JP5938821B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP5938821B2
JP5938821B2 JP2011290542A JP2011290542A JP5938821B2 JP 5938821 B2 JP5938821 B2 JP 5938821B2 JP 2011290542 A JP2011290542 A JP 2011290542A JP 2011290542 A JP2011290542 A JP 2011290542A JP 5938821 B2 JP5938821 B2 JP 5938821B2
Authority
JP
Japan
Prior art keywords
refrigerant
supercooling
coil
inner diameter
side unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011290542A
Other languages
Japanese (ja)
Other versions
JP2013122363A (en
Inventor
隆雄 原
隆雄 原
杉山 直樹
直樹 杉山
篠崎 隆
隆 篠崎
智子 岡本
智子 岡本
Original Assignee
E・T・E株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E・T・E株式会社 filed Critical E・T・E株式会社
Priority to JP2011290542A priority Critical patent/JP5938821B2/en
Publication of JP2013122363A publication Critical patent/JP2013122363A/en
Application granted granted Critical
Publication of JP5938821B2 publication Critical patent/JP5938821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、圧縮機、凝縮器、減圧装置及び蒸発器を用いた冷凍装置に係り、特にエネルギ効率を改善した冷凍装置に関する。  The present invention relates to a refrigeration apparatus using a compressor, a condenser, a decompression apparatus, and an evaporator, and more particularly to a refrigeration apparatus with improved energy efficiency.

従来、冷蔵、冷凍倉庫などで使用される大型業務用冷蔵、冷凍庫は、圧縮機、凝縮器などを収容した熱源側ユニットと、蒸発器を備えた利用側ユニットとを、ユニット間配管で接続した冷凍装置が用いられている。たとえば、屋外に熱源側ユニットを配置し、冷蔵、冷凍倉庫の天井や壁上部などに利用側ユニットを配置し、各ユニット間を配管で接続して、配管内に冷媒を循環させる構成となっている。
この場合、冷凍装置のエネルギ効率の改善は重要であり、従来から、様々な技術革新が行われている。
Conventionally, large commercial refrigeration and freezer used in refrigeration and freezing warehouses, etc., connected the heat source side unit containing the compressor, condenser, etc., and the use side unit equipped with an evaporator with inter-unit piping. A refrigeration system is used. For example, a heat source side unit is placed outdoors, a use side unit is placed on the ceiling or upper wall of a refrigerated or frozen warehouse, and each unit is connected by piping to circulate the refrigerant in the piping. Yes.
In this case, it is important to improve the energy efficiency of the refrigeration apparatus, and various technical innovations have been made conventionally.

しかし、上述した従来の技術では、エネルギ効率の改善が不十分であった。
そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、さらに高効率の冷凍装置を提供することにある。
However, the conventional technology described above has not been sufficient to improve energy efficiency.
Accordingly, an object of the present invention is to solve the above-described problems of the prior art and to provide a highly efficient refrigeration apparatus.

本発明は、圧縮機、凝縮器を備えた熱源側ユニットと、蒸発器を備えた利用側ユニットとを、ユニット間配管で接続した冷凍装置において、前記ユニット間配管を構成する液管に、前記凝縮器で液化した冷媒を、減圧装置に至る前に、過冷却するための螺旋状の冷媒流路を有する過冷却装置を介装し、前記過冷却装置は、複数のコイルを直列に接続し、下流のコイルの内径を上流のコイルの内径よりも細く、かつ、下流のコイルの内径を上流のコイルの内径の50%以上とし、冷媒の流速を増加することで冷媒を過冷却する機能を備えた、ことを特徴とする。
本発明では、圧縮機で吐出された冷媒は、凝縮器で液化し、過冷却装置に流入する。この過冷却装置は、螺旋状の冷媒流路を有しており、当該流路内で、冷媒は、スピン回転を受けて、流速を増加して流れ、これにより過冷却される。
本出願人は、種々の実証試験を行った結果、冷媒が、本構成の過冷却装置を流れる過程において、冷媒が、スピン回転及び増速され、過冷却されて、ほぼ完全に液化することを突き止めた。すなわち、過冷却装置を経た冷媒は、過冷却装置を含まない従来のサイクルで液管を流れる冷媒に比べて、ほぼ完全に液化することが判明した。ほぼ完全に液化した冷媒は、減圧装置で減圧され、蒸発器に流入する。本発明では、冷媒が過冷却され、ほぼ完全に液化して減圧される分だけ、従来に比べ、冷凍効率が格段に向上する。実証試験によると、従来比で、たとえば16%の省エネ化が達成できた。
The present invention relates to a refrigerating apparatus in which a heat source side unit provided with a compressor and a condenser and a use side unit provided with an evaporator are connected by an inter-unit pipe, and the liquid pipe constituting the inter-unit pipe includes Before reaching the pressure reducing device, the refrigerant liquefied by the condenser is provided with a supercooling device having a spiral refrigerant flow path, and the supercooling device has a plurality of coils connected in series. The function of supercooling the refrigerant by making the inner diameter of the downstream coil smaller than the inner diameter of the upstream coil and making the inner diameter of the downstream coil 50% or more of the inner diameter of the upstream coil and increasing the flow rate of the refrigerant. equipped with, wherein the.
In the present invention, the refrigerant discharged from the compressor is liquefied by the condenser and flows into the supercooling device. This supercooling device has a spiral refrigerant flow path, and in the flow path, the refrigerant is subjected to spin rotation and flows at an increased flow velocity, thereby being supercooled.
As a result of conducting various verification tests, the present applicant has found that the refrigerant is spin-rotated and accelerated, and is subcooled and almost completely liquefied in the process of flowing through the supercooling device of this configuration. I found it. That is, it has been found that the refrigerant that has passed through the supercooling device is almost completely liquefied compared to the refrigerant that flows through the liquid pipe in a conventional cycle that does not include the supercooling device. The almost completely liquefied refrigerant is decompressed by the decompression device and flows into the evaporator. In the present invention, the refrigeration efficiency is remarkably improved as compared with the prior art by the amount that the refrigerant is supercooled and almost completely liquefied and decompressed. According to the demonstration test, energy savings of 16%, for example, were achieved compared to the conventional technology.

