KR20090003357A - 근접장 광학 기록장치와 근접장 광학 기록장치의 작동 방법 - Google Patents

근접장 광학 기록장치와 근접장 광학 기록장치의 작동 방법 Download PDF

Info

Publication number
KR20090003357A
KR20090003357A KR1020087028629A KR20087028629A KR20090003357A KR 20090003357 A KR20090003357 A KR 20090003357A KR 1020087028629 A KR1020087028629 A KR 1020087028629A KR 20087028629 A KR20087028629 A KR 20087028629A KR 20090003357 A KR20090003357 A KR 20090003357A
Authority
KR
South Korea
Prior art keywords
tilt
optical
record carrier
near field
servo gain
Prior art date
Application number
KR1020087028629A
Other languages
English (en)
Inventor
코엔 에이. 페르슈렌
페리 제이프
Original Assignee
코닌클리케 필립스 일렉트로닉스 엔.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닌클리케 필립스 일렉트로닉스 엔.브이. filed Critical 코닌클리케 필립스 일렉트로닉스 엔.브이.
Publication of KR20090003357A publication Critical patent/KR20090003357A/ko

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0956Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0941Methods and circuits for servo gain or phase compensation during operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

광학 기록매체와 상호작용하도록 구성된 근접장 광학 기록장치와 근접장 광학 기록장치의 작동방법이 주어진다. 이 장치는 굴절 광학부품과 액세스하려는 광학 기록매체의 데이터 층 사이의 거리에 따라 광학 기록매체에 대한 굴절 광학부품의 틸트를 조정하는 수단을 구비한다.
Figure P1020087028629
근접장 광학 기록장치, 틸트 제어, 광학 기록매체, 굴절 광학부품, 틸트 에러 서보 루프, 틸트 서보 이득 설정값

Description

근접장 광학 기록장치와 근접장 광학 기록장치의 작동 방법{A NEAR FIELD OPTICAL RECORDING DEVICE AND A METHOD OF OPERATING A NEAR FIELD OPTICAL RECORDING DEVICE}
본 발명은 근접장 광학 기록장치의 분야에 관한 것이다. 특히, 본 발명은
광원과,
상기 광원에서 발생된 빛을 광학 기록매체를 향하게 하도록 구성된 굴절 광학부품과,
상기 광학 기록매체에 대한 상기 굴절 광학부품의 틸트와 관련된 틸트 에러신호를 제공하는 틸트 에러 서보 루프와,
상기 틸트 에러신호에 적용되는 틸트 서보 이득 설정값을 포함하는 근접장 광학 기록장치에 관한 것이다.
광학 기록장치 내부의 광학 기록매체에 기록될 수 있는 최대 데이터 밀도는 이 광학 기록매체에 포커스되는 레이저 스폿의 크기에 반비례하여 증가한다. 스폿 크기는 2개의 광학 파라미터, 즉 장치의 광원(보통 레이저)의 파장과, 광원에서 발 생된 빛을 광학 기록매체 위에 향하게 하기 위해 채택된 굴절 광학부품(보통 대물렌즈)의 비율에 의해 결정된다. 종래의 광학장치에서는, NA가 1.0보다 작은 값으로 제한된다. 그러나, 근접장 광학 기록에서는, 굴절 광학부품으로서 예를 들면 고침 렌즈(solid immersion lens)(SIL)를 사용하여 NA를 1.0보다 크게 만듦으로써, 광학 기록매체 위의 더 큰 데이터의 저장밀도로의 추가적인 확장을 허용할 수 있다. 1.0보다 큰 NA는 SIL에서 극히 짧은 거리 이내에서만 사용가능한 것이며, 이것은 보통 빛의 파장의 1/10보다 작다. 그 결과, SIL과 광학 기록매체는 작동중에 서로 수 나노미터 이내에 유지되어야 한다. 굴절 광학부품과 광학 기록매체 사이의 거리(에어 갭)는 반사광의 편광 검출에서 유도되는 매우 민감한 갭 에러신호와 함께 종래의 포커스 및 트랙킹 액추에이터를 사용한 에어 갭 제어 시스템에 의해 정밀하게 제어된다.
근접장 광학 기록 시스템은 Optical Data Storage 2004, Proceedings of SPIE Vol 5380, pp209 to 223, F. Zijp et al에 기재되어 있는데, 이때에는 시스템 NA 1.9를 갖는 장치가 커버층을 갖지 않는 50GB 광학 기록매체(제 1 표면 광학 기록매체)와 작용하도록 구성된다.
광학 헤드에 대한 더 전반적인 정보는 Encyclopedia of Optical Engineering DOI, 10.1081/E-EOE 120009664(2003), Marcel Dekker Inc에서 찾을 수 있다. 트랙킹 액추에이터, 서보 메카니즘, 대물렌즈와 광 경로에서의 진행에 대한 섹션이 본 출원과 특히 관련이 있다.
다양한 종류의 광학 기록매체가 근접장 기록장치와 함께 사용될 수 있다. 일 부의 광학 기록매체는 광학 기록매체에 저장된 데이터를 보호하기 위한 커버층을 구비한다.
종래의 근접장 광학 기록장치의 문제점은 굴절 광학부품이 광학 기록매체에 대해 매우 정밀하게 정렬되어야 한다는 것이다.
본 발명의 목적은 종래의 시스템보다 더 우수한 틸트 제어를 제공하여 광학 기록매체에 대한 굴절 광학부품의 정렬을 향상시킬 수 있는 근접장 광학 기록장치의 굴절 광학부품의 틸트 제어를 제공하는 것이다.
이 목적은 본 발명에 따르면 상기 굴절 광학부품과 최소한 1개의 데이터 층 사이의 거리 변화에 응답하여 상기 틸트 서보 이득 설정값이 조정가능한 구성으로 달성된다.
본 발명의 다른 실시예에서는, 상기 근접장 기록장치가, 상기 굴절 광학 부재와 최소한 1개의 데이터 층 사이의 거리 변화에 응답하여 최소한 1개의 소정의 틸트 서보 이득 값을 구현하는 틸트 서보 이득 조정수단을 더 구비한다.
광학 기록장치 내부의 광학 기록매체 위에 빛을 향하게 하는데 채용되는 굴절 광학부품의 틸트 제어를 종래의 광학 시스템에 대해 조사하였다. 그러나, 근접장 기록 시스템은 근접장 동작을 위해 굴절 광학부품과 광학 기록매체 사이에서 필요한 접근으로 인해 틸트와 관련된 특수한 문제를 갖고 있다. 형상으로 인해 SIL 렌즈를 사용할 때에도 특수한 문제가 일어난다. 대부분의 SIL 렌즈는 반구형이거나 초반구형(super hemispherical)이다. 이와 같은 작은 동작 거리(working distance)에서 SIL의 평탄한 면에 대해 광학 기록매체의 틸트를 위해 충분히 큰 마진을 확보하기 위해, SIL은 보통 작은 평탄한 선단부(보통 40㎛의 직경)를 갖는 원추형 형태를 갖는다. 그러나, SIL의 가장 가까운 표면이 밀리미터로부터 수십 미크론으로 크기가 줄어들 때에도, 최대의 허용된 틸트각이 여전히 매우 작다(보통 0.07°에서 약 0.2°까지). 이것은 광학 기록매체의 훨씬 더 큰 기계적 틸트가 가능한(예를 들어 1°이상에 이르는) 기존의 광학 기록장치와 상당히 다르다. 근접장 시스템에 대해서는 기계적인 틸트 마진이 훨씬 더 작으므로, 디스크 틸트를 정밀하게 측정하고 그것을 직접 교정하는 것은 곤란하고 비용이 많이 든다. 더욱이, (제조공차로 인해) SIL의 전방면이 광축에 대해 정확히 수직이 되지 않으면 광축에 대한 디스크의 완벽한 정렬도 시스템 고장을 일으킬 수 있다. 실험적인 근접장 장치에서는 이 정렬이 장황한 시행착오적 정렬방법을 필요로 할 수 있다. 이것은 상용의 드라이브에서는 허용될 수 없을 것이다.
디포커스된(defocused) 스폿방법 또는 다중스폿법 등의 틸트 문제에 대한 이전의 해결책은 모두 SIL과 디스크를 효율적으로 사용할 수 있기 이전에 이들 SIL과 디스크 사이의 정렬이 충분히 양호할 필요가 있다는 문제점을 갖고 있다. 매우 엄격한 기계적인 틸트 마진으로 인해 이것은 사전정렬 단계를 필요로 한다. 이와 같은 사전정렬은 정지상태의 광학 기록매체에 대해 행해질 필요가 있으며, 렌즈와 매체를 접촉하여 사전정렬 측정을 수행할 필요가 있다(사전정렬에 대한 틸트 측정은 이전의 발명 중에서 한가지를 사용하거나 단순히 GES 신호 레벨을 최소화함으로써 행해질 수 있다). 정지상태의 디스크에 대한 사전정렬은 드라이브의 시동 시간을 증가시키므로 문제가 된다. 더욱이, 렌즈와 디스크를 접촉시키는 것은 아마도 시스템의 손상과 고장을 일으킬 수 있다.
본 발명에서는 틸트 에러 서보 루프를 사용한다. 근접장 광학 기록장치의 이와 같은 서브시스템은 틸트를 검출한 후 이것을 굴절 광학부품의 이동을 위한 입력으로 이용함으로써 (광학 기록매체 위에 빛을 향하게 하는데 사용되는) 굴절 광학부품의 틸트를 조정하는 수단이다. 굴절 광학부품의 이와 같은 이동은 예를 들면 액추에이터를 사용하여 행해질 수 있다. 이에 따라 틸트의 조정과 보상이 달성된다. 종래의 틸트 에러 서보 루프는 틸트 에러신호와 틸트 에러 이득 설정값을 포함한다. 종래의 시스템에서의 틸트 에러 이득 설정값은 통상적인 장치 내부에서 이 장치에 대한 최적값으로 공장에서 조정되는데, 이것은 굴절 광학부품과 광학 기록매체 사이의 거리에 무관하다. 본 발명에서는 이와 같은 이득 설정값이 틸트 서보 이득 조정을 사용하여 조정가능해진다. 다양한 환경에서 틸트 서보 이득을 위한 소정의 값 또는 소정의 값들을 틸트 서보 조정을 사용하여 사용가능하게 되며 구현된다. 이들 값은 굴절 광학부품과 광학 기록매체의 데이터 층 사이의 거리에 따라 결정되며 구현된다. 다양한 거리에서 틸트 이득 설정의 다양한 값들이 근접장 광학 기록장치의 작동을 위해 최적값이 된다(이것은 후술한다). 더 적절한 이득 설정값들의 사용은 틸트 조정의 정밀도를 증가시킨다. 본 발명이 다양한 거리에서 구현될 수 있으므로 사전정렬이나 개략적인(coarse) 틸트 조정단계를 없애는 것이 가능하다.
본 발명의 다른 실시예에서는 굴절 광학부품과 최소한 1개의 데이터 층 사이의 거리가 상기 굴절 광학부품과 상기 광학 기록매체의 상부면 사이의 에어 갭을 포함한다. 에어 갭 거리는 틸트를 측정하기 위해 발생된 틸트 신호의 감도에 영향을 미친다. 굴절 광학부품이 광학 기록매체에 더 근접할수록 틸트 신호가 매체의 동요에 따라 광학 기록매체의 회전 진동수를 갖고 주기적으로 유지되기는 하지만 이 틸트 신호가 더 세진다. 이와 같은 거동은 틸트신호의 발생을 위해 사용된 단일 광 스폿과 다중 스폿 배치에 대해 볼 수 있다.
근접장 광학 기록 시스템의 에어 갭은 갭 에러 신호(GES)를 사용하여 제조되는 경우가 빈번하다. 광학 기록매체로부터 굴절 광학부품의 비교적 큰 거리, 예를 들어 수백 nm의 거리에서 갭 서보 시스템이 시작된다. 이들 거리에서는 굴절 광학부품이 예를 들어 40nm의 동작 거리에 있을 때보다 틸트에 대한 정밀도 요구가 덜 엄밀하다. 특정한 거리에서 틸트 신호를 사용함으로써 틸트의 최초의 교정이 행해질 수 있다. 정지상태의 디스크에서는 틸트신호가 d.c.이고 회전하는 디스크 상에서는 틸트신호가 사실상 a.c이다. 갭 에러신호의 제어하에서 굴절 광학부품이 광학 기록매체를 향해 움직일 수 있다. 거리가 변함에 따라 틸트신호가 변하며, 소정값의 틸트 서보 이득이 틸트 서보 조정수단에 의해 틸트 서보 내부에 구현되어 틸트 교정 성능을 최적화할 수 있다. 이와 같은 최적화의 한가지 예는 틸트 서보 루프의 전체적인 이득 설정값이 최적값으로 조정되도록 틸트 서보 이득을 조정하는 것이다. 굴절 광학부품이 광학 기록매체에서 원하는 동작 거리에 놓일 때까지 이들 단계가 반복되고 증분될 수 있으며 각 단계에서 틸트 조정이 더 엄격한 공차로 조정된다. 이들 단계는 조정과정이 연속적이고 "온 더 플라이(on-the-fly)"라 될 때까지 더 빈번하게 행해질 수도 있다.
본 발명의 다른 실시예에서는, 굴절 광학부품과 최소한 1개의 데이터 층 사이의 거리가 상기 광학 기록매체의 상부면과 상기 최소한 1개의 데이터 층 사이의 층 깊이를 포함한다. 종래의 광학장치에서는 장치의 대물렌즈를 광학 기록매체에 더 가깝게 광학 기록매체에서 더 멀리 움직임으로써 데이터 층에 대한 장치의 포커싱이 달성된다. 근접장이 광학 기록매체에 근접해서만 사용가능해지는 근접장 시스템의 제약으로 인해 이와 같은 포커싱을 위한 메카니즘이 사용가능하지 않다. 근접장 시스템이 다중층 광학 기록매체 상의 한 개의 층으로부터 다른 층으로 초점을 이동(실제로는 굴절 광학부품과 고려중인 데이터 층 사이의 거리 변화)시킬 때, 굴절 광학부품의 출사면에 위치한 광 스폿의 크기가 변한다. 이것은 틸트신호에 영향을 미친다(뒤에서 설명하는 부분을 참조할 것). 소정값의 틸트 서보 이득의 제공은 변화하는 스폿 크기를 보상하며 틸트 보상의 일관된 성능을 허용한다.
본 발명의 다른 실시예에 있어서는 굴절 광학부품과 최소한 1개의 데이터 층 사이의 거리가 광학 기록매체의 커버층의 층 깊이를 포함한다. 광학 기록매체들은 다양한 종류를 갖는다. 일부는 광학 기록매체의 최상부 표면에 데이터가 판독되거나 기록되는 소위 제 1 표면 디스크(first surface discs)이다. 나머지는 데이터를 손상이나 먼지로부터 보호하기 위해 투명층이 데이터 층 위에 놓이는 커버층을 포함한다. 커버층은 두께가 변할 수 있다. 이것은 굴절 광학부품과 데이터 층 사이의 거리 변동을 일으키며, 이것은 데이터 층에 대한 근접장 광학 기록장치의 포커싱에 영향을 미친다. 전술한 것과 같은 스폿 크기 변화와 틸트신호의 감도가 소정값들의 틸트 서보 이득의 제공에 의해 영향을 받아, 틸트 보상의 일관된 성능을 허용할 수 있다.
본 발명의 다른 실시예에서는, 최소한 1개의 소정의 틸트 서보 이득의 값이 장치의 불휘발성 메모리 부품 내부에 기억된다. 틸트 서보 이득의 값들은 예를 들면 에어 갭 거리 또는 커버층 두께에 의존하는 틸트 신호에 대한 측정되거나 계산된 감도 값들에서 유도될 수 있다. 이들 값을 근접장 광학 기록장치 내부의 불휘발성 메모리에 기억함으로써 이들 값을 본 발명의 일부로서 사용하기 위해 이용가능하게 할 수 있다. 그후, 데이터 층까지의 굴절 광학부품의 거리가 틸트 서보 이득의 값 또는 값들과 관련된 지점에 대응하는 지점에 위치하는 적절한 순간에 이들 값 또는 값들이 검색될 수 있다.
본 발명의 다른 실시예에서는 최소한 1개의 소정의 틸트 서보 이득의 값이 자동으로 계산된다. 한 층으로부터 다른 층으로의 초점 점프 중에는, 이것과 동시에/이것에 동기하여 틸트 서보 이득 설정값들을 적응하는 것이 유리하다. 예를 들어, 이들 중간 설정값들은 현재의 층과 다음 층에 대한 설정값들로부터 보간함으로써 유도될 수 있다. 이에 따르면, 예를 들어 안정성 등의 틸트 서보 성능이 최적으로(즉 동일한 전체 이득) 유지된다.
근접장 광학 기록장치의 작동방법은 다음의 단계를 포함한다.
틸트 서보 이득 조정 수단을 제공하는 단계와,
굴절 광학부품과 최소한 1개의 데이터 층 사이의 거리를 결정하는 단계와,
틸트 서보 이득 조정 수단을 사용하여 이 거리에 응답하여 틸트 서보 이득 설정값을 적용하는 단계.
본 발명의 다른 실시예에서는 광학 기록장치의 작동방법이 다음과 같은 추가 단계를 포함한다.
최소한 1개의 틸트 서보 이득 값을 제공하는 단계.
이하의 도면을 참조하여 본 발명을 보다 상세히 설명한다.
도 1은 근접장 광학 기록장치의 광 경로의 모식도이다.
도 2는 굴절 광학부품과 광학 기록장치 사이의 에어 갭에 대한 틸트신호 의존성을 나타낸 것이다.
도 3은 에어 갭 크기와 관련된 틸트 정밀도 요구를 나타낸 것이다.
도 4는 다중층 광학 기록매체 위의 층들 사이에서의 초점의 변화가 SIL의 출사면에 위치한 광 스폿의 크기에 미치는 영향을 나타낸 것이다.
도 5는 광학 기록매체의 커버층 두께와 굴절 광학부품과 광학 기록매체 사이의 에어 갭의 함수에 대한 틸트 감도를 나타낸 것이다.
도 6은 본 발명의 일 실시예에 따른 근접장 광학 기록장치의 작동방법을 모식적으로 나타낸 것이다.
도 7은 본 발명의 일 실시예를 포함하는 도 1의 근접장 광학 기록장치를 나타낸 것이다.
일반적인 근접장 기록장치의 광 경로의 레이아웃을 도 1에 도시하였다. 레이저(1)에서 발생된 빛은 빔 정형 광학 시스템(2)를 따라 향한다. 빛은 비편광 빔 스플리터(3)와 편광 빔 스플리터(4)를 통과한다. 이들 빔 스플리터들은 갭 에러신호 및 틸트의 검출 시스템(5)과 RF 데이터 및 푸시풀신호 시스템(6) 및 포워드 센스 검출기(7)와, 광학 기록매체(8)에 입사된 광 빔의 트랙킹 및 제어를 허용하는 시스템과 연계하여 사용된다. 빛은 1/4 파장판(9)을 통과하고 광 스폿(도시하지 않음)의 초점 조정용 렌즈계(10)를 통과하여 광학 기록매체(8)로 나아간다. 광 경로에 대한 초점 조정 방향을 화살표 11로 표시하였다. 빛은 렌즈계(12)에 의해 광학 기록매체(8) 위에 초점이 맞추어진다. 이 렌즈계(12)는 굴절 광학부품, 즉 빛이 광학 기록매체(8)에 입사하기 전에 빛이 볼 수 있는 최종 렌즈부재에 해당하는 보통 SIL 렌즈(solid immersion) 렌즈(13)를 구비한다.
발생 및 검출된 틸트신호(5)는 SIL 렌즈(13)와 광학 기록매체(8) 사이의 거리에 의존하여 변동된다. 이 거리는 SIL 렌즈(13)와 광학 기록매체(8) 사이의 에어 갭의 형태를 갖거나, 커버층 두께 또는 한 데이터 층에서 다른 데이터 층으로 이동하기 위한 거리의 변화 등과 같이 광학 기록매체 내부의 깊이의 형태를 취할 수 있다.
도 2의 그래프는 SIL 렌즈(13)와 광학 기록매체(8) 사이의 에어 갭이 감소할 때 틸트신호가 어떻게 변화하는지를 나타내고 있다. 그래프에서 틸트 응답은 주기적이며, 광학 기록매체(8)의 1 회전 주기가 화살표 21로 표시된다. 나타낸 그래프 에서는, 에어 갭이 70nm와 30nm 사이에서 변한다. 더 작은 에어 갭에서보다 더 큰 에어 갭에서 틸트 신호 응답이 더 작다. 따라서, SIL 렌즈(13)가 광학 기록매체(8)에 더 가깝게 감에 따라 틸트신호가 틸트에 더 민감해진다.
도 2의 특정한 예는 실험에서 얻어진 것이다. 본 실험에서는 NA=1.45 렌즈를 사용하여 3㎛ 커버층을 갖는 CuSi 광학 기록매체를 판독하였다. 이와 같은 배치는 SIL의 저면에 약 15㎛의 디포커스된 스폿 크기를 발생한다. 광학 기록매체의 평탄하지 않음으로 인해, 틸트신호가 디스크 전체에 걸쳐 변하며, (화살표 21로 표시된) 회전 진동수에 따라 주기성을 가졌다. 다양한 에어 갭에 대해 틸트신호를 측정하면 (실제의 틸트 각도가 명백하게 동일하게 유지되기는 하지만) 더 작은 에어 갭에 대해 더 큰 증가를 나타낸다. 실험적으로 찾은 감도 대 이론적 값을 갖는 에어 갭의 비교는 양호한 일치를 보인다. 다중스폿 틸트 측정에 대해서는 이와 유사한 거동이 발견되었다.
일관되고 정밀한 틸트 조정을 달성하기 위해, 본 발명은 1개 이상의 틸트 서보 이득 값들을 구현하여 거리 변화에 기인한 틸트신호의 변화를 보상하는 틸트 서보 이득 조정수단을 제공한다.
도 3도 관련된 에어갭 문제를 나타낸다. 기계적인 틸트 공차는 SIL 선단부 직경에 의존하며, 더 큰 작경은 더 정밀한 정렬을 요구한다. 이와 같은 효과를 다양한 SIL 선단부 직경에 대해 기계적인 접촉을 방지하기 위해 필요한 틸트 정밀도(기계적인 공차보다 2배 작은 값을 임의로 선택되었다)를 표시하는 직선 31 및 32(실선=40㎛, 점선=100㎛)로 표시하였다. 파선 33은 다중스폿 틸트 신호의 정밀 도(15㎛ 스폿 분리) 대 에어 갭의 수치 예이다. 이와 같은 예는 NA=1.45에서 3㎛의 커버층을 갖는 기록형 근접장 광학 기록매체의 에러 갭에 대한 실제의 갭 에러 신호 의존성으로부터 유도된 것이며, 큰 에어 갭에서는 GES 의존성이 약하므로(GES가 거의 일정) 틸트신호가 GES가 강한 의존성을 보이는 더 작은 에어 갭에 대한 것만큼 정밀하지 않다. 다른 디스크 종류도 유사한 거동을 나타낸다. (매우 작은 에어 갭에 대해서는 GES가 다시 평평하게 되어 틸트신호 정밀도의 열화를 발생한다. 이들 에어 갭은 최적 판독 및 기록을 위해 필요한 것보다 작으며, 바람직하게는 양호한 틸트 제어를 위해서는 피해야 한다). 이 도면으로부터, 모든 해당 에어 갭(30-150nm)에 대한, 심지어는 100㎛의 선단부에 대한 기계적인 틸트 공차를 위해 필요한 것보다 틸트 정밀도가 더 우수하다(더 작은 값을 갖는다)는 것을 알 수 있다.
도 4a 및 도 4b는 광학 기록매체 41 위에 데이터 층 43, 44, 45, 46을 갖고 광학 기록매체 42 위에 데이터 층 47 및 48을 갖는 다중층 광학 기록매체 41 및 42를 나타낸 것이다. SIL 렌즈(49)는 교대로 광학 기록매체 위에 놓인다. 다중층의 판독 및 기록을 위해 SIL들(49)의 출사면의 스폿 크기는 판독하거나 기록하고자 하는 데이터 층의 깊이에 크게 의존한다. SIL(49) 위의 스폿 크기의 전형적인 값은 3㎛의 커버층과 2㎛의 스페이서 층 두께를 갖는 4층 디스크에 대해서는 15 내지 45㎛의 범위를 갖는다. 이것은 도 4의 a 및 b 부분을 참조하여 설명한다.
도 4a에서는 L1으로 표시된 광 빔이 데이터 층 46에 포커스된다. SIL(49)의 출사면에 위치한 대응하는 디포커스된 광 스폿 크기는 화살표 A1으로 표시된다. 광 스폿 초점이 데이터 층 43으로 변경되고 광 빔이 L2로 표시된 것과 같이 이동하면, SIL(49)의 출사면에 위치한 디포커스된 광 스폿 크기는 화살표 A2로 표시된다. 포커싱 동작이 렌즈와 디스크 사이의 거리를 변경하여 취해지는 CD 및 DVD 등의 이전의 광학 기록장치와 달리, 다양한 층을 판독 또는 기록할 때 에어 갭 AG가 일정하게 유지된다. 근접장 광학 기록장치에서는, 이와 같은 포커싱 동작이 예를 들어 구동되는 콜리메이터 렌즈 또는 액정 셀, 또는 이들의 조합을 사용하여 행해진다. 따라서 근접장 광학 기록장치에서는, 굴절 광학부품과 데이터 층 사이의 거리가 변할 때, SIL(49)의 출사면에서 디포커스된 광 스폿 크기가 변한다. 이들 스폿 크기의 변화는 검출된 틸트신호의 변화를 일으킨다. 본 발명에 따르면, 이 변화가 적절한 틸트 서보 이득값을 사용하여 보상되어 장치의 일관된 동작을 보장할 수 있다.
도 4b에서는 광학 기록매체의 커버층 두께의 변화에 대해 이와 유사한 효과가 관찰된다. 데이터 층 47 및 48은 광학 기록매체의 제 1 데이터 층의 2가지 가능한 위치를 표시하는 것으로 생각될 수 있으며, 층 47은 데이터 층 48보다 더 깊은 커버층을 갖는다. 광 빔 L4 및 L3은 2가지 가능한 커버층 깊이에 대한 SIL(49)의 출사면에 위치한 광 스폿의 위치를 나타낸 것이다. 광 빔 L4 및 L3와 관련된 스폿의 크기는 각각 A4 및 A3이다. 스폿 크기 A3는 스폿 크기 A4보다 작아 틸트신호의 변화를 일으킨다. 본 발명에 따르면, 이 변화는 적절한 틸트 서보 이득값을 사용하여 보상하여 장치의 일관된 동작을 보장할 수 있다.
도 5는 다양한 커버층 두께와 에어 갭에 대한 틸트신호의 감도를 나타낸 것이다. 이 도면의 데이터에 대해, SIL에 위치한 대응하는 스폿 크기는 6, 12 및 18㎛이다. 더 큰 스폿 크기와 초점 깊이에 대해 틸트 감도가 증가한다. 예를 들어, 장치 서보 루프에서 전체적인 이득을 일정하게 유지하는 것이 필요하면, 일관된 장치 성능을 위해 틸트 서보 이득 설정값이 이에 대응하여 더 작아야 한다.
도 6은 본 발명의 일 실시예에 따른 근접장 광학 기록장치의 작동방법을 모식적으로 나타낸 것이다. 본 발명에 따른 방법은 틸트 서보 이득 조정수단을 제공하는 단계(61)로 시작한다. 이 수단은 공장에서의 생산과정중이나 셋업과정중보다는 장치의 동작중에 틸트 서보 이득에 변화가 생기도록 허용한다. 다음에, 예를 들어 SIL과 광학 기록매체 사이의 거리에 대응하는 한가지 이상의 상태에 대해 틸트 서보 이득을 위한 양호한 작동 수치(working value)가 사용가능하도록 최소한 1개의 소정의 틸트 서보 이득 값을 파악해야 한다(사용가능하거나 바람직한 경우에는 더 많은 수가 포함될 수도 있다). 이것은 장치의 작동 중에 다양한 감도를 고려할 때 1개의 이득값이 항상 적용되는 상황에 대한 개선이다. 이 값 또는 값들이 제공되고(62), 이 값 또는 값들은 예를 들어 근접장 광학 기록장치의 불휘발성 메모리에 포함될 수도 있다. 근접장 기록장치는 굴절 광학부품과 최소한 1개의 데이터 층 사이의 거리를 결정할 수 있다(63). 보통 이와 같은 거리의 측정은 갭 에러신호를 사용하여 달성된다. 거리의 결정이 완료되면, 절절한 틸트 서보 이득 설정값이 구현될 수 있다. 틸트 서보 이득조정수단을 사용하여 틸트 서보 이득의 원하는 값이 적용되어(64), 틸트 서보 이득 설정값이 상기한 거리에 대응한다.
도 7은 본 발명의 일 실시예를 포함한 도 1의 근접장 광학 기록장치를 나타낸 것이다. 도 1과 관련된 참조번호는 동일하게 유지된다. 이 장치는 틸트 서보 루프(71)에 대한 틸트 에러신호와 갭 에러신호에서 유도된 거리신호의 입력 신호 들(72)을 갖는다. 이들 입력 신호(72)는 갭 에러신호 및 틸트 검출 시스템(5)에서 발생된다. 이 장치는 본 발명에 따른 틸트 서보 이득 조정수단(73)을 더 구비한다. 여기에서는 이 장치가 틸트 서보 루프와 일체화된 것으로 도시되어 있지만, 틸트 서보 루프 구조와 떨어져 배치된 개별 장치일 수 있다. 틸트 서보 이득 조정수단(&3)은 틸트 서보 이득을 설정하고, 이 신호를 틸트 서보 루프(71)에서 사용하여 SIL(13)의 틸트 보상용 출력(74)을 제공한다.
(참고부호 목록)
1... 레이저
2... 빔 정형 광학 시스템
3... 비편광 빔 스플리터
4... 편광 빔 스플리터
5... 갭 에로신호 및 틸트 검출 시스템
6... RF 데이터 및 푸시풀 신호 시스템
7... 포워드 센스 검출기
8... 광학 기록매체
9... 1/4 파장판
10... 초점 조정 렌즈계
11... 초점 조정 방향을 표시하는 화살표
12... 렌즈 시스템
13... SIL 렌즈
21... 광학 기록매체의 1 회전 주기를 표시하는 화살표
31... 40㎛의 SIL 선단부 직경에 대한 효과를 표시하는 라인
32... 100㎛의 SIL 선단부 직경에 대한 효과를 표시하는 라인
33... 에어 갭에 대한 틸트 신호의 정밀도의 수치 예를 나타낸 곡선
41... 다중층 광학 기록매체
42... 다중층 광학 기록매체
43... 데이터 층
44... 데이터 층
45... 데이터 층
46... 데이터 층
47... 데이터 층
48... 데이터 층
49... SIL 렌즈
L1, L2, L3 및 L4... 광 빔
A1, A2, A3 및 A4... SIL 출사면에서의 디포커스된 광 스폿 크기를 표시하는 화살표
AG... 에어 갭
61... 본 발명에 따른 방법 단계
62... 본 발명에 따른 방법 단계
63... 본 발명에 따른 방법 단계
64... 본 발명에 따른 방법 단계
71... 틸트 서보 루프
72... 틸트 서보 루프에 대한 입력신호
73... 틸트 서보 이득 조정수단
74... 틸트 보상용 출력

Claims (9)

  1. 최소한 1개의 데이터 층을 포함하는 광학 기록매체와 상호작용하도록 구성되고,
    광원과,
    상기 광원에서 발생된 빛을 광학 기록매체를 향하게 하도록 구성된 굴절 광학부품과,
    상기 광학 기록매체에 대한 상기 굴절 광학부품의 틸트와 관련된 틸트 에러신호를 제공하는 틸트 에러 서보 루프와,
    상기 틸트 에러신호에 적용되는 틸트 서보 이득 설정값을 포함하는 근접장 광학 기록장치에 있어서,
    상기 굴절 광학부품과 최소한 1개의 데이터 층 사이의 거리 변화에 응답하여 상기 틸트 서보 이득 설정값이 조정가능한 것을 특징으로 하는 근접장 광학 기록장치.
  2. 제 1항에 있어서,
    상기 근접장 기록장치가, 상기 굴절 광학 부재와 상기 최소한 1개의 데이터 층 사이의 거리 변화에 응답하여 최소한 1개의 소정의 틸트 서보 이득 값을 구현하는 틸트 서보 이득 조정수단을 더 구비한 것을 특징으로 하는 근접장 광학 기록장치.
  3. 제 1항에 있어서,
    상기 굴절 광학부품과 상기 최소한 1개의 데이터 층 사이의 거리가 상기 굴절 광학부품과 상기 광학 기록매체의 상부면 사이의 에어 갭을 포함하는 것을 특징으로 하는 근접장 광학 기록장치.
  4. 제 1항에 있어서,
    상기 굴절 광학부품과 상기 최소한 1개의 데이터 층 사이의 거리가 상기 광학 기록매체의 상부면과 상기 최소한 1개의 데이터 층 사이의 층 깊이를 포함하는 것을 특징으로 하는 근접장 광학 기록장치.
  5. 제 1항에 있어서,
    상기 굴절 광학부품과 상기 최소한 1개의 데이터 층 사이의 거리가 상기 광학 기록매체의 커버층의 층 깊이를 포함하는 것을 특징으로 하는 근접장 광학 기록장치.
  6. 제 1항에 있어서,
    상기 최소한 1개의 소정의 틸트 서보 이득의 값이 상기 광학 기록장치의 불휘발성 메모리 부품 내부에 기억되는 것을 특징으로 하는 근접장 광학 기록장치.
  7. 제 1항에 있어서,
    최소한 1개의 소정의 틸트 서보 이득의 값이 자동으로 계산되는 것을 특징으로 하는 근접장 광학 기록장치.
  8. 틸트 서보 이득 조정 수단을 제공하는 단계와,
    굴절 광학부품과 최소한 1개의 데이터 층 사이의 거리를 결정하는 단계와,
    틸트 서보 이득 조정 수단을 사용하여 상기 거리에 응답하여 틸트 서보 이득 설정값을 적용하는 단계를 포함하는 것을 특징으로 하는 근접장 광학 기록장치의 작동방법.
  9. 제 8항에 있어서,
    최소한 1개의 틸트 서보 이득 값을 제공하는 단계를 포함하는 것을 특징으로 하는 근접장 광학 기록장치의 작동방법.
KR1020087028629A 2006-04-25 2007-04-12 근접장 광학 기록장치와 근접장 광학 기록장치의 작동 방법 KR20090003357A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06113102 2006-04-25
EP06113102.5 2006-04-25

Publications (1)

Publication Number Publication Date
KR20090003357A true KR20090003357A (ko) 2009-01-09

Family

ID=38330010

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087028629A KR20090003357A (ko) 2006-04-25 2007-04-12 근접장 광학 기록장치와 근접장 광학 기록장치의 작동 방법

Country Status (8)

Country Link
US (1) US20090141597A1 (ko)
EP (1) EP2013875A1 (ko)
JP (1) JP2009535753A (ko)
KR (1) KR20090003357A (ko)
CN (1) CN101432810A (ko)
RU (1) RU2008146412A (ko)
TW (1) TW200814027A (ko)
WO (1) WO2007122538A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534102A (ja) * 2004-04-20 2007-11-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 読取り及び/又は書込みのための光データ記憶システム並びにそのようなシステム内での使用のための光データ記憶媒体
WO2009116229A1 (ja) * 2008-03-18 2009-09-24 パナソニック株式会社 光記録再生方法、光記録再生装置、プログラム及び光記録媒体
WO2009136697A2 (ko) * 2008-05-07 2009-11-12 엘지전자(주) 기록매체의 틸트 조정방법 및 조정장치
WO2009141994A1 (ja) * 2008-05-23 2009-11-26 パナソニック株式会社 光学的情報記録再生装置、光学的情報記録再生方法、光学的情報記録媒体及びソリッドイマージョンレンズ
CN102087864A (zh) * 2009-12-04 2011-06-08 建兴电子科技股份有限公司 近场光学系统的倾斜调整控制方法
CN102097111B (zh) * 2009-12-15 2012-12-19 建兴电子科技股份有限公司 近场光盘机的倾斜控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107478A (en) * 1988-06-07 1992-04-21 Yamaha Corporation Tilt device for an optical head
US7342869B2 (en) * 2002-07-08 2008-03-11 Sony Corporation Optical-recording medium playback apparatus and optical-recording medium, including flying optical head features
US7002886B2 (en) * 2002-11-22 2006-02-21 Industrial Technology Research Institute SIL near-field flying head structure to control gap between disc and SIL with three sensor points in front of lens holder
CN100524480C (zh) * 2003-01-17 2009-08-05 索尼株式会社 信息记录或再现装置,以及记录或再现控制方法
JP2005259329A (ja) * 2004-02-12 2005-09-22 Sony Corp チルト制御方法及び光ディスク装置。
JP2005243201A (ja) * 2004-03-01 2005-09-08 Ricoh Co Ltd 光ディスク装置
US7613082B2 (en) * 2004-05-18 2009-11-03 Sony Corporation Optical pickup device, optical recording and reproducing apparatus and gap detection method

Also Published As

Publication number Publication date
JP2009535753A (ja) 2009-10-01
TW200814027A (en) 2008-03-16
EP2013875A1 (en) 2009-01-14
RU2008146412A (ru) 2010-05-27
US20090141597A1 (en) 2009-06-04
WO2007122538A1 (en) 2007-11-01
CN101432810A (zh) 2009-05-13

Similar Documents

Publication Publication Date Title
US20080279070A1 (en) Optical Data Storage System and Method of Optical Recording and/or Reading
JP2001023190A (ja) 露光装置、露光方法、光ディスク装置、及び記録及び/又は再生方法
KR20090003357A (ko) 근접장 광학 기록장치와 근접장 광학 기록장치의 작동 방법
US7764576B2 (en) Optical information recording and reproducing apparatus
US4641023A (en) Optical head
JP2008262692A (ja) 光記録媒体の厚みのバラツキを補償することができる光ピックアップ装置
KR20110020753A (ko) 대물 렌즈 및 이 대물 렌즈를 포함하는 광 픽업
US8619534B2 (en) Apparatus for reading from and/or writing to a near-field optical recording medium
JPH11195229A (ja) 光ディスク装置及び球面収差補正方法
US6400670B1 (en) Device for the writing and/or reading of optical recording media of various structures
US20080279064A1 (en) Optical Data Storage System and Method of Optical Recording and/or Reading
US7706218B2 (en) Optical pickup apparatus and controlling method thereof
US7675823B2 (en) Initial focus optimization for an optical scanning device
JP2009537054A (ja) 光学走査デバイス
WO2006061757A1 (en) Optical scanning device, optical player and method for adjusting an optical scanning device
JP4929071B2 (ja) 光学素子送り装置、光ピックアップ装置ならびにそれを備えた光ディスク装置
US20080165649A1 (en) Tangential Disc Tilt Measurement and Corrective Action
KR20080069786A (ko) 액츄에이터의 초기위치 설정 방법
JP2005032418A (ja) ビーム結合のための微小光学部品を備えた光スキャナ
KR20070031475A (ko) 광학주사장치의 초기 포커스 최적화
KR20060126800A (ko) 기록 및 재생용 광학장치

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid