KR20080060241A - 원거리 플라즈마 소스를 이용한 대면적 pecvd 장치용클리닝 방법 - Google Patents

원거리 플라즈마 소스를 이용한 대면적 pecvd 장치용클리닝 방법 Download PDF

Info

Publication number
KR20080060241A
KR20080060241A KR1020087009009A KR20087009009A KR20080060241A KR 20080060241 A KR20080060241 A KR 20080060241A KR 1020087009009 A KR1020087009009 A KR 1020087009009A KR 20087009009 A KR20087009009 A KR 20087009009A KR 20080060241 A KR20080060241 A KR 20080060241A
Authority
KR
South Korea
Prior art keywords
gas
chamber
remote plasma
cleaning
plasma source
Prior art date
Application number
KR1020087009009A
Other languages
English (en)
Inventor
필립포스 파르마키스
무스타파 엘야코우비
베노이트 리오우
엠마누일 초우마스
미셀 이르즈이크
조레프 쿠델라
Original Assignee
오씨 외를리콘 발처스 악티엔게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오씨 외를리콘 발처스 악티엔게젤샤프트 filed Critical 오씨 외를리콘 발처스 악티엔게젤샤프트
Publication of KR20080060241A publication Critical patent/KR20080060241A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 대면적 증착에 양립가능한 증착 챔버를 클리닝하는 방법에 관한 것이다. 상기 방법은 원거리 플라즈마 소스로부터 상기 챔버 내로 활성종을 위해 동등경로로 두 개 이상의 주입 포인트를 통해 균일한 방식으로 활성화된 가스(activated gas)를 이송하는 것을 포함한다.
활성화된 반응가스의 분배용 가스 주입 시스템에 있어서, 상기 시스템은 반응가스의 소스, 상기 반응가스를 활성화하는 원거리 플라즈마 소스, 상기 가스를 분배하는 관을 포함하고, 상기 관은 상기 소스에 구조적으로 연결된 하나 이상의 유입구 및 상기 챔버에 개구된 두 개 이상의 출구를 가지고, 이것에 의해 적어도 부분적으로 독립적인 분지관(tube branches)을 형성하고, 여기서, 유입구 및 각각의 출구 사이에서 계산된 각 분지관의 가스 흐름에 수직인 단면 및 직경이 실질적으로 동일하다.
플라즈마, 반응가스, 클리닝, 주입포인트