この場合において、前記過冷却装置が、前記圧縮機の吐出容量に応じて設定された内径を有する管路をコイル状に巻いて構成されていてもよい。
前記過冷却装置が、前記螺旋状の流路内を下から上に冷媒を流すコイルを備え、重力の影響を受けつつ、冷媒の流速を増加することで冷媒を過冷却する機能を備えてもよい。
前記減圧装置が、前記利用側ユニットに配置され、前記過冷却装置が、前記利用側ユニットの近傍に配置されていてもよい。
In this case, the supercooling device may be configured by winding a pipe having an inner diameter set in accordance with a discharge capacity of the compressor in a coil shape.
The supercooling device includes a coil for flowing the refrigerant from the bottom to the top in the spiral flow path, and has a function of supercooling the refrigerant by increasing the flow rate of the refrigerant while being influenced by gravity. Good.
The decompression device may be disposed in the usage side unit, and the supercooling device may be disposed in the vicinity of the usage side unit.

本発明では、減圧装置に至る前に、冷媒が過冷却され、ほぼ完全に液化して減圧される分だけ、従来に比べ、冷凍効率が格段に向上する。実証試験によると、従来比で、たとえば16%の省エネ化が達成できる。  In the present invention, the refrigeration efficiency is remarkably improved as compared with the prior art by the amount that the refrigerant is supercooled and liquefied almost completely before reaching the decompression device. According to the verification test, for example, energy saving of 16% can be achieved compared with the conventional technology.

本発明の一実施の形態による大型業務用冷凍装置を示す構成図である。  It is a block diagram which shows the large refrigeration apparatus for business by one embodiment of this invention. 一実施の形態による過冷却装置を示す図である。  It is a figure which shows the supercooling apparatus by one embodiment. 別実施の形態による過冷却装置を示す図である。  It is a figure which shows the supercooling apparatus by another embodiment. 別実施の形態による大型業務用冷凍装置を示す構成図である。  It is a block diagram which shows the large refrigeration apparatus for business by another embodiment.

以下、本発明の一実施の形態を添付の図面を参照して説明する。
図1において、1は冷蔵、冷凍倉庫を示す。この倉庫1は機械室100と、冷凍庫200とを含み、仕切り壁300で仕切られている。冷凍庫200の内壁、及び仕切り壁300は断熱材(不図示)で覆われている。
この倉庫1には、大型業務用冷凍装置10が設置されている。この冷凍装置10は、熱源側ユニット20と、利用側ユニット30とを備え、各ユニット20,30間が、冷媒を循環するユニット間配管40で接続されている。
熱源側ユニット20は、圧縮機21、凝縮器22及びアキュムレータ23を含み、これら各機器21〜23が配管24で接続され、各機器21〜23及び配管24が、筐体24内に配置されている。利用側ユニット30は、蒸発器31及び減圧装置32を含み、これら各機器31,32が配管33で接続され、これら各機器31,32及び配管33が、筐体34内に配置されている。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
In FIG. 1, reference numeral 1 denotes a refrigeration / freezer warehouse. The warehouse 1 includes a machine room 100 and a freezer 200 and is partitioned by a partition wall 300. The inner wall of the freezer 200 and the partition wall 300 are covered with a heat insulating material (not shown).
In this warehouse 1, a large-scale commercial refrigeration apparatus 10 is installed. The refrigeration apparatus 10 includes a heat source side unit 20 and a use side unit 30, and the units 20 and 30 are connected by an inter-unit pipe 40 that circulates a refrigerant.
The heat source side unit 20 includes a compressor 21, a condenser 22, and an accumulator 23. These devices 21 to 23 are connected by a pipe 24, and each device 21 to 23 and the pipe 24 are arranged in a housing 24. Yes. The use side unit 30 includes an evaporator 31 and a decompression device 32, and these devices 31 and 32 are connected by a pipe 33, and these devices 31 and 32 and the pipe 33 are arranged in a housing 34.

