KR20080042178A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
KR20080042178A
KR20080042178A KR1020087008289A KR20087008289A KR20080042178A KR 20080042178 A KR20080042178 A KR 20080042178A KR 1020087008289 A KR1020087008289 A KR 1020087008289A KR 20087008289 A KR20087008289 A KR 20087008289A KR 20080042178 A KR20080042178 A KR 20080042178A
Authority
KR
South Korea
Prior art keywords
heat exchanger
pressure refrigerant
refrigerant
low pressure
high pressure
Prior art date
Application number
KR1020087008289A
Other languages
Korean (ko)
Other versions
KR100905995B1 (en
Inventor
타카유키 세토구치
마코토 코지마
Original Assignee
다이킨 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다이킨 고교 가부시키가이샤 filed Critical 다이킨 고교 가부시키가이샤
Publication of KR20080042178A publication Critical patent/KR20080042178A/en
Application granted granted Critical
Publication of KR100905995B1 publication Critical patent/KR100905995B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

In the supercooling heat exchanger of an air conditioner for exchanging heat between high pressure refrigerant and low pressure refrigerant, a flow direction of refrigerant during a cooling operation is reversed during a heating operation to cause the high pressure refrigerant and the low pressure refrigerant to flow in parallel in either one operation mode, whereby a heat exchange efficiency deteriorates. In an air conditioner comprising a supercooling heat exchanger (13) for exchanging heat between low pressure refrigerant and high pressure refrigerant, the supercooling heat exchanger (13) is divided into first and second heat exchangers (13A, 13B), any one of the first heat exchanger (13A) and the second heat exchanger (13B) is arranged such that the high pressure refrigerant and the low pressure refrigerant produce counter flows, and the second heat exchanger (13B) or the first heat exchanger (13A) on the other side is arranged such that the high pressure refrigerant and the low pressure refrigerant produce parallel flows. Each heat exchanger (13A, 13B) is arranged such that a high pressure liquid refrigerant tube (15) is wound around the outer periphery of a suction tube (14) for sucking low pressure refrigerant thus reducing each size.

Description

공기 조화 장치{AIR CONDITIONER}Air conditioner {AIR CONDITIONER}

본원 발명은 과냉각 열교환기를 이용한 공기 조화 장치에 관한 것이다.The present invention relates to an air conditioner using a subcooled heat exchanger.

도 4는 종래의 과냉각 열교환기를 이용한 공기 조화 장치의 구성을 도시하고 있다.4 illustrates a configuration of an air conditioner using a conventional subcooled heat exchanger.

본 공기 조화 장치는, 압축기(1), 사방 전환 밸브(2), 냉방 운전 시에 응축기로서 작용하고 난방 운전 시에 증발기로서 작용하는 실외기측 열교환기(3), 난방용 팽창 밸브(4), 리시버(5), 냉방용 팽창 밸브(6), 및 냉방 운전 시에 증발기로서 작용하고 난방 운전 시에 응축기로서 작용하는 실내기측 열교환기(8) 등을 상기 사방 전환 밸브(2)를 통하여 차례로 접속하여, 도시와 같은 공기 조화용의 냉동 사이클을 구성하고 있다.The air conditioner includes a compressor (1), a four-way switching valve (2), an outdoor unit side heat exchanger (3), a heating expansion valve (4), and a receiver, which act as a condenser at the time of cooling operation and as an evaporator at the time of heating operation. (5), the cooling expansion valve (6), and the indoor unit side heat exchanger (8), which act as an evaporator in the cooling operation and the condenser in the heating operation, are sequentially connected through the four-way switching valve (2). The air conditioner constitutes a refrigeration cycle for air conditioning as shown in FIG.

그리고 상기 사방 전환 밸브(2)의 전환 작동에 의하여, 냉방 운전 시에는 도면 중에 실선 화살표로 도시하는 방향으로, 또한 난방 운전 시에는 본 도면 중에 점선 화살표로 도시하는 방향으로, 각각 냉매가 가역적으로 유통하게 되어, 냉방 또는 난방 작용이 실현된다.By the switching operation of the four-way switching valve 2, the refrigerant is reversibly distributed in the direction indicated by the solid arrow in the drawing during the cooling operation and in the direction indicated by the dotted arrow in the drawing during the heating operation. Thus, the cooling or heating action is realized.

상기 실외기측 열교환기(3) 및 실내기측 열교환기(8)는, 각각 다수의 냉매 패스를 구비하여 구성되어 있다. 따라서, 분류기 부분의 냉매 분배 성능을 최대한 으로 향상시켰다고 하여도, 각 냉매 패스의 냉매의 균등한 분배가 곤란해진다.The outdoor unit side heat exchanger 3 and the indoor unit side heat exchanger 8 are each provided with a plurality of refrigerant paths. Therefore, even if the refrigerant distribution performance of the classifier portion is improved to the maximum, even distribution of the refrigerant in each refrigerant path becomes difficult.

그래서 실외기측 열교환기(3) 또는 실내기측 열교환기(8)를 증발기로서 작용시키고 있는 경우에는, 그들의 출구측 냉매가 적절한 습기 상태로 되도록, 상기 난방용 팽창 밸브(4) 또는 냉방용 팽창 밸브(6)의 감압량이 적절히 설정되어 있다. 그와 같이 하면, 실외기측 열교환기(3) 또는 실내기측 열교환기(8)에 예를 들면 냉매의 편류(偏流)가 생겼다고 하여도, 증발기로서의 능력이 최대한으로 확보되게 되어, 증발기의 가급적인 콤팩트화를 도모할 수 있다.Therefore, when the outdoor unit side heat exchanger 3 or the indoor unit side heat exchanger 8 is acting as an evaporator, the heating expansion valve 4 or the cooling expansion valve 6 for cooling so that their outlet refrigerant is in an appropriate moisture state. ), The decompression amount is set appropriately. By doing so, even if, for example, the coolant drifts in the outdoor unit side heat exchanger 3 or the indoor unit side heat exchanger 8, the capacity as an evaporator is ensured to the maximum, and the evaporator is as compact as possible. Can get angry.

또한, 한편 응축기 출구측 냉매의 과냉각을 취하고, 증발기측의 엔탈피 차를 확대하여 순환량을 떨어뜨려, 증발기측의 압손(壓損)을 저감하는 것에 의하여, 증발기의 성능 향상을 한층 더 도모하기 위하여, 과냉각 열교환기로서 내관(內管)으로 되는 저압 냉매 흡입관(14)과 외관(外管)으로 되는 고압 액 냉매관(15)으로 이루어지는 이중관 구조의 액-가스 열교환기(13)가 설치되어 있다.On the other hand, in order to further improve the performance of the evaporator by taking the supercooling of the refrigerant on the condenser outlet side, enlarging the enthalpy difference on the evaporator side to reduce the amount of circulation, and reducing the pressure loss on the evaporator side, As a supercooled heat exchanger, a liquid-gas heat exchanger 13 having a double pipe structure is formed of a low pressure refrigerant suction pipe 14 serving as an inner pipe and a high pressure liquid refrigerant pipe 15 serving as an external pipe.

이 액-가스 열교환기(13)는, 예를 들면 냉매 유량, 이중관 길이, 외관의 내경(內徑), 내관의 외경(外徑)이 소정의 관계로 적절히 설정되어 있다.In this liquid-gas heat exchanger 13, the refrigerant flow rate, the length of the double tube, the inner diameter of the outer tube, and the outer diameter of the inner tube are appropriately set in a predetermined relationship.

이와 같이 액-가스 열교환기(13)가 설치되어 있으면, 증발기 출구측의 냉매가 과열되어, 압축기(1)로의 액백(liquid back; 증발기에 유입된 액 냉매 중 일부가 증발하지 못하고 액체 상태로 압축기로 흡입되는 현상)을 방지할 수 있는 것과 함께, 응축기 출구측의 냉매가 과냉각되어, 증발기측의 엔탈피 차를 확대하여 냉매의 순환량을 떨어뜨릴 수 있기 때문에, 그 압손도 저감할 수 있고, 증발기(8)(또는 증발기(3))의 콤팩트화를 한층 더 도모할 수 있다(일례로서 특허 문헌 1 참조).When the liquid-gas heat exchanger 13 is provided in this way, the refrigerant at the outlet of the evaporator is overheated, and the liquid back into the compressor 1 cannot be evaporated. In addition to the phenomenon of suction, the refrigerant loss on the condenser outlet side can be supercooled, and the enthalpy difference on the evaporator side can be enlarged to reduce the amount of circulation of the refrigerant, thereby reducing the pressure loss. 8) (or evaporator 3) can be further compacted (see Patent Document 1 as an example).

[특허 문헌 1] 일본국 공개특허공보 특개평5-332641호 공보(명세서 1 - 5페이지, 도 1 - 5)[Patent Document 1] Japanese Patent Application Laid-Open No. 5-332641 (Specifications 1 to 5 pages, Figs. 1 to 5)

그런데, 상기와 같이 고압 냉매와 저압 냉매를 열교환하는 과냉각 열교환기에 있어서는, 냉방 시와 난방 시에 있어서 냉매가 흐르는 방향이 역으로 되기 때문에, 어느 한쪽의 운전 모드에 있어서, 그들이 평행류(平行流)로 되어, 열교환 효율이 나빠지는 문제가 있다. 예를 들면 도 4의 경우, 냉방 시는 대향류(對向流)이지만 난방 시는 평행류로 되어, 열교환 효율이 떨어진다.By the way, in the subcooling heat exchanger which heat-exchanges a high pressure refrigerant | coolant and a low pressure refrigerant | coolant as mentioned above, since the direction which a refrigerant flows is reversed at the time of cooling and heating, in either operation mode, they are parallel flows. There is a problem that the heat exchange efficiency becomes poor. For example, in the case of FIG. 4, when it cools, it is a counter flow, but when it heats, it becomes a parallel flow and heat exchange efficiency falls.

