KR20100030673A - 원자로 - Google Patents

원자로 Download PDF

Info

Publication number
KR20100030673A
KR20100030673A KR1020107002863A KR20107002863A KR20100030673A KR 20100030673 A KR20100030673 A KR 20100030673A KR 1020107002863 A KR1020107002863 A KR 1020107002863A KR 20107002863 A KR20107002863 A KR 20107002863A KR 20100030673 A KR20100030673 A KR 20100030673A
Authority
KR
South Korea
Prior art keywords
ring
core
rectifying
reactor
lower plenum
Prior art date
Application number
KR1020107002863A
Other languages
English (en)
Other versions
KR101129735B1 (ko
Inventor
노부끼 우다
시게유끼 와따나베
Original Assignee
미츠비시 쥬고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미츠비시 쥬고교 가부시키가이샤 filed Critical 미츠비시 쥬고교 가부시키가이샤
Publication of KR20100030673A publication Critical patent/KR20100030673A/ko
Application granted granted Critical
Publication of KR101129735B1 publication Critical patent/KR101129735B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • G21C15/04Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices from fissile or breeder material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • G21C13/032Joints between tubes and vessel walls, e.g. taking into account thermal stresses
    • G21C13/036Joints between tubes and vessel walls, e.g. taking into account thermal stresses the tube passing through the vessel wall, i.e. continuing on both sides of the wall
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

원자로에 있어서, 입구 노즐(44) 및 출구 노즐(45)을 갖는 원자로 용기(41) 내에 노심조(46)를 배치하고, 이 노심조(46) 내에 노심(53)을 배치하는 한편, 원자로 용기(41)와 노심조(46)의 저부에 의해 하부 플레넘(58)을 구획하는 동시에, 원자로 용기(41)와 노심조(46)의 측벽에 의해 다운 커머부(59)를 구획하고, 하부 플레넘(58)에 링 형상을 이루는 상부 링(65) 및 하부 링(69)과 이 각 링(65, 69)의 내측에 방사상을 이루는 복수의 스포크(64, 68)로 이루어지는 정류 부재(61)를 설치함으로써, 압력 용기 내로 도입된 냉각재를 하부 플레넘으로부터 노심에 대해 직경 방향 및 둘레 방향으로 균일하게 공급함으로써 열교환 효율의 향상을 도모한다.