Description

원거리 플라즈마 소스를 이용한 대면적 PECVD 장치용 클리닝 방법{Cleaning means for large area PECVD devices using a remote plasma source}
본 발명은 반도체층의 제조에 일반적으로 관계하고, 보다 상세하게는 박막 트랜지스터(thin film transistors (TFT))의 제조에 관계한다.
가장 일반적인 TFT의 제조는 플라즈마 증가된 화학기상증착(plasma enhanced chemical vapor deposition (PECVD))공정에 의한다. 전구체 가스를 함유하는 실리콘이 플라즈마에 의해 기판에 증착된다. 이러한 반도체는 여러 응용분야 중에 LCD 디스플레이, 태양전지, 유기발광 다이오드(organic light emitting diode(OLED's)) 디스플레이와 같은 전자 소자에 사용될 수 있다.
LCD 디스플레이 제조는 층의 두께와 층 저항의 균일성의 점에서 증착 물질의 특성에 관하여 고 품질을 요구한다. 증착 공정 동안, 기판에만 코팅하는 것이 불가능하기 때문에 반응기 벽에 원하지 않은 막 증착을 피할 수 없다. 따라서, 반응기 벽에 필름이 입자 형태로서 불순물이 발생되는(플래이킹되는(flaking)) 지점까지 성장하게 된다. 이들 입자가 막 증착 공정 동안 기판 위에 떨어지는 경우, 생 산 수율을 급격히 감소시킬 수 있다. 따라서, 기판이 반응기 바닥에 공급되기 전에 반응기를 청소하는 것이 일반적 관례이다.
반응기 벽 상에 있는 층(layers)을 제거하여 벽 상의 입자가 떨어져 기판상의 반도체 층을 오염시키는 것을 방지하여야 한다. 두 개의 잘 알려진 클리닝 기술로서 에칭 플라즈마가 반응기 내에서 발화되는 인-시투 클리닝(in-situ cleaning)과 원거리 플라즈마 소스 클리닝(remote plasma source (RPS) cleaning)이 있다.
특히, RPS 클리닝은 처리량 사이클을 감소시키는데 매우 효과적이고 유용하기 때문에 PECVD 산업현장에서 폭넓게 이용되고 있다. RPS 클리닝은 가스들을 함유하는 불소 또는 다른 할로겐으로 작업한다. 이들은 원거리에 위치한 플라즈마 반응기 내에 도입되고 분해된다. 두 번째 단계로, 매우 활성이 높은 라디칼이 유체를 통해 주 반응기에 도입되고, 여기서 반응기 벽에 부착된 반도체 막을 에칭한다.
[종래기술의 결함]
절연층(SiO2, SiNx, SiON) 및 반도체층(무정형 실리콘, 미세결정 및 나노결정)의 증착 전에 PECVD 챔버를 세정하는 것이 반도체 생산에서 일반적 공정 단계이다. 반도체 제조 산업이 생산 라인에서 비용을 감소시키는 것에 대해 매우 높은 관심이 있기 때문에, 이러한 방향에 대해 노력이 매우 중요함은 명백하다. 종래기술에서, PECVD 챔버 밖에서 플루오린 라디칼(fluorine radicals)용 원거리 플라즈마 소스를 사용하고, 상기 챔버로 관를 통해 유입을 유도하는 방법이 알려져 있다. 그러나, 이러한 방법은 동일한 가스 분배의 관점에서 대면적(large area) PECVD 장치에 전적으로 양립할 수 없다. 여기서, 대면적은 기판 크기가 1m2 이상인 것을 의미한다.
미국 특허 제 4,820,377, 제 5,788,778, 제 6,274,058 B1, 제 2004/0200499에서, 대면적 장치(예를 들면, 치수가 730x920 mm2 이상)에 관련된 균일성 문제에 대해 어떠한 내용도 제시하지 못하였다. 종래기술에서, 도 1의 예와 같이, 주입 포인트(3)와 가스 인입 매니폴드(gas inlet manifold)(또는 샤워 헤드(shower head))(4)를 통해 (반응)가스(1)가 증착 챔버(2) 내부에 도입된다.
이러한 형상에서는, 상기 증착 챔버의 말단 A로 흘러가는 가스 부분이 상기 챔버의 센터 B에서 직접 흘러가는 부분보다 좀 더 먼 거리를 커버한다.
하기의 사실에 주목한다.
1. 가스 인입 매니폴드(manifold)(또는 샤워 헤드(shower head)) 내에 활성종(reactive species)으로부터 커버되는 범위에는 증착이 평행 판과 챔버 벽 사이에서 발생하기 때문에 퇴적물이 없다.
2. 반응가스가 흐르는 동안 활성종의 재결합이 일어난다. 다른 변수들(온도, 압력, 물질 등)을 제외하고, 재결합은 거리에 주요하게 의존한다(KJskenderova Thesis at Drexel University, "Cleaning Process in High Density Plasma Chemical Vapor Deposition Reactor", October 2003). 재결합된 종(species)과 실 리콘을 베이스로 한 물질과는 반응성이 낮다.
앞에서 언급한 점은 챔버 A의 말단으로 흘러가는 활성종들이(1) 좀 더 긴 길이(즉, 좀 더 재결합되므로) 때문에 더 낮은 반응성을 나타낸다.
클리닝 속도의 관점에서 전술한 내용을 설명하면, 상기 챔버의 모서리(끝)에서 증착(퇴적)된 물질이 챔버의 중간의 물질보다 더 낮은 속도로 제거된다. 이들, 두 사실은 퇴적된 챔버의 비균일 에칭 속도를 초래하고, 총 클리닝 속도의 감소와 따라서 시스템의 생산량을 감소시킨다. 평판용 반도체 산업이 대규모 챔버로 이동함을 보여주고 있으므로 이러한 클리닝 속도의 차이(모서리와 중심부)는 더욱 중요하게 된다.
챔버 내에서 불소의 비균일 분포를 극복하기 위해, 미국 특허 제 6,828,241 B2는 증착 챔버 내에 RF파워의 추가 적용을 제안하고 있다. 이 수단에 의해서, 재결합된 라디칼의 재활성화가 발생하고, 헬륨과 같은 캐리어 가스 도입으로 좀 더 균일한 분배가 달성된다. 그러나, 인-시투 RF 클리닝(in-situ RF cleaning)의 주요 불이익이 재현된다. 즉, 하드웨어가 이온 충격 및 증착 챔버의 키트 구성성분상에 알루미늄 플로라이드(AIxFy) 층의 생성으로 인해 손상된다.
본 발명은 대면적 증착과 양립가능한 증착 챔버를 클리닝하는 방법에 관계한다. 본 발명은 챔버 내에서, 균일한 방법으로 다중 주입 포인트(최소한 2개)를 통해 원거리 플라즈마 소스(remote plasma source)로부터 침적되는 부분(deposited area)까지 활성화된 가스의 이송을 포함하고, 활성종을 위한 동등경로를 가진다.
본 발명은 (활성화된) 반응가스 분포용 가스 주입 시스템으로 가장 잘 설명되고, 반응가스 소스(source of reactive gas), 가스를 분배하는 관 및 진공 가능한 챔버(evacuable chamber)를 포함한다.
상기 가스가 상기 소스에 구조적으로 연결된 적어도 하나의 입구 및 상기 챔버에 개방되어 있는 적어도 두 개의 출구를 가지는 관으로 배출된다. 이것에 의해, 적어도 부분적으로 독립적인 분지관(tube branches)을 형성하고, 여기서, 입구 및 각각의 출구 사이에서 계산된, 각 분지관의 가스 흐름에 수직인 길이와 단면이 실질적으로 동일하다.
각 분지관이 다양한 직경을 가진 관 네트워크(network of piping)로 구성될 수 있으나, 결과적으로 전체 관 네트워크는 가스 주입을 위해 대칭적이어야 한다. 즉, RPS의 출구에서 진공챔버의 각 입구까지의 가스 흐름이 다른 단면(원, 사각형 등)을 가지는 일련의 관으로 볼 수 있다. 물론, 이들 단면들이 각 분지관들 사이에 동일한 저항을 가지기 위해 실질적으로 동일하도록 요구되어 진다.
에칭가스 및/또는 캐리어 가스의 혼합이 원거리 플라즈마 소스에서 도입되고, 여기서 가스의 활성화가 일어난다. 원거리 플라즈마 소스의 출구에서, 활성화된 라디칼이 관(바람직하게는 양극화된 알루미늄) 시스템을 통해 증착 챔버로 유입된다.
대기압 또는 진공조건에서, 활성화된 종들이 두 개의 동등한 경로로 나뉘어진다. 각 반응가스의 각 부분이 공정챔버에서 개조된 유입구(inlet ports)를 통해 챔버 내에 유입된다. 유입구 공간 배치(Inlet port spatial arrangement)가 증착 챔버의 치수 및 다양한 경로들의 합계에 의해 결정된다. 모든 경우에 있어서, 반응가스의 각 부분이 물질(material), 온도, 길이, 직경, 관 형상, 압력 강하의 관점에서 동등 경로에 의해 증착되는 부위(deposited area)에 도달해야 한다.
불소계 가스의 예를 들면 ; 원거리 플라즈마 소스의 출구에서 반응가스는 비활성 가스 부산물들과 매우 많은 양의 불소 원자(F) 및 소량의 불소 분자(F2)를 함유한다. 활성종(Reactive species)(이 경우는 불소 원자)이 일반적으로 하기식에 따라 3 개체 반응(third-body reaction)으로 재결합된다.
F + F + M=> F2 + M
불소 원자 F가 F2 및/또는 소규모의 화학 재결합에 기인하는 다른 가능한 부산물보다 급격히 실리콘계 물질을 에칭함이 일반적으로 알려져 있다. 즉, 제거 속도가 불소 원자 농도[F]에 더 관련되어 있다.
앞에서 논의한 바와 같이, 도 2의 종래기술에서 챔버의 증착 부위 내부에 [F]와 [F2]는 위치에 의존한다. 챔버 말단 A에서 [F]가 중심 B 보다 낮다. 즉,F2가 더 높다. 이러한 사실은 총 클리닝 시간에 영향을 주는 국부 클리닝 속도에서의 차이점을 초래한다.
본 발명은 챔버 내에서 전체 증착 면적에 걸쳐 증착된 부위의 끝 부분과 중심 모서리 사이에서 [F]/[F2]의 비의 차이를 감소시키는 것을 통해 클리닝 균일성을 증가시킨다. 균일하게 가열된 챔버 내에서, 에칭 균일성이 챔버 내에서 증착된 부위를 통해서 [F] 농도 균일성으로 규정될 수 있다. 본 발명의 예로서, 4 가지 가능한 구현예가 도 3과 도 4에 도시된다. 모든 경우에 있어서, 증착된 부위 내에서 [F] 분포가 종래기술보다 더 균일하다.
도 3a는 2-포인트 주입(two-point injection)을 나타낸다. 원거리 플라즈마 소스로부터 발생된 활성종/반응가스(1)가 두 개의 동등 경로(6a, 6b)로 분리되고, 이어서 주입 포인트(5)를 통해 선 증착이 있었던 공정 챔버(2)에 주입된다. 도 3b는 좀 더 균일한 반응가스 분배가 일어나는 4-포인트 주입 형상을 도시한다. 다중 포인트 주입(multiple-point injection)에서(도 4), 반응가스(1)가 다중의 동등 경로(7)(선별)로 흘러 주입 포인트(8)(선별)을 통해 공정 챔버(2)로 주입된다. 적절한 형상 및 주입 포인트 갯수의 선택은 챔버 설계 및 관 내의 가스 압력에 의존할 수 있으며, 일반적으로 주입 가스의 균일성과 활성종(reactive species)들의 재결합 속도(recombination rate) 사이에서 절충되어야 한다.
또 다른 구현예가 도 5에 도시되어 있고, 여기서, 주입이 소위 스파이더(spider)를 통해 달성되고, 에칭 가스가 다중 동등 경로를 통해 증착(퇴적) 부위에 도달한다. 이러한 경우에, 반응가스가 동등 경로를 통해 흐르며, 그 결과 모든 증착 부위에 걸쳐, 동일한 [F] 농도가 발견된다. KAI3000 PECVD 시스템으로 실시된 실험은 에칭 균일성이 6% 수준 보다 낮게 달성되고(도 6), 그 결과 증착된 챔버의 클리닝 속도가 더 빠름을 보여준다. 챔버 내에서 모든 증착된 물질을 제거하기 위해 요구되는 시간을 비교하면, 좀 더 균일한 분배(스파이더를 통한 주입)로 감소된 총 클리닝 시간을 얻을 수 있다(도 7). 더 나아가, 감소된 총 클리닝 시간은 산업 응용을 위해서 중요한 특징을 나타내는 더 낮은 가스 소비를 얻을 수 있다. 결과적으로, 1-포인트 주입(종래기술)이 나쁜 결과를 주는 것을 알 수 있다.
반응기의 기하학적 구조에 관하여, 몇 가지 가능한 설계가 적용될 수 있다. 모든 디자인들에 대해, 주요한 아이디어는 하나의 동등 경로보다 많은 경로를 통해 반응가스가 증착 부위에 도달한다는 것이다. 경로의 수 및 분포는 PECVD 챔버 내에서 증착된 영역의 기하 구조, 퇴적 특성과 윤곽에 따라 변경될 수 있다.
더 나아가, 본 발명의 다른 장점은 하나의 원거리 플라즈마 소스로부터 주입된 하나의 증착 챔버보다 더 많이 응용될 수 있다. 사실, 동등한 라디칼 경로가 고려되면, 하나 이상의 챔버에서 균일한 클리닝이 달성될 수 있다. 각 챔버에서 클리닝 가스의 주입이 위에서 언급한 것처럼 또한 고려되어 진다.
결과적으로, 본 발명의 PECVD 증착 챔버에의 응용이 존재하는 하드웨어의 미세한 변경을 요구한다. 가스 분포 계산 후에 관의 조정이 필요하다. 이 경우, 존재하는 시스템이 이미 스파이더 가스 분배기(spider gas divider)로 만들어진 경우에, 주 가스 관(증착 가스들)에 클리닝 가스의 연결로 충분하다.
당해 기술분야에서의 문제점 및 본 발명에 대한 구체적 설명이 도면을 참고하여 상세하게 기술될 것이다.
도 1은 PECVD 챔버 내에 반응가스의 원 포인트 주입(one-point injection)의 개략도이다(종래기술).
도 2는 PECVD 챔버 내에 반응가스의 원 포인트 주입(one-point injection)의 개략도이다(종래기술). [F]와 [F2] 프로파일이 챔버 길이 L의 함수로서 설명된다.
도 3a는 본 발명의 일구현예로서, 2-포인트(two-point injection) 주입의 평면 개략도이다.
도 3b는 본 발명의 일구현예로서, 4-포인트(four-point injection) 주입의 평면 개략도이다.
도 3c는 PECVD 챔버 내에 반응가스의 2-포인트 주입(one-point injection)의 개략도이다(본 발명). [F]와 [F2] 프로파일이 일축에서 챔버 길의 함수로서 설명된다.
도 4는 본 발명의 일구현예에 따른 다중 주입 포인트의 망을 통한 반응 가스 분배의 개략도이다. [F]와 [F2] 프로파일이 챔버 길이의 함수로서 설명된다.
도 5는 본 발명의 일구현예로서 PECVD 챔버 내부로 반응가스의 스파이더(spider)를 통한 개략도이다(증착 가스의 일반 경로). [F]와 [F2] 프로파일이 챔버 길이의 함수로서 설명된다.
도 6은 증착된 면적 길이의 함수로서 에칭된 물질을 나타내었다. 스파이더가 사용되었다. 에칭의 균일성이 2 m x 2 m에 대해 5.5%이다.
도 7은 PECVD 챔버로부터 모든 증착 물질을 제거하기 위해 필요한 총 시간을 나타낸다. 스파이더를 통한 더 균일한 주입은 총 클리닝 시간의 감소를 유도한다.

Claims (5)

1m2 이상의 기판용으로 만들어진 진공증착 장치(vacuum deposition)를 클리닝 하는 방법에 있어서,
원거리 플라즈마 소스(remote plasma source)로부터 상기 챔버 내로 두 개 이상의 주입 포인트(injection point)를 통해 균일한 방식으로 활성화된 가스(activated gas)를 이송하고, 여기서 활성화된 가스의 경로가 동등(equivalent)한 것을 특징으로 하는 진공증착 장치를 클리닝하는 방법.
제 1 항에 있어서, 상기 동등 경로가 물질(material), 온도, 길이, 직경, 관 형상(pipe configuration) 또는 압력강하가 동등한 것을 특징으로 하는 진공 증착장치를 클리닝하는 방법.
제 1항 또는 제 2항에 있어서, 상기 원거리 플라즈마 소스가 병렬 클리닝 기능(parallel cleaning action)을 위해 수 개의 진공 증착 챔버에 작동가능하게 연결된 것을 특징으로 하는 진공 증착장치를 클리닝하는 방법.
1m2 이상의 기판용으로 제조된 진공 증착 챔버의 활성화된 반응가스의 분배용 가스 주입 시스템에 있어서, 상기 시스템이 반응가스의 소스, 상기 반응가스를 활성화하는 원거리 플라즈마 소스, 상기 가스를 분배하는 관을 포함하고, 상기 관은 상기 소스에 구조적으로 연결된 하나 이상의 유입구 및 상기 챔버에 개구된 두 개 이상의 출구를 가지고, 이것에 의해 적어도 부분적으로 독립적인 분지관(tube branches)을 형성하고, 여기서, 유입구 및 각각의 출구 사이에서 계산된, 각 분지관의 가스 흐름에 수직인 단면 및 직경이 실질적으로 동일한 것을 특징으로 하는 가스 주입 시스템.
제 4항에 있어서, 상기 각 분지관이 다양한 직경을 갖는 관 네트워크(network of piping)를 포함하고, 각 분지관이 가스 주입을 위해 대칭적이고, 실질적으로 동일한 저항을 갖는 것을 특징으로 하는 가스 주입 시스템.
KR1020087009009A 2005-10-17 2006-10-13 원거리 플라즈마 소스를 이용한 대면적 pecvd 장치용클리닝 방법 KR20080060241A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72747605P 2005-10-17 2005-10-17
US60/727,476 2005-10-17

Publications (1)

Publication Number Publication Date
KR20080060241A true KR20080060241A (ko) 2008-07-01

Family

ID=37913644

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087009009A KR20080060241A (ko) 2005-10-17 2006-10-13 원거리 플라즈마 소스를 이용한 대면적 pecvd 장치용클리닝 방법

Country Status (6)

Country Link
US (1) US20080035169A1 (ko)
EP (1) EP1937871A2 (ko)
JP (1) JP2009512221A (ko)
KR (1) KR20080060241A (ko)
CN (1) CN101292059A (ko)
WO (1) WO2007045110A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101107077B1 (ko) * 2010-06-10 2012-01-20 삼성에스디아이 주식회사 플라즈마 세정 장치
US11186908B2 (en) 2018-01-05 2021-11-30 Samsung Display Co., Ltd. Apparatus and method of manufacturing display apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2073243B1 (en) * 2007-12-21 2018-10-03 Applied Materials, Inc. Linear electron source, evaporator using linear electron source, and applications of electron sources
WO2010003266A1 (en) * 2008-07-09 2010-01-14 Oerlikon Solar Ip Ag, Trübbach Remote plasma cleaning method and apparatus for applying said method
TWI421369B (zh) * 2009-12-01 2014-01-01 Ind Tech Res Inst 氣體供應設備
SG186162A1 (en) * 2010-08-25 2013-01-30 Linde Ag Chemical vapor deposition chamber cleaning with molecular fluorine
DE102012107282A1 (de) * 2012-01-17 2013-07-18 Reinhausen Plasma Gmbh Vorrichtung und verfahren zur plasmabehandlung von oberflächen
CN102615068B (zh) * 2012-03-26 2015-05-20 中微半导体设备(上海)有限公司 Mocvd设备的清洁方法
KR101415740B1 (ko) * 2012-10-04 2014-07-04 한국기초과학지원연구원 원격 플라즈마 소스 에싱 장치
JP6597732B2 (ja) * 2017-07-24 2019-10-30 東京エレクトロン株式会社 ガス処理装置
CN111705307A (zh) * 2020-06-15 2020-09-25 苏州迈为科技股份有限公司 等离子体气相沉积设备
CN112259474A (zh) * 2020-10-19 2021-01-22 上海华力集成电路制造有限公司 集成电路加工设备的等离子体源总成
CN113683436B (zh) * 2021-08-27 2022-09-16 清华大学 一种进气组件、气相沉积装置及其复合材料制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550681A (en) * 1982-10-07 1985-11-05 Johannes Zimmer Applicator for uniformly distributing a flowable material over a receiving surface
US4820377A (en) * 1987-07-16 1989-04-11 Texas Instruments Incorporated Method for cleanup processing chamber and vacuum process module
CH687258A5 (de) * 1993-04-22 1996-10-31 Balzers Hochvakuum Gaseinlassanordnung.
US5788778A (en) * 1996-09-16 1998-08-04 Applied Komatsu Technology, Inc. Deposition chamber cleaning technique using a high power remote excitation source
US6274058B1 (en) * 1997-07-11 2001-08-14 Applied Materials, Inc. Remote plasma cleaning method for processing chambers
US6499425B1 (en) * 1999-01-22 2002-12-31 Micron Technology, Inc. Quasi-remote plasma processing method and apparatus
US6178660B1 (en) * 1999-08-03 2001-01-30 International Business Machines Corporation Pass-through semiconductor wafer processing tool and process for gas treating a moving semiconductor wafer
JP3366301B2 (ja) * 1999-11-10 2003-01-14 日本電気株式会社 プラズマcvd装置
KR100360401B1 (ko) * 2000-03-17 2002-11-13 삼성전자 주식회사 슬릿형 공정가스 인입부와 다공구조의 폐가스 배출부를포함하는 공정튜브 및 반도체 소자 제조장치
US6502530B1 (en) * 2000-04-26 2003-01-07 Unaxis Balzers Aktiengesellschaft Design of gas injection for the electrode in a capacitively coupled RF plasma reactor
US6450117B1 (en) * 2000-08-07 2002-09-17 Applied Materials, Inc. Directing a flow of gas in a substrate processing chamber
JP2002057106A (ja) * 2000-08-08 2002-02-22 Tokyo Electron Ltd 処理装置のクリーニング方法及び処理装置
DE10045958B4 (de) * 2000-09-16 2008-12-04 Muegge Electronic Gmbh Vorrichtung zum Leiten eines gasförmigen Mediums in eine und/oder aus einer Prozeßkammer
DE10100670A1 (de) * 2001-01-09 2002-08-14 Univ Braunschweig Tech Zuführvorrichtung für eine CVD-Anlage
JP2003197615A (ja) * 2001-12-26 2003-07-11 Tokyo Electron Ltd プラズマ処理装置およびそのクリーニング方法
US6828241B2 (en) * 2002-01-07 2004-12-07 Applied Materials, Inc. Efficient cleaning by secondary in-situ activation of etch precursor from remote plasma source
JP4239520B2 (ja) * 2002-08-21 2009-03-18 ソニー株式会社 成膜装置およびその製造方法、並びにインジェクタ
US7037376B2 (en) * 2003-04-11 2006-05-02 Applied Materials Inc. Backflush chamber clean
JP2005033173A (ja) * 2003-06-16 2005-02-03 Renesas Technology Corp 半導体集積回路装置の製造方法
JP4430417B2 (ja) * 2004-01-28 2010-03-10 株式会社アルバック 成膜装置及びそのクリーニング方法
US20050223986A1 (en) * 2004-04-12 2005-10-13 Choi Soo Y Gas diffusion shower head design for large area plasma enhanced chemical vapor deposition
WO2006040275A1 (en) * 2004-10-11 2006-04-20 Bekaert Advanced Coatings An elongated gas ditribution system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101107077B1 (ko) * 2010-06-10 2012-01-20 삼성에스디아이 주식회사 플라즈마 세정 장치
US11186908B2 (en) 2018-01-05 2021-11-30 Samsung Display Co., Ltd. Apparatus and method of manufacturing display apparatus

Also Published As

Publication number Publication date
WO2007045110A2 (en) 2007-04-26
US20080035169A1 (en) 2008-02-14
JP2009512221A (ja) 2009-03-19
EP1937871A2 (en) 2008-07-02
CN101292059A (zh) 2008-10-22
WO2007045110A3 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
KR20080060241A (ko) 원거리 플라즈마 소스를 이용한 대면적 pecvd 장치용클리닝 방법
JP5002132B2 (ja) プラズマ処理チャンバのためのガス分配プレート
TWI607503B (zh) 具有多個電漿配置構件之半導體處理系統
US7718004B2 (en) Gas-introducing system and plasma CVD apparatus
KR20200028041A (ko) 플라즈마 식각 프로세스들에서, 코팅된 부분들을 사용한 프로세스 윈도우 확장
CN101042992B (zh) 半导体处理用的立式等离子体处理装置
CN105316651A (zh) 抑制喷头背面寄生等离子体的方法和装置
US20050011445A1 (en) Apparatus and method for in-situ cleaning of a throttle valve in a CVD system
US20080087642A1 (en) Method for removing surface deposits in the interior of a chemical vapor deposition reactor
TW201526105A (zh) 用於低溫原子層沉積膜之腔室底塗層準備方法
KR20070103686A (ko) 탄소계 박막의 셀프 클리닝 방법
US6047713A (en) Method for cleaning a throttle valve
KR20030019912A (ko) 처리 장치 및 그것의 세정 방법
KR101160357B1 (ko) 대면적 기판 상에 실리콘 산화물을 증착하기 위한 방법 및 장치
Lee et al. The effect of hole density variation in the PECVD reactor showerhead on the deposition of amorphous carbon layer
KR20210158823A (ko) 공정 도구를 위한 샤워헤드
US20110126764A1 (en) Gas supply apparatus
KR20080035735A (ko) 플라즈마 화학기상증착설비
US20180258531A1 (en) Diffuser design for flowable cvd
US11996273B2 (en) Methods of seasoning process chambers
US20220189771A1 (en) Underlayer film for semiconductor device formation
KR100444753B1 (ko) 반도체 소자 제조에 사용되는 증착 장치
KR101534024B1 (ko) 기판처리장치
KR102538276B1 (ko) Pe-cvd 장치 및 방법
JPS612319A (ja) Cvd装置

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid