KR20090040200A - 마이크로렌즈를 이용한 태양전지 장치 및 그 제조 방법 - Google Patents

마이크로렌즈를 이용한 태양전지 장치 및 그 제조 방법 Download PDF

Info

Publication number
KR20090040200A
KR20090040200A KR1020080018150A KR20080018150A KR20090040200A KR 20090040200 A KR20090040200 A KR 20090040200A KR 1020080018150 A KR1020080018150 A KR 1020080018150A KR 20080018150 A KR20080018150 A KR 20080018150A KR 20090040200 A KR20090040200 A KR 20090040200A
Authority
KR
South Korea
Prior art keywords
solar cells
solar cell
plate
lenses
solar
Prior art date
Application number
KR1020080018150A
Other languages
English (en)
Other versions
KR100981685B1 (ko
Inventor
권성훈
김준회
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to PCT/KR2009/000752 priority Critical patent/WO2009107943A2/ko
Priority to US12/919,962 priority patent/US8759665B2/en
Publication of KR20090040200A publication Critical patent/KR20090040200A/ko
Application granted granted Critical
Publication of KR100981685B1 publication Critical patent/KR100981685B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 태양전지 장치 및 그 제조 방법에 관한 발명으로서 보다 구체적으로는 마이크로렌즈를 이용한 고효율, 저가, 대면적의 태양전지 장치 및 그 제조 방법에 관한 발명이다.
본 발명의 일측면은 복수의 렌즈들(lens)이 일면에 배열된 플레이트(plate); 및 상기 복수의 렌즈들에 의하여 집광된 빛을 수광하는 복수의 태양전지들(solar cell)을 포함하는 태양전지 장치(apparatus)를 제공하는 것이다.
태양전지, 렌즈

Description

마이크로렌즈를 이용한 태양전지 장치 및 그 제조 방법{solar cell apparatus based on microlens array and method for fabricating the same}
본 발명은 태양전지 장치 및 그 제조 방법에 관한 발명으로서 보다 구체적으로는 마이크로렌즈를 이용한 고효율, 저가, 대면적의 태양전지 장치 및 그 제조 방법에 관한 발명이다.
종래기술에 의한 태양전지들은 크게 무기 태양전지 및 유기 태양전지 2가지로 나누어진다. 무기 태양전지의 예로서 단결정 실리콘(single crystalline silicon), 다결정 실리콘(polysilicon) 등이 있다. 무기 태양전지는 상대적으로 높은 효율을 가진다는 장점을 가지나, 대면적 구현이 어렵고, 제조 비용이 매우 비싸다는 단점을 가진다. 이에 반하여 유기 태양전지는 대면적 구현이 용이하고, 제조 비용이 상대적으로 저렴하다는 장점을 가지나, 상대적으로 낮은 효율을 가진다는 단점을 가진다.
따라서, 본 발명이 이루고자 하는 기술적 과제는 상기한 문제점들을 해결하기 위한 것으로서, 고효율, 저가, 대면적의 태양전지 장치 및 그 제조 방법을 제공하는 것이다.
또한, 본 발명이 이루고자 하는 기술적 과제는 대량 생산이 가능하도록 하는 태양전지 장치 제조 방법을 제공하는 것이다.
상술한 목적을 달성하기 위한 기술적 수단으로, 본 발명의 제1 측면은 복수의 렌즈(lens)들이 일면에 배열된 플레이트(plate); 및 상기 복수의 렌즈들에 의하여 집광된 빛을 수광하는 복수의 태양전지(solar cell)들을 포함하는 태양전지 장치(apparatus)를 제공하는 것이다.
본 발명의 제2 측면은 (a) 복수의 렌즈들이 일면에 형성된 플레이트를 준비하는 단계; 및 (b) 복수의 태양전지들을 상기 플레이트의 타면에 배치하는 단계를 포함하는 태양전지 장치를 제조하는 방법을 제공하는 것이다.
본 발명의 제3 측면은 복수의 집광수단들; 및 상기 집광수단들에 의하여 집광된 빛을 수광하는 태양전지들을 포함하는 태양전지 장치를 제공하는 것이다.
본 발명의 제4 측면은 (a) 제1 모양을 갖는 복수의 제1 홈들과 제2 모양을 갖는 복수의 제2 홈들이 일면에 형성된 플레이트를 준비하는 단계; 및 (b) 상기 제1 모양에 대응하는 제3 모양을 갖는 제1 전자소자들과 상기 제2 모양에 대응하는 제4 모양을 갖는 제2 전자소자들을 상기 플레이트의 타면에 배치하는 단계를 포함하는 유체 자기조립 방법을 제공하는 것이다.
본 발명에 의한 태양전지 장치 및 그 제조 방법은 고효율, 저가, 대면적을 가능하도록 한다는 장점이 있다.
또한, 본 발명에 의한 태양전지 장치 및 그 제조 방법은 작은 크기의 복수의 태양전지들을 복수의 렌즈의 초점에 정확하게 조립이 가능하다.
또한, 본 발명에 의한 태양전지 장치 및 그 제조 방법은 복수의 태양전지들이 위치할 공간을 별도의 마스크 없이 복수의 렌즈들을 통한 빛을 노광하여 제작할 수 있다는 점에서 공정상의 장점을 갖는다.
또한, 본 발명에 의한 태양전지 장치 및 그 제조 방법은 유체자기조립을 통하여 쉽게 작은 크기의 태양전지들을 배치할 수 있어 공정상의 장점을 갖는다.
또한, 본 발명에 의한 태양전지 장치 및 그 제조 방법은 유연한(flexible) 폴리머 또는 고분자화합물 플레이트를 이용하여 제작이 가능하다. 이렇게 제작된 태양전지 장치는 장소와 공간에 구애받지 않고 간편하게 설치할 수 있다는 장점이 있다.
또한, 본 발명에 의한 태양전지 장치 및 그 제조 방법은 빛을 집광할 경우에 태양전지의 에너지 변환 효율성이 더 높아지는 태양전지의 특성을 이용하여 보다 높은 에너지 변환 효율성을 갖는 태양전지 장치를 제작할 수 있다는 장점을 갖는다.
도 1은 본 발명의 제1 실시 예에 의한 태양전지 장치를 나타내는 도면이다. 도 1의 (a), (b) 및 (c)는 각각 태양전지 장치의 입체도, 평면도 및 단면도이다.
도 1을 참조하면, 태양전지 장치는 마이크로 렌즈들(110)이 배열된 플레이트(100) 및 태양전지들(150)을 구비한다. 태양전지 장치는 제1 전극(120), 절연층(130) 및 제2 전극(160)을 더 구비할 수 있다. 도면에 표현된 태양전지 장치에 있어서, 동일한 극성 방향으로 배열된 태양전지들이 전기적으로 병렬로 연결된다.
플레이트(100)로는 광투과성을 갖는 다양한 종류의 물질을 사용할 수 있다. 사용 가능한 물질은 예로 들면 유리 또는 폴리머(polymer) 등의 고분자 화합물일 수 있다.
마이크로 렌즈들(110)로는 광투과성 물질로 구현된 볼록 렌즈들로 구성된다. 광투과성 물질로 사용 가능한 물질은 예로 들면 유리 또는 폴리머 등의 고분자 화합물일 수 있다. 상기 실시 예에서 복수의 렌즈들(110)은 동일한 크기의 볼록렌즈들을 예시하고 있으나, 볼록렌즈들의 초점거리가 유사하다면 모양이 다를 수 있으며, 크기의 범위에도 제한이 없다.
제1 전극(120)으로는 다양한 종류의 도전성을 갖는 금속 또는 도전성 폴리머 등의 도전성 유기화합물이 사용될 수 있다. 제1 전극(120)은 광투과성을 구비할 수도 있다. 이 경우 광투과성을 갖는 제1 전극은 예로 들면 ITO(Indium-Tin-Oxide) 또는 탄소나노튜브와 결합된 도전성 폴리머일 수 있다.
절연층(130)으로는 다양한 종류의 전기적 절연성을 갖는 질화막, 산화막 또 는 유기화합물이 사용될 수 있다. 절연층(130)은 제1 전극(120)과 제2 전극(160)을 전기적으로 격리하기 위한 부분이다. 또한, 절연층(130)은 개개의 태양전지들(150)이 위치할 공간을 확보하여 주는 역할을 아울러 수행한다.
태양전지들(150)로는 유기물 또는 무기물 태양전지들이 사용될 수 있다. 유기물 태양전지들로는 광흡수염료(light absorbing dyes), 유기물(organic) 나노입자인 태양전지, 유기물 태양전지 또는 폴리머 태양전지일 수 있다. 무기물 태양전지들로는 무기물(inorganic) 단결정형(single crystalline), 무기물 다결정형(poly crystalline), 무기물 무결정형(amorphous) 또는 무기물 나노입자(nano crystalline)인 태양전지일 수 있다. 보다 구체적으로는, 복수의 태양전지들은 단결정 실리콘(silicon), 다결정 실리콘, 무결정 실리콘, 카드뮴 텔률라이드(CdTe), 카파인듐셀레나이드(CuInSe2), 갈륨아세나이드(GaAs), 저메니움(Ge) 또는 갈륨인듐포스파이드(GaInP2) 태양전지일 수 있다. 무기물 단결정형의 경우에 최고 25%의 효율을 가지나, 결정형이므로 크기에 제한이 있고, 고가라는 문제가 있다. 하지만, 본 실시 예에 의하면, 복수의 볼록 렌즈들을 사용하여 태양광을 집광함으로써 요구되는 태양전지의 수를 줄일 수 있어 무기물 단결정형을 이용한 태양전지를 최소한으로 사용하여 대면적, 고효율, 저가의 태양전지 장치를 구성할 수 있다. 상기 실시 예에서 P(151)-N(152)접합을 갖는 태양전지들(150)이 예시되어 있으나, 다른 형태의 태양전지들일 수 있다. 상기 실시 예에서 P(151)-N(152)접합 태양전지들에 있어서 P(151)형이 제1 전극에 연결된 예를 예시하고 있으나, 태양전지들의 극성 방 향이 같다면 N(152)형이 제1 전극에 연결되어도 무방하다.
제2 전극(160)으로는 다양한 종류의 도전성을 갖는 금속 또는 도전성 폴리머 등의 도전성 유기화합물이 사용될 수 있다. 제2 전극(120)은 광투과성을 구비할 수도 있다. 이 경우 광투과성을 갖는 제2 전극은 예로 들면 ITO 또는 탄소나노튜브와 결합된 도전성 폴리머일 수 있다. 제2 전극(120)은 상기 제1 전극(120)과 함께 상기 태양전지들(150)을 전기적으로 연결하는데 이용이 된다.
도 2는 본 발명의 제2 실시 예에 의한 태양전지 장치를 나타내는 도면이다. 도 2의 (a) 및 (b)는 각각 태양전지 장치의 평면도 및 단면도이다.
상기 플레이트(100A)는 플레이트(100A)의 높이가 복수의 렌즈들(110)의 초점거리보다 길어 집광된 빛이 태양전지들(150)에 효과적으로 전달되도록 하기 위하여 복수의 렌즈들(110)이 부착되지 않은 플레이트(100A)의 타면에 홈(recess)을 형성한 것을 특징으로 한다. 상기 실시 예에서 복수의 렌즈들(110)은 동일한 크기의 볼록렌즈들을 예시하고 있으나, 볼록렌즈들의 초점거리가 유사하다면 모양이 다를 수 있으며, 크기의 범위에도 제한이 없다. 상기 실시 예에서 태양전지들(150)에 있어서, P(151)형이 제1 전극(120A)에 연결된 예를 예시하고 있으나, 태양전지들의 극성 방향이 같다면 N(152)형이 제1 전극(120A)에 연결되어도 무방하다. 플레이트(100A)로는 광투과성을 갖는 다양한 종류의 물질을 사용할 수 있다. 사용 가능한 물질은 예로 들면 유리 또는 폴리머 등의 고분자 화합물일 수 있다. 한편, 구성요소들의 나머지 특성은 상기 제1 실시 예에서 언급된 내용을 따른다.
도 3은 본 발명의 제3 실시 예에 의한 태양전지 장치를 나타내는 도면이다. 도 3의 (a) 및 (b)는 각각 태양전지 장치의 평면도 및 단면도이다.
상기 플레이트(100B)는 복수의 렌즈들(110A) 중 적어도 일부분의 렌즈들(110A)의 초점거리가 플레이트(100B)의 초점거리보다 길어 집광된 빛이 태양전지들(150)에 효과적으로 전달되도록 하기 위하여 복수의 렌즈들(110A)이 부착되지 않은 플레이트(100B)의 타면의 일부분에 홈을 형성한 것을 특징으로 한다. 상기 실시 예에서 복수의 렌즈들(110A)은 서로 다른 크기의 볼록렌즈들을 예시하고 있으나, 볼록렌즈들의 초점거리가 유사하다면 모양이 같을 수 있으며, 크기의 범위에도 제한이 없다. 상기 실시 예에서 태양전지들(150)에 있어서, P(151)형이 제1 전극(120B)에 연결된 예를 예시하고 있으나, 태양전지들의 극성 방향이 같다면 N(152)형이 제1 전극(120B)에 연결되어도 무방하다. 플레이트(100B)로는 광투과성을 갖는 다양한 종류의 물질을 사용할 수 있다. 사용 가능한 물질은 예로 들면 유리 또는 폴리머 등의 고분자 화합물일 수 있다. 한편, 구성요소들의 나머지 특성은 상기 제1 실시 예에서 언급된 내용을 따른다.
도 4는 본 발명의 제4 실시 예에 의한 태양전지 장치를 나타내는 도면이다. 도 4의 (a) 및 (b)는 각각 태양전지 장치의 평면도 및 단면도이다.
도 4를 참조하면, 태양전지 장치는 마이크로 렌즈들(110)이 배열된 플레이트(100) 및 태양전지들(150)을 구비한다. 태양전지 장치는 서로 절연된 복수의 제1 전극들(120C), 절연층(130C) 및 서로 절연된 복수의 제2 전극들(160C)을 더 구비할 수 있다. 상기 태양전지 장치는 동일한 극성 방향으로 배열된 태양전지들(150)이 전기적으로 직렬로 연결된다.
복수의 제1 전극들(120C)과 복수의 제2 전극들(160C)은 태양전지들(150)이 전기적으로 직렬로 연결되도록 하기 위하여 패터닝(patterning)되며, 절연층(130C)은 개개의 태양전지들(150)이 위치할 공간과 복수의 제1 전극들(120C)과 복수의 제2 전극들(160C)을 연결하는 컨택홀들(142)을 확보하여 주는 역할을 아울러 수행한다.
상기 복수의 태양전지들(150) 중 직렬 연결된 연속된 2개의 태양전지들을 각각 제1 태양전지(150A) 및 제2 태양전지(150B)라 하면, 제1 태양전지(150A)는 상기 복수의 제1 전극들(120C) 중 제1 전극(122C)에 의하여 연결이 되며, 제2 태양전지(150B)는 상기 복수의 제2 전극들(160C) 중 제2 전극(162C)에 의하여 연결이 된다. 상기 제1 전극(122C) 및 상기 제2 전극(162C)은 상기 복수의 컨택홀들(142) 중에서 이들에 상응하는 컨택홀(142A)을 통하여 서로 연결되어 태양전지들이 전기적으로 직렬로 연결된다.
상기 실시 예에서 복수의 렌즈들(110)은 동일한 크기의 볼록렌즈들을 예시하고 있으나, 볼록렌즈들의 초점거리가 유사하다면 모양이 다를 수 있으며, 크기의 범위에도 제한이 없다. 또한 상기 실시 예에서 플레이트(100)는 도 1에서 예시된 플레이트를 예시하고 있으나, 도 2 내지 도 3의 플레이트(100A, 100B)를 사용할 수도 있다. 또한 상기 실시 예에서 태양전지들(150)이 일대일로 직렬로 연결된 것을 예시하고 있으나, 서로 병렬로 연결된 둘 이상의 태양전지들(150)의 집합들이 서로 직렬로 연결될 수도 있다. 상기 실시 예에서 태양전지들(150)에 있어서, P(151)형이 복수의 제1 전극들(120C)에 연결된 예를 예시하고 있으나, 태양전지들(150)의 극성 방향이 같다면 N(152)형이 복수의 제1 전극들(120C)에 연결되어도 무방하다. 한편, 구성요소들의 나머지 특성은 상기 제1 실시 예에서 언급된 내용을 따른다.
도 5는 본 발명의 제5 실시 예에 의한 태양전지 장치를 나타내는 도면이다. 도 5의 (a) 및 (b)는 각각 태양전지 장치의 평면도 및 단면도이다.
도 5를 참조하면, 태양전지 장치는 마이크로 렌즈들(110)이 배열된 플레이트(100) 및 태양전지들(150)을 구비한다. 태양전지 장치는 서로 절연된 복수의 제1 전극들(120D), 절연층(130D) 및 서로 절연된 복수의 제2 전극들(160D)을 더 구비할 수 있다. 상기 태양전지 장치에 있어서, 태양전지들(150) 중 적어도 일부분은 서로 극성 방향을 달리하여 배치되어 전기적으로 직렬로 연결된다.
복수의 제1 전극들(120D)과 복수의 제2 전극들(160D)은 태양전지들(150)이 전기적으로 직렬로 연결되도록 하기 위하여 패터닝 되며, 절연층(130D)은 개개의 태양전지들(150)이 위치할 공간을 확보하여 주는 역할을 수행한다.
상기 복수의 태양전지들(150) 중 직렬 연결된 연속된 2개의 태양전지들(150)은 서로 극성 방향을 달리하여 배치된다. 상기 복수의 태양전지들(150) 중 직렬 연결된 연속된 3개의 태양전지들을 각각 제1 태양전지(150C), 제2 태양전지(150D) 및 제3 태양전지(150E)라 하면, 제1 태양전지(150C)와 제2 태양전지(150D)는 상기 복수의 제1 전극들(120D) 중 이들에 상응하는 제1 전극(122D)에 의하여 연결되고, 제2 태양전지(150D)와 제3 태양전지(150E)는 상기 복수의 제2 전극들(160D) 중 이들에 상응하는 제2 전극(162D)에 의하여 연결되어 서로 다른 극성 방향으로 배열된 태양전지들(150)이 전기적으로 직렬로 연결된다.
상기 실시 예에서 복수의 렌즈들(110)은 동일한 크기의 볼록렌즈들을 예시하고 있으나, 볼록렌즈들의 초점거리가 유사하다면 모양이 다를 수 있으며, 크기의 범위에도 제한이 없다. 또한 상기 실시 예에서 플레이트(100)는 도 1에서 예시된 플레이트를 예시하고 있으나, 도 2 내지 도 3의 플레이트(100A, 100B)를 사용할 수도 있다. 또한 상기 실시 예에서 태양전지들(150)이 일대일로 직렬로 연결된 것을 예시하고 있으나, 서로 병렬로 연결된 둘 이상의 태양전지들(150)의 집합들이 서로 직렬로 연결될 수도 있다. 한편, 구성요소들의 나머지 특성은 상기 제1 실시 예에서 언급된 내용을 따른다.
도 6 내지 9는 도 1 내지 5에 표현된 플레이트 상에 배열된 복수의 렌즈들의 변형 예를 나타내는 도면이다.
복수의 렌즈들로는 광투과성 물질로 구현된 볼록 렌즈, 프레넬(fresnel) 렌즈, 실린더(cylinder) 렌즈 또는 평판형 렌즈일 수 있다. 광투과성 물질로 사용가능한 물질은 예로 들면 유리 또는 폴리머 등의 고분자 화합물일 수 있다.
도 6의 (a) 및 (b)는 각각 태양전지 장치의 평면도 및 단면도이다. 상기 복수의 렌즈들(110B)은 볼록 렌즈들로 구성되며, 유효수광면적을 늘리기 위하여 서로 다른 크기를 가질 수 있으며, 볼록렌즈들의 초점거리가 유사하다면 모양이 다를 수 있으며, 크기의 범위에도 제한이 없다. 상기 실시 예에서는 두 가지의 서로 다른 크기의 볼록 렌즈들이 예시되어 있으나, 세 가지 이상의 서로 다른 크기의 볼록 렌즈들의 조합도 가능하다. 도 6에서는 도 1의 플레이트(100)와 동일한 플레이트(100)를 예로 들고 있으나, 이외에도 도 2 내지 3의 플레이트(100A, 100B)일 수 있다. 또한 도 6에서는 동일한 극성 방향으로 배열된 태양전지들(150)이 전기적으로 병렬로 연결된 태양전지 장치를 예시하고 있으나, 동일한 극성 방향으로 배열된 태양전지들(150)이 전기적으로 직렬로 연결된 상기 제4 실시 예의 태양전지 장치 또는 태양전지들(150) 중 적어도 일부분은 서로 극성 방향을 달리하여 배치되어 전기적으로 직렬로 연결된 상기 제5 실시 예의 태양전지 장치일 수 있다. 한편, 나머지 구성요소는 상기 제1 실시 예에서 언급된 내용을 따른다.
도 7의 (a) 및 (b)는 각각 태양전지 장치의 평면도 및 단면도이다. 상기 복수의 렌즈들(110C)은 동일한 크기의 프레넬 렌즈들로 구성되며, 초점거리가 유사하다면 모양이 다를 수 있으며, 크기의 범위에도 제한이 없다. 도 7에서는 도 1의 플레이트(100)와 동일한 플레이트(100)를 예로 들고 있으나, 이외에도 도 2 내지 3의 플레이트(100A, 100B)일 수 있다. 또한, 유효수광면적을 늘리기 위하여 복수의 렌즈들(110C)은 두 가지 이상의 서로 다른 크기를 가질 수 있으며, 초점거리가 유사하다면 모양이 다를 수 있다. 또한 도 7에서는 동일한 극성 방향으로 배열된 태양전지들(150)이 전기적으로 병렬로 연결된 태양전지 장치를 예시하고 있으나, 동일한 극성 방향으로 배열된 태양전지들(150)이 전기적으로 직렬로 연결된 상기 제4 실시 예의 태양전지 장치 또는 태양전지들(150) 중 적어도 일부분은 서로 극성 방향을 달리하여 배치되어 전기적으로 직렬로 연결된 상기 제5 실시 예의 태양전지 장치일 수 있다. 한편, 나머지 구성요소는 상기 제1 실시 예에서 언급된 내용을 따른다.
도 8의 (a), (b) 및 (c)는 각각 태양전지 장치의 입체도, 평면도 및 단면도 이다. 상기 복수의 렌즈들(110D)들은 동일한 크기의 실린더 렌즈들로 구성되며, 초점거리가 유사하다면 모양이 다를 수 있으며, 크기의 범위에도 제한이 없다. 도 8에서는 도 1의 플레이트(100)와 동일한 플레이트(100)를 예로 들고 있으나, 이외에도 도 2 내지 3의 플레이트(100A, 100B)일 수 있다. 또한 도 8에서는 동일한 극성 방향으로 배열된 태양전지들(150F)이 전기적으로 병렬로 연결된 태양전지 장치를 예시하고 있으나, 동일한 극성 방향으로 배열된 태양전지들(150)이 전기적으로 직렬로 연결된 상기 제4 실시 예의 태양전지 장치 또는 태양전지들(150) 중 적어도 일부분은 서로 극성 방향을 달리하여 배치되어 전기적으로 직렬로 연결된 상기 제5 실시 예의 태양전지 장치일 수 있다. 한편, 나머지 구성요소는 상기 제1 실시 예에서 언급된 내용을 따른다.
도 9의 (a) 및 (b)는 각각 태양전지 장치의 평면도 및 단면도이다. 상기 복수의 렌즈들(110E)들은 동일한 크기의 볼록 렌즈들과 프레넬 렌즈들로 구성되며, 각각의 렌즈들은 초점거리가 유사하다면 모양이 다를 수 있으며, 크기의 범위에도 제한이 없다. 또한, 상기 실시 예에서는 볼록 렌즈들과 프레넬 렌즈들의 조합을 예시하고 있으나 볼록 렌즈들, 프레넬 렌즈들, 실린더 렌즈들과 평판형 렌즈들의 어떠한 조합이라도 무방하다. 도 9에서는 도 1의 플레이트(100)와 동일한 플레이트(100)를 예로 들고 있으나, 이외에도 도 2 내지 3의 플레이트(100A, 100B)일 수 있다. 또한 도 9에서는 동일한 극성 방향으로 배열된 태양전지들(150)이 전기적으로 병렬로 연결된 태양전지 장치를 예시하고 있으나, 동일한 극성 방향으로 배열된 태양전지들(150)이 전기적으로 직렬로 연결된 상기 제4 실시 예의 태양전지 장치 또는 태양전지들(150) 중 적어도 일부분은 서로 극성 방향을 달리하여 배치되어 전기적으로 직렬로 연결된 상기 제5 실시 예의 태양전지 장치일 수 있다. 한편, 나머지 구성요소는 상기 제1 실시 예에서 언급된 내용을 따른다.
도 10 내지 12는 태양전지 장치의 변형 예를 나타내는 도면이다.
상기 태양전지 장치는 복수의 마이크로 렌즈들 또는 복수의 마이크로 거울들이 배열된 제1 플레이트와 복수의 태양전지들이 배열된 제2 플레이트를 포함한다.
복수의 렌즈들로는 광투과성 물질로 구현된 볼록 렌즈, 프레넬 렌즈, 실린더 렌즈 또는 평판형 렌즈일 수 있다. 광투과성 물질로 사용가능한 물질은 예로 들면 유리 또는 폴리머 등의 고분자 화합물일 수 있다.
제1 플레이트와 제2 플레이트로는 광투과성을 갖는 다양한 종류의 물질을 사용할 수 있다. 사용 가능한 물질은 예로 들면 유리 또는 폴리머 등의 고분자 화합물일 수 있다. 상기 제1 플레이트와 상기 제2 플레이트로는 서로 다른 물질을 사용할 수도 있다.
도 10의 (a) 및 (b)는 각각 제1 플레이트(100)와 제2 플레이트(200)의 단면도이다.
도 10을 참조하면, 태양전지 장치는 마이크로 렌즈들(110)이 배열된 제1 플레이트(100) 및 태양전지들(150)이 배열된 제2 플레이트(200)를 구비한다.
도 10의 (a)는 제1 플레이트(100) 및 제1 플레이트(100) 위에 배열된 복수의 렌즈들(110)을 보여준다. 상기 복수의 렌즈들(110)은 동일한 크기의 볼록 렌즈들로 구성되며, 볼록 렌즈들의 초점거리가 유사하다면 모양이 다를 수 있으며, 크기의 범위에도 제한이 없다. 도 10의 (b)는 제2 플레이트(200) 및 제2 플레이트(200) 위에 배열된 복수의 태양전지들(150)을 보여준다.
도 10의 (a)에서는 유효수광면적을 늘리기 위하여 복수의 렌즈들(110)은 두 가지 이상의 서로 다른 크기를 가질 수 있다. 또한, 상기 복수의 볼록 렌즈들(110)은 프레넬 렌즈, 실린더 렌즈 또는 평판형 렌즈일 수 있다. 또한, 상기 복수의 렌즈들(110)은 볼록 렌즈, 프레넬 렌즈, 실린더 렌즈 또는 평판형 렌즈의 조합일 수 있으며, 서로 다른 크기를 가질 수도 있으며, 초점거리가 유사하다면 모양이 다를 수 있으며, 크기의 범위에도 제한이 없다.
도 10의 (b)에서 제2 플레이트(200)는 제1 전극(120), 절연층(130) 및 제2 전극(160)을 더 구비할 수 있다. 이들 구성요소는 상기 제1 실시 예에서 언급된 내용을 따른다.
상기 제1 플레이트(100)와 상기 제2 플레이트(200)는 상기 복수의 볼록 렌즈들(110)의 초점이 상기 복수의 태양전지들(150)에 위치하도록 제1 플레이트(100)의 높이를 결정한 후에 본딩(bonding)에 의하여 결합할 수 있다. 본딩의 방법으로는 고분자 유기물 접착제(일례: 에폭시(epoxy)) 본딩, 퓨전본딩(fusion bonding), 어노딕 본딩(anodic bonding) 또는 폴리머 본딩일 수 있다.
또한 도 10에서는 동일한 극성 방향으로 배열된 태양전지들(150)이 전기적으로 병렬로 연결된 태양전지 장치를 예시하고 있으나, 동일한 극성 방향으로 배열된 태양전지들(150)이 전기적으로 직렬로 연결된 상기 제4 실시 예의 태양전지 장치 또는 태양전지들(150) 중 적어도 일부분은 서로 극성 방향을 달리하여 배치되어 전 기적으로 직렬로 연결된 상기 제5 실시 예의 태양전지 장치일 수 있다. 한편, 나머지 구성요소는 상기 제1 실시 예에서 언급된 내용을 따른다.
도 11의 (a) 및 (b)는 각각 제1 플레이트(100C)와 제2 플레이트(200)의 단면도이다. 도 11의 (a)는 동일한 복수의 볼록 렌즈들을 구현하기 위하여 플레이트(100C)의 일면을 오목하게 깎아서 도 11의 (a)에서와 같이 렌즈의 기능을 하도록 구현된 복수의 볼록 렌즈들(110F)이 일면에 형성된 플레이트(100C)를 보여준다. 도 11의 (a)에서는 동일한 크기의 복수의 볼록 렌즈들(110F)을 예로 들고 있으나, 볼록 렌즈들의 초점거리가 유사하다면 모양이 다를 수 있으며, 크기의 범위에도 제한이 없다. 상기 복수의 볼록 렌즈들(110F)은 실린더 렌즈일 수 있으며, 또는 볼록 렌즈와 실린더 렌즈의 조합일 수 있다. 유효수광면적을 늘리기 위해서 상기 복수의 렌즈들(110F)은 두 가지 이상의 서로 다른 크기를 가질 수 있다.
도 11의 (b)는 제2 플레이트(200) 및 제2 플레이트(200) 위에 배열된 복수의 태양전지(150)들을 보여준다. 도 11의 (b)는 도 10의 (b)와 동일한 복수의 태양전지(150)들이 배열된 제2 플레이트(200)이나, 이에 한정되지 아니한다. 도 11의 (b)에서 제2 플레이트(200)는 제1 전극(120), 절연층(130) 및 제2 전극(160)을 더 구비할 수 있다. 이들 구성요소는 상기 제1 실시 예에서 언급된 내용을 따른다.
상기 제1 플레이트(100C)와 제2 플레이트(200)는 상기 도 10의 변형 예에서 언급된 본딩의 방법으로 결합할 수 있다.
또한 도 11에서는 동일한 극성 방향으로 배열된 태양전지들(150)이 전기적으로 병렬로 연결된 태양전지 장치를 예시하고 있으나, 동일한 극성 방향으로 배열된 태양전지들(150)이 전기적으로 직렬로 연결된 상기 제4 실시 예의 태양전지 장치 또는 태양전지들(150) 중 적어도 일부분은 서로 극성 방향을 달리하여 배치되어 전기적으로 직렬로 연결된 상기 제5 실시 예의 태양전지 장치일 수 있다. 한편, 나머지 구성요소는 상기 제1 실시 예에서 언급된 내용을 따른다.
도 12의 (a) 및 (b)는 각각 제2 플레이트(200A)와 제1 플레이트(100C)의 단면도이다. 도 12의 (a)는 제2 플레이트(200A) 및 제2 플레이트(200A) 위에 배열된 복수의 태양전지들(150)을 보여준다. 도 12의 (a)는 도 6의 (b)와 동일한 복수의 태양전지들(150)이 배열된 제2 플레이트(200A)이나, 이에 한정되지 아니한다. 도 12의 (a)에서 제2 플레이트(200A)는 제1 전극(120), 절연층(130) 및 제2 전극(160)을 더 구비할 수 있다. 이들 구성요소들은 상기 제1 실시 예에서 언급된 내용을 따른다. 한편, 제2 플레이트(200A)는 광투과성일 수 있다. 제1 전극(120), 절연층(130) 및 제2 전극(160)은 광투과성일 수 있다.
도 12의 (b)는 동일한 복수의 거울들을 구현하기 위하여 제1 플레이트(100C)의 일면을 오목하게 깎은 후에 표면에 반사층(reflector, 180)을 형성한다. 상기 반사층은 금속층일 수 있다. 금속층은 예로 들면 은화합물, 크롬(Cr), 타이타늄(Ti) 또는 백금(Pt)일 수 있다. 도 12의 (b)에서는 복수의 오목 거울들(180)을 예로 들고 있으나, 오목 거울들(180)의 초점거리가 유사하다면 모양이 다를 수 있으며, 크기의 범위에도 제한이 없다. 또한 복수의 오목 실린더 형태의 거울들일 수 있으며 또는 복수의 오목 거울들과 복수의 오목 실린더 형태의 거울들의 조합일 수 있다. 유효수광면적을 늘리기 위해서 상기 복수의 거울들(180)은 두 가지 이상의 서로 다른 크기를 가질 수 있다.
상기 제1 플레이트(100C)와 제2 플레이트(200A)는 상기 도 10의 변형 예에서 언급된 본딩의 방법으로 결합할 수 있다.
또한 도 12에서는 동일한 극성 방향으로 배열된 태양전지들(150)이 전기적으로 병렬로 연결된 태양전지 장치를 예시하고 있으나, 동일한 극성 방향으로 배열된 태양전지들(150)이 전기적으로 직렬로 연결된 상기 제4 실시 예의 태양전지 장치 또는 태양전지들(150) 중 적어도 일부분은 서로 극성 방향을 달리하여 배치되어 전기적으로 직렬로 연결된 상기 제5 실시 예의 태양전지 장치일 수 있다. 한편, 나머지 구성요소는 상기 제1 실시 예에서 언급된 내용을 따른다.
도 13은 본 발명의 제1 실시 예에 의한 태양전지 장치 제조 방법을 나타내는 도면이다.
도 13의 (a)를 참조하면, 복수의 볼록 렌즈들(110)이 일면에 형성된 플레이트(100)를 준비한다. 유효수광면적을 늘리기 위해서 상기 복수의 렌즈들(110)은 두 가지 이상의 서로 다른 크기를 가질 수 있다. 상기 실시 예에서는 복수의 렌즈들로서 복수의 볼록 렌즈들(110)을 예시하고 있으나, 복수의 프레넬 렌즈, 복수의 실린더 렌즈 또는 복수의 평판형 렌즈일 수 있으며, 이들의 조합일 수 있다. 또한 이들은 서로 다른 크기를 가질 수도 있으며, 초점거리가 유사하다면 모양이 다를 수 있으며, 크기의 범위에도 제한이 없다. 상기 복수의 볼록 렌즈들(110)과 플레이트(100)는 광투과성을 특징으로 한다. 광투과성 물질로 사용가능한 물질은 예로 들면 유리 또는 폴리머 등의 고분자 화합물일 수 있다.
도 13의 (b)를 참조하면, 복수의 렌즈들(110)이 일면에 형성된 플레이트(100)의 다른 면에 복수의 태양전지들(150)을 전기적으로 연결을 하기 위한 제1 전극(120)을 형성한다.
제1 전극(120)으로는 다양한 종류의 도전성을 갖는 금속 또는 도전성 폴리머 등의 도전성 유기화합물이 사용될 수 있다. 제1 전극(120)은 광투과성을 구비할 수도 있다. 이 경우 광투과성을 갖는 제1 전극은 예로 들면 ITO 또는 탄소나노튜브와 결합된 도전성 폴리머일 수 있다. 한편, 제1 전극(120)은 화학기상증착(Chemical Vapor Deposition), 프린트(print) 또는 물리적 증착에 의하여 증착할 수 있다. 물리적 증착 방법은 열증착(Thermal Evaporation) 또는 스퍼터링(Sputtering)일 수 있다.
도 13의 (c)는 제1 전극(120) 위에 절연층(130)을 증착하는 단계를 보여준다. 절연층(130)으로는 다양한 종류의 전기적 절연성을 갖는 질화막, 산화막, 폴리머 또는 유기화합물이 사용될 수 있다. 절연층(130)은 제1 전극(120)과 제2 전극(160)을 전기적으로 격리하기 위한 부분이다. 또한, 절연층(130)은 개개의 태양전지들(150)이 위치할 공간을 확보하여 주는 역할을 아울러 수행한다. 한편, 절연층(130)은 화학기상증착 또는 코팅(coating)에 의하여 증착할 수 있다. 화학기상증착 방법은 저온화학기상증착(Low Temperature Chemical Vapor Deposition), 플라즈마화학기상증착(Plasma Enhanced Camical Vapor Deposition) 또는 저압화학기상증착(Low Pressure Chemical Vapor Deposition)일 수 있다. 코팅 방법은 상기 제1 전극이 형성된 플레이트를 절연물질에 담그거나, 제1 전극에 절연물질을 분사하거나 또는 제1 전극에 절연물질을 스핀코팅(spin coating)하는 방식으로 수행될 수 있다. 상기 절연층(130)은 포토레지스트일 수 있다. 또한, 상기 포토레지스트는 양성 레지스트 또는 음성 레지스트일 수 있다.
도 13의 (d)는 절연층(130)을 복수의 렌즈들(110)을 통과하여 들어오는 빛을 이용하여 노광하는 단계를 보여준다. 이 경우 절연층(130)은 포토레지스트이며, 양성 레지스트가 사용된 예가 도면에 표현되어 있으나, 음성 레지스트가 사용될 수도 있다. 이를 이용하면 선택적 노광을 위한 별도의 마스크와 포토레지스트 도포과정 없이 복수의 태양전지들(150)이 위치할 공간(140)을 확보할 수 있다는 장점이 있다. 이를 자동 노광이라고 칭하기로 하자.
자동 노광에 따른 복수의 태양전지들(150)이 위치할 공간(140)을 확보하는 과정을 살펴보면, 절연층(130)을 증착하거나 또는 코팅한 후에, 소프트 베이크(soft bake) 과정을 거친 후에, 복수의 태양전지들(150)이 배열된 플레이트(100)의 전면에 빛(light)을 노출한다. 이들 빛은 자외선일 수 있으나, 이에 한정되지 아니한다. 절연층이 포토레지스트이고, 양성 레지스트인 경우에는 노광된 부분이 이후의 현상(developing) 과정을 통하여 제거되고, 포토레지스트를 안정화하기 위해 하드 베이크(hard bake) 과정을 거치면, 복수의 태양전지들(150)이 위치할 공간(140)을 형성할 수 있다.
도 13의 (e)는 상기 복수의 태양전지들(150)이 위치할 공간(140)을 확보하는 과정을 통해 형성된 복수의 태양전지들(150)이 위치할 공간(140)을 보여준다.
도 13의 (f)는 상기 복수의 태양전지들(150)을 상기 플레이트(100)의 타면에 배치하는 단계를 보여준다. 상기 복수의 태양전지들(150)을 상기 플레이트(100)의 타면에 배치하는 방법은 자동조립 또는 수동조립 방식일 수 있다. 수동조립방식은 표면실장기술 또는 인력에 의한 수동조립방식일 수 있다. 자동조립 방식은 유체자기조립방식일 수 있다. 수동조립방식 중 표면 실장기술의 예로는 통상적으로 이용되는 반도체 칩의 자동 실장기술을 예로 들 수 있다. 자동조립방식 중 유체자기조립방식은 태양전지 단위 개체를 유체 내에서 흘려 보내면 태양전지들(150)이 배치될 공간(140)에 자동으로 위치하게 되는 방식을 말한다. 공간의 홈과 태양전지의 단위 개체의 모양을 통일시켜줌으로써 유체자기조립이 가능하게 된다. 도 13의 (e)는 물리적 높이 차이를 이용한 예를 보여준다. 공간(140)의 패턴은 물리적 높이 차이일 수도 있고, 친수성-소수성과 같은 화학적 패턴일 수도 있다.
도 13의 (g)는 상기 복수의 태양전지들(150)을 전기적으로 연결을 하기 위한 제2 전극(160)을 형성하는 단계를 보여준다. 제2 전극(160)으로는 다양한 종류의 도전성을 갖는 금속 또는 도전성 폴리머 등의 도전성 유기화합물이 사용될 수 있다. 제2 전극(160)은 광투과성을 구비할 수도 있다. 이 경우 광투과성을 갖는 제2 전극은 예로 들면 ITO 또는 탄소나노튜브와 결합된 도전성 폴리머 일 수 있다. 한편, 제2 전극(160)은 화학기상증착, 프린트 또는 물리적 증착에 의하여 증착할 수 있다. 물리적 증착 방법은 열증착 또는 스퍼터링일 수 있다.
도 14는 도 13의 (d)의 변형 예를 나타내는 도면이다.
도 14을 참조하면, 도 14는 자동 노광이 아닌 별도의 포토레지스트 도포과정과 마스크과정을 거쳐서 복수의 태양전지들(150)이 위치할 공간(140)을 확보하는 과정을 보여준다. 상기 절연층(130) 위에 포토레지스트(132)를 도포하고, 소프트 베이크 과정을 거친 후에, 복수의 태양전지들(150)이 위치할 공간(140)에 대하여 마스크 보드(mask board, 136) 상의 마스크(mask, 134)를 사용하여 선택적으로 노광한다. 음성 레지스트가 사용된 예가 도면에 표현되어 있으나, 양성 레지스트가 사용될 수도 있다. 이 경우에는 마스크의 패턴(pattern)의 상은 복수의 태양전지들(150)이 위치할 공간(140)에 대하여는 빛이 투과하고, 그 외의 공간에 대하여는 차단되게 제작되어야 한다. 절연층은 광감성을 가지지 않을 수도 있다. 이후 현상과정을 통하여 노광되지 않은 부분의 포토레지스트를 제거하고, 하드베이크 과정을 거친 후에 절연층을 건식 또는 습식식각을 통하여 제거하면 복수의 태양전지들(150)이 위치할 공간(140)을 형성할 수 있다. 이후 남은 포토레지스트(132)는 건식 또는 습식 방법에 의하여 제거할 수 있다.
태양전지 장치를 제조하는 방법의 나머지 단계는 상기 제1 실시 예에서 언급된 내용을 따른다.
도 15는 본 발명의 제2 실시 예에 의한 태양전지 장치 제조 방법을 나타내는 도면이다.
도 15에서 제시되는 태양전지 장치를 제조하는 방법은 복수의 렌즈들의 초점거리가 플레이트의 높이보다 짧은 경우에 플레이트 내부로 유입된 오목한 홈(102)을 갖는다는 점에서 도 13에서 제시되는 태양전지를 제조하는 방법인 제1 실시 예와 차이가 존재한다.
도 15를 참조하면, 도 15의 (a)에 표현된 바와 같이, 복수의 렌즈들(110)의 초점거리가 플레이트(100A)의 높이보다 짧아 초점이 플레이트(100A)의 내부에 위치하게 됨을 보여준다.
도 15의 (b)는 상기 복수의 렌즈들(110)의 초점이 복수의 태양전지들(150)에 위치하도록 오목한 홈(102)을 포함하는 플레이트(100A)의 구성을 보여준다.
도 15의 (c) 내지 15의 (h)는 상기의 플레이트(100A)에 제1 전극(120A)을 형성하는 단계, 절연층(130A)을 형성하는 단계, 상기 복수의 태양전지들(150)이 위치하게 되는 공간(140A)을 형성하는 단계, 상기 복수의 태양전지들(150)을 위치시키는 단계 및 제2 전극(160A)을 형성시키는 단계를 보여준다. 구체적인 공정 또는 재료는 상기 도 13에서 제시되는 태양전지를 제조하는 방법인 제1 실시 예와 같은 과정을 따르므로, 이에 대한 상세한 설명은 설명의 편의상 생략한다.
도 16은 도 15의 (e)의 변형 예를 나타내는 도면이다.
도 16을 참조하면, 상기 복수의 태양전지들(150)이 위치하는 공간(140A)을 형성하기 위하여 광투광성 마스크 보드(136) 상에 형성된 마스크(134)와 포토리지스트(132)를 사용하는 방법을 보여준다. 구체적인 공정 또는 재료는 상기 도 14에서 제시되는 태양전지를 제조하는 방법인 제1 실시 예의 변형 예와 같은 과정을 따르므로, 이에 대한 상세한 설명은 설명의 편의상 생략한다.
태양전지 장치를 제조하는 방법의 나머지 단계는 상기 제1 실시 예에서 언급된 내용을 따른다.
도 17은 본 발명의 제3 실시 예에 의한 태양전지 장치 제조 방법을 나타내는 도면이다.
도 17에서 제시되는 태양전지 장치를 제조하는 방법은 복수의 렌즈들 중 적어도 일부분의 렌즈들의 초점거리가 플레이트의 높이보다 짧은 경우에 플레이트(100B)의 타면의 일부분에 내부로 유입된 오목한 홈(102)을 갖는 경우라는 점에서 도 13에서 제시되는 태양전지 장치를 제조하는 방법인 제1 실시 예와 도 15에서 제시되는 태양전지 장치를 제조하는 방법인 제2 실시 예와 차이가 존재한다.
도 17을 참조하면, 도 17의 (a)에 표현된 바와 같이, 복수의 렌즈들(110) 중 적어도 일부분의 렌즈들의 초점거리가 플레이트(100B)의 높이보다 짧아 초점이 플레이트(100B)의 내부에 위치하게 됨을 보여준다.
도 17의 (b)는 상기 복수의 렌즈들(110A)의 초점이 복수의 태양전지들(150)에 위치하도록 오목한 홈(102)을 포함하는 플레이트(100B)의 구성을 보여준다.
도 17의 (c) 내지 17의 (h)는 상기의 플레이트(100B)에 제1 전극(120B)을 형성하는 단계, 절연층(130B)을 형성하는 단계, 상기 복수의 태양전지들(150)이 위치하게 되는 공간(140B)을 형성하는 단계, 상기 복수의 태양전지들(150)을 위치시키는 단계 및 제2 전극(160B)을 형성시키는 단계를 보여준다. 구체적인 공정 또는 재료는 상기 도 13에서 제시되는 태양전지를 제조하는 방법인 제1 실시 예와 같은 과정을 따르므로, 이에 대한 상세한 설명은 설명의 편의상 생략한다.
도 18은 도 17의 (e)의 변형 예를 나타내는 도면이다.
도 18을 참조하면, 상기 복수의 태양전지들(150)이 위치하는 공간(140B)을 형성하기 위하여 광투광성 마스크 보드(136) 상에 형성된 마스크(134)와 포토리지스트(132)를 사용하는 방법을 보여준다. 구체적인 공정 또는 재료는 상기 도 14에 서 제시되는 태양전지를 제조하는 방법인 제1 실시 예의 변형 예와 같은 과정을 따르므로, 이에 대한 상세한 설명은 설명의 편의상 생략한다.
태양전지 장치를 제조하는 방법의 나머지 단계는 상기 제1 실시 예에서 언급된 내용을 따른다.
도 19는 본 발명의 제4 실시 예에 의한 태양전지 장치 제조 방법을 나타내는 도면이다.
도 19의 (a)를 참조하면, 복수의 볼록 렌즈들(110)이 일면에 형성된 플레이트(100)를 준비한다. 유효수광면적을 늘리기 위해서 상기 복수의 렌즈들(110)은 두 가지 이상의 서로 다른 크기를 가질 수 있다. 상기 실시 예에서는 복수의 렌즈들로서 복수의 볼록 렌즈들(110)을 예시하고 있으나, 복수의 프레넬 렌즈, 복수의 실린더 렌즈 또는 복수의 평판형 렌즈일 수 있으며, 이들의 조합일 수 있다. 또한 이들은 서로 다른 크기를 가질 수도 있으며, 초점거리가 유사하다면 모양이 다를 수 있으며, 크기의 범위에도 제한이 없다.
도 19의 (b)를 참조하면, 복수의 렌즈들(110)이 일면에 형성된 플레이트(100)의 타면에 복수의 태양전지들(150)을 전기적으로 연결하기 위한 서로 절연된 복수의 제1 전극들(120C)을 형성한다. 상기 제1 실시 예에서 언급된 방법에 따른 제1 전극 증착 후에 포토레지스트를 이용한 통상의 사진 작업과 식각 작업을 통하여 복수의 제1 전극들(120C)을 형성할 수 있다.
도 19의 (c)는 복수의 제1 전극들(120C) 위에 절연층(130C)을 증착하는 단계를 보여준다. 절연층(130C)은 복수의 제1 전극들(120C)과 복수의 제2 전극들(160C) 을 전기적으로 격리하기 위한 부분일 뿐만 아니라 컨택홀들(142)을 구비하여 태양전지들(150)을 전기적으로 직렬 연결하기 위한 통로로서의 기능도 수행한다. 또한, 절연층(130C)은 개개의 태양전지들(150)이 위치할 공간을 확보하여 주는 역할도 아울러 수행한다.
도 19의 (d)는 절연층(130C)을 복수의 렌즈들(110)을 통과하여 들어오는 빛을 이용하여 노광하는 단계를 보여준다. 이 경우 절연층(130C)은 포토레지스트이며, 양성 레지스트가 사용된 예가 도면에 표현되어 있으나, 음성 레지스트가 사용될 수도 있다.
도 19의 (e)는 상기 복수의 태양전지들(150)이 위치할 공간(140C)을 확보하는 과정을 통해 형성된 복수의 태양전지들(150)이 위치할 공간(140C)을 보여준다.
도 19의 (f)는 상기 복수의 태양전지들(150)을 직렬로 연결하기 위한 컨택홀들(142)을 확보하는 과정을 보여준다.
상기 절연층(130C) 위에 포토레지스트(132)를 도포하고, 소프트 베이크 과정을 거친 후에, 컨택홀들(142)이 위치할 공간에 대하여 마스크 보드(136) 상의 마스크(134A)를 사용하여 선택적으로 노광한다.
도 19의 (g)는 상기 복수의 태양전지들(150)을 배치하는 단계를 보여준다. 상기 복수의 태양전지들(150) 중 직렬 연결될 연속된 2개의 태양전지들을 각각 제1 태양전지(150A) 및 제2 태양전지(150B)라 하면, 제1 태양전지(150A)는 상기 복수의 제1 전극들(120C) 중 제1 전극(122C)에 의하여 연결이 된다.
도 19의 (h)는 상기 복수의 태양전지들(150)을 전기적으로 연결을 하기 위한 서로 절연된 복수의 제2 전극들(160C)을 형성하는 단계를 보여준다. 제2 태양전지(150B)는 상기 복수의 제2 전극들(160C) 중 제2 전극(162C)에 의하여 연결이 된다. 상기 제1 전극(122C) 및 상기 제2 전극(162C)은 상기 복수의 컨택홀들(142) 중에서 이들에 상응하는 컨택홀(142A)을 통하여 서로 연결되어 태양전지들이 전기적으로 직렬로 연결된다. 한편, 도 19의 (h)에서는 컨택홀들(142)은 제2 전극들(160C)을 형성하는 과정에서 동시에 형성하는 경우를 예시하고 있으나, 상기 컨택홀들(142)은 따로 화학기상증착, 프린트 또는 물리적 증착에 의하여 증착할 수도 있다. 구체적인 공정 또는 재료는 상기 도 13에서 제시되는 태양전지를 제조하는 방법인 제1 실시 예와 같은 과정을 따르므로, 이에 대한 상세한 설명은 설명의 편의상 생략한다.
태양전지 장치를 제조하는 방법의 나머지 단계는 상기 제1 실시 예에서 언급된 내용을 따른다.
도 20은 도 19의 (d) 내지 (f)의 변형 예를 나타내는 도면이다.
도 20을 참조하면, 상기 복수의 태양전지들(150)이 위치하는 공간(140C)과 상기 컨택홀들(142)을 형성하기 위하여 광투광성 마스크 보드(136) 상에 형성된 마스크(134B)와 포토리지스트(132)를 사용하는 방법을 보여준다. 구체적인 공정 또는 재료는 상기 도 14에서 제시되는 태양전지를 제조하는 방법인 제1 실시 예의 변형 예와 같은 과정을 따르므로, 이에 대한 상세한 설명은 설명의 편의상 생략한다.
태양전지 장치를 제조하는 방법의 나머지 단계는 상기 제1 실시 예에서 언급된 내용을 따른다.
도 21은 본 발명의 제5 실시 예에 의한 태양전지 장치 제조 방법을 나타내는 도면이다.
도 21의 (a)를 참조하면, 복수의 볼록 렌즈들(110)이 일면에 형성된 플레이트(100)를 준비한다. 유효수광면적을 늘리기 위해서 상기 복수의 렌즈들(110)은 두 가지 이상의 서로 다른 크기를 가질 수 있다. 상기 실시 예에서는 복수의 렌즈들로서 복수의 볼록 렌즈들(110)을 예시하고 있으나, 복수의 프레넬 렌즈, 복수의 실린더 렌즈 또는 복수의 평판형 렌즈일 수 있으며, 이들의 조합일 수 있다. 또한 이들은 서로 다른 크기를 가질 수도 있으며, 초점거리가 유사하다면 모양이 다를 수 있으며, 크기의 범위에도 제한이 없다.
도 21의 (b)를 참조하면, 복수의 렌즈들(110)이 일면에 형성된 플레이트(100)의 타면에 복수의 태양전지들(150)을 전기적으로 연결하기 위한 서로 절연된 복수의 제1 전극들(120D)을 형성한다. 상기 제1 실시 예에서 언급된 방법에 따른 제1 전극 증착 후에 포토레지스트를 이용한 통상의 사진 작업과 식각 작업을 통하여 복수의 제1 전극들(120D)을 형성할 수 있다.
도 21의 (c)는 복수의 제1 전극들(120D) 위에 절연층(130D)을 증착하는 단계를 보여준다. 절연층(130D)은 복수의 제1 전극들(120D)과 복수의 제2 전극들(160D)을 전기적으로 격리하기 위한 기능 이외에 개개의 태양전지들(150)이 위치할 공간을 확보하여 주는 역할을 아울러 수행한다.
도 21의 (d)는 절연층(130D)을 복수의 렌즈들(110)을 통과하여 들어오는 빛을 이용하여 노광하는 단계를 보여준다. 이 경우 절연층(130D)은 포토레지스트이 며, 양성 레지스트가 사용된 예가 도면에 표현되어 있으나, 음성 레지스트가 사용될 수도 있다.
도 21의 (e)는 상기 복수의 태양전지들(150)이 위치할 공간(140D)을 확보하는 과정을 통해 형성된 복수의 태양전지들(150)이 위치할 공간(140D)을 보여준다.
도 21의 (f)는 상기 복수의 태양전지들(150)을 배치하는 단계를 보여준다.
상기 복수의 태양전지들(150) 중 직렬 연결된 연속된 3개의 태양전지들을 각각 제1 태양전지(150C), 제2 태양전지(150D) 및 제3 태양전지(150E)라 하면, 제1 태양전지(150C)와 제2 태양전지(150D)는 상기 복수의 제1 전극들(120D) 중 이들에 상응하는 제1 전극(122D)에 의하여 연결된다.
도 21의 (g)는 상기 복수의 태양전지들(150)을 전기적으로 연결을 하기 위한 서로 절연된 복수의 제2 전극들(160D)을 형성하는 단계를 보여준다. 제2 태양전지(150D)와 제3 태양전지(150E)는 상기 복수의 제2 전극들(160D) 중 이들에 상응하는 제2 전극(162D)에 의하여 연결되어 서로 다른 극성 방향으로 배열된 태양전지들(150)이 전기적으로 직렬로 연결된다. 구체적인 공정 또는 재료는 상기 도 13에서 제시되는 태양전지를 제조하는 방법인 제1 실시 예와 같은 과정을 따르므로, 이에 대한 상세한 설명은 설명의 편의상 생략한다.
태양전지 장치를 제조하는 방법의 나머지 단계는 상기 제1 실시 예에서 언급된 내용을 따른다.
도 22는 도 21의 (d)의 변형 예를 나타내는 도면이다.
도 22를 참조하면, 상기 복수의 태양전지들(150)이 위치하는 공간(140D)을 형성하기 위하여 광투광성 마스크 보드(136) 상에 형성된 마스크(134)와 포토리지스트(132)를 사용하는 방법을 보여준다. 구체적인 공정 또는 재료는 상기 도 14에서 제시되는 태양전지를 제조하는 방법인 제1 실시 예의 변형 예와 같은 과정을 따르므로, 이에 대한 상세한 설명은 설명의 편의상 생략한다.
태양전지 장치를 제조하는 방법의 나머지 단계는 상기 제1 실시 예에서 언급된 내용을 따른다.
도 23은 태양전지들(150)의 자기조립을 설명하기 위한 도면이다.
도 23을 참조하면, 도 23의 (a) 및 (b)는 일면에 마이크로 렌즈들(110)이 배열된 플레이트(100)의 타면의 평면도 및 단면도이다. 상기 플레이트(100)의 타면은 제1 전극(120) 및 태양전지들(150)이 위치할 공간들(140E, 140F)이 형성된 절연층(130)을 더 구비하고 있다. 도 23의 (c)는 극성 방향과 모양을 달리한 태양전지들(150G, 150H)을 보여준다. 도 23의 (d)는 플레이트(100)의 타면에 형성된 제1 전극(120) 및 서로 크기가 다른 태양전지들(150)이 위치할 공간들(140G, 140H)이 형성된 절연층(130)을 보여준다. 도 23의 (e)는 극성 방향과 크기를 달리한 태양전지들(150I, 150J)을 보여준다.
도 23의 (a) 및 (b)에 있어서, 태양전지들(150)들이 위치할 공간(140E, 140F)은 각각 사각형(140E, 제1 모양)과 원형(140F, 제2 모양)의 서로 다른 홈들을 갖는다. 따라서 제1 모양(140E)에 대응하는 제3 모양의 태양전지(150G)는 제1 모양(140E)의 홈에 결합하고 제2 모양(140F)에 대응하는 제4 모양의 태양전지(150H)는 제2 모양(140F)의 홈에 결합하게 된다. 즉, 서로 대응하는 모양에 결합하게 된 다. 상기 실시 예에서는 사각기둥과 원형기둥의 두 가지 모양을 예시하고 있으나, 상호 배타적 결합이 가능하다면 모양과 크기는 달리할 수 있다. 또한 서로 다른 모양의 태양전지(150)가 하나씩 예시되어 있으나, 복수 개의 태양전지들(150)이어도 무방하며, 같은 모양의 태양전지들(150)은 같은 모양의 공간의 어느 곳에 결합해도 무방하다.
도 23의 (b)는 플레이트(100)의 타면에 태양전지들(150)이 위치할 공간들(140E, 140F)이 형성된 절연층(130)의 단면도를 보여 준다. 상기 실시 예에서는 패턴의 밑면의 모양으로 원형과 사각형을 예시하고 있으나, 패턴의 밑면의 모양은 원형 또는 사각형 이외에도 다양한 형태의 다각형 또는 원형과 다각형 등의 조합일 수 있다.
이러한 다양한 모양의 패턴을 얻는 방법으로는, 절연층(130)을 포토레지스트로 한 경우에는 마이크로렌즈의 모양을 달리하여 초점이 맺히는 형상을 다양하게 하여 자동 노광을 통하여 구현할 수 있으며, 통상의 사진공정을 이용하는 경우에는 마스크의 모양을 원형, 사각형, 다각형 또는 이들의 조합으로 변경시켜주면 동일한 효과를 얻을 수 있다.
도 23의 (c)는 극성 방향과 모양을 달리한 태양전지들(150G, 150H)을 보여준다. 즉, 제1 모양(140E)에 대응하는 제3 모양의 태양전지(150G)와 제2 모양에 대응하는 제4 모양의 태양전지(150H)를 보여준다. 상기 예에서의 태양전지는 극성 방향을 달리한 P(151)-N(152)접합 태양전지들(150)을 예시하고 있다. 상기 예에서는 태양전지를 예로 들고 있으나, 태양전지 이외에도 기타의 전자소자들을 사용할 수 있 으며, 이 경우에 모양과 크기에 따라 상호 배타적으로 원하는 위치에 원하는 전자소자들의 배치가 가능하다.
이러한 방법을 통하여 서로 다른 모양과 크기의 태양전지들은 자신의 크기에 맞는 공간에 정확히 조립이 가능하므로, 특정한 극성을 갖는 태양전지들을 선택적으로 원하는 위치에 배치할 수 있다. 유체 내에서 태양전지들을 흘려서 자신의 크기에 맞는 곳에 위치시키는 방법을 유체자기조립이라 한다. 도 23의 (b)는 물리적 높이 차이를 이용한 예를 보여준다. 공간(140E, 140F)의 패턴은 물리적 높이 차이일 수도 있고, 친수성-소수성과 같은 화학적 패턴일 수도 있다. 상기 실시 예에서는 패턴의 밑면의 모양으로 원형과 사각형을 예시하고 있으나, 패턴의 밑면의 모양은 원형 또는 사각형 이외에도 다양한 형태의 다각형 또는 원형과 다각형 등의 조합일 수 있다.
도 23의 (b)에서는 도 13의 동일한 극성 방향으로 배열된 태양전지들(150)이 전기적으로 병렬로 연결된 태양전지 장치에 있어서, 태양전지들(150)을 자기 조립하는 방법을 예시하고 있다(이 경우에는 태양전지들(150)은 모양과 관계없이 동일한 극성 방향을 가져야 한다). 한편 도 19의 동일한 극성 방향으로 배열된 태양전지들(150)이 전기적으로 직렬로 연결된 상기 제4 실시 예의 태양전지 장치 제조 방법 또는 도 21의 태양전지들(150) 중 적어도 일부분은 서로 극성 방향을 달리하여 배치되어 전기적으로 직렬로 연결된 상기 제5 실시 예의 태양전지 장치 제조 방법에 있어서도 마찬가지 방법으로 자기 조립이 가능하다.
도 23의 (d) 및 (e)는 각각 크기를 달리한 공간(140G, 140H)의 패턴 및 극성 방향과 크기를 달리한 태양전지들(150I, 150J)을 보여준다. 상기 실시 예에서는 패턴의 밑면의 모양으로 사각형을 예시하고 있으나, 패턴의 밑면의 모양은 원형 또는 다양한 형태의 다각형 또는 원형과 다각형 등의 조합일 수 있다. 이들의 결합 및 자기 조립은 상술한 도 23의 (a) 내지 (c)의 상세한 설명에서 언급한 과정을 통하여 이루어질 수 있으므로 이에 대한 상세한 설명은 설명의 편의상 생략한다. 또한, 이하 구체적인 공정 또는 재료는 상기 도 13에서 제시되는 태양전지를 제조하는 방법인 제1 실시 예와 같은 과정을 따르므로, 이에 대한 상세한 설명 역시 설명의 편의상 생략한다.
도 1은 본 발명의 제1 실시 예에 의한 태양전지 장치를 나타내는 도면이다.
도 2는 본 발명의 제2 실시 예에 의한 태양전지 장치를 나타내는 도면이다.
도 3은 본 발명의 제3 실시 예에 의한 태양전지 장치를 나타내는 도면이다.
도 4는 본 발명의 제4 실시 예에 의한 태양전지 장치를 나타내는 도면이다.
도 5는 본 발명의 제5 실시 예에 의한 태양전지 장치를 나타내는 도면이다.
도 6 내지 9는 도 1 내지 5에 표현된 플레이트 상에 배열된 복수의 렌즈들의 변형 예를 나타내는 도면이다.
도 10 내지 12는 태양전지 장치의 변형 예를 나타내는 도면이다.
도 13은 본 발명의 제1 실시 예에 의한 태양전지 장치 제조 방법을 나타내는 도면이다.
도 14는 도 13의 (d)의 변형 예를 나타내는 도면이다.
도 15는 본 발명의 제2 실시 예에 의한 태양전지 장치 제조 방법을 나타내는 도면이다.
도 16은 도 15의 (e)의 변형 예를 나타내는 도면이다.
도 17은 본 발명의 제3 실시 예에 의한 태양전지 장치 제조 방법을 나타내는 도면이다.
도 18은 도 17의 (e)의 변형 예를 나타내는 도면이다.
도 19는 본 발명의 제4 실시 예에 의한 태양전지 장치 제조 방법을 나타내는 도면이다.
도 20은 도 19의 (d) 내지 (f)의 변형 예를 나타내는 도면이다.
도 21은 본 발명의 제5 실시 예에 의한 태양전지 장치 제조 방법을 나타내는 도면이다.
도 22는 도 21의 (d)의 변형 예를 나타내는 도면이다.
도 23은 태양전지들의 자기조립을 설명하기 위한 도면이다.

Claims (32)

  1. 복수의 렌즈들이 일면에 배열된 플레이트; 및
    상기 복수의 렌즈들에 의하여 집광된 빛을 수광하는 복수의 태양전지들
    을 포함하는 태양전지 장치.
  2. 제1항에 있어서,
    상기 플레이트는 상기 복수의 렌즈들의 초점이 상기 복수의 태양전지들에 위치하도록 초점거리를 제공하는 태양전지 장치.
  3. 제1항에 있어서,
    상기 플레이트는 상기 복수의 렌즈들의 초점이 위치하는 곳에 오목한 홈을 상기 플레이트의 타면에 갖는 태양전지 장치.
  4. 제1항에 있어서,
    상기 복수의 태양전지들은 상기 플레이트의 타면에 위치하는 태양전지 장치.
  5. 제1항에 있어서,
    상기 복수의 태양전지들은 무기 태양전지를 구비하는 태양전지 장치.
  6. 제1항에 있어서,
    상기 복수의 렌즈들은 볼록 렌즈들, 실린더 렌즈들 또는 프레넬 렌즈들을 구비하는 태양전지 장치.
  7. 제1항에 있어서,
    상기 복수의 렌즈들 중 일부 렌즈들은 나머지 렌즈들과 다른 크기를 가지는 태양전지 장치.
  8. 제1항에 있어서,
    상기 복수의 태양전지들은 서로 병렬 연결된 태양전지 장치.
  9. 제8항에 있어서,
    상기 플레이트의 타면에 위치한 제1 전극;
    상기 제1 전극 위에 배치되어 상기 복수의 태양전지들을 둘러싸는 절연층; 및
    상기 절연층과 상기 복수의 태양전지들 위에 배치되는 제2 전극을 더 포함하며,
    상기 복수의 태양전지들은 상기 플레이트의 타면에 동일한 극성 방향으로 배치된 태양전지 장치.
  10. 제1항에 있어서,
    상기 복수의 태양전지들 중 적어도 일부분은 서로 직렬 연결된 태양전지 장치.
  11. 제10항에 있어서,
    상기 플레이트의 타면에 위치한 서로 절연된 복수의 제1 전극들;
    상기 복수의 제1 전극들 위에 배치되어 상기 복수의 태양전지들을 둘러싸는 절연층-상기 절연층은 복수의 컨택홀들을 구비함-; 및
    상기 절연층과 상기 복수의 태양전지들 위에 배치되는 서로 절연된 복수의 제2 전극들을 더 포함하며,
    상기 복수의 태양전지들은 상기 플레이트의 타면에 동일한 극성 방향으로 배치되며,
    상기 복수의 태양전지들 중 직렬 연결된 연속된 2개의 태양전지들(이하 제1 태양전지 및 제2 태양전지라 함)은 상기 복수의 제1 전극들 중 상기 제1 태양전지에 연결된 제1 전극 및 상기 복수의 제2 전극들 중 상기 제2 태양전지에 연결된 제2 전극-상기 제1 전극 및 상기 제2 전극은 상기 복수의 컨택홀들 중에서 이들에 상응하는 컨택홀을 통하여 서로 연결됨-을 통하여 서로 연결되는 태양전지 장치.
  12. 제10항에 있어서,
    상기 플레이트의 타면에 위치한 서로 절연된 복수의 제1 전극들;
    상기 복수의 제1 전극들 위에 배치되어 상기 복수의 태양전지들을 둘러싸는 절연층; 및
    상기 절연층과 상기 복수의 태양전지들 위에 배치되는 서로 절연된 복수의 제2 전극들을 더 포함하며,
    상기 복수의 태양전지들 중 직렬 연결된 연속된 2개의 태양전지들은 서로 극성 방향을 달리하여 배치되며,
    상기 복수의 태양전지들 중 직렬 연결된 연속된 3개의 태양전지들(이하 제1 태양전지, 제2 태양전지 및 제3 태양전지라 함) 중 제1 태양전지와 제2 태양전지는 상기 복수의 제1 전극들 중 이들에 상응하는 제1 전극에 의하여 연결되고, 제2 태양전지와 제3 태양전지는 상기 복수의 제2 전극들 중 이들에 상응하는 제2 전극에 의하여 연결되는 태양전지 장치.
  13. 제10항에 있어서,
    상기 직렬 연결된 태양전지들 중 적어도 일부분은 동일한 극성 방향을 갖는 2개 이상의 태양전지들의 병렬 연결로 이루어진 태양전지 장치.
  14. (a) 복수의 렌즈들이 일면에 형성된 플레이트를 준비하는 단계; 및
    (b) 복수의 태양전지들을 상기 플레이트의 타면에 배치하는 단계를 포함하는 태양전지 장치 제조 방법.
  15. 제14항에 있어서,
    상기 (b) 단계를 수행함에 있어서, 상기 복수의 태양전지들이 유체자기조립을 통하여 동일한 극성 방향으로 자동으로 배열되는 태양전지 장치 제조 방법.
  16. 제15항에 있어서,
    (c) 상기 플레이트의 타면 위에 제1 전극을 형성하는 단계;
    (d) 상기 제1 전극 위에 상기 복수의 태양전지들이 배치될 공간을 가지는 절연층을 형성하는 단계; 및
    (e) 상기 복수의 태양전지들과 상기 절연층 위에 제2 전극을 형성하는 단계
    를 더 포함하는 태양전지 장치 제조 방법.
  17. 제15항에 있어서,
    (c) 상기 플레이트의 타면 위에 서로 절연된 복수의 제1 전극들을 형성하는 단계;
    (d) 상기 제1 전극들 위에 상기 복수의 태양전지들이 배치될 공간을 가지는 절연층-상기 절연층은 복수의 컨택홀들을 구비함-을 형성하는 단계; 및
    (e) 상기 복수의 태양전지들과 상기 절연층 위에 서로 절연된 복수의 제2 전극들을 형성하는 단계
    를 더 포함하는 태양전지 장치 제조 방법.
  18. 제14항에 있어서,
    상기 (b) 단계를 수행함에 있어서, 상기 복수의 태양전지들 중 적어도 일부분은 유체자기조립을 통하여 서로 극성 방향을 달리하여 자동으로 배열되는 태양전지 장치 제조 방법.
  19. 제18항에 있어서,
    (c) 상기 플레이트의 타면 위에 서로 절연된 복수의 제1 전극들을 형성하는 단계;
    (d) 상기 제1 전극들 위에 상기 복수의 태양전지들이 배치될 공간을 가지는 절연층을 형성하는 단계; 및
    (e) 상기 복수의 태양전지들과 상기 절연층 위에 서로 절연된 복수의 제2 전극들을 형성하는 단계
    를 더 포함하는 태양전지 장치 제조 방법.
  20. 제16항에 있어서,
    상기 제1 전극은 광투과성인 태양전지 장치 제조 방법.
  21. 제17항 또는 제19항에 있어서,
    상기 복수의 제1 전극들은 광투과성인 태양전지 장치 제조 방법.
  22. 제16항, 제17항 또는 제19항 중 어느 한 항에 있어서,
    상기 절연층은 포토레지스트인 태양전지 장치 제조 방법.
  23. 제16항, 제17항 또는 제19항 중 어느 한 항에 있어서,
    상기 (d) 단계를 수행함에 있어서, 별도의 마스크 없이 상기 복수의 렌즈들을 통하여 집광된 빛을 감광성을 갖는 상기 절연층에 노출하여 상기 복수의 태양전지들이 위치할 공간을 확보하는 태양전지 장치 제조 방법.
  24. 제14항에 있어서,
    상기 복수의 태양전지들은 무기 태양전지를 구비하는 태양전지 장치 제조 방법.
  25. 복수의 집광수단들; 및
    상기 집광수단들에 의하여 집광된 빛을 수광하는 태양전지들
    을 포함하는 태양전지 장치.
  26. 제25항에 있어서,
    상기 복수의 집광수단들은 복수의 렌즈들이 배열된 렌즈 플레이트인 태양전지 장치.
  27. 제26항에 있어서,
    상기 렌즈 플레이트와 결합된 추가적인 플레이트-상기 태양전지들은 상기 렌즈 플레이트와 상기 추가적인 플레이트 사이에 위치함-를 더 포함하는 태양전지 장치.
  28. 제25항에 있어서,
    상기 복수의 집광수단들은 복수의 거울들이 배열된 거울 플레이트인 태양전지 장치.
  29. 제28항에 있어서,
    상기 거울 플레이트와 결합된 추가적인 플레이트-상기 태양전지들은 상기 거울 플레이트와 상기 추가적인 플레이트 사이에 위치함-를 더 포함하는 태양전지 장치.
  30. 제25항에 있어서,
    상기 복수의 태양전지들은 무기 태양전지인 태양전지 장치.
  31. (a) 제1 모양을 갖는 복수의 제1 홈들과 제2 모양을 갖는 복수의 제2 홈들이 일면에 형성된 플레이트를 준비하는 단계; 및
    (b) 상기 제1 모양에 대응하는 제3 모양을 갖는 제1 전자소자들과 상기 제2 모양에 대응하는 제4 모양을 갖는 제2 전자소자들을 상기 플레이트의 타면에 배치하는 단계를 포함하는 유체 자기조립 방법.
  32. 제31항에 있어서,
    상기 제1 전자소자들과 상기 제2 전자소자들은 태양전지들인 유체 자기조립 방법.
KR1020080018150A 2007-10-19 2008-02-28 마이크로렌즈를 이용한 태양전지 장치 및 그 제조 방법 KR100981685B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2009/000752 WO2009107943A2 (ko) 2008-02-28 2009-02-18 마이크로렌즈를 이용한 태양전지 장치 및 그 제조 방법
US12/919,962 US8759665B2 (en) 2007-10-19 2009-02-18 Solar cell apparatus using microlens and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20070105730 2007-10-19
KR1020070105730 2007-10-19

Publications (2)

Publication Number Publication Date
KR20090040200A true KR20090040200A (ko) 2009-04-23
KR100981685B1 KR100981685B1 (ko) 2010-09-10

Family

ID=40763771

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080018150A KR100981685B1 (ko) 2007-10-19 2008-02-28 마이크로렌즈를 이용한 태양전지 장치 및 그 제조 방법

Country Status (2)

Country Link
US (1) US8759665B2 (ko)
KR (1) KR100981685B1 (ko)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251048A2 (en) 2009-05-08 2010-11-17 Industry Academic Cooperation Foundation Hallym University Artificial eardrum using silk protein and method of fabricating the same
KR101029013B1 (ko) * 2010-06-30 2011-04-14 오세종 태양열 집열판
EP2410575A2 (en) * 2009-06-30 2012-01-25 LG Innotek Co., Ltd. Solar battery and a production method for same
KR101123821B1 (ko) * 2009-05-28 2012-03-15 성균관대학교산학협력단 태양전지의 표면처리방법 및 그에 따라 제조된 태양전지
KR101130418B1 (ko) * 2010-11-12 2012-03-27 한국광기술원 렌즈를 구비하는 태양전지 모듈 및 그의 제조방법
WO2013042881A2 (en) * 2011-09-20 2013-03-28 Lg Innotek Co., Ltd. Solar cell apparatus
WO2013129797A1 (ko) * 2012-02-29 2013-09-06 아주대학교산학협력단 집광용 마이크로렌즈 어레이를 구비한 태양전지
KR101412533B1 (ko) * 2012-08-10 2014-07-03 한국과학기술연구원 무동력 태양광 추적기능이 구비된 집광형 태양광 발전장치
KR101429106B1 (ko) * 2012-02-29 2014-08-14 아주대학교산학협력단 집광용 마이크로렌즈 어레이를 구비한 태양전지
KR101460984B1 (ko) * 2010-10-27 2014-11-14 가부시키가이샤 구라레 광발전 장치
KR20180099613A (ko) * 2015-11-06 2018-09-05 (주)에이피텍 태양전지모듈
WO2019018648A1 (en) * 2017-07-19 2019-01-24 The Regents Of The University Of Michigan INTEGRATED MICROLENSER FOR PHOTOVOLTAIC AND THERMIC CELL APPLICATIONS

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2416254B1 (es) 2009-02-09 2014-12-29 Semprius, Inc. Módulos fotovoltaicos de tipo concentrador (cpv), receptores y sub-receptores y métodos para formar los mismos
WO2011090336A2 (ko) * 2010-01-25 2011-07-28 (주)루미나노 전기장 향상 효과에 의하여 개선된 광전환 효율을 나타내는 태양전지
EP2387081B1 (en) * 2010-05-11 2015-09-30 Samsung Electronics Co., Ltd. Semiconductor light emitting device and method for fabricating the same
FR2961022B1 (fr) * 2010-06-02 2013-09-27 Centre Nat Rech Scient Cellule photovoltaïque pour application sous flux solaire concentre
US10121925B2 (en) * 2010-06-18 2018-11-06 University Of Florida Research Foundation, Inc. Thin film photovoltaic devices with microlens arrays
US8735791B2 (en) 2010-07-13 2014-05-27 Svv Technology Innovations, Inc. Light harvesting system employing microstructures for efficient light trapping
US20120145243A1 (en) * 2010-12-10 2012-06-14 Williams David L Solar cells with magnetically enhanced up-conversion
JP6026821B2 (ja) * 2011-12-26 2016-11-16 京セラ株式会社 光電変換装置、光電変換モジュールおよび光電変換装置用部品
WO2013134784A1 (en) * 2012-03-09 2013-09-12 Abrams Ze Ev R Light deflecting layer for photovoltaic solar panels
GB2516011A (en) * 2013-07-02 2015-01-14 Ibm Absorber device
CN103646982B (zh) * 2013-12-11 2016-07-06 中国科学院光电技术研究所 一种用于薄膜太阳能电池的陷光结构及制作方法
US10418501B2 (en) 2015-10-02 2019-09-17 X-Celeprint Limited Wafer-integrated, ultra-low profile concentrated photovoltaics (CPV) for space applications
WO2019051178A1 (en) 2017-09-08 2019-03-14 The Regents Of The University Of Michigan ELECTROMAGNETIC ENERGY CONVERTER
WO2020177907A1 (en) * 2019-03-01 2020-09-10 Solar Nanoconverter Ab Light converting arrangement, and a method in relation thereto
KR102129701B1 (ko) * 2020-02-06 2020-07-03 주식회사 옵토전자 무회전 스캐닝을 위한 마이크로 광학소자 시스템

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3473032A (en) * 1968-02-08 1969-10-14 Inventors & Investors Inc Photoelectric surface induced p-n junction device
US20040112424A1 (en) * 2002-10-03 2004-06-17 Daido Steel Co., Ltd. Solar cell assembly, and photovoltaic solar electric generator of concentrator type
US20050081908A1 (en) * 2003-03-19 2005-04-21 Stewart Roger G. Method and apparatus for generation of electrical power from solar energy
JP2005142285A (ja) 2003-11-05 2005-06-02 Seiko Epson Corp 太陽電池装置とその製造方法及び電子機器
JP2005142373A (ja) 2003-11-06 2005-06-02 Daido Steel Co Ltd 集光型太陽光発電装置
JP2005285948A (ja) * 2004-03-29 2005-10-13 Sharp Corp 太陽電池モジュールおよびその製造方法
DE102005033272A1 (de) * 2005-06-03 2006-12-07 Solartec Ag Konzentrator-Photovoltaik-Einrichtung, daraus gebildetes PV-Konzentratormodul sowie Herstellverfahren hierfür
KR101203601B1 (ko) * 2006-02-06 2012-11-21 교세미 가부시키가이샤 수광 또는 발광용 반도체 모듈
DE102006007472B4 (de) * 2006-02-17 2018-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photovoltaisches Konzentratormodul mit Multifunktionsrahmen
JP5507034B2 (ja) * 2007-03-01 2014-05-28 三洋電機株式会社 太陽電池モジュール及びその製造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251048A2 (en) 2009-05-08 2010-11-17 Industry Academic Cooperation Foundation Hallym University Artificial eardrum using silk protein and method of fabricating the same
KR101123821B1 (ko) * 2009-05-28 2012-03-15 성균관대학교산학협력단 태양전지의 표면처리방법 및 그에 따라 제조된 태양전지
EP2410575A4 (en) * 2009-06-30 2013-10-16 Lg Innotek Co Ltd SOLAR BATTERY AND MANUFACTURING METHOD THEREFOR
EP2410575A2 (en) * 2009-06-30 2012-01-25 LG Innotek Co., Ltd. Solar battery and a production method for same
US9799788B2 (en) 2009-06-30 2017-10-24 Lg Innotek Co., Ltd. Solar battery and method for manufacturing the same
KR101029013B1 (ko) * 2010-06-30 2011-04-14 오세종 태양열 집열판
US9343605B2 (en) 2010-10-27 2016-05-17 Kuraray Co., Ltd. Photovoltaic equipment
KR101460984B1 (ko) * 2010-10-27 2014-11-14 가부시키가이샤 구라레 광발전 장치
KR101130418B1 (ko) * 2010-11-12 2012-03-27 한국광기술원 렌즈를 구비하는 태양전지 모듈 및 그의 제조방법
KR101273186B1 (ko) * 2011-09-20 2013-06-17 엘지이노텍 주식회사 태양광 발전장치
WO2013042881A3 (en) * 2011-09-20 2013-05-16 Lg Innotek Co., Ltd. Solar cell apparatus
WO2013042881A2 (en) * 2011-09-20 2013-03-28 Lg Innotek Co., Ltd. Solar cell apparatus
WO2013129797A1 (ko) * 2012-02-29 2013-09-06 아주대학교산학협력단 집광용 마이크로렌즈 어레이를 구비한 태양전지
KR101429106B1 (ko) * 2012-02-29 2014-08-14 아주대학교산학협력단 집광용 마이크로렌즈 어레이를 구비한 태양전지
KR101412533B1 (ko) * 2012-08-10 2014-07-03 한국과학기술연구원 무동력 태양광 추적기능이 구비된 집광형 태양광 발전장치
KR20180099613A (ko) * 2015-11-06 2018-09-05 (주)에이피텍 태양전지모듈
WO2019018648A1 (en) * 2017-07-19 2019-01-24 The Regents Of The University Of Michigan INTEGRATED MICROLENSER FOR PHOTOVOLTAIC AND THERMIC CELL APPLICATIONS
US11302839B2 (en) 2017-07-19 2022-04-12 The Regents Of The University Of Michigan Integrated micro-lens for photovoltaic cell and thermal applications

Also Published As

Publication number Publication date
US20110061717A1 (en) 2011-03-17
US8759665B2 (en) 2014-06-24
KR100981685B1 (ko) 2010-09-10

Similar Documents

Publication Publication Date Title
KR100981685B1 (ko) 마이크로렌즈를 이용한 태양전지 장치 및 그 제조 방법
JP6245767B2 (ja) 印刷ベースの組立により製作される光学システム
Tvingstedt et al. Trapping light with micro lenses in thin film organic photovoltaic cells
JP5346008B2 (ja) 薄型フラット集光装置
US20080048102A1 (en) Optically enhanced multi-spectral detector structure
US20130153934A1 (en) Photovoltaic devices with off-axis image display
JP5158616B2 (ja) 複数のマイクロレンズを作製する方法
JPH10123496A (ja) 液晶表示装置とその製造方法
US20110259407A1 (en) Solar cell including microlens and method of fabricating the same
CN109935726B (zh) 有机发光显示面板、其制造方法及显示装置
CN109683364B (zh) 显示基板、显示装置、显示基板的制造方法
KR101358864B1 (ko) 태양 전지 및 이의 제조 방법
KR20170095818A (ko) 전자 디스플레이 디바이스의 스크린 내에 구축되는 편광 광전지 모듈
JP2005285948A (ja) 太陽電池モジュールおよびその製造方法
CN112420791A (zh) 指纹识别基板及其制备方法、显示装置
CN115185025A (zh) 一种微透镜阵列基板及其制备方法、显示装置
WO2009107943A2 (ko) 마이크로렌즈를 이용한 태양전지 장치 및 그 제조 방법
CN115373160A (zh) 基于超材料结构的偏振光调制器及其制备方法
CN111081152A (zh) 一种集成薄膜太阳能电池的显示模组及其制备方法
US20100032017A1 (en) Solar cell and method of manufacturing the same
JP2003069067A (ja) 薄膜太陽電池及び集光反射素子
US11791364B2 (en) Electronic compound eye imaging device
KR0145894B1 (ko) 태양전지가 내장된 액정디스플레이 패널 및 제조방법
KR20070029858A (ko) 더블 마이크로 렌즈 어레이를 통한 투명한 태양전지 모듈과그 제조방법
KR101293761B1 (ko) 반구형 트랜스퍼를 이용한 태양전지모듈

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130826

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140822

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170824

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180820

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190902

Year of fee payment: 10