본원 발명은, 이와 같은 문제를 해결하기 위하여 이루어진 것으로, 저압 냉매와 고압 냉매를 열교환하는 과냉각 열교환기를 구비한 공기 조화 장치에 있어서, 과냉각 열교환기를 제1, 제2의 2개의 열교환기로 분할하여, 그들 중의 어느 일방(一方)측의 열교환기는 고압 냉매와 저압 냉매가 대향류가 되도록 배치하는 한편, 타방(他方)측의 열교환기는 고압 냉매와 저압 냉매가 평행류로 되도록 배치하는 것에 의하여, 상기 종래의 문제를 적절히 해결한 공기 조화 장치를 제공하는 것을 목적으로 하는 것이다.The present invention has been made to solve such a problem, and in the air conditioner provided with a subcooling heat exchanger for exchanging a low pressure refrigerant and a high pressure refrigerant, the subcooling heat exchanger is divided into two first and second heat exchangers, The heat exchanger on either side of the heat exchanger is disposed so that the high pressure refrigerant and the low pressure refrigerant are in the opposite flow, while the heat exchanger on the other side is disposed so that the high pressure refrigerant and the low pressure refrigerant are in parallel flow. It is an object of the present invention to provide an air conditioner that solves the problem appropriately.

본원 발명은, 본 목적을 달성하기 위하여, 다음과 같은 과제 해결 수단을 구비하여 구성되어 있다.MEANS TO SOLVE THE PROBLEM This invention is comprised including the following problem solving means in order to achieve this objective.

(1) 청구항 1의 발명(1) Invention of claim 1

이 발명의 과제 해결 수단은, 저압 냉매와 고압 냉매를 열교환하는 과냉각 열교환기(13)를 구비한 공기 조화 장치에 있어서, 과냉각 열교환기(13)를 제1, 제2의 2개의 열교환기(13A), (13B)로 분할하여, 제1 열교환기(13A) 또는 제2 열교환기(13B) 중 어느 일방을 고압 냉매와 저압 냉매가 대향류가 되도록 배치하는 한편, 타방측 제2 열교환기(13B) 또는 제1 열교환기(13A)를 고압 냉매와 저압 냉매가 평행류로 되도록 배치한 것을 특징으로 하고 있다.The problem solving means of this invention is the air conditioner provided with the subcooling heat exchanger (13) which heat-exchanges a low pressure refrigerant | coolant and a high pressure refrigerant | coolant, WHEREIN: The subcooling heat exchanger (13) is a 1st, 2nd two heat exchanger (13A). ), 13B, and either one of the first heat exchanger 13A or the second heat exchanger 13B is disposed so that the high pressure refrigerant and the low pressure refrigerant are in counterflow, while the other side second heat exchanger 13B is disposed. Or the first heat exchanger 13A is arranged so that the high pressure refrigerant and the low pressure refrigerant are in parallel flow.

전술과 같이 고압 냉매와 저압 냉매를 열교환하는 과냉각 열교환기(13)에서는, 냉방 시와 난방 시에 있어서 냉매가 흐르는 방향이 역으로 되기 때문에, 어느 한쪽의 운전 모드에 있어서, 그들이 평행류로 되어 열교환 효율이 나빠지는 문제가 있다.In the supercooled heat exchanger 13 which heat-exchanges the high-pressure refrigerant and the low-pressure refrigerant as described above, the direction in which the refrigerant flows is reversed at the time of cooling and at the time of heating. There is a problem of poor efficiency.

그런데, 상기와 같이, 당해 과냉각 열교환기(13)를 제1 열교환기(13A)와 제2 열교환기(13B)의 2개의 열교환기로 분할하여, 어느 일방의 제1 열교환기(13A) 또는 제2 열교환기(13B)를 고압 냉매와 저압 냉매가 대향류가 되도록 배치하는 한편, 타방측의 제2 열교환기(13B) 또는 제1 열교환기(13A)를 고압 냉매와 저압 냉매가 평행류로 되도록 배치하면, 냉방과 난방에서 냉매의 흐름 방향이 변화하여도, 변함없이 과냉각 열교환기(13)의 열교환 성능을 유지할 수 있게 된다.However, as described above, the subcooled heat exchanger 13 is divided into two heat exchangers of the first heat exchanger 13A and the second heat exchanger 13B, and either one of the first heat exchanger 13A or the second. The heat exchanger 13B is arranged such that the high pressure refrigerant and the low pressure refrigerant are in counter flow, while the second heat exchanger 13B or the first heat exchanger 13A on the other side is arranged in parallel flow. The heat exchange performance of the subcooled heat exchanger 13 can be maintained even if the flow direction of the refrigerant changes in cooling and heating.

(2) 청구항 2의 발명(2) Invention of claim 2

이 발명의 과제 해결 수단은, 상기 청구항 1의 발명의 과제 해결 수단의 구성에 있어서, 제1, 제2 열교환기(13A), (13B)는, 각각 저압 냉매 흡입관(14)의 외주(外周)에 고압 액 냉매관(15)을 감아 구성되어 있는 것을 특징으로 하고 있다.The problem solving means of this invention is the structure of the problem solving means of the said invention of Claim 1 WHEREIN: The 1st, 2nd heat exchanger 13A, 13B is the outer periphery of the low pressure refrigerant | coolant suction pipe 14, respectively. The high-pressure liquid refrigerant pipe 15 is wound around and is configured.

이와 같이, 제1, 제2 열교환기(13A), (13B)를, 각각 저압 냉매 흡입관(14)에 대하여 고압 액 냉매관(15)을 감은 구성으로 하면, 열교환기 자체의 용적을 크게 할 필요가 없어, 과냉각 열교환기(13A), (13B)의 가급적인 소형화를 도모할 수 있다.Thus, when the 1st, 2nd heat exchanger 13A, 13B is set as the structure which wound the high pressure liquid refrigerant pipe 15 with respect to the low pressure refrigerant suction pipe 14, respectively, it is necessary to enlarge the volume of the heat exchanger itself. The subcooled heat exchanger 13A, 13B can be miniaturized as much as possible.

(3) 청구항 3의 발명(3) Invention of claim 3

이 발명의 과제 해결 수단은, 상기 청구항 1의 발명의 과제 해결 수단의 구성에 있어서, 제1, 제2 열교환기(13A), (13B)는, 각각 저압 냉매 흡입관(14)의 외주에 동 저압 냉매 흡입관(14)보다도 대경(大徑)의 고압 액 냉매관(15)을 동축(同軸) 구조로 감합(嵌合)하여 구성되어 있는 것을 특징으로 하고 있다.The problem solving means of this invention is the structure of the problem solving means of the said invention of Claim 1 WHEREIN: The 1st, 2nd heat exchanger 13A, 13B are respectively the low pressure | pressure | hydraulic to the outer periphery of the low pressure refrigerant | coolant suction pipe 14, respectively. A larger diameter high pressure liquid refrigerant pipe 15 is fitted in a coaxial structure than the refrigerant suction pipe 14.

이와 같이, 과냉각용의 제1, 제2 열교환기(13A), (13B)를, 각각 저압 냉매 흡입관(14)에 대하여 고압 액 냉매관(15)을 동축 구조로 감합한 이중관 구조로 하면, 과냉각 열교환기(13A), (13B) 자체의 구조가 간단해진다.Thus, when the 1st, 2nd heat exchanger 13A, 13B for supercooling is made into the double pipe | tube structure which fitted the high pressure liquid refrigerant pipe 15 coaxially with respect to the low pressure refrigerant suction pipe 14, respectively, The structure of the heat exchanger 13A, 13B itself becomes simple.

<발명의 효과>Effect of the Invention

이상의 결과, 본원 발명에 의하면, 냉방과 난방에서 냉매의 흐름 방향이 변화하여도, 과냉각 열교환기의 높은 열교환 성능을 유지할 수 있다. 그 결과, 증발기의 콤팩트화를 한층 더 도모할 수 있다.As a result, according to the present invention, even if the flow direction of the refrigerant changes in cooling and heating, it is possible to maintain high heat exchange performance of the supercooled heat exchanger. As a result, the evaporator can be further compacted.

또한, 그 경우에 있어서, 각 열교환기를, 저압 냉매의 흡입관에 대하여 고압 액 냉매관을 감는 구성으로 하면, 가급적으로 과냉각 열교환기 자체의 소형화를 도모할 수 있다.In this case, if each heat exchanger is configured to wind the high-pressure liquid refrigerant pipe around the suction pipe of the low-pressure refrigerant, the supercooled heat exchanger itself can be miniaturized as much as possible.

도 1은 본원 발명의 최선의 실시예에 관련되는 공기 조화 장치의 구성을 도시하는 냉동 회로도이다.1 is a refrigeration circuit diagram showing a configuration of an air conditioner according to the best embodiment of the present invention.

도 2는 본 장치의 요부인 제1, 제2의 2개의 액-가스 열교환기 부분의 확대도이다.FIG. 2 is an enlarged view of two liquid-gas heat exchanger parts, which are main parts of the present apparatus.

도 3은 본원 발명의 그 외의 실시예에 관련되는 공기 조화 장치의 제1, 제2의 2개의 액-가스 열교환기 부분의 확대도이다.3 is an enlarged view of the first and second two liquid-gas heat exchanger parts of the air conditioner according to another embodiment of the present invention.

도 4는 종래예에 관련되는 공기 조화 장치의 구성을 도시하는 냉동 회로도이다.4 is a refrigeration circuit diagram showing a configuration of an air conditioner according to a conventional example.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1 : 압축기 2 : 사방 전환 밸브1: compressor 2: four-way switching valve

3 : 실외기측 열교환기 4, 6 : 팽창 밸브3: outdoor unit side heat exchanger 4, 6: expansion valve

5 : 리시버 8 : 실내기측 열교환기5: receiver 8: indoor unit heat exchanger

13A : 제1 열교환기 13B : 제2 열교환기13A: First Heat Exchanger 13B: Second Heat Exchanger

14 : 저압 냉매 흡입관 15 : 고압 액 냉매관14 low pressure refrigerant suction pipe 15 high pressure liquid refrigerant pipe

16 : 머플러16: muffler

첨부한 도면의 도 1 및 도 2는, 본원 발명의 최선의 실시예에 관련되는 공기 조화 장치의 냉동 회로의 전체 및 요부의 구성을 도시하고 있다.1 and 2 of the accompanying drawings show the structure of the whole and the main part of the refrigeration circuit of the air conditioner which concerns on the best embodiment of this invention.

