KR20090094768A - 평가 방법, 평가 장치 및 노광 장치 - Google Patents

평가 방법, 평가 장치 및 노광 장치 Download PDF

Info

Publication number
KR20090094768A
KR20090094768A KR1020090017683A KR20090017683A KR20090094768A KR 20090094768 A KR20090094768 A KR 20090094768A KR 1020090017683 A KR1020090017683 A KR 1020090017683A KR 20090017683 A KR20090017683 A KR 20090017683A KR 20090094768 A KR20090094768 A KR 20090094768A
Authority
KR
South Korea
Prior art keywords
optical system
interferometer
arrangement
interference fringe
aberration
Prior art date
Application number
KR1020090017683A
Other languages
English (en)
Inventor
오사무 가꾸찌
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20090094768A publication Critical patent/KR20090094768A/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J2009/0234Measurement of the fringe pattern

Abstract

간섭계를 이용하여 피검 광학계의 광학 특성을 평가하는 평가 방법으로서, 광학계의 광축 방향에 있어서의 간섭계의 가동 요소의 배치가 제1 배치일 때 간섭계에 의해 형성된 제1 간섭 무늬를 취득하는 제1 취득 단계; 광축 방향에 있어서의 가동 요소의 배치가 제1 배치와는 다른 제2 배치일 때 간섭계에 의해 형성된 제2 간섭 무늬를 취득하는 제2 취득 단계; 취득된 제1 간섭 무늬 및 취득된 제2 간섭 무늬에 기초하여 광학계의 동공 중심 좌표를 결정하는 결정 단계; 및 결정 단계에서 결정된 동공 중심 좌표를 사용하여 광학계의 광학 특성을 계산하는 계산 단계를 포함한다.
노광, 평가, 간섭계, 광학계, 수차

Description

평가 방법, 평가 장치 및 노광 장치{EVALUATION METHOD, EVALUATION APPARATUS, AND EXPOSURE APPARATUS}
본 발명은 간섭계를 이용하여 피검 광학계의 광학 특성을 평가하는 평가 방법 및 평가 장치와, 그 평가 장치를 구비한 노광 장치에 관한 것이다.
최근, 노광 장치에 탑재되는 투영 광학계는, 그 투과 파면 수차를 10 mλ RMS 이하(λ= 248 nm, 193 nm 등)로 억제하기에 충분한 성능을 가질 것이 요구되고 있다. 이에 수반하여, 파면 수차의 계측 정밀도는 1mλ 정도의 높은 정밀도가 요구되고 있다. 종래에는, 투영 광학계의 파면 수차는 간섭계를 이용하여 화면(field) 내의 각 복수점에서 계측하는 것이 일반적이다. 투영 광학계의 조정에는 일본 특개2004-245744호 공보 및 일본 특개평9-96589호 공보에 기재되어 있는 바와 같은 위상 주사형 (시프트) 간섭계가 사용되는 경우가 많다. 최근에는, 일본 특개2000-277412호 공보에 기재되어 있는 바와 같이, 노광 장치에서 파면 수차를 계측할 수 있다.
파면 수차는 투영 광학계의 상 성능을 나타내는 척도로서, 동공면(pupil plane) 내의 광학 특성으로서 해석될 수 있다. 이러한 광학 특성과는 별도로, 상 위치(상면, 상 왜곡)에 관한 광학 특성은, 일본 특개평9-96589호 공보에 개시되어 있는 바와 같이, 축외(off-axis)의 파면 수차에 대한 간섭 계측 시의 간섭 광학계의 위치 정보에 기초하여 평가될 수 있다.
간섭 계측에 의해 얻어진 2차원 위상 분포를 파면 수차로서 나타내는 것에는 Zernike 다항식이 이용되는 경우가 많다. 높은 정밀도로 Zernike 다항식의 계수를 계산하기 위해서는, 간섭 무늬(interference fringe)(2차원 위상 분포)의 중심 좌표를 정확하게 계산할 필요가 있다. 이 중심 좌표는 계측된 간섭 무늬 또는 피검 광속(light beam)의 강도 분포의 엣지를 검출함으로써 결정하는 것이 일반적이다.
일본 특개2006-324311호 공보에서는 물체 거리를 변화시킨 경우의 축상(on-axis)의 코마 수차의 변화가 최소가 되는 동공 중심 좌표를 계산함으로써 동공 중심 좌표를 결정한다.
파면 수차, 상 위치 이외의 투영 광학계의 광학 특성의 일례로서는, 물체측 또는 상측의 광속의 기울기를 나타내는 텔레센트릭도(telecentricity)가 있다. 일본 특개평10-170399호 공보에서는 테스트 레티클을 이용하여 텔레센트릭도를 계측하는 방법을 제안하고 있다. 이 방법에서는, 노광 장치에서 기준 패턴을 갖는 테스트 레티클을 배치하고, 웨이퍼 스테이지를 광축 방향으로 이동시킨 경우의 복수(2개 이상)의 포커스 위치에 해당하는 패턴을 웨이퍼에 전사시킨다. 이 때의 상 위치의 변화에 기초하여, 웨이퍼측의 광속의 기울기(텔레센트릭도)가 계산될 수 있다. 상 위치의 변화는 전사 패턴의 위치를 예를 들어, 좌표 계측기에 의해 계측함으로써 결정된다.
전술한 종래 기술에서는 이하의 문제점이 있다.
파면 수차의 계측에 있어서의 중심 좌표를 결정하는 에지 검출법에서는, 중심 좌표를 정확하게 검출하는 것이 어려우므로, 파면 수차를 정확하게 계측하는 것이 어렵다.
일본 특개평9-96589호 공보에 개시된 방법에서는, 물체 거리를 변화시킨 경우의 축상의 코마 수차의 변화가 최소로 되는 동공 중심 좌표를 계산함으로써 동공 중심 좌표를 결정하고 있지만, 이 방법에서는 축외의 파면 수차에 대한 동공 중심 좌표를 정확하게 결정할 수 없다.
텔레센트릭도에 관한 방법을 개시하고 있는 일본 특개평10-170399호 공보에서는, 테스트 레티클을 이용하여 웨이퍼 상에 전사된 패턴의 상 위치를 좌표 계측기에서 계측하기 때문에, 계측 결과를 얻기까지의 과정이 많아, 계측에 긴 시간이 걸린다.
본 발명은 상기의 과제 인식을 기초로 하여 이루어진 것으로서, 예컨대, 피검 광학계의 광학 특성을 보다 간단하고 보다 높은 정밀도로 평가하는 것을 목적으로 한다.
본 발명의 제1 양태에 따르면, 간섭계를 이용하여 피검 광학계의 광학 특성을 평가하는 평가 방법으로서, 광학계의 광축 방향에 있어서의 간섭계의 가동 요소 의 배치가 제1 배치일 때 간섭계에 의해 형성된 제1 간섭 무늬를 취득하는 제1 취득 단계; 광축 방향에 있어서의 가동 요소의 배치가 제1 배치와는 다른 제2 배치일 때 간섭계에 의해 형성된 제2 간섭 무늬를 취득하는 제2 취득 단계; 취득된 제1 간섭 무늬 및 취득된 제2 간섭 무늬에 기초하여 광학계의 동공 중심 좌표를 결정하는 결정 단계; 및 결정 단계에서 결정된 동공 중심 좌표를 사용하여 광학계의 광학 특성을 계산하는 계산 단계를 포함하는 평가 방법이 제공된다.
본 발명의 제2 양태에 따르면, 간섭계를 이용하여 피검 광학계의 광학 특성을 평가하는 평가 장치로서, 간섭계에 의해 형성되는 간섭 무늬를 촬상하는 이미지 센서; 및 이미지 센서에 의해 제공되는 간섭 무늬의 화상에 기초하여 광학계의 광학 특성을 계산하는 연산 유닛을 구비하며, 연산 유닛은, 광학계의 광축 방향에 있어서의 간섭계의 가동 요소의 배치가 제1 배치일 때 간섭계에 의해 형성된 제1 간섭 무늬를 이미지 센서로 촬상하여 얻은 화상과 광축 방향에 있어서의 가동 요소의 배치가 제1 배치와는 다른 제2 배치일 때 간섭계에 의해 형성된 제2 간섭 무늬를 이미지 센서로 촬상하여 얻은 화상에 기초하여 광학계의 동공 중심 좌표를 결정하고, 결정된 동공 중심 좌표를 사용하여 광학계의 광학 특성을 계산하는 평가 장치가 제공된다.
본 발명의 제3 양태에 따르면, 투영 광학계에 의해 원판의 패턴을 기판에 투영하여 기판을 노광하는 노광 장치로서, 간섭계를 이용하여 투영 광학계의 광학 특성을 평가하는 평가 장치를 구비하며, 평가 장치는, 간섭계에 의해 형성되는 간섭 무늬를 촬상하는 이미지 센서; 및 이미지 센서에 의해 제공되는 간섭 무늬의 화상 에 기초하여 투영 광학계의 광학 특성을 계산하는 연산 유닛을 구비하며, 연산 유닛은, 투영 광학계의 광축 방향에 있어서의 간섭계의 가동 요소의 배치가 제1 배치일 때 간섭계에 의해 형성된 제1 간섭 무늬를 이미지 센서로 촬상하여 얻은 화상과 광축 방향에 있어서의 가동 요소의 배치가 제1 배치와는 다른 제2 배치일 때 간섭계에 의해 형성된 제2 간섭 무늬를 이미지 센서로 촬상하여 얻은 화상에 기초하여 투영 광학계의 동공 중심 좌표를 결정하고, 결정된 동공 중심 좌표를 사용하여 투영 광학계의 광학 특성을 계산하는 노광 장치가 제공된다.
본 발명의 또 다른 특징들은 첨부 도면을 참조로 한 실시예들의 이하의 설명으로부터 더 명확하게 될 것이다.
이하, 첨부 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다.
[제1 실시예]
도 1은 본 발명의 바람직한 실시예에 따른 노광 장치의 개략 구성을 나타낸 도면이다. 본 실시예에 따른 노광 장치(EX)는 레티클 면(5)에 삽입되는 레티클(원판)의 패턴을 웨이퍼(기판)(7)에 투영하는 투영 광학계(11)를 구비하고 있다. 노광 장치(EX)는 또한 피검 광학계로서 투영 광학계(11)의 광학 특성을 평가하는 평가 장치를 구비하고 있다. 엑시머 레이저 등의 광원(1)에 의해 출사되는 광은, 광 연장(light extension) 광학계(2)에 의해 인코히어런트 유닛(3)에 도광된다. 인코히어런트 유닛(3)은 광의 가간섭성(coherency)을 저하시켜 조명 광학계(4)에 제공한다. 조명 광학계(4)는 웨이퍼(7)를 노광할 경우 레티클 면(5)에 삽입되는 레티 클을 조명한다. 투영 광학계(11)의 광학 특성을 평가하는 경우, 레티클 면(5)에 기준 파면 생성 광학계(9)가 배치되며, 이 기준 파면 생성 광학계(9)가 조명 광학계(4)에 의해 조명된다. 기준 파면 생성 광학계(9)는 전형적으로는 레티클을 유지하는 레티클 스테이지(도시 생략)에 배치되며, 투영 광학계(11)의 물체 면(레티클 면(5))에 따른 방향 및 광축에 따른 방향으로 이동이 가능하다. 웨이퍼(7)를 유지하는 웨이퍼 스테이지(8)에는 웨이퍼(7)를 유지할 위치의 옆에 파면 검출 유닛(10)이 배치되어 있다.
도 2는 기준 파면 생성 광학계(9)의 상세한 구성예를 나타낸 도면이다. 조명 광학계(4)로부터의 광속(23)에 의해 기준 파면 생성 광학계(9)의 전체가 조명된다. 기준 파면 생성 광학계(9)는 입사하는 광속(23)의 파장(광원(1)에 의해 출사되는 광의 파장)의 1/2 정도의 폭을 갖는 슬릿(22)을 구비하고 있다. 도 2에 있어서, y 방향은 슬릿(22)의 길이 방향, x 방향은 슬릿(22)의 폭 방향이다. 광속(23)의 휘도가 충분하다면, 핀홀을 대신 사용할 수 있다. 그러나, 웨이퍼를 노광하기 위한 광으로 레티클 면(5)을 조명하는 구성을 채택한다면, 광량을 증가시키기 위하여 슬릿을 사용하는 것이 바람직하다. 기준 파면 생성 광학계(9)에는, 슬릿(22)에 근접하여, 슬릿(22)의 단변보다도 긴 단변을 갖는 창(21)이 설치되어 있다.
도 3은 파면 검출 유닛(10)의 상세한 구성예를 나타낸 도면이다. 웨이퍼 스테이지(8)에 의해 유지되는 웨이퍼(7)의 표면과 거의 동일한 높이의 웨이퍼 면(6)에는, 기준 파면 생성 광학계(9)와 유사한 구성을 갖는 제2 기준 파면 생성 광학계(31)가 배치되어 있다. 제2 기준 파면 생성 광학계(31)는 기준 파면 생성 광학 계(9)의 슬릿(22) 및 창(21)과 유사한 슬릿(32) 및 창(33)을 갖는다. 그러나, 슬릿(32)과 창(33)의 단변 및 장변은 투영 광학계(11)의 결상 배율만큼 슬릿(22)과 창(21)보다 축소되어 있다.
기준 파면 생성 광학계(9)의 슬릿(22)으로부터의 피검 광속(36)은 제2 기준 파면 생성 광학계(31)의 창(33)을 투과한다. 또한, 기준 파면 생성 광학계(9)의 창(21)으로부터의 참조 광속(35)은 제2 기준 파면 생성 광학계(31)의 슬릿(32)을 투과한다. 피검 광속(36) 및 참조 광속(35)은 CCD 센서 등의 이미지 센서(34)의 촬상면 상에 간섭 무늬를 형성한다. 이미지 센서(34)에서 촬상된 간섭 무늬의 화상을 주지의 방법에 따라 처리하여 위상 정보를 재생하고, 이를 Zernike 함수 등에 피팅함으로써, 파면 수차 계수를 계산할 수 있다. 여기서, 계산에 사용되는 동공 중심 좌표 (원점 좌표)를 정확하게 결정함으로써 파면 수차 계수(예컨대, Zernike 계수)를 정확하게 계산할 필요가 있다.
이하, 상기의 동공 중심 좌표를 결정하는 방법을 예시적으로 설명한다. 본 실시예에 따른 평가 방법 및 평가 장치에서는, 물체 거리를 변화시킴으로써 수차를 변화시키고, 그 변화의 전후에 있어서의 파면 수차를 계측하고, 파면 수차의 변화량이 소정량이 되는 동공 중심 좌표를 계산한다.
이 방법을 도 4, 도 5a 내지 도 5d, 및 도 17을 참조하여 상세하게 설명한다. 도 17에 도시된 처리는, 도 1에 도시된 연산 유닛(20)에 의해 제어된다. 먼저, 피검 광학계로서의 투영 광학계(11)의 축상의 파면 수차를 계산하기 위한 동공 중심 좌표를 결정하는 시퀀스를 설명한다. 레티클 면(5) 및 웨이퍼 면(6)과 동일 한 높이의 축상의 위치에 기준 파면 생성 광학계(제1 가동 요소)(9) 및 파면 검출 유닛(제2 가동 요소)(10)이 각각 배치된다. 이 배치를 제1 배치로 정의하고, 제1 배치에 있어서의 파면 검출 유닛(10)의 위치를 제1 위치로 정의한다. 이 제1 배치에 있어서, 파면 검출 유닛(10)의 이미지 센서(34)는 간섭 무늬의 1차 촬상을 실행함으로써(스텝 1801(제1 촬상 공정)) 간섭 무늬를 취득한다. 예를 들어, 투영 광학계(11)의 조정 상태가 양호하다면, 도 5a에 도시된 바와 같이, 파면 검출 유닛(10)의 이미지 센서(34)의 촬상면(51) 상에 거의 단색의 간섭 무늬(제1 간섭 무늬)(52)가 형성되어, 이미지 센서(34)에 의해 촬상된다.
기준 파면 생성 광학계(9)가 투영 광학계(11)의 광축 방향으로 구동되어, 도 4에 도시된 위치 41에 배치된다. 또한, 웨이퍼 스테이지(8)가 구동되어, 위치 41의 공역 위치에 파면 검출 유닛(10)을 배치시킨다(스텝 1802). 이 배치를 제2 배치로 정의하고, 제2 배치에 있어서의 파면 검출 유닛(10)의 위치를 제2 위치로 정의한다. 이와 같이, 물체 거리가 변화된 상태에서, 파면 검출 유닛(10)의 이미지 센서(34)는 간섭 무늬의 2차 촬상을 실행함으로써(스텝 1803(제2 촬상 공정)) 간섭 무늬를 취득한다. 물체 거리의 변화에 따라서 투영 광학계(11)는 구면 수차를 발생시킨다. 이미지 센서(34)에 의해 촬상된 간섭 무늬(제2 간섭 무늬)(54)는 도 5c에 도시된 바와 같이 저 차원의 구면 수차의 특성을 나타내는 환형의 형상을 갖는다.
연산 유닛(20)은 축상의 파면 수차 계산을 위한 동공 중심 좌표(원점 좌표)를 계산한다(스텝 1805). 동공 중심 좌표(원점 좌표)를 계산하기 위한 원리 및 방 법을 설명하면 다음과 같다.
제1 배치와 제2 배치 사이에서의 투영 광학계(11)의 파면 수차의 변화량에 주목하면, 기준 파면 생성 광학계(9) 및 파면 검출 유닛(10)이 투영 광학계(11)의 축상의 위치에 배치되기 때문에, 물체 거리의 변화에 따라서 코마 수차가 발생되는 것은 아니다. 따라서, 파면 수차의 계산에 사용되는 동공 중심 좌표(원점 좌표)는 물체 거리의 변화에 따른 코마 수차의 변화량이 최소로 되는 좌표이어야 한다.
이 논리를 도면과 수식을 이용하여 설명한다. 수차의 측정치의 변화량(△W = W2 - W1)을 계산하는 경우에 원점 좌표에 △X의 오차가 발생한 경우, 파면 수차의 계산 결과에 있어서의 오차량 δ(△W)는,
δ(△W) = d(△W) / dx x △X
이다. 여기서, 물체 거리의 변화에 따른 구면 수차의 발생량은, 주로 최저 차수(이 경우, 4차)의 수차이다. 변화량 △W가,
△W = aㆍX4
이라고 하자. 여기서, a는 동공의 최외주에서의 수차량이고, X는 동공 좌표이다.
그러면,
δ(△W) = 4ㆍaㆍX3ㆍ△X = (4ㆍaㆍ△X)ㆍX3
이다. 상기 식은 동공의 최외주에 있어서 (4ㆍaㆍ△X)의 값으로 되는 3차 코마 수차를 나타낸다.
이상으로부터 이해할 수 있는 바와 같이, 파면 수차의 계산에 사용되는 동공 중심 좌표(원점 좌표)에 오차가 있는 경우, 코마 수차로서 오차가 발생한다는 것을 알 수 있다. 도 15를 참조하여 동일한 논리가 설명될 수 있다. 도 15를 참조하면, 원점 좌표가 올바른 경우(원점 좌표 = 1601)는, 동공의 최외주의 좌우 위치가 1603으로 되어, 좌우 대칭인 수차(구면 수차)가 계산에 의해 얻어진다. 원점 좌표에 오차가 있는 경우(원점 좌표 = 1602)는, 동공의 최외주의 좌우 위치가 1604로 되어, 좌우 비대칭인 수차가 계측된다. 즉, 파면 수차 계산 결과에 코마 수차가 나타난다.
올바른 원점 좌표는 이하의 방법으로 계산될 수 있다. 파면 수차(예컨대, Zernike 계수)의 계산에 사용하는 원점 좌표를 변경시키고, 복수의 원점 좌표의 각각에서 물체 거리의 변화에 따른 코마 수차의 변화량을 계산한다. 이 계산한 변화량이 최소로 되는 원점 좌표를 검출함으로써, 정확한 원점 좌표를 결정할 수 있다.
도 16은 동공 중심 좌표(원점 좌표)를 결정하는 시퀀스를 나타낸 도면이다. 먼저, 스텝 1701에 있어서, 파면 수차 계수(예컨대, Zernike 계수)의 최초의 계산에 사용되는 원점 좌표(X0, Y0)를 결정한다. 예를 들어, 측정된 파면 수차의 유효 데이터를 포함하는 영역의 외주를 원에 피팅하는 등에 의해 대략적인 중심을 계산할 필요가 있다. 스텝 1702에 있어서는, 스텝 1701에서 결정한 원점 좌표를 사용하여, 물체 거리의 변화 전에 있어서의 파면 수차(제1 파면 수차, 전형적으로는 코마 수차) 및 물체 거리의 변화 후에 있어서의 파면 수차(제2 파면 수차, 전형적으로는 코마 수차)를 계산한다. 스텝 1703에서, 최초의 원점 좌표(X0, Y0) 또는 전회의 원점 좌표를 다른 좌표(X0 + △X, Y0 + △Y)로 변경한다. 스텝 1702에 있어 서, 물체 거리의 변화 전에 있어서의 파면 수차(제1 파면 수차, 전형적으로는 코마 수차) 및 물체 거리의 변화 후에 있어서의 파면 수차(제2 파면 수차, 전형적으로는 코마 수차)를 다시 계산한다. △X, △Y의 변화량의 범위를 각각 ±△xmax, ±△ymax로 하여, X 및 Y 좌표를 증분함으로써, 스텝 1702, 1703을 반복한다. 이러한 반복의 완료 후에, 스텝 1704에서, 물체 거리의 변화에 따른 파면 수차(전형적으로는, 코마 수차)의 변화량(제1 파면 수차와 제2 파면 수차와의 차분)가 최소(예를 들어, 제로)로 되는 원점 좌표(XCMmin, YCMmin)를 계산한다. 파면 수차(전형적으로는, 코마 수차)의 변화량이 최소로 되는 원점 좌표가 올바른 원점 좌표(동공 중심 좌표)이다.
투영 광학계(11)의 축외의 파면 수차를 계산하기 위한 동공 중심 좌표(원점 좌표)를 결정한다. 도 4에 있어서, 주어진 축외 위치(9')에 기준 파면 생성 광학계(9)가 배치되고, 그 공역점에 파면 검출 유닛(43)이 배치된다. 이 배치를 제3 배치로 정의하고, 제3 배치에 있어서의 파면 검출 유닛(10)의 위치를 제3 위치로 정의한다. 이 제3 배치에 있어서, 파면 검출 유닛(10)의 이미지 센서(34)가 간섭 무늬의 제3 촬상을 실행한다(스텝 1806). 이 경우, 도 5b에 도시된 바와 같이, 이미지 센서(34)의 촬상면(51) 상에 거의 단색의 간섭 무늬(53)가 형성된다. 이 간섭 무늬(53)는 간섭 무늬(52)의 위치와는 다른 축상의 위치에 형성될 수 있다. 이것은 투영 광학계(11)의 웨이퍼측에 있어서의 텔레센트릭도가 완전하지 않기 때문이다.
기준 파면 생성 광학계(9)가 투영 광학계(11)의 광축 방향으로 이동되어, 위 치 42에 배치되며, 그 공역 위치에 파면 검출 유닛(43)이 배치된다(스텝 1807). 이 배치를 제4 배치로 정의하고, 제4 배치에 있어서의 파면 검출 유닛(10)의 위치를 제4 위치로 정의한다. 이 제4 배치에 있어서, 파면 검출 유닛(10)의 이미지 센서(34)는 간섭 무늬의 제4 촬상을 실행한다(스텝 1808). 여기서, 이미지 센서(34)에 의해 촬상된 간섭 무늬(54)는 도 5d에 도시된 바와 같이 저차수의 구면 수차를 가지며, 축상의 파면 수차에 대한 간섭 무늬(52)와는 상이하다.
연산 유닛(20)은 투영 광학계(11)의 축외의 파면 수차를 계산하기 위한 동공 좌표(원점 좌표)를 계산한다(스텝 1810). 축외의 파면 수차의 경우 물체 거리의 변화에 따라서 코마 수차가 발생한다. 이러한 관점에서, 동공 중심 좌표(원점 좌표)는, 축상의 파면 수차와는 달리, 이하와 같이 결정된다. 즉, 파면 수차(예컨대, Zernike 계수)의 계산에 사용되는 원점 좌표를 변화시키고, 복수의 원점 좌표의 각각에서 물체 거리 변화에 따른 코마 수차의 변화량을 계산한다. 계산한 변화량이 투영 광학계(11)의 설계의 관점에서의 코마 수차의 변화량과 동일하게 되는 원점 좌표를 검출함으로써 정확한 원점 좌표를 결정할 수 있다. 축상의 파면 수차에 있어서의 원점 좌표는, 물체 거리의 변화에 따른 코마 수차의 변화가 최소로 되는 원점 좌표를 계산함으로써 결정된다. 이와 대조하여, 축외의 파면 수차에 있어서의 원점 좌표는, 코마 수차가 최소가 아니라 설계치에 가장 가까운 원점 좌표를 계산함으로써 결정된다.
상기의 축외의 파면 수차에 있어서의 원점 좌표를 결정하는 과정을 복수의 축외 상점(image point)에서 반복한다. 동공 중심 좌표의 변화가 투영 광학계(11) 의 텔레센트릭도에 기인하기 때문에, 투영 광학계(11)의 특성을 검출하는 데에 필요한 상 높이(image height) 수만큼 그 과정을 실행할 필요가 있다. 예를 들어, 텔레센트릭도는 다음 식에 의해 근사화될 수 있기 때문에, 축상의 위치에 해당하는 것과는 다른 적어도 3개의 상 높이를 계측할 필요가 있다.
θ(Y) = A1ㆍY + A2ㆍY3 + A3ㆍY5
여기서, Y는 상 높이, A1, A2, 및 A3는 상수이다.
상기 식에서 계산된 계수 A1 내지 A3을 이용하면, 임의의 상 높이(Y)에 있어서의 측정 시의 텔레센트릭도를 계산하는 것이 가능하다. 상 높이(Y)에 있어서의 파면 측정치로부터 파면 수차를 계산하면, 계산한 θ(Y)로부터 올바른 동공 중심 좌표를 결정하는 것이 가능하다. 연산 유닛(20)은 이와 같이 계산한 각각의 상 높이(Y)에 있어서의 동공 중심 좌표에 기초하여 파면 수차(파면 수차 계수, 예를 들어, Zernike 계수)를 계산한다. 이에 의해, 높은 정밀도의 파면 수차의 측정이 가능해진다.
도 17의 각 스텝을 일단 실행하면, 그 때 계산된 각각의 상 높이에 있어서의 원점 좌표를 다음의 측정 시에 사용할 수 있다. 보다 높은 정밀도의 측정을 행할 경우는, 도 17의 스텝을 매회 실행할 필요가 있다.
연산 유닛(20)은, 다음 식에 의해, 축상의 파면 수차에 대한 동공 중심 좌표(X0, Y0)와 축외의 파면 수차에 대한 동공 중심 좌표(X1, Y1)와의 차분에 기초하여, 축외의 파면 수차에 있어서의 텔레센트릭도(θ)를 계산할 수 있다.
θx = sin(△X/XmaxㆍNA)-1 (△X = X1 - X0)
θy = sin(△Y/YmaxㆍNA)-1 (△Y = Y1 - Y0)
[제2 실시예]
도 6a 및 도 6b, 도 7a 내지 도 7d를 참조하여 본 발명의 제2 실시예를 설명한다. 여기서 특히 언급하지 않는 세부 사항은, 제1 실시예에서와 동일하다.
제2 실시예는 제1 실시예에 있어서의 처리(도 17)의 스텝 1802 및 스텝 1807에 있어서, 물체 위치는 움직이지 않고, 상측의 파면 검출 유닛(10)만을 이동시키는 점을 제외하고는, 제1 실시예와 동일하다.
제1 실시예에서는 물체 거리의 변화에 따른 구면 수차의 변화를 이용하지만, 제2 실시예에서는 디포커싱에 의한 파워의 변화를 이용한다.
도 6b는 파면 검출 유닛(10)이 축상의 위치에 배치된 상태를 나타낸 도면이다. 먼저, 제2 기준 파면 생성 광학계(31)가 웨이퍼 면(6) 상에 배치된 상태에서, 제1 촬상으로서, 도 7a에 예시된 바와 같은 간섭 무늬를 촬상한다(스텝 1801). 또한, 웨이퍼 스테이지(8)를 광축 방향으로 이동시켜, 이동 파면 검출 유닛(10)을 광축 방향으로 이동시킨다(이 동작은 스텝 1802에 상당하지만, 상측의 파면 검출 유닛(10)만을 이동시킴). 제2 촬상으로서, 도 7c에 예시된 바와 같은 간섭 무늬를 촬상한다(스텝 1803). 도 6b에 있어서, 61은 축상의 디포커스 위치에 배치된 파면 검출 유닛(10)에 입사하는 피검 광속을 나타낸다.
연산 유닛(20)은 축상의 파면 수차 계산을 위한 원점 좌표(동공 중심 좌표) 를 결정한다(스텝 1805). 이 시퀀스는 제1 실시예와 동일하다. 그러나, 제1 실시예에서는 2개의 파면 수차의 차분이 구면 수차인 것을 이용하지만, 제2 실시예에서는 2개의 파면 수차의 차분이 파워 성분인 것을 이용한다. 즉, 제2 실시예에서는, 원점 좌표에 오류가 있는 경우에 파워 성분이 틸트 성분으로서 검출된다는 것을 이용한다. 제1 실시예에서의 변화량 △W 및 도 15에 나타낸 특성을 4차 함수(구면 수차)가 아닌 2차 함수(파워 성분)로서 나타내는 경우, 제1 실시예와 동일한 논리를 제2 실시예에 적용한다. 즉, 파면 수차(예를 들어, Zernike 계수)의 계산에 사용되는 중심 좌표를 변화시키고, 복수의 원점 좌표의 각각에서 디포커스의 변화에 따른 틸트의 변화량을 계산한다. 계산한 변화량이 최소로 되는 중심 좌표를 검출함으로써 정확한 중심 좌표를 결정할 수 있다.
웨이퍼 스테이지(8)를 구동하여, 파면 검출 유닛(10)을 제1 측정시의 포커스 위치로 복귀시키고, 나아가 도 6a에 예시된 바와 같은 소정의 축외의 위치로 이동시킨다. 이 위치에서, 제3 촬상으로서, 도 7b에 예시된 바와 같은 간섭 무늬를 촬상한다(스텝 1806). 간섭 무늬(53)는, 축상의 파면 수차에 있어서의 간섭 무늬(52)에 대하여 중심이 벗어난 상태이다. 이는 투영 광학계(11)의 웨이퍼측에서의 텔레센트릭도의 미소량의 편차에 기인한다. 또한, 투영 광학계(11)는 파면 검출 유닛(10)을 광축 방향으로 이동시킨다(이 동작은 스텝 1807에 상당하지만, 상측의 파면 검출 유닛(10)만 이동). 제4 촬상으로서, 도 7d에 예시된 바와 같은 간섭 무늬(72)를 촬상한다(스텝 1808). 도 6a에 있어서, 62는 축상의 디포커스 위치에 배치된 파면 검출 유닛(10)에 입사하는 피검 광속을 나타낸다. 얻어진 간섭 무 늬(72)는 제3 측정시에 얻어진 간섭 무늬(53)와 동일한 위치에, 소위 파워 성분을 갖는다.
여기서, 제3 촬상 시에 측정된 파면 수차와 제4 촬상 시에 측정된 파면 수차와의 차분은, 디포커스 성분(파워 성분)만에 의한 것이어야 한다. 이러한 관점에서, 파면 수차(예를 들어, Zernike 계수)의 계산에 사용되는 중심 좌표를 변화시키고, 복수의 중심 좌표의 각각에서 디포커스(파워) 변화에 따른 틸트의 변화량을 계산한다. 축상의 파면 수차와 마찬가지로, 계산한 변화량이 최소로 되는 중심 좌표를 검출함으로써 축외의 파면 수차에 있어서의 정확한 중심 좌표를 결정할 수 있다(스텝 1810).
그 후, 제1 실시예와 동일하게, 소망하는 축외의 위치에 있어서, 전술한 두가지 유형의 측정(포커스 및 디포커스 위치)을 반복한다. 이는 축상 및 임의의 축외의 위치에 있어서, 파면 수차 계산에 사용되는 중심 좌표를 정확하게 결정할 수 있도록 한다. 이는 또한 높은 정밀도의 파면 수차의 측정을 가능하게 한다. 또한, 제1 실시예에서와 같이, 축상 및 임의의 축외의 위치 사이에서의 동공 중심 좌표의 차분으로부터 텔레센트릭도를 계산할 수 있다.
파워 변화를 이용한 제2 실시예에서는, 웨이퍼측에서의 텔레센트릭도가 나쁜 경우, 디포커싱과 함께 집광점이 광축에 직교하는 방향으로 시프트하기 때문에, 간섭 무늬에 틸트 성분이 발생한다. 이 경우에서도, 제1 실시예에 따라서 결정된 동공 중심 좌표를 사용하여, 디포커스 시의 파면 수차 계측치의 틸트 성분으로부터 텔레센트릭도를 계산할 수 있다.
[제3 실시예]
도 8a, 도 8b 및 도 9를 참조하여 제3 실시예를 설명한다. 웨이퍼 스테이지(8)를 이동시켜 파면 검출 유닛(10)을 축상의 포커스 위치에 배치한다. 도 8b가 이 상태를 나타낸다. 이 상태에서, 제2 기준 파면 생성 광학계(31)의 창을 투과한 광속(81)에 의해 형성되는 광강도 분포(91)를 이미지 센서(34)에서 촬상한다. 촬상한 광강도 분포(91)의 윤곽을 구하고, 구해진 윤곽에 기초하여 광강도 분포(91)의 중심 좌표를 계산한다. 다음, 소망의 축외의 위치로 파면 검출 유닛(10)을 이동시킨다. 이 위치에서도 마찬가지로, 제2 기준 파면 생성 광학계(31)의 창을 투과한 광속(82)에 의해 형성되는 광강도 분포(92)를 이미지 센서(34)에서 촬상한다. 촬상한 광강도 분포(92)의 윤곽을 구하고, 구해진 윤곽에 기초하여 광강도 분포(92)의 중심 좌표를 계산한다. 이와 같이 계산된 강도 분포의 중심 좌표 간의 차분을 계산함으로써, 투영 광학계(11)의 텔레센트릭도를 계산할 수 있다.
[제4 실시예]
도 10을 참조하여 제4 실시예를 설명한다. 제1 실시예에서는, 싱글 패스 간섭계를 사용하여 웨이퍼측에서 검출을 행하는 예를 예시하였지만, 제4 실시예에서는 더블 패스 간섭계를 사용하여 레티클측에서 검출을 행하는 예를 예시한다.
제4 실시예에서는, 래디얼 쉬어링(radial shearing)형 간섭계가 제공되어 있지만, 간섭계의 종류는 이에 한하지는 않는다. 노광시에 있어서, 광원(1001)으로부터의 광속은 빔 형성 광학계(1002), 인코히어런트 유닛(1004) 및 조명 광학계(1005)를 투과한다. 투영 광학계(11)의 수차의 측정시에 있어서, 광원(1001)로 부터의 광속이 전용 광 연장 광학계(1006)를 경유하도록 광로 절환 미러(1003)가 조작된다. 전용 광 연장 광학계(1006)를 통한 광속은 콜리메이터 렌즈(1007), 공간 필터(1008), 콜리메이터 렌즈(1009), 하프 미러(1010), 반사 미러(1011), 콜리메이터 렌즈(1012), 및 콜리메이터 유닛(1014)를 통해 레티클 면(1015)에 집광한다. 반사 미러(1011), 콜리메이터 렌즈(1012), 및 콜리메이터 유닛(1014)은 XYZ 스테이지(1013)에 의해 이동된다. 투영 광학계(11)를 웨이퍼 스테이지(1019) 상의 구면 미러(1020)를 통해 왕복시켜, 래디얼 쉬어링 간섭계 유닛(1029)으로 광속을 도광시켜, 파면 계측을 행한다. 래디얼 쉬어링 간섭계 유닛(1029)은 하프 미러(1021), 반사 미러(1022), 빔 익스팬더(1023), 하프 미러(1024), 반사 미러(1025), PZT 소자(1026), 결상 렌즈(1027), 및 이미지 센서(1028)를 포함한다. 이와 같은 구성의 상세는, 일본 특개2000-277412호 공보(미국 특허 제6614535호)에 기재되어 있다.
도 11은 레티클 면(1015) 부근의 확대도이다. 도 11은 축상 및 축외의 파면 수차에 있어서의 간섭 계측에 사용되는 광속이 복귀로에 있는 상태를 나타내고 있다. 콜리메이터 렌즈(1012)로의 복귀 광속(113)은, 축외의 파면 수차에 있어서 레티클 면의 법선(112)에 대하여 기울어져 있다. 이는 투영 광학계(11)의 레티클측에서의 텔레센트릭도를 완전하게 보정하는 것이 어렵기 때문이다.
도 12를 참조하여 설명을 계속한다. 제4 실시예에 있어서, 제1 실시예와 마찬가지로, 물체 거리의 변화에 따른 투영 광학계(11)의 수차의 변화를 이용하여 축상 및 축외의 파면 수차에 있어서의 동공 중심 좌표를 정확하게 결정한다. 이것 은, 레티클측 입사의 더블 패스 간섭계에 의해 파면 수차와 텔레센트릭도를 정확하게 측정할 수 있도록 한다. 제1 실시예와 마찬가지로, 축상의 파면 수차에 있어서 제1 파면 수차와 제2 파면 수차를 측정한다. 레티클 스테이지 상의 TS 렌즈를 광축 방향으로 이동시킴으로써, 다른 물체 거리에서 파면 수차를 측정할 수 있도록 한다. 도 12는, 4회의 측정에 있어서의 물점과 상점과의 관계를 나타낸다. 제1 측정에서는, 물점(1201) 및 상점(1205)에 제1 가동 요소 및 제2 가동 요소가 각각 배치된다. 제2 측정에서는, 물점(1203) 및 상점 (1207)에 제1 가동 요소 및 제2 가동 요소가 각각 배치된다. 제3 측정에서는, 물점(1202) 및 상점(1206)에 제1 가동 요소 및 제2 가동 요소가 각각 배치된다. 제4 측정에서는, 물점(1204) 및 상점(1208)에 제1 가동 요소 및 제2 가동 요소가 각각 배치된다. 각 측정 결과로부터 중심 좌표를 계산하는 시퀀스는, 제1 실시예와 같다.
[제5 실시예]
도 13a 및 도 13b를 참조하여 본 발명의 제5 실시예를 설명한다. 제5 실시예는, 제4 실시예에 있어서의 물체 거리의 변화에 따른 구면 수차의 변화를 이용하는 대신, 디포커스에 있어서의 파워 성분의 변화를 이용한다. 제1 및 제2 측정은, 제1 실시예와 동일하게 축상의 파면 수차에 대하여 행하고, 양 파면 수차 간의 변화에 따른 틸트의 변화가 최소로 되는 중심 좌표를 계산한다. 소망의 축외의 위치에서 제3 측정을 행한다. 제3 측정시, 도 13a에 나타낸 물점(1301) 및 그 공역점(1303)에 반사 구면의 곡률 중심을 정렬한다. 다음, 웨이퍼 스테이지를 이동시켜, 반사 구면의 곡률 중심을 위치(1304)에 디포커스하고, 제4 파면 수차의 측정을 행한다. 입사광점(1303)은 반사 구면에 의해 반사광점(1305)에 재결상된다. 그 결과, 투영 광학계(11)는 레티클측에서 입사시의 물점(1301)에 대하여 디포커스되고, 횡으로 시프트된 위치(1302)에 집광한다. 이 상태에서 계측되는 파면 수차도 제1 실시예와 동일하게 축상의 파면 수차에 대하여 얻어진 결과로부터 중심 위치가 벗어난 것이 된다. 이는 레티클측에서의 투영 광학계의 텔레센트릭도가 충분하지 않기 때문이다. 웨이퍼측의 텔레센트릭도보다도 레티클측의 텔레센트릭도가 나쁘기 때문에, 이 경우 동공 중심의 편차량도 비교적 크게 된다. 제3 및 제4 파면 수차 측정 결과로부터, 동공 중심 좌표를 계산하기 위하여, 제2 실시예와 마찬가지의 시퀀스를 행할 필요가 있다.
[제6 실시예]
도 14a 및 도 14b를 참조하여 제6 실시예를 설명한다. 제6 실시예에서는, 레티클측에 배치된 TS 렌즈(111)를 광축 방향으로 이동시킨다. 축외의 파면 수차에 있어서의 제3 및 제4의 측정에 대하여 설명한다. TS 렌즈(111)의 집점(1401)을 레티클 면에 정렬한 상태에서 파면 수차를 측정한다. 이 상태에서는, 투영 광학계에 의해 광속이 웨이퍼 면상에 결상되여, 구면 미러의 곡률 중심(1404)이 웨이퍼 면과 일치하게 된다. 다음, TS 렌즈(111)를 광축 방향으로 이동시켜, 집점(1401)을 위치(1402)로 이동시킨다. 투영 광학계를 투과한 광속은, 도 14b에 있어서의 위치(1405)에 재결상된다. 구면 미러에 의해 반사된 후, 위치(1406)에 재결상된다. 투영 광학계를 역행시킨 후, 레티클 면 부근에서 도 14a에 나타낸 위치(1403)에 재집광시킨다. 이 상태에서 제4 측정을 행한다. 제4 측정은 레티클 면에서 측 정광이 디포커스하고 있으므로, 제3 측정에 있어서, 파워 성분만이 변화된 것이 된다. 따라서, 제2 및 제5 실시예와 마찬가지의 시퀀스로 동공 중심 좌표를 결정할 수 있다.
그러나, 이 파워 변화를 이용한 제5 및 제6 실시예의 방법에 있어서, 레티클측에서의 텔레센트릭도가 양호하지 않은 경우에는, 디포커싱에 따라서 집광점이 광축에 직교한 방향으로 시프트하므로, 간섭 무늬에 틸트 성분이 발생된다. 이 경우에도, 제4 실시예에 따라서 결정된 동공 중심 좌료를 사용하여, 디포커스 시의 파면 수차 계측치의 틸트 성분으로부터 텔레센트릭도를 계산할 수 있다.
[제7 실시예]
투영 광학계의 텔레센트릭도는, 동공 중심 좌표가 아니라, 물체 거리를 변경한 경우 또는 파면 검출 유닛을 광축 방향으로 이동시킨 경우에 단색의 간섭 무늬가 형성되는 파면 검출 유닛의 위치를 계측하여 계산된 디스토션의 변화로부터 계산할 수 있다.
[제8 실시예]
상기에서, 노광 장치 상에 탑재된 파면 수차 계측 장치에서의 실시예를 설명하였다. 마지막으로, 제8 실시예로서 투영 광학계(11)의 제조 공정에서 사용되는 파면 수차 평가 장치를 예시한다. 파면 수차 평가 장치로서 공지의 장치를 이용할 수 있다. 예를 들어, 피조(Fizeau)형의 간섭계와 XYZ의 3축 스테이지의 조합에 의해 투영 광학계(11)의 화면 내의 임의의 상 높이에서 파면 수차를 측정할 수 있는 파면 수차 평가 장치를 이용할 수 있다. 이 파면 수차 측정 장치에 제1 내지 제6 실시예에 따른 동공 중심 좌표의 결정 방법 및 텔레센트릭도의 측정 방법을 적용하므로써, 높은 정밀도의 파면 측정 및 텔레센트릭도 측정을 달성할 수 있다. 이러한 파면 수차 및 텔레센트릭도의 측정 결과를 이용하여, 투영 광학계를 조립/조정한다.
예시적인 실시예를 참조하여 본 발명을 설명하였지만, 본 발명은 개시된 실시예들에 한정하고자 한 것은 아님을 이해하기 바란다. 이하의 청구항들의 범주는 이러한 변경예와 균등한 구조 및 기능 모두를 포괄하도록 최광의로 해석되어야 한다.
도 1은 본 발명의 바람직한 실시예에 따른 노광 장치의 개략 구성을 나타낸 도면이다.
도 2는 기준 파면 생성 광학계의 상세한 구성예를 나타낸 도면이다.
도 3은 파면 검출 유닛의 상세한 구성예를 나타낸 도면이다.
도 4는 간섭계의 가동 요소의 배치를 나타낸 도면이다.
도 5a 내지 도 5d는 파면 수차(간섭 무늬)를 나타낸 도면이다.
도 6a 및 도 6b는 간섭계의 가동 요소의 배치를 나타낸 도면이다.
도 7a 내지 도 7d는 파면 수차(간섭 무늬)를 나타낸 도면이다.
도 8a 및 도 8b는 간섭계의 가동 요소의 배치를 나타낸 도면이다.
도 9는 기준 파면 생성 광학계의 창을 통한 투과광에 의해 형성되는 광강도 분포를 나타낸 도면이다.
도 10은 본 발명의 바람직한 실시예에 따른 노광 장치의 개략 구성을 나타낸 도면이다.
도 11은 레티클 면 부근의 확대도이다.
도 12는 간섭계의 가동 요소의 배치를 나타낸 도면이다.
도 13a 및 도 13b는 간섭계의 가동 요소의 배치를 나타낸 도면이다.
도 14a 및 도 14b는 간섭계의 가동 요소의 배치를 나타낸 도면이다.
도 15는 동공 중심 좌표(원점 좌표)와 이에 기초하여 계산된 파면 수차와의 관계를 나타낸 그래프이다.
도 16은 동공 중심 좌표(원점 좌표)를 결정하는 시퀀스를 나타낸 흐름도이다.
도 17은 동공 중심 좌표(원점 좌표)를 결정하는 시퀀스를 나타낸 흐름도이다.
<도면의 주요 부분에 대한 부호의 설명>
1 : 광원
2 : 광 연장 광학계
3 : 인코히어런트 유닛
4 : 조명 광학계
5 : 레티클 면
6 : 웨이퍼 면
7 : 웨이퍼
8 : 웨이퍼 스테이지
9 : 기준 파면 생성 광학계
10 : 파면 검출 유닛
11 : 투영 광학계
20 : 연산 유닛

Claims (10)

  1. 간섭계를 이용하여 피검 광학계의 광학 특성을 평가하는 평가 방법으로서,
    상기 광학계의 광축 방향에 있어서의 상기 간섭계의 가동 요소의 배치가 제1 배치일 때 상기 간섭계에 의해 형성된 제1 간섭 무늬를 취득하는 제1 취득 단계;
    상기 광축 방향에 있어서의 상기 가동 요소의 배치가 상기 제1 배치와는 다른 제2 배치일 때 상기 간섭계에 의해 형성된 제2 간섭 무늬를 취득하는 제2 취득 단계;
    취득된 상기 제1 간섭 무늬 및 취득된 상기 제2 간섭 무늬에 기초하여 상기 광학계의 동공 중심 좌표를 결정하는 결정 단계; 및
    상기 결정 단계에서 결정된 동공 중심 좌표를 사용하여 상기 광학계의 광학 특성을 계산하는 계산 단계
    를 포함하는 평가 방법.
  2. 제1항에 있어서,
    상기 결정 단계에서는, 상기 광학계의 파면 수차의 계산에 이용되는 동공 중심 좌표를 변화시키면서, 상기 제1 간섭 무늬 및 상기 제2 간섭 무늬에 기초하여 각각 제1 파면 수차 및 제2 파면 수차를 계산하고, 상기 동공 중심 좌표의 변화량에 대한 상기 제1 파면 수차와 상기 제2 파면 수차와의 차분의 변화량이 미리 결정된 변화량이 되는 동공 중심 좌표를 상기 계산 단계에서 사용하는 동공 중심 좌표 로서 결정하는 평가 방법.
  3. 제2항에 있어서,
    상기 결정 단계에서 계산되는 상기 광학계의 파면 수차는 코마 수차를 포함하는 평가 방법.
  4. 제2항에 있어서,
    상기 제1 파면 수차와 상기 제2 파면 수차와의 차분은 구면 수차로서 나타나는 평가 방법.
  5. 제2항에 있어서,
    상기 제1 파면 수차와 상기 제2 파면 수차와의 차분은 틸트 성분으로서 나타나는 평가 방법.
  6. 제1항에 있어서,
    상기 제1 취득 단계 및 상기 제2 취득 단계는, 상기 광학계의 축상의(on-axis) 파면 수차 및 축외의(off-axis) 파면 수차를 평가할 수 있도록 상기 간섭계를 조정하여 수행되는 평가 방법.
  7. 제1항에 있어서,
    상기 계산 단계에서는, 상기 광학계의 파면 수차를 계산하는 평가 방법.
  8. 제1항에 있어서,
    상기 계산 단계에서는, 상기 광학계의 텔레센트릭도(telecentricity)를 계산하는 평가 방법.
  9. 간섭계를 이용하여 피검 광학계의 광학 특성을 평가하는 평가 장치로서,
    상기 간섭계에 의해 형성되는 간섭 무늬를 촬상하는 이미지 센서; 및
    상기 이미지 센서에 의해 제공되는 간섭 무늬의 화상에 기초하여 상기 광학계의 광학 특성을 계산하는 연산 유닛
    을 구비하며,
    상기 연산 유닛은, 상기 광학계의 광축 방향에 있어서의 상기 간섭계의 가동 요소의 배치가 제1 배치일 때 상기 간섭계에 의해 형성된 제1 간섭 무늬를 상기 이미지 센서로 촬상하여 얻은 화상과 상기 광축 방향에 있어서의 상기 가동 요소의 배치가 상기 제1 배치와는 다른 제2 배치일 때 상기 간섭계에 의해 형성된 제2 간섭 무늬를 상기 이미지 센서로 촬상하여 얻은 화상에 기초하여 상기 광학계의 동공 중심 좌표를 결정하고, 결정된 상기 동공 중심 좌표를 사용하여 상기 광학계의 광학 특성을 계산하는 평가 장치.
  10. 투영 광학계에 의해 원판의 패턴을 기판에 투영하여 상기 기판을 노광하는 노광 장치로서,
    간섭계를 이용하여 상기 투영 광학계의 광학 특성을 평가하는 평가 장치
    를 구비하며,
    상기 평가 장치는,
    상기 간섭계에 의해 형성되는 간섭 무늬를 촬상하는 이미지 센서; 및
    상기 이미지 센서에 의해 제공되는 간섭 무늬의 화상에 기초하여 상기 투영 광학계의 광학 특성을 계산하는 연산 유닛을 구비하고,
    상기 연산 유닛은, 상기 투영 광학계의 광축 방향에 있어서의 상기 간섭계의 가동 요소의 배치가 제1 배치일 때 상기 간섭계에 의해 형성된 제1 간섭 무늬를 상기 이미지 센서로 촬상하여 얻은 화상과 상기 광축 방향에 있어서의 상기 가동 요소의 배치가 상기 제1 배치와는 다른 제2 배치일 때 상기 간섭계에 의해 형성된 제2 간섭 무늬를 상기 이미지 센서로 촬상하여 얻은 화상에 기초하여 상기 투영 광학계의 동공 중심 좌표를 결정하고, 결정된 상기 동공 중심 좌표를 사용하여 상기 투영 광학계의 광학 특성을 계산하는 노광 장치.
KR1020090017683A 2008-03-03 2009-03-02 평가 방법, 평가 장치 및 노광 장치 KR20090094768A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2008-052581 2008-03-03
JP2008052581A JP2009210359A (ja) 2008-03-03 2008-03-03 評価方法、評価装置および露光装置

Publications (1)

Publication Number Publication Date
KR20090094768A true KR20090094768A (ko) 2009-09-08

Family

ID=41012929

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090017683A KR20090094768A (ko) 2008-03-03 2009-03-02 평가 방법, 평가 장치 및 노광 장치

Country Status (4)

Country Link
US (1) US20090219494A1 (ko)
JP (1) JP2009210359A (ko)
KR (1) KR20090094768A (ko)
TW (1) TW200951414A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370224B1 (ko) * 2009-12-09 2014-03-05 캐논 가부시끼가이샤 측정 장치, 노광 장치 및 디바이스 제조 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2008310A (en) * 2011-04-05 2012-10-08 Asml Netherlands Bv Lithographic method and assembly.
JP7186531B2 (ja) * 2018-07-13 2022-12-09 キヤノン株式会社 露光装置、および物品製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3796369B2 (ja) * 1999-03-24 2006-07-12 キヤノン株式会社 干渉計を搭載した投影露光装置
JP2006324311A (ja) * 2005-05-17 2006-11-30 Canon Inc 波面収差測定装置及びそれを有する露光装置
JP2007281003A (ja) * 2006-04-03 2007-10-25 Canon Inc 測定方法及び装置、並びに、露光装置
JP2008108852A (ja) * 2006-10-24 2008-05-08 Canon Inc 投影露光装置、光学部品及びデバイス製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370224B1 (ko) * 2009-12-09 2014-03-05 캐논 가부시끼가이샤 측정 장치, 노광 장치 및 디바이스 제조 방법
US8692975B2 (en) 2009-12-09 2014-04-08 Canon Kabushiki Kaisha Measurement apparatus, exposure apparatus, and device fabrication method

Also Published As

Publication number Publication date
TW200951414A (en) 2009-12-16
JP2009210359A (ja) 2009-09-17
US20090219494A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
EP1869401B1 (en) Method for accurate high-resolution measurements of aspheric surfaces
US7831105B2 (en) Method for determining the image quality of an optical imaging system
JP4343685B2 (ja) レチクル及び光学特性計測方法
JP3728187B2 (ja) 結像光学系性能測定方法及び装置
JP2000277411A (ja) 投影露光装置
TW201732263A (zh) 用於光學三維構形量測之方法及系統
KR20090084754A (ko) 노광 장치 및 디바이스의 제조 방법
US7826044B2 (en) Measurement method and apparatus, and exposure apparatus
CN110716395B (zh) 曝光装置和物品制造方法
KR20090094768A (ko) 평가 방법, 평가 장치 및 노광 장치
JP2006017485A (ja) 面形状測定装置および測定方法、並びに、投影光学系の製造方法、投影光学系及び投影露光装置
JP5353708B2 (ja) 干渉計
JP4208565B2 (ja) 干渉装置及びそれを有する測定方法
JP2005201703A (ja) 干渉測定方法及び干渉測定システム
JPH0996589A (ja) レンズ性能測定方法及びそれを用いたレンズ性能測定装置
JP2009047523A (ja) 干渉測定装置、露光装置およびデバイス製造方法
JP5451232B2 (ja) 評価方法、測定方法、プログラム、露光方法、デバイスの製造方法、測定装置、調整方法、露光装置、処理装置及び処理方法
KR20090045009A (ko) 측정장치, 노광 장치 및 디바이스 제조 방법
JP3911074B2 (ja) 面形状測定装置
JP2006126078A (ja) マーク位置検出装置及び設計方法及び評価方法
JP2000088546A (ja) 形状測定装置および測定方法
JPH09113237A (ja) 折返しヌル干渉装置
JP2004297046A (ja) 収差測定方法
TW202136859A (zh) 用於測量半導體微影中基材之裝置及方法
JPH11258487A (ja) 光学系の調整方法及び光学装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application