Description

원자로 {NUCLEAR REACTOR}
본 발명은 내부에 노심을 갖는 원자로에 관한 것으로, 특히 노심의 냉각 구조에 관한 것이다.
가압수형 원자로(PWR : Pressurized Water Reactor)에서는 경수를 원자로 냉각재 및 중성자 감속재로서 사용하여, 1차계 전체에 걸쳐서 비등하지 않는 고온 고압수로 하고, 이 고온 고압수를 증기 발생기로 보내어 열교환에 의해 증기를 발생시켜, 이 증기를 터빈 발전기로 보내어 발전하는 것이다.
이와 같은 가압수형 원자로에서는, 외부로부터 냉각재를 원자로 내로 도입하여, 내부를 순환함으로써 노심을 냉각하고 있다. 즉, 냉각재는 원자로 용기에 형성된 복수의 냉각재 입구 노즐로부터 유입되어, 이 원자로 용기와 노심조 사이에 형성된 다운 커머부를 하향으로 흘러내려 하부 플레넘(plenum)에 이른다. 그리고, 이 냉각재는 하부 플레넘의 구면 형상의 내면에 의해 상향으로 안내되어 상승하고, 하부 노심판 등을 통과한 후, 노심으로 유입된다. 이 노심으로 유입된 냉각재는 노심을 구성하는 연료 집합체로부터 발생하는 열 에너지를 흡수함으로써, 이 연료 집합체를 냉각하는 한편, 고온으로 되어 상부 플레넘까지 상승하고, 원자로 용기에 형성된 냉각재 출구 노즐을 통해 배출된다.
이와 같은 가압수형 원자로에서는, 하부 플레넘에 노심조를 지지하는 래디얼 키나 연료 집합체에 검사 기기를 삽입하는 노내 계장 안내관 등의 구조물이 설치되어 있으므로, 다운 커머부를 통해 하부 플레넘에 공급된 냉각재가, 이 구조물에 충돌하여 분산하여, 노심에 대해 직경 방향 및 둘레 방향에 대해 유량 분포가 생겨 버린다.
그로 인해, 이 하부 플레넘에 냉각재의 흐름을 정류하는 연접판을 설치하는 것이, 예를 들어 하기 특허 문헌 1에 제안되어 있다. 이 특허 문헌 1에 기재된 원자로의 노내 구조는, 하부 플레넘에, 외주 형상이 냉각재의 주류의 흐름 방향에 비대칭 형상을 이루는 연접판을 설치함으로써, 박리 와류의 발생과 조장을 억제하여, 노심에 냉각재가 균일하게 유입되는 동시에, 냉각재의 흐름의 압력 손실을 저감시켜, 냉각재의 흐름을 안정시키는 것이다.
특허문헌1:일본특허출원공개제2005-009999호공보
그런데, 복수의 냉각재 입구 노즐로부터 유입된 냉각재는, 다운 커머부에서 합류하면서 하강하고, 하부 플레넘에서, 그 내면 형상에 의해 상향의 상승류로 변환될 때, 연접판에 의해 큰 와류의 발생이 억제되지만, 이 연접판을 통과한 와류나 연접판을 기점으로 한 와류가 발생하기 쉬워져, 노심에 대해 직경 방향 및 둘레 방향으로 균일한 냉각재의 흐름을 형성하는 것이 곤란해진다.
본 발명은 상술한 과제를 해결하는 것으로, 압력 용기 내로 도입된 냉각재를 하부 플레넘으로부터 노심에 대해 직경 방향 및 둘레 방향으로 균일하게 공급함으로써 열교환 효율의 향상을 도모하는 원자로를 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위한 청구항 1의 발명의 원자로는, 상부에 냉각재 입구 노즐 및 냉각재 출구 노즐을 갖는 압력 용기와, 상기 압력 용기 내에 배치되는 노심조와, 상기 노심조 내에 배치되는 노심과, 상기 압력 용기와 상기 노심조의 저부에 의해 구획되는 하부 플레넘과, 상기 압력 용기와 상기 노심조의 측벽에 의해 구획되어 상기 냉각재 입구 노즐에 연통하는 동시에 상기 하부 플레넘에 연통하는 다운 커머부를 구비하는 원자로에 있어서, 상기 하부 플레넘에 링 형상을 이루는 정류 링과 상기 정류 링의 내측에 방사상을 이루는 복수의 정류 스포크로 이루어지는 정류 부재가 설치되는 것을 특징으로 하는 것이다.
청구항 2의 발명의 원자로에서는, 상기 정류 링은 상부 링 및 하부 링을 갖고, 하부 노심판으로부터 수직 하강된 복수의 지주에 의해 지지되는 것을 특징으로 하고 있다.
청구항 3의 발명의 원자로에서는, 상기 정류 링은 외측 링 및 내측 링을 갖고, 하부 노심판으로부터 수직 하강된 복수의 지주에 의해 지지되는 동시에, 상기 외측 링과 상기 내측 링 사이에 상기 복수의 정류 스포크가 설치되는 것을 특징으로 하고 있다.
청구항 4의 발명의 원자로에서는, 상기 외측 링과 상기 내측 링 사이에 중간 링이 배치되고, 상기 중간 링은 상기 복수의 정류 스포크와 교차하는 것을 특징으로 하고 있다.
청구항 5의 발명의 원자로에서는, 상기 상부 링의 외경이 상기 하부 링의 외경보다 크게 설정되는 것을 특징으로 하고 있다.
청구항 6의 발명의 원자로에서는, 상기 상부 링에 설치된 복수의 정류 스포크와 상기 하부 링에 설치된 복수의 정류 스포크가 둘레 방향으로 어긋나게 배치되는 것을 특징으로 하고 있다.
청구항 7의 발명의 원자로에서는, 상기 정류 링의 외주부로부터 상기 원자로 용기의 내면측을 향해 정류 보조 부재가 설치되는 것을 특징으로 하고 있다.
청구항 8의 발명의 원자로에서는, 상기 정류 보조 부재는 링 형상을 이루고, 상기 정류 링의 외주부에 복수의 연결 부재를 통해 지지되는 것을 특징으로 하고 있다.
청구항 9의 발명의 원자로에서는, 상기 정류 링의 상면이 상기 정류 보조 부재의 상면보다 높은 위치에 설치되는 것을 특징으로 하고 있다.
청구항 10의 발명의 원자로에서는, 상기 정류 링의 외주부 상면에 벽부재가 설치되는 것을 특징으로 하고 있다.
청구항 11의 발명의 원자로에서는, 상기 정류 링 또는 상기 정류 스포크에, 상기 정류 링 또는 상기 정류 스포크의 폭보다도 외경이 큰 와류 해소 부재가 상하 방향을 따라서 설치되는 것을 특징으로 하고 있다.
청구항 12의 발명의 원자로에서는, 상기 정류 링 또는 상기 정류 스포크는 하부 노심판으로부터 수직 하강된 복수의 지주에 의해 지지되고, 상기 지주의 외주부에 링 형상을 이루는 와류 해소 부재가 설치되는 것을 특징으로 하고 있다.
청구항 13의 발명의 원자로에서는, 상기 정류 스포크의 측부에 상기 정류 스포크의 길이 방향을 따라서 와류 해소 부재가 설치되는 것을 특징으로 하고 있다.
청구항 14의 발명의 원자로에서는, 상기 압력 용기 내에 있어서의 상기 노심조의 상부에 상부 노심판이 설치되고, 상기 압력 용기의 상부로부터 상기 상부 노심판을 관통하여 계장 안내관이 설치되는 것을 특징으로 하고 있다.
청구항 1의 발명의 원자로에 따르면, 냉각재 입구 노즐 및 냉각재 출구 노즐을 갖는 압력 용기 내에 노심조를 배치하고, 이 노심조 내에 노심을 배치하는 한편, 압력 용기와 노심조의 저부에 의해 하부 플레넘을 구획하는 동시에, 압력 용기와 노심조의 측벽에 의해 다운 커머부를 구획하고, 하부 플레넘에 링 형상을 이루는 정류 링과 이 정류 링의 내측에 방사상을 이루는 복수의 정류 스포크로 이루어지는 정류 부재를 설치하므로, 압력 용기 내로 도입된 냉각재가, 다운 커머부를 하강하여 하부 플레넘에 이르고, 이 하부 플레넘에서 반전하여 상승할 때, 정류 링 및 정류 스포크에 의해 냉각재의 흐름을 분산하여, 큰 와류의 발생을 억제함으로써, 그 노심에 공급되는 냉각재의 유량이 노심에 대해 직경 방향 및 둘레 방향으로 균일하게 정류되게 되어, 열교환 효율의 향상을 도모할 수 있다.
청구항 2의 발명의 원자로에 따르면, 정류 링으로서 상부 링 및 하부 링을 설치하고, 하부 노심판으로부터 수직 하강된 복수의 지주에 의해 지지하므로, 다운커머부를 하강하여 하부 플레넘에서 반전하여 상승하는 냉각재는 상부 링 및 하부 링과 복수의 정류 스포크에 더하여, 복수의 지주에 의해 분산되어 큰 와류의 발생이 억제되게 되어, 노심에 공급되는 냉각재의 유량을 노심의 직경 방향 및 둘레 방향에 대해 균일하게 정류할 수 있다.
청구항 3의 발명의 원자로에 따르면, 정류 링으로서 외측 링 및 내측 링을 설치하고, 하부 노심판으로부터 수직 하강된 복수의 지주에 의해 지지하는 동시에, 외측 링과 내측 링 사이에 복수의 정류 스포크를 설치하므로, 다운 커머부를 하강하여 하부 플레넘에서 반전하여 상승하는 냉각재는 외측 링과 내측 링과 복수의 정류 스포크에 더하여, 복수의 지주에 의해 분산되어 큰 와류의 발생이 억제되게 되어, 노심에 공급되는 냉각재의 유량을 노심의 직경 방향 및 둘레 방향에 대해 균일하게 정류할 수 있다.
청구항 4의 발명의 원자로에 따르면, 외측 링과 내측 링 사이에 중간 링을 배치하여, 이 중간 링을 복수의 정류 스포크와 교차시키므로, 다운 커머부를 하강하여 하부 플레넘에서 반전하여 상승하는 냉각재는 외측 링과 내측 링과 복수의 정류 스포크에 더하여, 중간 링에 의해 분산되어 큰 와류의 발생이 억제되게 되어, 노심에 공급되는 냉각재의 유량을 노심의 직경 방향 및 둘레 방향에 대해 균일하게 정류할 수 있다.
청구항 5의 발명의 원자로에 따르면, 상부 링의 외경을 하부 링의 외경보다 크게 설정하므로, 노심에 흐르는 냉각재의 유로 면적이 작아짐으로써, 다운 커머부를 하강하여 하부 플레넘에서 반전하여 상승하는 냉각재가 확실하게 분산되어 큰 와류의 발생이 억제되게 되어, 노심에 공급되는 냉각재의 유량을 노심의 직경 방향 및 둘레 방향에 대해 균일하게 정류할 수 있다.
청구항 6의 발명의 원자로에 따르면, 상부 링에 설치된 복수의 정류 스포크와 하부 링에 설치된 복수의 정류 스포크를 둘레 방향으로 어긋나게 하여 배치하므로, 다운 커머부를 하강하여 하부 플레넘에서 반전하여 상승하는 냉각재가 확실하게 분산되어 큰 와류의 발생이 억제되게 되어, 노심에 공급되는 냉각재의 유량을 노심의 직경 방향 및 둘레 방향에 대해 균일하게 정류할 수 있다.
청구항 7의 발명의 원자로에 따르면, 정류 링의 외주부로부터 원자로 용기의 내면측을 향해 정류 보조 부재를 설치하므로, 다운 커머부를 하강하여 하부 플레넘으로 유입되는 냉각재는 정류 보조 부재에 의해 분산됨으로써, 하부 플레넘에서의 큰 와류의 발생을 억제할 수 있다.
청구항 8의 발명의 원자로에 따르면, 정류 보조 부재를 링 형상으로 하여, 정류 링의 외주부에 복수의 연결 부재를 통해 지지하므로, 정류 링의 외주부로부터 원자로 용기의 내면 사이에 적절하게 정류 보조 부재를 배치함으로써, 간단한 구성으로 다운 커머부를 하강하여 하부 플레넘으로 유입되는 냉각재를 정류 보조 부재에 의해 분산하여, 하부 플레넘에서의 큰 와류의 발생을 억제할 수 있다.
청구항 9의 발명의 원자로에 따르면, 정류 링의 상면을 정류 보조 부재의 상면보다 높은 위치에 설치하므로, 다운 커머부를 하강하여 하부 플레넘으로 유입되는 냉각재는 정류 보조 부재에 의해 분산되고, 정류 보조 부재의 외주면에 의해 안내되어 둘레 방향의 흐름으로써 정류되게 되어, 하부 플레넘에서의 큰 와류의 발생을 억제할 수 있다.
청구항 10의 발명의 원자로에 따르면, 정류 링의 외주부 상면에 벽부재를 설치하므로, 다운 커머부를 하강하여 하부 플레넘으로 유입되는 냉각재는 정류 보조 부재에 의해 분산되고, 벽부재에 의해 안내되어 둘레 방향의 흐름으로서 정류되게 되어, 하부 플레넘에서의 큰 와류의 발생을 억제할 수 있다.
청구항 11의 발명의 원자로에 따르면, 정류 링 또는 정류 스포크에 이 정류 링 또는 정류 스포크의 폭보다도 외경이 큰 와류 해소 부재를 상하 방향을 따라서 설치하므로, 정류 링 및 정류 스포크에 의해 정류할 수 없었던 와류가 이 와류 해소 부재에 의해 정류되게 되어, 노심에 공급되는 냉각재의 유량을 노심의 직경 방향 및 둘레 방향에 대해 균일하게 정류할 수 있다.
청구항 12의 발명의 원자로에 따르면, 정류 링 또는 정류 스포크를 하부 노심판으로부터 수직 하강된 복수의 지주에 의해 지지하고, 이 지주의 외주부에 링 형상을 이루는 와류 해소 부재를 설치하므로, 정류 링 및 정류 스포크에 의해 정류할 수 없었던 와류가 이 와류 해소 부재에 의해 정류되게 되어, 노심에 공급되는 냉각재의 유량을 노심의 직경 방향 및 둘레 방향에 대해 균일하게 정류할 수 있다.
청구항 13의 발명의 원자로에 따르면, 정류 스포크의 측부에 이 정류 스포크의 길이 방향을 따라서 와류 해소 부재를 설치하므로, 정류 링 및 정류 스포크에 의해 정류할 수 없었던 와류가 이 와류 해소 부재에 의해 정류되게 되어, 노심에 공급되는 냉각재의 유량을 노심의 직경 방향 및 둘레 방향에 대해 균일하게 정류할 수 있다.
청구항 14의 발명의 원자로에 따르면, 압력 용기 내에 있어서의 노심조의 상부에 상부 노심판을 설치하고, 압력 용기의 상부로부터 상부 노심판을 관통하여 계장 안내관을 설치하므로, 하부 플레넘에 계장 안내관을 지지하는 지주 등이 불필요해져, 정류 링이나 정류 스포크의 형상을 적절화함으로써, 큰 와류의 발생을 적절하게 억제하여, 노심에 공급되는 냉각재의 유량을 노심에 대해 직경 방향 및 둘레 방향으로 균일하게 정류할 수 있다.
도 1은 본 발명의 제1 실시예에 관한 가압수형 원자로의 내부 구조를 도시하는 개략 구성도이다.
도 2는 도 1의 II-II 단면도이다.
도 3은 도 1의 III-III 단면도이다.
도 4는 도 1의 IV-IV 단면도이다.
도 5는 제1 실시예의 가압수형 원자로를 갖는 원자력 발전 플랜트의 개략 구성도이다.
도 6은 본 발명의 제2 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 수평 단면도이다.
도 7은 본 발명의 제3 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 수평 단면도이다.
도 8은 본 발명의 제4 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 수평 단면도이다.
도 9는 본 발명의 제5 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 수평 단면도이다.
도 10은 본 발명의 제6 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 종단면도이다.
도 11은 본 발명의 제7 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 종단면도이다.
도 12는 본 발명의 제8 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 수평 단면도이다.
도 13은 본 발명의 제9 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 수평 단면도이다.
도 14는 제9 실시예의 정류 부재에 설치된 와류 제거 링을 도시하는 사시도이다.
도 15는 본 발명의 제10 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 수평 단면도이다.
도 16은 도 15의 XVI-XVI 단면도이다.
이하에 첨부 도면을 참조하여, 본 발명에 관한 원자로의 적합한 실시예를 상세하게 설명한다. 또한, 본 실시예에 의해 본 발명이 한정되는 것은 아니다.
(제1 실시예)
도 1은 본 발명의 제1 실시예에 관한 가압수형 원자로의 내부 구조를 도시하는 개략 구성도, 도 2는 도 1의 II-II 단면도, 도 3은 도 1의 III-III 단면도, 도 4는 도 1의 IV-IV 단면도, 도 5는 제1 실시예의 가압수형 원자로를 갖는 원자력 발전 플랜트의 개략 구성도이다.
제1 실시예의 원자로는 경수를 원자로 냉각재 및 중성자 감속재로서 사용하여, 노심 전체에 걸쳐서 비등하지 않는 고온 고압수로 하고, 이 고온 고압수를 증기 발생기로 보내어 열교환에 의해 증기를 발생시키고, 이 증기를 터빈 발전기로 보내어 발전하는 가압수형 원자로(PWR : Pressurized Water Reactor)이다.
본 실시예의 가압수형 원자로를 갖는 원자력 발전 플랜트에 있어서, 도 5에 도시한 바와 같이, 원자로 격납 용기(11) 내에는 가압수형 원자로(12) 및 증기 발생기(13)가 격납되어 있고, 이 가압수형 원자로(12)와 증기 발생기(13)는 냉각수 배관(14, 15)을 통해 연결되어 있고, 냉각수 배관(14)에 가압기(16)가 설치되고, 냉각수 배관(15)에 냉각수 펌프(15a)가 설치되어 있다. 이 경우, 감속재 및 1차 냉각수로서 경수를 사용하여, 노심부에 있어서의 1차 냉각수의 비등을 억제하기 위해, 1차 냉각 계통은 가압기(16)에 의해 150 내지 160 기압 정도의 고압 상태를 유지하도록 제어하고 있다. 따라서, 가압수형 원자로(12)에서, 연료로서 저농축 우라늄 또는 MOX에 의해 1차 냉각수로서 경수가 가열되어, 고온의 1차 냉각수가 가압기(16)에 의해 소정의 고압으로 유지한 상태에서 냉각수 배관(14)을 통해 증기 발생기(13)로 보내진다. 이 증기 발생기(13)에서는 고압 고온의 1차 냉각수와 2차 냉각수 사이에서 열교환이 행해지고, 차가워진 1차 냉각수는 냉각수 배관(15)을 통해 가압수형 원자로(12)로 복귀된다.
증기 발생기(13)는 증기 터빈(17)과 냉각수 배관(18)을 통해 연결되어 있고, 이 증기 터빈(17)은 고압 터빈(19) 및 저압 터빈(20)을 갖는 동시에, 발전기(21)가 접속되어 있다. 또한, 고압 터빈(19)과 저압 터빈(20) 사이에는, 습분 분리 가열기(22)가 설치되어 있고, 냉각수 배관(18)으로부터 분기된 냉각수 분기 배관(23)이 습분 분리 가열기(22)에 연결되는 한편, 고압 터빈(19)과 습분 분리 가열기(22)는 저온 재열관(24)에 의해 연결되고, 습분 분리 가열기(22)와 저압 터빈(20)은 고온 재열관(25)에 의해 연결되어 있다. 또한, 증기 터빈(17)의 저압 터빈(20)은 복수기(26)를 갖고 있고, 이 복수기(26)에는 냉각수(예를 들어, 해수)를 급배하는 취수관(27) 및 배수관(28)이 연결되어 있다. 그리고, 이 복수기(26)는 냉각수 배관(29)을 통해 탈기기(30)에 연결되어 있고, 이 냉각수 배관(29)에 복수 펌프(31) 및 저압 급수 가열기(32)가 설치되어 있다. 또한, 탈기기(30)는 냉각수 배관(33)을 통해 증기 발생기(13)에 연결되어 있고, 이 냉각수 배관(33)에는 급수 펌프(34) 및 고압 급수 가열기(35)가 설치되어 있다.
따라서, 증기 발생기(13)에서, 고압 고온의 1차 냉각수와 열교환을 행하여 생성된 증기는, 냉각수 배관(18)을 통해 증기 터빈(17)[고압 터빈(19)으로부터 저압 터빈(20)]으로 보내져, 이 증기에 의해 증기 터빈(17)을 구동하여 발전기(21)에 의해 발전을 행한다. 이때, 증기 발생기(13)로부터의 증기는 고압 터빈(19)을 구동한 후, 습분 분리 가열기(22)에서 증기에 포함되는 습분이 제거되는 동시에 가열된 후 저압 터빈(20)을 구동한다. 그리고, 증기 터빈(17)을 구동한 증기는 복수기(26)에서 냉각되어 복수로 되고, 저압 급수 가열기(32)에서, 예를 들어 저압 터빈(20)으로부터 추기된 저압 증기에 의해 가열되고, 탈기기(30)에서 용존 산소나 응결되지 않은 가스(암모니아 가스) 등의 불순물이 제거된 후, 고압 급수 가열기(35)에서, 예를 들어, 고압 터빈(19)으로부터 추기된 고압 증기에 의해 가열된 후, 증기 발생기(13)로 복귀된다.
또한, 가압수형 원자로(12)에 있어서, 도 1 내지 도 4에 도시한 바와 같이, 원자로 용기(압력 용기)(41)는 그 내부에 노내 구조물을 삽입할 수 있도록 원자로 용기 본체(42)와 그 상부에 장착되는 원자로 용기 덮개(43)에 의해 구성되어 있고, 이 원자로 용기 본체(42)에 대해 원자로 용기 덮개(43)가 개폐 가능하게 되어 있다. 원자로 용기 본체(42)는 상부가 개방되고 하부가 구면 형상으로 폐색된 원통 형상을 이루고, 상부에 1차 냉각수로서의 경수(냉각재)를 급배하는 입구 노즐(44) 및 출구 노즐(45)이 형성되어 있다.
이 입구 노즐(44)은, 도 2에 상세하게 도시한 바와 같이, 4개 형성되어 있고, 90°-270° 중심선에 대해 소정의 각도(A)를 갖고 배치되고, 또한 0°-180° 중심선에 대해 대칭인 위치에 배치되어 있다. 한편, 출구 노즐(45)은 4개 형성되어 있고, 0°-180° 중심선에 대해 소정의 각도(B)를 갖고 배치되고, 또한 90°-270° 중심선에 대해 대칭인 위치에 배치되어 있다.
원자로 용기 본체(42) 내에서, 입구 노즐(44) 및 출구 노즐(45)보다 하방에는 원통 형상을 이루는 노심조(46)가 원자로 용기 본체(42)의 내면과 소정의 간극을 갖고 배치되어 있고, 이 노심조(46)의 상부에는 원판 형상을 이루고 도시하지 않은 다수의 연통 구멍이 형성된 상부 노심판(47)이 연결되고, 하부에는 마찬가지로 원판 형상을 이루고 도시하지 않은 다수의 연통 구멍이 형성된 하부 노심판(48)이 연결되어 있다. 그리고, 원자로 용기 본체(42) 내에는 노심조(46)의 상방에 위치하여 원판 형상을 이루는 상부 노심 지지판(49)이 고정되어 있고, 이 상부 노심 지지판(49)으로부터 복수의 노심 지지 로드(50)를 통해 상부 노심판(47), 즉 노심조(46)가 현수 지지되어 있다. 또한, 노심조(46)의 하부에는 원판 형상을 이루는 하부 노심 지지판(51)이 고정되어 있고, 이 하부 노심 지지판(51), 즉 노심조(46)는 원자로 용기 본체(42)의 내면에 대해 복수의 래디얼 키(52)에 의해 위치 결정 보유 지지되어 있다. 또한, 이 하부 노심 지지판(51)에도 도시하지 않은 다수의 연통 구멍이 형성되어 있다.
이 래디얼 키(52)는, 도 3에 상세하게 도시한 바와 같이 6개 형성되어 있고, 0° 중심선을 기준으로 하여 60°마다 배치되어 있다.
노심조(46)와 상부 노심판(47)과 하부 노심판(48)에 의해 노심(53)이 형성되어 있고, 이 노심(53)에는 다수의 연료 집합체(54)가 배치되어 있다. 이 연료 집합체(54)는, 도시하지 않지만, 다수의 연료봉이 지지 격자에 의해 격자 형상으로 묶여져 구성되어, 상단부에 상부 노즐이 고정되는 한편, 하단부에 하부 노즐이 고정되어 있다. 그리고, 이 연료 집합체(54)는 다수의 연료봉에 추가하여, 제어봉이 삽입되는 제어봉 안내관과, 노내 계장용 검출기가 삽입되는 노내 계장 안내관을 갖고 있다.
그리고, 상부 노심 지지판(49)을 관통하여 다수의 제어봉 클러스터 안내관(55)이 지지되어 있고, 원자로 용기 덮개(43)에 설치된 도시하지 않은 제어봉 구동 장치로부터 연장되어 제어봉 클러스터 구동축이, 이 제어봉 클러스터 안내관(55) 내를 통해 연료 집합체(54)까지 연장되고, 하단부에 제어봉이 설치되어 있다. 또한, 상부 노심 지지판(49)을 관통하여 다수의 노내 계장 안내관(56)이 지지되어 있고, 하단부가 연료 집합체(54)까지 연장되어 있다.
따라서, 제어봉 구동 장치에 의해 제어봉 클러스터 구동축을 이동하여 연료 집합체(54)에 제어봉을 삽입함으로써, 노심(53) 내에서의 핵분열을 제어하고, 발생한 열 에너지에 의해 원자로 용기(41) 내에 충전된 경수가 가열되고, 고온의 경수가 출구 노즐(45)로부터 배출되어, 상술한 바와 같이 증기 발생기(13)로 보내진다. 즉, 연료 집합체(54)를 구성하는 연료로서의 우라늄 또는 플루토늄이 핵분열함으로써 중성자를 방출하고, 감속재 및 1차 냉각수로서의 경수가, 방출된 고속 중성자의 운동 에너지를 저하시켜 열중성자로 하여, 새로운 핵분열을 일으키기 쉽게 하는 동시에, 발생한 열을 빼앗아 냉각한다. 또한, 제어봉을 연료 집합체(54)에 삽입함으로써, 노심(53) 내에서 생성되는 중성자수를 조정하고, 또한 원자로를 긴급하게 정지할 때에는 노심(53)에 급속하게 삽입된다.
또한, 원자로 용기(41) 내에는 노심(53)에 대해, 그 상방에 출구 노즐(45)에 연통하는 상부 플레넘(57)이 형성되는 동시에, 하방에 하부 플레넘(58)이 형성되어 있다. 그리고, 원자로 용기(41)와 노심조(46) 사이에 입구 노즐(44) 및 하부 플레넘(58)에 연통하는 다운 커머부(59)가 형성되어 있다. 즉, 상부 플레넘(57)은 노심조(46)와 상부 노심 지지판(49)과 상부 노심판(47)으로 구획됨으로써 형성되고, 출구 노즐(45)에 연통하는 동시에, 상부 노심판(47)에 형성된 다수의 연통 구멍을 통해 노심(53)에 연통하고 있다. 하부 플레넘(58)은 노심조(46)의 저부로 되는 하부 노심 지지판(51)과 원자로 용기 본체(42)로 구획됨으로써 형성되고, 하부 노심 지지판(51) 및 하부 노심판(48)에 형성된 다수의 연통 구멍을 통해 노심(53)에 연통하고 있다. 다운 커머부(59)는 원자로 용기 본체(42)와 노심조(46)의 측벽으로 구획됨으로써 형성되고, 상부가 입구 노즐(44)에 연통하는 한편, 하부가 하부 플레넘(57)에 연통하고 있다.
따라서, 경수는 4개의 입구 노즐(44)로부터 원자로 용기 본체(42) 내로 유입되어, 다운 커머부(59)를 하향으로 흘러내려 하부 플레넘(58)에 도달하고, 이 하부 플레넘(58)의 구면 형상의 내면에 의해 상향으로 안내되어 상승하여, 하부 노심 지지판(51) 및 하부 노심판(48)을 통과한 후, 노심(53)으로 유입된다. 이 노심(53)으로 유입된 경수는 노심(53)을 구성하는 연료 집합체(54)로부터 발생하는 열 에너지를 흡수함으로써, 이 연료 집합체(54)를 냉각하는 한편, 고온으로 되어 상부 노심판(47)을 통해 상부 플레넘(57)까지 상승하여, 출구 노즐(45)을 통해 배출된다.
그리고, 본 실시예에서는, 도 1 및 도 4에 상세하게 도시한 바와 같이 하부 플레넘(58)에, 다운 커머부(59)로부터 하부 플레넘(58)으로 공급된 후 노심(53)을 향해 상승하는 경수를, 이 노심(53)의 둘레 방향 및 직경 방향에 대해 균일하게 분산하여 정류하는 정류 부재(61)가 설치되어 있다.
이 정류 부재(61)는 링 형상을 이루는 상부 외측 링(62)과 상부 내측 링(63)이 양자 사이에 방사상으로 가설된 복수(본 실시예에서는, 6개)의 상부 스포크(정류 스포크)(64)에 의해 연결되어 이루어지는 상부 링(정류 링)(65)과, 링 형상을 이루는 하부 외측 링(66)과 하부 내측 링(67)이 양자 사이에 방사상으로 가설된 복수(본 실시예에서는, 6개)의 하부 스포크(정류 스포크)(68)에 의해 연결되어 이루어지는 하부 링(정류 링)(69)을 갖고 있다. 그리고, 하부 노심 지지판(51)으로부터 수직 하강된 복수(본 실시예에서는, 6개)의 지주(70)의 하부가 상부 외측 링(62) 및 하부 외측 링(66)에 연결됨으로써, 상부 링(65)과 하부 링(69)이 하부 플레넘(58) 내의 소정의 위치에 배치되게 된다.
이 경우, 각 스포크(64, 68)는 각 링(65, 69)의 둘레 방향으로 균등 간격으로 배치되어 있고, 근접하는 2개의 입구 노즐(44) 사이에 각각 1개, 이격된 2개의 입구 노즐(44) 사이에 각각 2개 배치하고 있다. 또한, 각 지주(70)는 각 외측 링(62, 66)의 둘레 방향에 있어서, 각 스포크(64, 68)와 동일한 위치에 배치되어 있다.
따라서, 다운 커머부(59)를 하향으로 흘러내려 하부 플레넘(58)에 이른 경수는, 이 하부 플레넘(58)의 구면 형상의 내면에 의해 상향으로 안내되어 상승하고, 정류 부재(61)에 정류된 후 노심(53)으로 유입된다. 이때, 입구 노즐(44)로부터 원자로 용기 본체(42) 내로 유입된 경수는 노심조(46)에 충돌하여 둘레 방향으로 분산하는 동시에, 인접하는 입구 노즐(44)로부터 유입된 경수와 합류하여, 다운 커머부(59)를 흘러내려 하부 플레넘(58)에 이른다. 즉, 다운 커머부(59)를 통과하여 하부 플레넘(58)으로 흘러내리는 경수의 대부분은 0°-90°-180°-270°의 중심선을 따라서 흘러내리게 된다. 그로 인해, 이 경수의 흐름이, 하부 플레넘(58)의 구면 형상의 내면에 의해 상승할 때, 정류 부재(61), 즉 각 링(62, 63, 66, 67)과 각 스포크(64, 68)와 각 지주(70)에 충돌하여 분산되어, 큰 와류의 발생이 억제됨으로써, 하부 플레넘(58)으로부터 노심(53)으로 공급되는 경수의 유량이, 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류된다.
특히, 다운 커머부(59)에 있어서의 90°-270°의 중심선을 따라서 흘러내리는 경수의 흐름은 정류 부재(61)의 각 스포크(64, 68) 및 지주(70)에 충돌하여 둘레 방향으로 분산되고, 또한 다운 커머부(59)에 있어서의 0°-180°의 중심선을 따라서 흘러내리는 경수의 흐름은 둘레 방향으로 폭이 넓어져, 정류 부재(61)의 각 스포크(64, 68) 및 각 지주(70)에 충돌하기 쉽게 둘레 방향으로 분산되므로, 큰 와류의 발생이 적절하게 억제된다.
이와 같이 제1 실시예의 원자로에 따르면, 입구 노즐(44) 및 출구 노즐(45)을 갖는 원자로 용기(41) 내에 노심조(46)를 배치하고, 이 노심조(46) 내에 노심(53)을 배치하는 한편, 원자로 용기(41)와 노심조(46)의 저부에 의해 하부 플레넘(58)을 구획하는 동시에, 원자로 용기(41)와 노심조(46)의 측벽에 의해 다운 커머부(59)를 구획하고, 하부 플레넘(58)에 링 형상을 이루는 상부 링(65) 및 하부 링(69)과 이 각 링(65, 69)의 내측에 방사상을 이루는 복수의 스포크(64, 68)로 이루어지는 정류 부재(61)를 설치하고 있다.
따라서, 입구 노즐(44)로부터 원자로 용기(41) 내로 도입된 경수가, 다운 커머부(59)를 하강하여 하부 플레넘(58)에 이르고, 이 하부 플레넘(58)에서 반전하여 상승할 때, 각 링(62, 63, 66, 67)과 각 스포크(64, 68)와 각 지주(70)에 충돌하여 흐름을 분산하여, 큰 와류의 발생을 억제함으로써, 노심(53)에 공급되는 경수의 유량이 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류되게 되어, 열교환 효율의 향상을 도모할 수 있다.
또한, 제1 실시예의 원자로에서는, 정류 부재(61)로서, 상부 링(65) 및 하부 링(69)을 설치하고, 또한 각 링(65, 69)으로서 외측 링(62, 66) 및 내측 링(63, 67)을 설치하고, 외측 링(62, 66)과 내측 링(63, 67) 사이에 각 스포크(64, 68)를 설치하고, 하부 노심 지지판(51)으로부터 수직 하강된 복수의 지주(70)에 의해 지지하고 있다. 따라서, 다운 커머부(59)를 하강하여 하부 플레넘(58)에서 반전하여 상승하는 경수는 복수의 링(62, 63, 66, 67)과 복수의 스포크(64, 68)와 복수의 지주(70)에 의해 분산되게 되어, 큰 와류의 발생을 확실하게 억제할 수 있다.
(제2 실시예)
도 6은 본 발명의 제2 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 수평 단면도이다. 또한, 본 실시예의 원자로에 있어서의 전체 구성은 상술한 제1 실시예와 대략 마찬가지로, 도 1을 사용하여 설명하는 동시에, 본 실시예에서 설명한 것과 동일한 기능을 갖는 부재에는 동일한 번호를 부여하여 중복되는 설명은 생략한다.
제2 실시예의 원자로에 있어서, 도 1 및 도 6에 도시한 바와 같이 하부 플레넘(58)에, 다운 커머부(59)로부터 하부 플레넘(58)으로 공급된 후 노심(53)을 향해 상승하는 경수를, 이 노심(53)의 둘레 방향 및 직경 방향에 대해 균일하게 분산하여 정류하는 정류 부재(71)가 설치되어 있다.
이 정류 부재(71)는 상부 외측 링(62)과 상부 내측 링(63)이 6개의 상부 스포크(64)에 의해 연결되어 이루어지는 상부 링(65)과, 하부 외측 링(66)과 하부 내측 링(67)이 6개의 하부 스포크(68)에 의해 연결되어 이루어지는 하부 링(69)을 갖고 있다. 그리고, 하부 노심 지지판(51)으로부터 수직 하강된 복수(본 실시예에서는, 12개)의 지주(72)의 하부가 상부 외측 링(62) 및 하부 외측 링(66)에 연결되는 동시에, 하부 노심 지지판(51)으로부터 수직 하강된 복수(본 실시예에서는, 6개)의 지주(73)의 하부가 복수의 상부 스포크(64) 및 하부 스포크(68)에 연결됨으로써, 상부 링(65)과 하부 링(69)이 하부 플레넘(58) 내의 소정의 위치에 배치되게 된다.
이 경우, 각 스포크(64, 68)는 각 링(65, 69)의 둘레 방향으로 균등 간격으로 배치되어 있고, 근접하는 2개의 입구 노즐(44) 사이에 각각 1개, 이격된 2개의 입구 노즐(44) 사이에 각각 2개 배치되어 있다. 또한, 각 지주(72)는 각 외측 링(62, 66)의 둘레 방향에 있어서, 각 스포크(64, 68)의 양측에 배치되어 있다.
따라서, 다운 커머부(59)를 하향으로 흘러내려 하부 플레넘(58)에 이른 경수는 이 하부 플레넘(58)의 구면 형상의 내면에 의해 상향으로 안내되어 상승하고, 정류 부재(71)에 정류된 후 노심(53)으로 유입된다. 이때, 입구 노즐(44)로부터 원자로 용기 본체(42) 내로 유입된 경수는 노심조(46)에 충돌하여 둘레 방향으로 분산하는 동시에, 인접하는 입구 노즐(44)로부터 유입된 경수와 합류하여, 다운 커머부(59)를 흘러내려 하부 플레넘(58)에 이른다. 즉, 다운 커머부(59)를 통과하여 하부 플레넘(58)으로 흘러내리는 경수의 대부분은 0°-90°-180°-270°의 중심선을 따라서 흘러내리게 된다. 그로 인해, 이 경수의 흐름이, 하부 플레넘(58)의 구면 형상의 내면에 의해 상승할 때, 정류 부재(71), 즉 각 링(62, 63, 66, 67)과 각 스포크(64, 68)와 각 지주(72, 73)에 충돌하여 분산되어, 큰 와류의 발생이 억제됨으로써, 하부 플레넘(58)으로부터 노심(53)으로 공급되는 경수의 유량이, 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류된다.
특히, 다운 커머부(59)에 있어서의 90°-270°의 중심선을 따라서 흘러내리는 경수의 흐름은 정류 부재(71)의 각 스포크(64, 68) 및 지주(72, 73)에 충돌하여 둘레 방향으로 분산되고, 또한 다운 커머부(59)에 있어서의 0°-180°의 중심선을 따라서 흘러내리는 경수의 흐름은 둘레 방향으로 폭이 넓어져, 정류 부재(71)의 각 스포크(64, 68) 및 각 지주(72, 73)에 충돌하기 쉽게 둘레 방향으로 분산되므로, 큰 와류의 발생이 적절하게 억제된다.
이와 같이 제2 실시예의 원자로에 따르면, 원자로 용기(41) 내의 하부 플레넘(58)에, 링 형상을 이루는 상부 링(65) 및 하부 링(69)과 이 각 링(65, 69)의 내측에 방사상을 이루는 복수의 스포크(64, 68)로 이루어지는 정류 부재(71)를 설치하고, 하부 노심 지지판(51)으로부터 수직 하강된 복수의 지주(72, 73)의 하부를 각 외측 링(62, 66) 및 각 스포크(64, 68)에 연결하고 있다.
따라서, 입구 노즐(44)로부터 원자로 용기(41) 내로 도입된 경수가, 다운 커머부(59)를 하강하여 하부 플레넘(58)에 이르고, 이 하부 플레넘(58)에서 반전하여 상승할 때, 각 링(62, 63, 66, 67)과 각 스포크(64, 68)와 각 지주(72, 73)에 충돌하여 흐름을 분산하여, 큰 와류의 발생을 억제함으로써, 노심(53)에 공급되는 경수의 유량이 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류되게 되어, 열교환 효율의 향상을 도모할 수 있다.
(제3 실시예)
도 7은 본 발명의 제3 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 수평 단면도이다. 또한, 본 실시예의 원자로에 있어서의 전체 구성은 상술한 제1 실시예와 대략 마찬가지로, 도 1을 사용하여 설명하는 동시에, 본 실시예에서 설명한 것과 동일한 기능을 갖는 부재에는 동일한 번호를 부여하여 중복되는 설명은 생략한다.
제3 실시예의 원자로에 있어서, 도 1 및 도 7에 도시한 바와 같이 하부 플레넘(58)에, 다운 커머부(59)로부터 하부 플레넘(58)으로 공급된 후 노심(53)을 향해 상승하는 경수를, 이 노심(53)의 둘레 방향 및 직경 방향에 대해 균일하게 분산하여 정류하는 정류 부재(81)가 설치되어 있다.
이 정류 부재(81)는 상부 외측 링(62)과 상부 내측 링(63)이 6개의 상부 스포크(64)에 의해 연결되어 이루어지는 상부 링(65)과, 하부 외측 링(66)과 하부 내측 링(67)이 6개의 하부 스포크(68)에 의해 연결되어 이루어지는 하부 링(69)을 갖고 있다. 또한, 상부 외측 링(62)과 상부 내측 링(63) 사이에는 상부 중간 링(82)이 설치되는 동시에, 하부 외측 링(66)과 하부 내측 링(67) 사이에는 하부 중간 링(83)이 설치되어 있다. 이 각 중간 링(82, 83)은 육각형을 이루고, 각 스포크(64, 68)에 교차하여 연결되어 있다. 그리고, 하부 노심 지지판(51)으로부터 수직 하강된 12개의 지주(72)의 하부가 상부 외측 링(62) 및 하부 외측 링(66)에 연결되고, 하부 노심 지지판(51)으로부터 수직 하강된 6개의 지주(73)의 하부가 복수의 상부 스포크(64) 및 하부 스포크(68)에 연결되고, 하부 노심 지지판(51)으로부터 수직 하강된 6개의 지주(84)의 하부가 상부 중간 링(82) 및 하부 중간 링(83)에 연결됨으로써, 상부 링(65)과 하부 링(69)이 하부 플레넘(58) 내의 소정의 위치에 배치되게 된다.
이 경우, 각 스포크(64, 68)는 각 링(65, 69)의 둘레 방향으로 균등 간격으로 배치되어 있고, 근접하는 2개의 입구 노즐(44) 사이에 각각 1개, 이격된 2개의 입구 노즐(44) 사이에 각각 2개 배치되어 있다. 또한, 각 지주(72)는 각 외측 링(62, 66)의 둘레 방향에 있어서, 각 스포크(64, 68)의 양측에 배치되어 있다. 또한, 각 지주(84)는 각 중간 링(82, 83)의 둘레 방향에 있어서, 각 지주(73) 사이에 배치되어 있다.
따라서, 다운 커머부(59)를 하향으로 흘러내려 하부 플레넘(58)에 이른 경수는 이 하부 플레넘(58)의 구면 형상의 내면에 의해 상향으로 안내되어 상승하고, 정류 부재(81)에 정류된 후 노심(53)으로 유입된다. 이때, 입구 노즐(44)로부터 원자로 용기 본체(42) 내로 유입된 경수는 노심조(46)에 충돌하여 둘레 방향으로 분산하는 동시에, 인접하는 입구 노즐(44)로부터 유입된 경수와 합류하여, 다운 커머부(59)를 흘러내려 하부 플레넘(58)에 이른다. 즉, 다운 커머부(59)를 통과하여 하부 플레넘(58)으로 흘러내리는 경수의 대부분은 0°-90°-180°-270°의 중심선을 따라서 흘러내리게 된다. 그로 인해, 이 경수의 흐름이 하부 플레넘(58)의 구면 형상의 내면에 의해 상승할 때, 정류 부재(81), 즉 각 링(62, 63, 66, 67, 82, 83)과 각 스포크(64, 68)와 각 지주(72, 73, 84)에 충돌하여 분산되어, 큰 와류의 발생이 억제됨으로써, 하부 플레넘(58)으로부터 노심(53)으로 공급되는 경수의 유량이, 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류된다.
이와 같이 제3 실시예의 원자로에 따르면, 원자로 용기(41) 내의 하부 플레넘(58)에, 링 형상을 이루는 상부 링(65) 및 하부 링(69) 및 중간 링(82, 83)과 이 각 링(65, 69, 82, 83)에 방사상을 이루는 복수의 스포크(64, 68)로 이루어지는 정류 부재(81)를 설치하고, 하부 노심 지지판(51)으로부터 수직 하강된 복수의 지주(72, 73, 84)의 하부를 각 링(62, 66, 82, 83) 및 각 스포크(64, 68)에 연결하고 있다.
따라서, 입구 노즐(44)로부터 원자로 용기(41) 내로 도입된 경수가, 다운 커머부(59)를 하강하여 하부 플레넘(58)에 이르고, 이 하부 플레넘(58)에서 반전하여 상승할 때, 각 링(62, 63, 66, 67, 82, 83)과 각 스포크(64, 68)와 각 지주(72, 73, 84)에 충돌하여 흐름을 분산하여, 큰 와류의 발생을 억제함으로써, 노심(53)에 공급되는 경수의 유량이 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류되게 되어, 열교환 효율의 향상을 도모할 수 있다.
(제4 실시예)
도 8은 본 발명의 제4 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 수평 단면도이다. 또한, 본 실시예의 원자로에 있어서의 전체 구성은 상술한 제1 실시예와 대략 마찬가지로, 도 1을 사용하여 설명하는 동시에, 본 실시예에서 설명한 것과 동일한 기능을 갖는 부재에는 동일한 번호를 부여하여 중복되는 설명은 생략한다.
제4 실시예의 원자로에 있어서, 도 1 및 도 8에 도시한 바와 같이 하부 플레넘(58)에, 다운 커머부(59)로부터 하부 플레넘(58)으로 공급된 후 노심(53)을 향해 상승하는 경수를, 이 노심(53)의 둘레 방향 및 직경 방향에 대해 균일하게 분산하여 정류하는 정류 부재(91)가 설치되어 있다.
이 정류 부재(91)는 상부 외측 링(92)과 상부 내측 링(93)이 6개의 상부 스포크(94)에 의해 연결되어 이루어지는 상부 링(95)과, 하부 외측 링(96)과 하부 내측 링(97)이 6개의 하부 스포크(98)에 의해 연결되어 이루어지는 하부 링(99)을 갖고 있다. 또한, 하부 외측 링(96)과 하부 내측 링(97) 사이에는 하부 중간 링(100)이 설치되어 있다. 이 각 하부 중간 링(100)은 육각형을 이루고, 하부 스포크(98)에 교차하여 연결되어 있다. 그리고, 하부 노심 지지판(51)으로부터 수직 하강된 12개의 지주(101)의 하부가 상부 외측 링(92)에 연결되고, 12개의 지주(102)의 하부가 하부 외측 링(96)에 연결되고, 6개의 지주(103)의 하부가 상부 스포크(94)에 연결되고, 6개의 지주(104)의 하부가 하부 스포크(98)에 연결되어 있다.