본 실시예의 공기 조화 장치는, 우선 도 1에 도시하는 바와 같이, 압축기(1), 사방 전환 밸브(2), 냉방 운전 시에 응축기로서 작용하고 난방 운전 시에 증발기로서 작용하는 실외기측 열교환기(3), 난방용 팽창 밸브(4), 리시버(5), 냉방용 팽창 밸브(6), 및 냉방 운전 시에 증발기로서 작용하고 난방 운전 시에 응축 기로서 작용하는 실내기측 열교환기(8) 등을 상기 사방 전환 밸브(2)를 통하여 차례로 접속하여, 도시와 같은 공기 조화용의 냉동 사이클을 구성하고 있다.As shown in FIG. 1, the air conditioner according to the present embodiment firstly includes a compressor 1, a four-way switching valve 2, and an outdoor unit-side heat exchanger which acts as a condenser during cooling operation and acts as an evaporator during heating operation. 3) the heating expansion valve 4, the receiver 5, the cooling expansion valve 6, and the indoor unit side heat exchanger 8, which functions as an evaporator in the cooling operation and a condenser in the heating operation. It connects one by one via the said four-way switching valve 2, and comprises the refrigeration cycle for air conditioning like shown in the figure.

그리고 상기 사방 전환 밸브(2)의 전환 작동에 의하여, 냉방 운전 시에는 도면 중에 실선 화살표로 도시하는 방향으로, 또한 난방 운전 시에는 본 도면 중에 점선 화살표로 도시하는 방향으로, 각각 냉매가 가역적으로 유통하게 되어, 냉방 또는 난방 작용이 실현된다.By the switching operation of the four-way switching valve 2, the refrigerant is reversibly distributed in the direction indicated by the solid arrow in the drawing during the cooling operation and in the direction indicated by the dotted arrow in the drawing during the heating operation. Thus, the cooling or heating action is realized.

그리고 본 실시예에서도, 전술의 도 4의 경우와 마찬가지로, 저압 냉매 흡입관(14)과 고압 액 냉매관(15)으로 이루어지고, 저압 냉매와 고압 냉매를 열교환하는 과냉각 열교환기로서의 액-가스 열교환기(13)가 설치되어 있다.And also in this embodiment, the liquid-gas heat exchanger as a subcooling heat exchanger which consists of the low pressure refrigerant | coolant suction pipe | tube 14 and the high pressure liquid refrigerant | coolant pipe | tube 15 and heat-exchanges the low pressure refrigerant | coolant and high pressure refrigerant | coolant similarly to the case of FIG. 4 mentioned above. (13) is provided.

이와 같이 액-가스 열교환기(13)가 설치되어 있으면, 이미 서술한 바와 같이 증발기 출구측의 냉매가 과열되어, 압축기(1)로의 액백을 방지할 수 있는 것과 함께, 응축기 출구측의 냉매가 과냉각되어, 증발기측의 엔탈피 차를 확대하여 냉매의 순환량을 떨어뜨릴 수 있기 때문에, 그 압손도 저감할 수 있고, 증발기(냉방 시의 실내기측 열교환기(8) 또는 난방 시의 실외기측 열교환기(3))의 가급적인 콤팩트화를 도모할 수 있다.If the liquid-gas heat exchanger 13 is provided in this way, as described above, the refrigerant at the evaporator outlet side is overheated, and liquid back to the compressor 1 can be prevented, and the refrigerant at the condenser outlet side is supercooled. Since the difference in enthalpy on the evaporator side can be increased to reduce the circulation amount of the refrigerant, the pressure loss can be reduced, and the evaporator (the indoor unit side heat exchanger 8 at cooling or the outdoor unit side heat exchanger 3 at heating) The compactness of)) can be achieved.

그러나 본 실시예의 경우에는, 본 액-가스 열교환기(13)는, 전술의 도 4의 경우와는 달리, 서로 역방향으로 냉매가 흐르는 제1 액-가스 열교환기(13A)와 제2 액-가스 열교환기(13B)의 2개의 액-가스 열교환기로 분할되고, 예를 들면 제1 열교환기(13A)는 고압 냉매와 저압 냉매가 대향류가 되도록 배치되어 있는 한편, 제2 열교환기(13B)는 고압 냉매와 저압 냉매가 평행류로 되도록 배치되어 있다.However, in the case of this embodiment, unlike the case of FIG. 4 described above, the present liquid-gas heat exchanger 13 has a first liquid-gas heat exchanger 13A and a second liquid-gas, in which refrigerant flows in opposite directions to each other. The heat exchanger 13B is divided into two liquid-gas heat exchangers, for example, the first heat exchanger 13A is arranged so that the high pressure refrigerant and the low pressure refrigerant are in opposite flow, while the second heat exchanger 13B is The high pressure refrigerant and the low pressure refrigerant are arranged in parallel flow.

따라서, 이와 같은 구성에서는, 냉방 시와 난방 시에 있어서 냉매가 흐르는 방향이 변화하여도, 도시와 같이, 변함없이 액-가스 열교환기(13)의 성능을 유지할 수 있다. 그 결과, 난방 시에도 변함없이 응축기 출구측의 냉매가 과냉각되어, 증발기측의 엔탈피 차를 확대하여 냉매의 순환량을 떨어뜨릴 수 있다.Therefore, in such a configuration, even if the direction in which the refrigerant flows during cooling and heating changes, the performance of the liquid-gas heat exchanger 13 can be maintained as shown in the figure. As a result, the refrigerant on the condenser outlet side is supercooled unchanged even during heating, and the enthalpy difference on the evaporator side can be enlarged to reduce the amount of circulation of the refrigerant.

게다가, 본 제1, 제2 액-가스 열교환기(13A), (13B)는, 각각 냉방 시의 실내기측 열교환기(증발기, 8) 또는 난방 시의 실외기측 열교환기(증발기, 3)로부터 사방 전환 밸브(2)를 통하여 압축기(1)의 냉매 흡입구로 되돌아오는 기존의 저압 냉매 흡입관(14)의 외주에 대하여, 본 저압 냉매 흡입관(14)보다도 소경(小徑)인, 응축기 출구 측으로부터의 고압 액 냉매관(15)을, 예를 들면 도 2에 상세하게 도시하는 바와 같이, 서로 역방향으로 나선상(螺旋狀)으로 감는 것에 의하여 구성되어 있다. 그 때문에, 과냉각 열교환기(13) 자체의 용적도 작게, 가급적인 소형화를 도모할 수 있다.In addition, the present first and second liquid-gas heat exchangers 13A and 13B are respectively located from the indoor unit side heat exchanger (evaporator) 8 during cooling or the outdoor unit side heat exchanger (evaporator 3) during heating. With respect to the outer circumference of the existing low pressure refrigerant inlet pipe 14 returning to the refrigerant inlet port of the compressor 1 via the switching valve 2, from the condenser outlet side, which is smaller than the present low pressure refrigerant inlet pipe 14. As shown in detail in FIG. 2, for example, the high-pressure liquid refrigerant pipe 15 is configured by winding spirally in opposite directions to each other. Therefore, the volume of the subcooled heat exchanger 13 itself is also small, and the size of the subcooled heat exchanger 13 itself can be reduced.

또한, 과냉각 열교환 효율의 향상에 의하여, 증발기 자체의 소형, 콤팩트화에도 유효하게 기여할 수 있다.In addition, by improving the supercooling heat exchange efficiency, it is possible to effectively contribute to the compactness and compactness of the evaporator itself.

나아가, 도 2와 같이 기존의 저압 냉매 흡입관(14)에 감는 것으로, 흡입 가스 압손의 상승을 억제할 수 있어, COP의 저하를 없애는 것이 가능하다.Furthermore, by winding up to the existing low pressure refrigerant | coolant suction pipe 14 as shown in FIG. 2, the rise of suction gas pressure loss can be suppressed and it is possible to eliminate the fall of COP.

덧붙여, 도 2 중의 부호 16은 저압 냉매 흡입관(14)에 있어서의 가스 냉매용의 머플러(muffler)이다.In addition, the code | symbol 16 in FIG. 2 is a muffler for gas refrigerant in the low pressure refrigerant | coolant suction pipe | tube 14.

(그 외의 실시예)(Other Examples)

이상의 실시예에서는, 도 2에 도시하는 바와 같이, 분할된 제1, 제2 열교환 기(13A), (13B)를, 사방 전환 밸브(2)로부터 압축기(1)의 냉매 흡입구에 이르는 기존의 저압 냉매 흡입관(14)에 대하여 소경의 고압 액 냉매관(15)을 나선상으로 감는 구조로 하였지만, 본 제1, 제2 열교환기(13A), (13B)는, 예를 들면 도 3에 도시하는 바와 같이, 저압 냉매 흡입관(14)의 외주에 본 저압 냉매 흡입관(14)보다도 대경의 고압 액 냉매관(15)을 동축 구조로 감합한 이중관 구조의 것으로 하여, 그들을 서로 냉매가 역방향으로 흐르도록 배치한 것이어도 무방하다.In the above embodiment, as shown in FIG. 2, the existing low pressure from the divided first and second heat exchangers 13A and 13B to the refrigerant intake port of the compressor 1 from the four-way switching valve 2 is shown. Although the small diameter of the high pressure liquid refrigerant pipe 15 is wound around the refrigerant suction pipe 14 in a spiral manner, the first and second heat exchangers 13A and 13B are, for example, as shown in FIG. Similarly, a double-pipe structure in which a larger diameter of the high pressure liquid refrigerant pipe 15 is coaxially fitted to the outer circumference of the low pressure refrigerant suction pipe 14 than the low pressure refrigerant suction pipe 14 is disposed so that the refrigerants flow in the opposite directions to each other. It may be.

이와 같이, 과냉각용의 제1, 제2 열교환기(13A), (13B)를, 각각 저압 냉매 흡입관(14)에 대하여 고압 액 냉매관(15)을 동축 구조로 감합한 이중관 구성으로 하면, 과냉각 열교환기 자체의 구조가 간단해진다.Thus, when the 1st, 2nd heat exchanger 13A, 13B for subcooling is set as the double pipe | tube structure which fitted the high pressure liquid refrigerant pipe 15 coaxially with respect to the low pressure refrigerant suction pipe 14, respectively, The structure of the heat exchanger itself is simplified.

본원 발명은, 과냉각 열교환기를 이용한 공기 조화 장치의 분야에 있어서 광범위하게 이용하는 것이 가능하다.The present invention can be widely used in the field of an air conditioner using a supercooled heat exchanger.

Claims (3)

저압 냉매와 고압 냉매를 열교환하는 과냉각 열교환기(13)를 구비한 공기 조화 장치에 있어서, 과냉각 열교환기(13)를 제1, 제2의 2개의 열교환기(13A), (13B)로 분할하여, 제1 열교환기(13A) 또는 제2 열교환기(13B) 중 어느 일방(一方)을 고압 냉매와 저압 냉매가 대향류(對向流)가 되도록 배치하는 한편, 타방(他方)측 제2 열교환기(13B) 또는 제1 열교환기(13A)를 고압 냉매와 저압 냉매가 평행류(平行流)로 되도록 배치한 것을 특징으로 하는 공기 조화 장치.In the air conditioner provided with the subcooling heat exchanger (13) which heat-exchanges the low pressure refrigerant and the high pressure refrigerant, the subcooling heat exchanger (13) is divided into two first and second heat exchangers (13A) and (13B). One of the first heat exchanger 13A or the second heat exchanger 13B is disposed such that the high pressure refrigerant and the low pressure refrigerant are in opposite flows, while the second heat exchanger on the other side is disposed. Air conditioner (13B) or the 1st heat exchanger (13A) arrange | positioned so that a high pressure refrigerant | coolant and a low pressure refrigerant | coolant may be in parallel flow. 제1항에 있어서,The method of claim 1, 제1, 제2 열교환기(13A), (13B)는, 각각 저압 냉매 흡입관(14)의 외주(外周)에 고압 액 냉매관(15)을 감아 구성되어 있는 것을 특징으로 하는 공기 조화 장치.The 1st, 2nd heat exchanger (13A), (13B) is the air conditioner characterized by winding the high pressure liquid refrigerant pipe (15) on the outer periphery of the low pressure refrigerant suction pipe (14), respectively. 제1항에 있어서,The method of claim 1, 제1, 제2 열교환기(13A), (13B)는, 각각 저압 냉매 흡입관(14)의 외주에 동 저압 냉매 흡입관(14)보다도 대경(大徑)의 고압 액 냉매관(15)을 동축(同軸) 구조로 감합(嵌合)하여 구성되어 있는 것을 특징으로 하는 공기 조화 장치.The first and second heat exchangers 13A and 13B respectively coaxial the high-pressure liquid refrigerant pipe 15 having a larger diameter than that of the low pressure refrigerant suction pipe 14 on the outer circumference of the low pressure refrigerant suction pipe 14. An air conditioner, which is configured by fitting into a structure.
KR1020087008289A 2005-09-22 2008-04-04 Air conditioner KR100905995B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2005-00275493 2005-09-22
JP2005275493A JP3982545B2 (en) 2005-09-22 2005-09-22 Air conditioner

Publications (2)

Publication Number Publication Date
KR20080042178A true KR20080042178A (en) 2008-05-14
KR100905995B1 KR100905995B1 (en) 2009-07-06

Family

ID=37888790

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087008289A KR100905995B1 (en) 2005-09-22 2008-04-04 Air conditioner

Country Status (7)

Country Link
US (1) US20090282861A1 (en)
EP (1) EP1944562B1 (en)
JP (1) JP3982545B2 (en)
KR (1) KR100905995B1 (en)
CN (1) CN101268312B (en)
AU (1) AU2006293191B2 (en)
WO (1) WO2007034745A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304078A (en) * 2007-06-05 2008-12-18 Denso Corp Refrigerating cycle device
JP5473922B2 (en) * 2007-10-09 2014-04-16 ビーイー・エアロスペース・インコーポレーテッド Thermal control system
JP2009115415A (en) * 2007-11-08 2009-05-28 Calsonic Kansei Corp Supercritical refrigerating cycle
JP4947043B2 (en) * 2008-07-14 2012-06-06 ダイキン工業株式会社 Outdoor unit for air conditioner and method for manufacturing the same
DK176868B1 (en) * 2008-09-16 2010-02-01 Lars Christian Wulf Zimmermann Symmetrical refrigerant regulator for flooded multi-channel evaporator
ATE554643T1 (en) * 2009-08-05 2012-05-15 Abb Research Ltd EVAPORATOR AND COOLING CIRCUIT
US9593872B2 (en) 2009-10-27 2017-03-14 Mitsubishi Electric Corporation Heat pump
US9494363B2 (en) * 2010-10-12 2016-11-15 Mitsubishi Elelctric Corporation Air-conditioning apparatus
JP2012097957A (en) * 2010-11-02 2012-05-24 Showa Denko Kk Intermediate heat exchanger
CN102095271A (en) * 2011-03-01 2011-06-15 四川长虹空调有限公司 Heat pump air conditioner
DE102012204404B4 (en) * 2011-03-25 2022-09-08 Denso Corporation heat exchange system and vehicle refrigeration cycle system
JP5938821B2 (en) * 2011-12-12 2016-06-22 E・T・E株式会社 Refrigeration equipment
WO2014036835A1 (en) * 2012-09-06 2014-03-13 江苏天舒电器有限公司 Heat pump water heater provided with heat utilization balanced treater and heat utilization balanced treater thereof
CN103807936B (en) * 2012-11-08 2018-06-26 杭州三花研究院有限公司 A kind of heat pump air conditioning system
US10036582B2 (en) * 2013-06-12 2018-07-31 Danfoss A/S Compressor with rotor cooling passageway
JP2015034671A (en) * 2013-08-09 2015-02-19 株式会社アタゴ製作所 Heat exchanger for heat pump type water heater
EP3683232A1 (en) 2013-09-13 2020-07-22 F. Hoffmann-La Roche AG Methods and compositions comprising purified recombinant polypeptides
CN105928240B (en) * 2016-06-01 2019-04-12 唐玉敏 A kind of heat-exchange system
CN105928398A (en) * 2016-06-01 2016-09-07 唐玉敏 Multistage parallel displacement module of heat exchange system
CN105928241B (en) * 2016-06-01 2018-07-17 唐玉敏 A kind of heat-exchange system multistage series-parallel connection replacement module
CN105928267B (en) * 2016-06-01 2018-10-30 唐玉敏 A kind of plural parallel stage displacement heat-exchange system
CN106016860B (en) * 2016-06-01 2018-10-09 唐玉敏 A kind of heat-exchange system replacement module
CN105928397B (en) * 2016-06-01 2018-03-20 唐玉敏 A kind of multistage series-parallel connection displacement heat-exchange system
CN105928242B (en) * 2016-06-01 2018-07-20 唐玉敏 A kind of heat-exchange system plural serial stage replacement module
CN105928231B (en) * 2016-06-01 2018-10-09 唐玉敏 A kind of plural serial stage displacement heat-exchange system
SE544732C2 (en) * 2017-05-22 2022-10-25 Swep Int Ab A reversible refrigeration system
SE542346C2 (en) 2017-05-22 2020-04-14 Swep Int Ab Reversible refrigeration system
KR20190055614A (en) * 2017-11-15 2019-05-23 엘지전자 주식회사 Plate heat exchanger and Air conditioner having the same
WO2019111349A1 (en) * 2017-12-06 2019-06-13 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and method for manufacturing heat exchanger
CN108302839A (en) * 2017-12-29 2018-07-20 青岛海尔空调器有限总公司 Air-conditioner system
CN113646593B (en) * 2019-04-05 2022-11-15 三菱电机株式会社 Refrigeration cycle device
WO2021014525A1 (en) * 2019-07-22 2021-01-28 三菱電機株式会社 Air conditioning apparatus and outdoor unit

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135667U (en) * 1982-03-08 1983-09-12 松下冷機株式会社 refrigeration cycle
DE3505789A1 (en) * 1985-02-20 1986-08-21 Grote, Paul, 2901 Friedrichsfehn SPIRAL HEAT EXCHANGER
JP3336628B2 (en) 1992-05-29 2002-10-21 ダイキン工業株式会社 Refrigeration equipment
JPH06213518A (en) 1993-01-13 1994-08-02 Hitachi Ltd Heat pump type air conditioner for mixed refrigerant
JPH1054616A (en) * 1996-08-14 1998-02-24 Daikin Ind Ltd Air conditioner
TW568254U (en) * 1997-01-06 2003-12-21 Mitsubishi Electric Corp Refrigerant circulating apparatus
JPH11325655A (en) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd Silencer and air conditioner
JP2001056188A (en) * 1999-06-10 2001-02-27 Sanden Corp Heat exchanger used in vapor pressurizing type refrigeration cycle and the like
ATE382834T1 (en) * 2000-04-28 2008-01-15 Daikin Ind Ltd METHOD FOR COLLECTING REFRIGERANT AND OIL AND REGULATOR FOR COLLECTION OF REFRIGERANT AND OIL
JP3811116B2 (en) * 2001-10-19 2006-08-16 松下電器産業株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
CN101268312B (en) 2010-05-19
JP2007085647A (en) 2007-04-05
EP1944562A4 (en) 2011-03-23
EP1944562B1 (en) 2013-04-17
KR100905995B1 (en) 2009-07-06
EP1944562A1 (en) 2008-07-16
JP3982545B2 (en) 2007-09-26
US20090282861A1 (en) 2009-11-19
WO2007034745A1 (en) 2007-03-29
AU2006293191A1 (en) 2007-03-29
CN101268312A (en) 2008-09-17
AU2006293191B2 (en) 2009-11-19

Similar Documents

Publication Publication Date Title
KR100905995B1 (en) Air conditioner
US8020405B2 (en) Air conditioning apparatus
JP5332604B2 (en) Cooling and heating simultaneous operation type air conditioner
KR101797176B1 (en) Dual pipe structure for internal heat exchanger
KR102014616B1 (en) Air conditioning apparatus
JP2005077088A (en) Condensation machine
JP2011242048A (en) Refrigerating cycle device
JP2007163013A (en) Refrigerating cycle device
JP2011214753A (en) Refrigerating device
JP2009133593A (en) Cooling apparatus
JP2006308156A (en) Air conditioner
WO2012053157A1 (en) Refrigeration cycle and condenser with supercooling unit
JP2008267653A (en) Refrigerating device
JP2007051788A (en) Refrigerating device
JP2007093167A (en) Liquid gas heat exchanger for air-conditioner
JP5895662B2 (en) Refrigeration equipment
JP2013210155A (en) Refrigerating device
JP2006029714A (en) Ejector cycle
JP2005337577A5 (en)
JP2005337577A (en) Refrigerating device
JP7210609B2 (en) air conditioner
KR100624811B1 (en) Circulation Device For Receiver refrigerants
JP2003343934A (en) Device using refrigeration cycle, and air conditioner
KR20110103827A (en) Heat exchanger for air conditioner
KR20030077158A (en) Refrigerating cycle of air-conditioner and noise control method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130531

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140603

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee