)의 염화물 이온 농도를 150ppb로 한 이외에는 동일하게 하여 처리를 실시한 결과, 제 1 전기탈이온장치(6A)의 탈염수의 붕소 농도는 400ppt, 염화물 이온 농도는 0.5ppb이하, CO2 농도는 0.01ppm이하이며, 제 1 전기탈이온장치(6A)에서의 붕소 제거율은 98%였다. 또한, 제 2 전기탈이온장치(6B)의 탈염수의 붕소 농도는 2ppt, 염화물 이온 농도는 0.5ppb이하, CO2 농도는 0.01ppm이하이며, 제 2 전기탈이온장치(6B)에서의 붕소 제거율은 99.5%였다.
5…전처리장치
6…전기탈이온장치
6A…제 1 전기탈이온장치
6B…제 2 전기탈이온장치
8…제 1 역침투막(RO)장치(전처리장치)
9…제 2 역침투막(RO)장치(전처리장치)
10…탈탄산막장치(전처리장치)
11…탈염실
12…농축실
W3…농축수
T…처리수 탱크

Claims (10)

  1. 전처리장치와, 상기 전처리장치의 처리수를 탈염실로 받아들여 탈이온 처리를 실시하는 전기탈이온장치를 갖는 순수 제조장치로서,
    상기 전처리장치가, 상기 전기탈이온장치의 탈염실로 도입하는 처리수의 염화물 이온 농도를 100ppb이하로 하는 것을 특징으로 하는 순수 제조장치.
  2. 청구항 1에 있어서,
    상기 전처리장치가, 하나 또는 둘 이상의 RO막장치를 구비하고, 상기 전기탈이온장치의 탈염실로 도입하는 처리수의 탄산 농도를 1ppm이하로 하는 것을 특징으로 하는 순수 제조장치.
  3. 청구항 2에 있어서,
    상기 전처리장치가, 하나 또는 둘 이상의 이온교환수지탑을 더 구비하는 것을 특징으로 하는 순수 제조장치.
  4. 청구항 3에 있어서,
    상기 전처리장치가, 탈탄산막장치, 탈탄산탑 또는 진공탈기탑을 더 구비하는 것을 특징으로 하는 순수 제조장치.
  5. 청구항 1 내지 4중 어느 한 항에 있어서,
    상기 전기탈이온장치의 탈염수의 일부를, 상기 전기탈이온장치의 농축실로 상기 탈염실로의 처리수의 도입방향과 반대방향으로부터 도입하는 것을 특징으로 하는 순수 제조장치.
  6. 청구항 1 내지 5중 어느 한 항에 있어서,
    상기 전기탈이온장치가, 복수단 직렬로 설치되어 있는 것을 특징으로 하는 순수 제조장치.
  7. 원수를 전처리장치에서 처리하고, 이 처리수를 전기탈이온장치의 탈염실로 도입하여 탈이온 처리를 실시하는 순수의 제조방법으로서,
    상기 전처리장치에서 염화물 이온 농도를 100ppb이하로 한 처리수를, 상기 전기탈이온장치의 탈염실로 도입하는 것을 특징으로 하는 순수 제조방법.
  8. 청구항 7에 있어서,
    상기 전기탈이온장치의 탈염수의 일부를, 상기 전기탈이온장치의 농축실로 상기 탈염실로의 처리수의 도입방향과 반대방향으로부터 도입하는 것을 특징으로 하는 순수 제조방법.
  9. 청구항 7 또는 8에 있어서,
    상기 전기탈이온장치가, 복수단 직렬로 설치되어 있는 것을 특징으로 하는 순수 제조방법.
  10. 청구항 9에 있어서,
    상기 복수단의 전기탈이온장치 중 마지막 단의 전기탈이온장치의 농축수를, 상기 처리수와 함께 첫번째단의 전기탈이온장치의 탈염실로 도입하는 것을 특징으로 하는 순수 제조방법.
KR1020107003898A 2007-07-30 2008-07-18 순수 제조장치 및 순수 제조방법 KR101563169B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2007-198084 2007-07-30
JP2007198084A JP2009028695A (ja) 2007-07-30 2007-07-30 純水製造装置及び純水製造方法

Publications (2)

Publication Number Publication Date
KR20100053571A true KR20100053571A (ko) 2010-05-20
KR101563169B1 KR101563169B1 (ko) 2015-10-26

Family

ID=40304215

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107003898A KR101563169B1 (ko) 2007-07-30 2008-07-18 순수 제조장치 및 순수 제조방법

Country Status (5)

Country Link
JP (1) JP2009028695A (ko)
KR (1) KR101563169B1 (ko)
CN (1) CN101827792B (ko)
TW (1) TWI414486B (ko)
WO (1) WO2009016982A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523062B1 (ko) * 2013-12-16 2015-06-01 한국수력원자력 주식회사 오프라인 모듈형/이동식 방사성 폐액 처리시스템
KR101533978B1 (ko) * 2013-12-16 2015-07-06 한국수력원자력 주식회사 축전식탈염장치와 전기탈염장치의 결합형 방사성 폐액 처리시스템

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4825858B2 (ja) * 2008-09-17 2011-11-30 株式会社東芝 ホウ素分離システム
JP5617231B2 (ja) * 2009-11-27 2014-11-05 栗田工業株式会社 イオン交換樹脂の精製方法及び精製装置
WO2012106607A1 (en) * 2011-02-04 2012-08-09 Siemens Industry, Inc. Electrical purification apparatus and methods of manufacturing same
JP5733351B2 (ja) * 2013-07-22 2015-06-10 栗田工業株式会社 ホウ素含有水の処理方法及び装置
JP6011655B2 (ja) * 2015-02-17 2016-10-19 栗田工業株式会社 電気脱イオン装置及び純水製造装置
CN105060534A (zh) * 2015-08-18 2015-11-18 芜湖奕辰模具科技有限公司 一种纯水机
JP2017056384A (ja) * 2015-09-14 2017-03-23 栗田工業株式会社 電気脱イオン装置の運転方法
WO2017056792A1 (ja) * 2015-09-30 2017-04-06 オルガノ株式会社 水処理装置および水処理方法
JP6119886B1 (ja) * 2016-01-28 2017-04-26 栗田工業株式会社 超純水製造装置および超純水製造装置の運転方法
JP6778591B2 (ja) 2016-11-25 2020-11-04 野村マイクロ・サイエンス株式会社 超純水製造方法及び超純水製造システム
CN108654386A (zh) * 2018-06-21 2018-10-16 广东工业大学 一种超滤膜净水系统
JP7289206B2 (ja) * 2019-03-13 2023-06-09 オルガノ株式会社 ホウ素除去装置及びホウ素除去方法、並びに、純水製造装置及び純水の製造方法
JP7200014B2 (ja) * 2019-03-13 2023-01-06 オルガノ株式会社 純水製造装置および純水の製造方法
JP7236313B2 (ja) 2019-04-10 2023-03-09 野村マイクロ・サイエンス株式会社 膜脱気装置の洗浄方法及び超純水製造システム
KR102043037B1 (ko) * 2019-05-15 2019-11-11 주식회사 거남 용수 처리 장치
JP6799657B1 (ja) * 2019-10-24 2020-12-16 オルガノ株式会社 水処理システム及び超純水製造システム並びに水処理方法
JP7460012B1 (ja) 2022-12-26 2024-04-02 栗田工業株式会社 電気脱イオン装置及びその運転方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3575260B2 (ja) * 1997-12-26 2004-10-13 栗田工業株式会社 純水製造装置
JP3826690B2 (ja) * 1999-08-11 2006-09-27 栗田工業株式会社 電気脱イオン装置及び純水製造装置
JP4403622B2 (ja) * 2000-01-20 2010-01-27 栗田工業株式会社 電気脱塩処理方法及び電気脱塩処理装置
WO2003086629A1 (en) * 2002-04-12 2003-10-23 Ionics, Incorporated Ion exchange regeneration and upw treatment system
JP3901107B2 (ja) * 2003-02-21 2007-04-04 栗田工業株式会社 電気脱イオン装置及びその運転方法
US6929748B2 (en) * 2003-03-28 2005-08-16 Chemitreat Pte Ltd Apparatus and method for continuous electrodeionization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523062B1 (ko) * 2013-12-16 2015-06-01 한국수력원자력 주식회사 오프라인 모듈형/이동식 방사성 폐액 처리시스템
KR101533978B1 (ko) * 2013-12-16 2015-07-06 한국수력원자력 주식회사 축전식탈염장치와 전기탈염장치의 결합형 방사성 폐액 처리시스템

Also Published As

Publication number Publication date
CN101827792B (zh) 2012-08-22
CN101827792A (zh) 2010-09-08
WO2009016982A1 (ja) 2009-02-05
TW200911702A (en) 2009-03-16
TWI414486B (zh) 2013-11-11
JP2009028695A (ja) 2009-02-12
KR101563169B1 (ko) 2015-10-26

Similar Documents

Publication Publication Date Title
KR20100053571A (ko) 순수 제조장치 및 순수 제조방법
US7699968B2 (en) Water purifying system
WO1999050184A1 (en) Water treatment system and process comprising ph-adjustment
WO2015012054A1 (ja) ホウ素含有水の処理方法及び装置
KR20090036596A (ko) 전기 탈이온 장치
JP2001113281A (ja) 電気脱イオン装置及び純水製造装置
KR20170097036A (ko) 초순수 제조 장치 및 초순수 제조 방법
CN110678420A (zh) 超纯水制造系统及超纯水制造方法
JP2014000575A (ja) 純水製造装置及び純水製造方法
CN111252971A (zh) 一种超纯水制造系统及使用该系统的超纯水制造方法
JP2004283710A (ja) 純水製造装置
JP2004033976A (ja) 脱イオン水の製造方法及び装置
JP4993136B2 (ja) 純水製造装置及び純水製造方法
JP2000051845A (ja) 純水製造方法
JP2020078772A (ja) 電気脱イオン装置及びこれを用いた脱イオン水の製造方法
JP5158393B2 (ja) 純水製造装置及び純水製造方法
JP2001191080A (ja) 電気脱イオン装置及びそれを用いた電気脱イオン化処理方法
JP2000051665A (ja) 脱塩方法
CN114616212A (zh) 纯水制造方法、纯水制造系统、超纯水制造方法及超纯水制造系统
JP4552273B2 (ja) 電気脱イオン装置
CN112424128B (zh) 纯水制造系统及纯水制造方法
JP3901107B2 (ja) 電気脱イオン装置及びその運転方法
JP2018143922A (ja) 水処理装置
JP2001179262A (ja) 純水製造装置
KR100692698B1 (ko) 전기탈이온장치 및 그것을 사용한 전기탈이온화처리방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181004

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191002

Year of fee payment: 5