이 경우, 상부 외측 링(92)의 외경이 하부 외측 링(96)의 외경보다 크게 설정됨으로써, 상부 외측 링(92)은 하부 외측 링(96)보다 직경 방향 외측에 배치되어 있다. 또한, 각 스포크(94, 98)는 각 링(95, 99)의 둘레 방향으로 균등 간격으로 배치되어 있지만, 둘레 방향으로 어긋나게 배치되어 있다.
따라서, 다운 커머부(59)를 하향으로 흘러내려 하부 플레넘(58)에 이른 경수는 이 하부 플레넘(58)의 구면 형상의 내면에 의해 상향으로 안내되어 상승하고, 정류 부재(91)에 정류된 후 노심(53)으로 유입된다. 이때, 하부 플레넘(58)의 구면 형상의 내면에 의해 상승하는 경수는 정류 부재(81), 즉 각 링(92, 93, 96, 97, 99, 100)과 각 스포크(94, 98)와 각 지주(101, 102, 103, 104)에 충돌하여 분산되어, 큰 와류의 발생이 억제됨으로써, 하부 플레넘(58)으로부터 노심(53)으로 공급되는 경수의 유량이, 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류된다.
이와 같이 제4 실시예의 원자로에 따르면, 원자로 용기(41) 내의 하부 플레넘(58)에, 링 형상을 이루는 상부 링(95) 및 하부 링(99) 및 중간 링(100)과 이 각 링(95, 99, 100)에 방사상을 이루는 복수의 스포크(94, 98)로 이루어지고, 상부 외측 링(92)과 하부 외측 링(96)이 직경 방향으로 어긋나는 동시에, 상부 스포크(94)와 하부 스포크(98)가 둘레 방향으로 어긋나는 정류 부재(91)를 설치하고 있다.
따라서, 입구 노즐(44)로부터 원자로 용기(41) 내로 도입된 경수가, 다운 커머부(59)를 하강하여 하부 플레넘(58)에 이르고, 이 하부 플레넘(58)에서 반전하여 상승할 때, 각 링(92, 93, 96, 97, 99, 100)과 각 스포크(94, 98)와 각 지주(101, 102, 103, 104)에 충돌하여 흐름을 분산하여, 큰 와류의 발생을 억제함으로써, 노심(53)에 공급되는 경수의 유량이 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류되게 되어, 열교환 효율의 향상을 도모할 수 있다.
(제5 실시예)
도 9는 본 발명의 제5 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 수평 단면도이다. 또한, 본 실시예의 원자로에 있어서의 전체 구성은 상술한 제1 실시예와 대략 마찬가지로, 도 1을 사용하여 설명하는 동시에, 본 실시예에서 설명한 것과 동일한 기능을 갖는 부재에는 동일한 번호를 부여하여 중복되는 설명은 생략한다.
제5 실시예의 원자로에 있어서, 도 1 및 도 9에 도시한 바와 같이 하부 플레넘(58)에, 다운 커머부(59)로부터 하부 플레넘(58)으로 공급된 후 노심(53)을 향해 상승하는 경수를, 이 노심(53)의 둘레 방향 및 직경 방향에 대해 균일하게 분산하여 정류하는 정류 부재(111)가 설치되어 있다.
이 정류 부재(111)는 상부 외측 링(62)과 상부 내측 링(63)이 6개의 상부 스포크(64)에 의해 연결되어 이루어지는 상부 링(65)과, 제1 실시예와 마찬가지로 도시하지 않은 하부 링을 갖고 있다. 그리고, 하부 노심 지지판(51)으로부터 수직 하강된 12개의 지주(72)의 하부가 상부 외측 링(62) 및 하부 외측 링에 연결되는 동시에, 6개의 지주(73)의 하부가 복수의 상부 스포크(64) 및 하부 스포크에 연결되어 있다.
또한, 상부 외측 링(62)의 외주부로부터 원자로 용기 본체(42)의 내면측을 향해 보조 링(정류 보조 부재)(112)이 설치되어 있다. 이 보조 링(112)은 상부 외측 링(62)보다 대경의 링 형상을 이루는 동시에 단면이 원통 형상 또는 원형상을 이루고, 상부 외측 링(62)의 외주면에 복수(본 실시예에서는, 8개)의 연결 바(연결 부재)(113)를 통해 지지되어 있다. 이 경우, 보조 링(112)은 상부 외측 링(62)의 외주면과의 사이에 소정의 간극이 형성되는 동시에, 원자로 용기 본체(42)의 내면과의 사이에 소정의 간극이 형성된다.
따라서, 입구 노즐(44)로부터 원자로 용기 본체(42) 내로 유입된 경수는 다운 커머부(59)를 하향으로 흘러내려 하부 플레넘(58)에 이르고, 이 하부 플레넘(58)의 구면 형상의 내면에 의해 상향으로 안내되어 상승하고, 정류 부재(111)에 정류된 후 노심(53)으로 유입된다. 이때, 다운 커머부(59)를 흘러내리는 경수는 보조 링(112)에 충돌하여 분산되어 하부 플레넘(58)에 이른다. 그리고, 하부 플레넘(58)의 구면 형상의 내면에 의해 상승하는 경수는, 또한 정류 부재(111)에 충돌하여 분산된다. 그로 인해, 큰 와류의 발생이 억제됨으로써, 하부 플레넘(58)으로부터 노심(53)으로 공급되는 경수의 유량이, 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류된다.
이와 같이 제5 실시예의 원자로에 따르면, 원자로 용기(41) 내의 하부 플레넘(58)에, 링 형상을 이루는 상부 링(65)과 하부 링을 갖는 동시에, 상부 링(65)의 외주부로부터 원자로 용기 본체(42)의 내면측을 향해 돌출되는 보조 링(112)을 고정한 정류 부재(111)를 설치하고 있다.
따라서, 입구 노즐(44)로부터 원자로 용기(41) 내로 도입된 경수가, 다운 커머부(59)를 통과하여 하부 플레넘(58)으로 흘러내릴 때, 이 경수는 보조 링(112)에 충돌하여 분산된 후 하부 플레넘(58)에 이르고, 이 하부 플레넘(58)에서 반전하여 상승할 때, 상부 링(65) 및 하부 링에 충돌하여 흐름을 더 분산하여, 큰 와류의 발생을 억제함으로써, 노심(53)에 공급되는 경수의 유량이 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류되게 되어, 열교환 효율의 향상을 도모할 수 있다.
또한, 보조 링(112)은 링 형상을 이루는 동시에 단면이 원통 형상 또는 원형상을 이루고 있으므로, 경수가 다운 커머부(59)로부터 보조 링(112)에 충돌하여 분산될 때, 이 보조 링(112)에 의한 압력 손실이 저감되어, 수평 방향으로 발생하는 와류를 억제할 수 있다.
(제6 실시예)
도 10은 본 발명의 제6 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 종단면도이다. 또한, 본 실시예의 원자로에 있어서의 전체 구성은 상술한 제5 실시예와 대략 마찬가지로, 도 1 및 도 9를 사용하여 설명하는 동시에, 본 실시예에서 설명한 것과 동일한 기능을 갖는 부재에는 동일한 번호를 부여하여 중복되는 설명은 생략한다.
제6 실시예의 원자로에 있어서, 도 1, 도 9 및 도 10에 도시한 바와 같이 정류 부재(111)를 구성하는 상부 링(65)에서, 상부 외측 링(62)의 외주면에는 복수의 연결 바(113)를 통해 보조 링(112)이 고정되어 있다. 이 경우, 상부 외측 링(62)의 상면이 보조 링(112)의 상면보다 높은 위치에 설치되어 있다. 즉, 상부 외측 링(62)의 상면과 보조 링(112)의 상면 사이에, 단차(H1)가 설정되어 있다.
따라서, 입구 노즐(44)로부터 원자로 용기 본체(42) 내로 유입된 경수는 다운 커머부(59)를 하향으로 흘러내려 하부 플레넘(58)에 이르고, 이 하부 플레넘(58)의 구면 형상의 내면에 의해 상향으로 안내되어 상승하고, 정류 부재(71)에 정류된 후 노심(53)으로 유입된다. 이때, 다운 커머부(59)를 흘러내리는 경수는 보조 링(112)에 충돌하여 분산되어, 상부 외측 링(62)과 보조 링(112)의 간극이나 보조 링(112)과 원자로 용기 본체(42)의 간극을 통과하여 하부 플레넘(58)에 이른다. 또한, 보조 링(112)에 충돌하여 분산된 경수의 일부는 원자로 용기 본체(42)의 중심측으로 흐르지만, 상부 외측 링(62)의 상면과 보조 링(112)의 상면 사이에 단차(H1)가 설정되어 있으므로, 경수의 일부가 상부 외측 링(62)의 외주면에 충돌하여, 둘레 방향으로 흐르면서 하강하여 하부 플레넘(58)에 이른다. 그리고, 하부 플레넘(58)에 흐른 경수는 구면 형상의 내면에 의해 상승하고, 또한 정류 부재(111)에 충돌하여 분산된다. 그로 인해, 큰 와류의 발생이 억제됨으로써, 하부 플레넘(58)으로부터 노심(53)으로 공급되는 경수의 유량이, 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류된다.
이와 같이 제6 실시예의 원자로에 따르면, 원자로 용기(41) 내의 하부 플레넘(58)에, 링 형상을 이루는 상부 링(65)과 하부 링을 갖는 동시에, 상부 링(65)의 외주부로부터 원자로 용기 본체(42)의 내면측을 향해 돌출되는 보조 링(112)을 고정한 정류 부재(111)를 설치하고, 상부 외측 링(62)의 상면을 보조 링(112)의 상면보다 높은 위치에 설정하고 있다.
따라서, 입구 노즐(44)로부터 원자로 용기(41) 내로 도입된 경수가, 다운 커머부(59)를 통과하여 하부 플레넘(58)으로 흘러내릴 때, 이 경수는 보조 링(112)에 충돌하여 분산된 후 하부 플레넘(58)에 이르는 동시에, 상부 외측 링(62)의 외주면에 충돌하여 둘레 방향으로 흐르면서 하강하여 하부 플레넘(58)에 이르고, 이 하부 플레넘(58)에서 반전하여 상승할 때, 상부 링(65) 및 하부 링에 충돌하여 흐름을 더 분산하여, 큰 와류의 발생을 억제함으로써, 노심(53)에 공급되는 경수의 유량이 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류되게 되어, 열교환 효율의 향상을 도모할 수 있다.
(제7 실시예)
도 11은 본 발명의 제7 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 종단면도이다. 또한, 본 실시예의 원자로에 있어서의 전체 구성은 상술한 제5 실시예와 대략 마찬가지로, 도 1 및 도 9를 사용하여 설명하는 동시에, 본 실시예에서 설명한 것과 동일한 기능을 갖는 부재에는 동일한 번호를 부여하여 중복되는 설명은 생략한다.
제7 실시예의 원자로에 있어서, 도 1, 도 9 및 도 11에 도시한 바와 같이 정류 부재(111)를 구성하는 상부 링(65)에서, 상부 외측 링(62)의 외주면에는 복수의 연결 바(113)를 통해 보조 링(112)이 고정되어 있다. 그리고, 이 상부 외측 링(62)의 외주부의 상면에 벽부재(115)가 설치되어 있다. 이 벽부재(115)는 상부 외측 링(62)의 외주연을 따른 링 형상을 이루는 동시에, 단면이 직사각 형상을 이루고, 상부 외측 링(62)의 상면에 고정되어 있다. 이 경우, 벽부재(115)의 상면이 보조 링(112)의 상면보다 높은 위치에 설치되어 있다. 즉, 벽부재(115)의 상면과 보조 링(112)의 상면 사이에, 단차(H2)가 설정되어 있다.
따라서, 입구 노즐(44)로부터 원자로 용기 본체(42) 내로 유입된 경수는, 다운 커머부(59)를 하향으로 흘러내려 하부 플레넘(58)에 이르고, 이 하부 플레넘(58)의 구면 형상의 내면에 의해 상향으로 안내되어 상승하고, 정류 부재(111)에 정류된 후 노심(53)으로 유입된다. 이때, 다운 커머부(59)를 흘러내리는 경수는 보조 링(112)에 충돌하여 분산되어, 상부 외측 링(62)과 보조 링(112)의 간극이나 보조 링(112)과 원자로 용기 본체(42)의 간극을 통과하여 하부 플레넘(58)에 이른다. 또한, 보조 링(112)에 충돌하여 분산된 경수의 일부는 원자로 용기 본체(42)의 중심측으로 흐르지만, 벽부재(115)의 외주면에 충돌하여, 둘레 방향으로 흐르면서 하강하여 하부 플레넘(58)에 이른다. 그리고, 하부 플레넘(58)으로 흐른 경수는 구면 형상의 내면에 의해 상승하고, 또한 정류 부재(111)에 충돌하여 분산된다. 그로 인해, 큰 와류의 발생이 억제됨으로써, 하부 플레넘(58)으로부터 노심(53)으로 공급되는 경수의 유량이, 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류된다.
이와 같이 제7 실시예의 원자로에 따르면, 원자로 용기(41) 내의 하부 플레넘(58)에, 링 형상을 이루는 상부 링(65)과 하부 링을 갖는 동시에, 상부 링(65)의 외주부로부터 원자로 용기 본체(42)의 내면측을 향해 돌출되는 보조 링(112)을 고정한 정류 부재(111)를 설치하고, 상부 외측 링(62)의 상면에 링 형상을 이루는 벽부재(115)를 설치하고 있다.
따라서, 입구 노즐(44)로부터 원자로 용기(41) 내로 도입된 경수가, 다운 커머부(59)를 통과하여 하부 플레넘(58)으로 흘러내릴 때, 이 경수는 보조 링(112)에 충돌하여 분산된 후 하부 플레넘(58)에 이르는 동시에, 벽부재(115)의 외주면에 충돌하여 둘레 방향으로 흐르면서 하강하여 하부 플레넘(58)에 이르고, 이 하부 플레넘(58)에서 반전하여 상승할 때, 상부 링(65) 및 하부 링에 충돌하여 흐름을 더 분산하여, 큰 와류의 발생을 억제함으로써, 노심(53)에 공급되는 경수의 유량이 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류되게 되어, 열교환 효율의 향상을 도모할 수 있다.
또한, 상술한 제5 실시예, 제6 실시예, 제7 실시예에서 보조 링(112)을 링 형상으로 하여 상부 외측 링(62)의 외측에 전체 둘레에 걸쳐서 설치하였지만, 만곡 형상 또는 직선 형상으로 하여 부분적으로 설치해도 좋다. 보조 링(112)의 단면 형상을 원통형 또는 원형으로 하였지만, 타원형, 삼각형 등 흘러내리는 경수의 저항이 작은 형상이면 된다. 또한, 상술한 제7 실시예에서 벽부재(115)를 링 형상으로 하여 상부 외측 링(62)의 상면에 전체 둘레에 걸쳐서 설치하였지만, 만곡 형상으로 하여 부분적으로 설치해도 좋다.
(제8 실시예)
도 12는 본 발명의 제8 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 수평 단면도이다. 또한, 본 실시예의 원자로에 있어서의 전체 구성은 상술한 제1 실시예와 대략 마찬가지로, 도 1을 사용하여 설명하는 동시에, 본 실시예에서 설명한 것과 동일한 기능을 갖는 부재에는 동일한 번호를 부여하여 중복되는 설명은 생략한다.
제8 실시예의 원자로에 있어서, 도 1 및 도 12에 도시한 바와 같이 하부 플레넘(58)에, 다운 커머부(59)로부터 하부 플레넘(58)으로 공급된 후 노심(53)을 향해 상승하는 경수를, 이 노심(53)의 둘레 방향 및 직경 방향에 대해 균일하게 분산하여 정류하는 정류 부재(121)가 설치되어 있다.
이 정류 부재(121)는 상부 외측 링(62)과 상부 내측 링(63)이 6개의 상부 스포크(64)에 의해 연결되어 이루어지는 상부 링(65)과, 제1 실시예와 마찬가지로 도시하지 않은 하부 링을 갖고 있다. 그리고, 하부 노심 지지판(51)으로부터 수직 하강된 12개의 지주(72)의 하부가 상부 외측 링(62) 및 하부 외측 링에 연결되는 동시에, 6개의 지주(122)의 하부가 복수의 상부 스포크(64) 및 하부 스포크에 연결되어 있다. 이 경우, 상부 스포크(64) 및 하부 스포크에 연결되는 6개의 지주(122)는 이 상부 스포크(64) 및 하부 스포크의 폭보다도 외경이 큰 와류 해소 부재로서 기능하도록 형성되어 있다. 즉, 지주(122)는 상단부가 하부 노심 지지판(51)에 고정되고, 하단부가 상부 스포크(64) 및 하부 스포크를 관통하여 원자로 용기 본체(42)의 저면의 근방까지 연장되어 있다.
따라서, 다운 커머부(59)를 하향으로 흘러내려 하부 플레넘(58)에 이른 경수는 이 하부 플레넘(58)의 구면 형상의 내면에 의해 상향으로 안내되어 상승하고, 정류 부재(121)에 정류된 후 노심(53)으로 유입된다. 이때, 하부 플레넘(58)의 구면 형상의 내면에 의해 상승하는 경수는 정류 부재(121)에 충돌하여 분산되어, 큰 와류의 발생이 억제되지만, 발생한 와류는 와류 해소 부재로서 기능하는 직경이 큰 지주(122)의 주위를 상승함으로써 해소되어, 하부 플레넘(58)으로부터 노심(53)으로 공급되는 경수의 유량이, 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류된다.
이와 같이 제8 실시예의 원자로에 따르면, 원자로 용기(41) 내의 하부 플레넘(58)에, 링 형상을 이루는 상부 링(65) 및 하부 링과, 와류 해소 부재로서 기능하는 지주(122)를 갖는 정류 부재(121)를 설치하고 있다.
따라서, 입구 노즐(44)로부터 원자로 용기(41) 내로 도입된 경수가, 다운 커머부(59)를 하강하여 하부 플레넘(58)에 이르고, 이 하부 플레넘(58)에서 반전하여 상승할 때, 상부 링(65) 및 하부 링에 충돌하여 흐름을 분산하여, 큰 와류의 발생을 억제하는 동시에, 발생한 와류가 지주(122)의 주위를 상승하면서 해소됨으로써, 노심(53)에 공급되는 경수의 유량이 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류되게 되어, 열교환 효율의 향상을 도모할 수 있다.
(제9 실시예)
도 13은 본 발명의 제9 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 수평 단면도, 도 14는 제9 실시예의 정류 부재에 설치된 와류 제거 링을 도시하는 사시도이다. 또한, 본 실시예의 원자로에 있어서의 전체 구성은 상술한 제1 실시예와 대략 마찬가지로, 도 1을 사용하여 설명하는 동시에, 본 실시예에서 설명한 것과 동일한 기능을 갖는 부재에는 동일한 번호를 부여하여 중복되는 설명은 생략한다.
제9 실시예의 원자로에 있어서, 도 1, 도 13 및 도 14에 도시한 바와 같이 하부 플레넘(58)에, 다운 커머부(59)로부터 하부 플레넘(58)으로 공급된 후 노심(53)을 향해 상승하는 경수를, 이 노심(53)의 둘레 방향 및 직경 방향에 대해 균일하게 분산하여 정류하는 정류 부재(131)가 설치되어 있다.
이 정류 부재(131)는 상부 외측 링(62)과 상부 내측 링(63)이 6개의 상부 스포크(64)에 의해 연결되어 이루어지는 상부 링(65)과, 제1 실시예와 마찬가지로 도시하지 않은 하부 링을 갖고 있다. 그리고, 하부 노심 지지판(51)으로부터 수직 하강된 12개의 지주(72)의 하부가 상부 외측 링(62) 및 하부 외측 링에 연결되는 동시에, 6개의 지주(73)의 하부가 복수의 상부 스포크(64) 및 하부 스포크에 연결되어 있다. 이 경우, 상부 스포크(64) 및 하부 스포크에 연결되는 6개의 지주(73)는 상단부가 하부 노심 지지판(51)에 고정되고, 하단부가 상부 외측 링(62) 및 하부 외측 링을 관통하여 원자로 용기 본체(42)의 저면의 근방까지 연장되어 있다. 그리고, 이 각 지주(73)에는 외주부에 링 형상을 이루는 와류 제거 링(와류 해소 부재)(132)이 설치되어, 복수의 지지 바(133)에 의해 고정되어 있다. 이 와류 제거 링(132)은 지주(73)의 축 방향으로 소정 간격으로 복수 설치되어 있다.
따라서, 다운 커머부(59)를 하향으로 흘러내려 하부 플레넘(58)에 이른 경수는 이 하부 플레넘(58)의 구면 형상의 내면에 의해 상향으로 안내되어 상승하고, 정류 부재(131)에 정류된 후 노심(53)으로 유입된다. 이때, 하부 플레넘(58)의 구면 형상의 내면에 의해 상승하는 경수는 정류 부재(131)에 충돌하여 분산되어, 큰 와류의 발생이 억제되지만, 발생한 와류는 지주(73)의 주위를 상승하여, 와류 제거 링(132)에 충돌함으로써 해소되어, 하부 플레넘(58)으로부터 노심(53)으로 공급되는 경수의 유량이 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류된다.
이와 같이 제9 실시예의 원자로에 따르면, 원자로 용기(41) 내의 하부 플레넘(58)에, 링 형상을 이루는 상부 링(65) 및 하부 링을 갖는 정류 부재(131)를 설치하여, 하부 노심 지지판(51)으로부터 수직 하강된 지주(72, 73)에 의해 지지하고, 각 지주(73)의 외주부에 링 형상을 이루는 와류 제거 링(132)이 설치되어 있다.
따라서, 입구 노즐(44)로부터 원자로 용기(41) 내로 도입된 경수가, 다운 커머부(59)를 하강하여 하부 플레넘(58)에 이르고, 이 하부 플레넘(58)에서 반전하여 상승할 때, 상부 링(65) 및 하부 링에 충돌하여 흐름을 분산하여, 큰 와류의 발생을 억제하는 동시에, 발생한 와류가 지주(73)의 주위를 상승할 때, 와류 제거 링(132)에 충돌함으로써 해소되므로, 노심(53)에 공급되는 경수의 유량이 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류되게 되어, 열교환 효율의 향상을 도모할 수 있다.
또한, 상술한 제8 실시예, 제9 실시예에서는, 상부 스포크(64)에 대해 와류 해소 부재로서 기능하는 지주(122)를 설치하거나, 지주(73)의 외주부에 와류 제거 링(132)을 설치하였지만, 상부 외측 링(62)에 대해 와류 해소 부재로서 기능하는 굵은 지주를 설치하거나, 지주(72)의 외주부에 와류 제거 링을 설치해도 좋다.
(제10 실시예)
도 15는 본 발명의 제10 실시예에 관한 가압수형 원자로에 설치된 정류 부재를 도시하는 수평 단면도, 도 16은 도 15의 XVI-XVI 단면도이다. 또한, 본 실시예의 원자로에 있어서의 전체 구성은 상술한 제1 실시예와 대략 마찬가지로, 도 1을 사용하여 설명하는 동시에, 본 실시예에서 설명한 것과 동일한 기능을 갖는 부재에는 동일한 번호를 부여하여 중복되는 설명은 생략한다.
제10 실시예의 원자로에 있어서, 도 1, 도 15 및 도 16에 도시한 바와 같이 하부 플레넘(58)에, 다운 커머부(59)로부터 하부 플레넘(58)으로 공급된 후 노심(53)을 향해 상승하는 경수를, 이 노심(53)의 둘레 방향 및 직경 방향에 대해 균일하게 분산하여 정류하는 정류 부재(141)가 설치되어 있다.
이 정류 부재(141)는 상부 외측 링(142)과 지지 축(143)이 6개의 상부 스포크(144)에 의해 연결되어 이루어지는 상부 링(145)과, 도시하지 않지만, 마찬가지로 하부 외측 링과 지지 축(143)이 6개의 하부 스포크에 의해 연결되어 이루어지는 하부 링을 갖고 있다. 또한, 각 상부 스포크(144)의 양측부에 이 상부 스포크(144)의 길이 방향을 따라서 와류 제거 파이프(와류 해소 부재)(146)가 설치되고, 복수의 연결 바(147)에 의해 고정되어 있다. 그리고, 하부 노심 지지판(51)으로부터 수직 하강된 12개의 지주(148)의 하부가 상부 외측 링(142) 및 하부 외측 링에 연결되는 동시에, 6개의 지주(149)의 하부가 복수의 상부 스포크(144) 및 하부 스포크에 연결되어 있다.
또한, 상부 외측 링(142)의 외주부로부터 원자로 용기 본체(42)의 내면측을 향해 보조 링(112)이 설치되어 있다. 이 보조 링(112)은 상부 외측 링(142)보다 대경의 링 형상을 이루는 동시에 단면이 원통 형상 또는 원형상을 이루고, 상부 외측 링(142)의 외주면에 복수 8개의 연결 바(113)를 통해 지지되어 있다.
따라서, 입구 노즐(44)로부터 원자로 용기 본체(42) 내로 유입된 경수는 다운 커머부(59)를 하향으로 흘러내려 하부 플레넘(58)에 이르고, 이 하부 플레넘(58)의 구면 형상의 내면에 의해 상향으로 안내되어 상승하고, 정류 부재(141)에 정류된 후 노심(53)으로 유입된다. 이때, 다운 커머부(59)를 흘러내리는 경수는 보조 링(112)에 충돌하여 분산되어 하부 플레넘(58)에 이른다. 그리고, 하부 플레넘(58)의 구면 형상의 내면에 의해 상승하는 경수는, 정류 부재(141)에 충돌하여 더 분산되어, 큰 와류의 발생이 억제되지만, 발생한 와류는 복수의 와류 제거 파이프(146)에 충돌함으로써 해소되어, 하부 플레넘(58)으로부터 노심(53)으로 공급되는 경수의 유량이, 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류된다.
이와 같이 제10 실시예의 원자로에 따르면, 원자로 용기(41) 내의 하부 플레넘(58)에, 링 형상을 이루는 상부 링(145) 및 하부 링을 갖는 동시에, 상부 스포크(144)의 양측부에 와류 제거 파이프(146)가 고정된 정류 부재(141)를 설치하고 있다.
따라서, 입구 노즐(44)로부터 원자로 용기(41) 내로 도입된 경수가, 다운 커머부(59)를 하강하여 하부 플레넘(58)에 이르고, 이 하부 플레넘(58)에서 반전하여 상승할 때, 상부 링(65) 및 하부 링에 충돌하여 흐름을 분산하여, 큰 와류의 발생을 억제하는 동시에, 발생한 와류가 와류 제거 파이프(146)에 충돌함으로써 해소되므로, 노심(53)에 공급되는 경수의 유량이 노심(53)에 대해 그 직경 방향 및 둘레 방향으로 균일하게 정류되게 되어, 열교환 효율의 향상을 도모할 수 있다.
또한, 상술한 각 실시예에서는 정류 부재를 상하 방향으로 배치한 2개의 링에 의해 구성하였지만, 1개라도 좋고, 또한 3개 이상 배치해도 좋다. 또한, 각 실시예에서는 정류 부재를 직경 방향으로 배치한 1개 또는 2개의 링에 의해 구성하였지만, 3개 이상 배치해도 좋다. 또한, 각 링의 단면 형상을 직사각 형상으로 하였지만, 원형, 타원형 등으로 해도 좋다. 또한, 정류 스포크를 둘레 방향으로 6개 설치하였지만, 5개 이하라도, 7개 이상이라도 좋다. 또한, 복수의 정류 스포크를 둘레 방향으로 균등한 간격으로 설치하였지만, 원자로 용기 본체(42)의 내면 형상에 따라서 부등 간격으로 해도 좋다.
즉, 정류 링, 정류 스포크, 지주의 수는 하부 플레넘(58)에서 발생하는 와류의 상황에 따라서 적절하게 설정하면 되는 것으로, 그것에 따라서 정류 링과 정류 스포크와 지주의 높이나 폭을 변경하여, 결과적으로 경수가 노심(53)에 흐르는 유로 면적, 개구율을 설정하면 되는 것이다.
또한, 상술한 각 실시예에서는 정류 링을 하부 노심 지지판으로부터 수직 하강된 복수의 지주에 의해 지지하였지만, 하부 노심 지지판과 하부 노심판을 겸용한 경우에는 정류 링을 하부 노심판으로부터 수직 하강된 복수의 지주에 의해 지지하면 좋다. 즉, 본 발명의 하부 노심판은 하부 노심 지지판과 하부 노심판을 포함하는 것이다.
본 발명에 관한 원자로는 하부 플레넘에 정류 부재를 설치함으로써, 냉각재를 하부 플레넘으로부터 노심에 대해 직경 방향 및 둘레 방향으로 균일하게 공급하는 것으로, 어떤 종류의 원자로에도 적용할 수 있다.
12 : 가압수형 원자로
41 : 원자로 용기(압력 용기)
44 : 입구 노즐(냉각재 입구 노즐)
45 : 출구 노즐(냉각재 출구 노즐)
46 : 노심조
53 : 노심
56 : 노내 계장 안내관
57 : 상부 플레넘
58 : 하부 플레넘
59 : 다운 커머부
61, 71, 81, 91, 111, 121, 131, 141 : 정류 부재
62, 92, 142 : 상부 외측 링
63, 93 : 상부 내측 링
64, 94, 144 : 상부 스포크(정류 스포크)
65, 95, 145 : 상부 링(정류 링)
66, 96 : 하부 외측 링
67, 97 : 하부 내측 링
68, 98 : 하부 스포크(정류 스포크)
69, 99 : 하부 링(정류 링)
70, 72, 73, 84, 101, 102, 103, 104, 148, 148 : 지주
82, 83, 100 : 중간 링
112 : 보조 링(정류 보조 부재)
115 : 벽부재
122 : 지주(와류 해소 부재)
132 : 와류 제거 링(와류 해소 부재)
146 : 와류 제거 파이프(와류 해소 부재)

Claims (14)

  1. 상부에 냉각재 입구 노즐 및 냉각재 출구 노즐을 갖는 압력 용기와, 상기 압력 용기 내에 배치되는 노심조와, 상기 노심조 내에 배치되는 노심과, 상기 압력 용기와 상기 노심조의 저부에 의해 구획되는 하부 플레넘과, 상기 압력 용기와 상기 노심조의 측벽에 의해 구획되어 상기 냉각재 입구 노즐에 연통하는 동시에 상기 하부 플레넘에 연통하는 다운 커머부를 구비하는 원자로에 있어서, 상기 하부 플레넘에 링 형상을 이루는 정류 링과 상기 정류 링의 내측에 방사상을 이루는 복수의 정류 스포크로 이루어지는 정류 부재가 설치되는 것을 특징으로 하는, 원자로.
  2. 제1항에 있어서, 상기 정류 링은 상부 링 및 하부 링을 갖고, 하부 노심판으로부터 수직 하강된 복수의 지주에 의해 지지되는 것을 특징으로 하는, 원자로.
  3. 제1항 또는 제2항에 있어서, 상기 정류 링은 외측 링 및 내측 링을 갖고, 하부 노심판으로부터 수직 하강된 복수의 지주에 의해 지지되는 동시에, 상기 외측 링과 상기 내측 링 사이에 상기 복수의 정류 스포크가 설치되는 것을 특징으로 하는, 원자로.
  4. 제3항에 있어서, 상기 외측 링과 상기 내측 링 사이에 중간 링이 배치되고, 상기 중간 링은 상기 복수의 정류 스포크와 교차하는 것을 특징으로 하는, 원자로.
  5. 제2항에 있어서, 상기 상부 링의 외경이 상기 하부 링의 외경보다 크게 설정되는 것을 특징으로 하는, 원자로.
  6. 제2항 또는 제5항에 있어서, 상기 상부 링에 설치된 복수의 정류 스포크와 상기 하부 링에 설치된 복수의 정류 스포크가 둘레 방향으로 어긋나게 배치되는 것을 특징으로 하는, 원자로.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 정류 링의 외주부로부터 상기 원자로 용기의 내면측을 향해 정류 보조 부재가 설치되는 것을 특징으로 하는, 원자로.
  8. 제7항에 있어서, 상기 정류 보조 부재는 링 형상을 이루고, 상기 정류 링의 외주부에 복수의 연결 부재를 통해 지지되는 것을 특징으로 하는, 원자로.
  9. 제7항 또는 제8항에 있어서, 상기 정류 링의 상면이 상기 정류 보조 부재의 상면보다 높은 위치에 설치되는 것을 특징으로 하는, 원자로.
  10. 제7항 내지 제9항 중 어느 한 항에 있어서, 상기 정류 링의 외주부 상면에 벽부재가 설치되는 것을 특징으로 하는, 원자로.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 정류 링 또는 상기 정류 스포크에, 상기 정류 링 또는 상기 정류 스포크의 폭보다도 외경이 큰 와류 해소 부재가 상하 방향을 따라서 설치되는 것을 특징으로 하는, 원자로.
  12. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 정류 링 또는 상기 정류 스포크는 하부 노심판으로부터 수직 하강된 복수의 지주에 의해 지지되고, 상기 지주의 외주부에 링 형상을 이루는 와류 해소 부재가 설치되는 것을 특징으로 하는, 원자로.
  13. 제1항 내지 제11항 중 어느 한 항에 있어서, 상기 정류 스포크의 측부에 상기 정류 스포크의 길이 방향을 따라서 와류 해소 부재가 설치되는 것을 특징으로 하는, 원자로.
  14. 제1항 내지 제12항 중 어느 한 항에 있어서, 상기 압력 용기 내에 있어서의 상기 노심조의 상부에 상부 노심판이 설치되고, 상기 압력 용기의 상부로부터 상기 상부 노심판을 관통하여 계장 안내관이 설치되는 것을 특징으로 하는, 원자로.
KR1020107002863A 2007-08-31 2008-08-27 원자로 KR101129735B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2007-226393 2007-08-31
JP2007226393A JP4786616B2 (ja) 2007-08-31 2007-08-31 原子炉
PCT/JP2008/065317 WO2009028562A1 (ja) 2007-08-31 2008-08-27 原子炉

Publications (2)

Publication Number Publication Date
KR20100030673A true KR20100030673A (ko) 2010-03-18
KR101129735B1 KR101129735B1 (ko) 2012-03-26

Family

ID=40387279

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107002863A KR101129735B1 (ko) 2007-08-31 2008-08-27 원자로

Country Status (6)

Country Link
US (1) US8908822B2 (ko)
EP (1) EP2194534B1 (ko)
JP (1) JP4786616B2 (ko)
KR (1) KR101129735B1 (ko)
CN (1) CN101779254B (ko)
WO (1) WO2009028562A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220011540A (ko) * 2020-07-21 2022-01-28 한국원자력연구원 유동혼합헤더 및 이를 구비하는 원자로

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810617B1 (ja) * 2010-07-27 2011-11-09 株式会社東芝 プラントの腐食抑制方法及びプラント
RU2545518C2 (ru) * 2010-12-13 2015-04-10 Кабусики Кайся Тосиба Реактор с охлаждением водой под давлением
US9593684B2 (en) 2011-07-28 2017-03-14 Bwxt Nuclear Energy, Inc. Pressurized water reactor with reactor coolant pumps operating in the downcomer annulus
US8958519B2 (en) * 2012-04-17 2015-02-17 Babcock & Wilcox Mpower, Inc. Incore instrumentation cable routing and support element for pressurized water reactor
RU2525857C2 (ru) * 2012-08-21 2014-08-20 Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации-Физико-энергетический институт имени А.И. Лейпуновского" Напорная камера
RU2523025C2 (ru) * 2012-08-21 2014-07-20 Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации-Физико-энергетический институт имени А.И. Лейпунского" Напорная камера
RU2526837C1 (ru) * 2013-05-23 2014-08-27 Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации-Физико-энергетический институт имени А.И. Лейпунского" Распределительная камера
RU2525860C1 (ru) * 2013-05-23 2014-08-20 Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации-Физико-энергетический институт имени А.И. Лейпунского" Распределительная камера
KR101669733B1 (ko) * 2014-12-24 2016-10-26 이창건 원자로에서 발생한 증기를 이용하는 에너지 절약형 해수 담수화 시스템 및 해수 담수화 방법
CN106875985B (zh) * 2017-03-31 2018-09-11 中国核动力研究设计院 一种用于堆内构件下腔室的堆芯流量分配装置
CN107146642B (zh) * 2017-06-21 2023-05-12 中国核动力研究设计院 一种核电站反应堆的堆内流量分配装置
CN107170491B (zh) * 2017-07-14 2023-07-04 中国核动力研究设计院 一种基于穹顶结构的压水型反应堆内流量分配装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623948A (en) * 1968-04-25 1971-11-30 Babcock & Wilcox Co Pressurized-water nuclear reactor
US3864209A (en) * 1970-04-21 1975-02-04 Westinghouse Electric Corp Inlet flow oscillation damper for a nuclear reactor
UST921015I4 (en) * 1972-09-13 1974-04-16 Nuclear reactor corii cooling arrangement
US4072563A (en) * 1976-06-24 1978-02-07 The Babcock & Wilcox Company Industrial technique for an integral compact reactor
FR2635906B1 (fr) * 1988-08-25 1990-11-23 Framatome Sa Dispositif d'instrumentation du coeur d'un reacteur nucleaire a eau sous pression et procede et dispositif d'extraction et de mise en place de ce dispositif d'instrumentation
US5267285A (en) * 1992-06-24 1993-11-30 Westinghouse Electric Corp. Apparatus for suppressing formation of vortices in the coolant fluid of a nuclear reactor and associated method
JP2999124B2 (ja) * 1994-07-01 2000-01-17 三菱重工業株式会社 加圧水型原子炉の炉内下部構造物
JPH0862372A (ja) * 1994-08-18 1996-03-08 Mitsubishi Heavy Ind Ltd 加圧水型原子炉の炉内構造
US5583899A (en) * 1995-01-17 1996-12-10 General Electric Company Removable retrofit shroud for a boiling water nuclear reactor and associated method
US6567493B2 (en) * 2001-09-05 2003-05-20 General Electric Company Core spray sparger assembly
JP4202197B2 (ja) 2003-06-18 2008-12-24 三菱重工業株式会社 原子炉の炉内構造
US7245689B2 (en) 2003-06-18 2007-07-17 Mitsubishi Heavy Industries, Ltd Nuclear reactor internal structure
JP2005069732A (ja) 2003-08-20 2005-03-17 Toshiba Corp 沸騰水型原子炉
FR2893176A1 (fr) 2005-11-04 2007-05-11 Framatome Anp Sas Cuve de reacteur nucleaire a eau sous pression.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220011540A (ko) * 2020-07-21 2022-01-28 한국원자력연구원 유동혼합헤더 및 이를 구비하는 원자로

Also Published As

Publication number Publication date
EP2194534B1 (en) 2015-04-01
CN101779254B (zh) 2012-10-31
US20100284507A1 (en) 2010-11-11
JP2009058392A (ja) 2009-03-19
KR101129735B1 (ko) 2012-03-26
EP2194534A1 (en) 2010-06-09
US8908822B2 (en) 2014-12-09
CN101779254A (zh) 2010-07-14
EP2194534A4 (en) 2012-06-20
WO2009028562A1 (ja) 2009-03-05
JP4786616B2 (ja) 2011-10-05

Similar Documents

Publication Publication Date Title
KR101129735B1 (ko) 원자로
JP5497454B2 (ja) 加圧水型原子炉のスカート状整流装置
JP5542062B2 (ja) 原子炉圧力容器のための中性子遮蔽パネル
US8002866B2 (en) Steam-water separator
EP2366184B1 (en) Reactor vessel coolant deflector shield
KR102109504B1 (ko) 일체형 가압수로형 원자로를 위한 가압기 서지선 분리기
JP6236463B2 (ja) 原子炉
EP3127122B1 (en) Low pressure drop nuclear fuel assembly
CA2618719C (en) Steam-water separator
US20210272707A1 (en) Molten fuel reactors and orifice ring plates for molten fuel reactors
JP2009075001A (ja) 原子炉
US5857006A (en) Chimney for enhancing flow of coolant water in natural circulation boiling water reactor
JP2999124B2 (ja) 加圧水型原子炉の炉内下部構造物
KR100647808B1 (ko) 일체형 원자로 하향수로용 유동혼합헤더
JP2021113769A (ja) 燃料集合体
JP2003294878A (ja) 燃料集合体
JP3853415B2 (ja) 加圧水型原子炉の原子炉容器
JP4028088B2 (ja) 燃料集合体
US20150310944A1 (en) Steam separation system and nuclear boiling water reactor including the same
GB2628228A (en) Flow distribution device
US20110317799A1 (en) Pressure-loss adjusting member and reactor
JP2021162406A (ja) 沸騰水型原子炉
JPH10111379A (ja) 加圧水型原子炉の内部構造

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150224

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160219

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170221

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180302

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190305

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200302

Year of fee payment: 9