本実施の形態では、機械室100に熱源側ユニット20が配置され、利用側ユニット30が冷凍庫200の壁上部(又は天井)200Aに配置され、これら各ユニット20,30の配管24,33の間が、液管41とガス管42からなる上記ユニット配管40で接続されている。また、ユニット間配管40を構成する液管41であって、凝縮器22と減圧装置32の間に位置する管路に、上記凝縮器22で液化した冷媒を、過冷却するための過冷却装置50が介装されている。
この過冷却装置50は、冷媒にスピン回転を付与し、冷媒の流速を増加することで、冷媒を過冷却する機能を備えている。したがって、冷媒にスピン回転を付与し、冷媒の流速を増加できる構成であれば、螺旋状の冷媒流路を有すればよく、たとえば、螺旋状の冷媒流路を内部に備えたブロック状構造体であってもよい。
In the present embodiment, the heat source side unit 20 is arranged in the machine room 100, the use side unit 30 is arranged on the upper wall (or ceiling) 200 </ b> A of the freezer 200, and between the pipes 24 and 33 of these units 20 and 30. Are connected by the unit pipe 40 composed of the liquid pipe 41 and the gas pipe 42. Further, the liquid pipe 41 constituting the inter-unit pipe 40 is a supercooling device for supercooling the refrigerant liquefied by the condenser 22 in a pipe line located between the condenser 22 and the decompression device 32. 50 is interposed.
The supercooling device 50 has a function of supercooling the refrigerant by applying spin rotation to the refrigerant and increasing the flow velocity of the refrigerant. Therefore, it is only necessary to have a spiral refrigerant flow path as long as it is configured to impart spin rotation to the refrigerant and increase the flow rate of the refrigerant. For example, a block-like structure having a helical refrigerant flow path therein It may be.

本実施の形態では、過冷却装置50は、図2に示すように、二本のコイル51,53を直列に接続した構成となっている。
一般に、液管41の太さは、圧縮機21の吐出容量(流量)に応じて大きく変化させることはない。しかし、二本のコイル51,53の内径は、圧縮機21の吐出容量(流量)に応じて設定されている。
600Wの圧縮機21であれば、たとえば内径3mm、3馬力の圧縮機21であれば、たとえば内径8mmなどである。ただし、下流のコイル53の内径は、上流のコイル51の内径より小さく形成されている。各コイル51,53間は、液管41と同等の内径を有する管路55で連結されている。
二本のコイル51,53の巻き数は、合計で15〜30巻きであり、この実施の形態では、20巻きである。
二本のコイル51,53の巻き内径は、コイル51,53の内径に応じて設定されている。たとえば内径3mmのコイルでは、20mm程度であり、内径8mmのコイルでは、30〜32mm程度である。この巻き内径は、冷媒へのスピン回転及び増速を考慮すれば、細ければ細いほどよいが、生産技術上、コイル51,53の内径が太くなれば、巻き内径を小さくできない。
過冷却装置50は、二本のコイルに限定されず、たとえば、図3に示すように、一本のコイル150で構成してもよい。
In the present embodiment, the supercooling device 50 has a configuration in which two coils 51 and 53 are connected in series as shown in FIG.
In general, the thickness of the liquid pipe 41 is not greatly changed according to the discharge capacity (flow rate) of the compressor 21. However, the inner diameters of the two coils 51 and 53 are set according to the discharge capacity (flow rate) of the compressor 21.
In the case of the 600W compressor 21, for example, the inner diameter is 3 mm, and in the case of the 3-horsepower compressor 21, for example, the inner diameter is 8 mm. However, the inner diameter of the downstream coil 53 is smaller than the inner diameter of the upstream coil 51. The coils 51 and 53 are connected by a pipe line 55 having an inner diameter equivalent to that of the liquid pipe 41.
The total number of turns of the two coils 51 and 53 is 15 to 30 turns, and in this embodiment, 20 turns.
The winding inner diameters of the two coils 51 and 53 are set according to the inner diameters of the coils 51 and 53. For example, a coil with an inner diameter of 3 mm is about 20 mm, and a coil with an inner diameter of 8 mm is about 30 to 32 mm. In consideration of the spin rotation to the refrigerant and the speed increase, the thinner the winding inner diameter, the better. However, the winding inner diameter cannot be reduced if the inner diameters of the coils 51 and 53 are increased in terms of production technology.
The supercooling device 50 is not limited to two coils, and may be constituted by a single coil 150 as shown in FIG.

過冷却装置50の螺旋状の流路は、上流から下流に向けて徐々に細径に形成することが望ましい。この構成の実現は、図3の構成では生産技術上で難しく、最良形態に近似させ、かつ生産技術上、製造容易な形態とするために、図2に示すように、二本の直列したコイル51,53が採用されており、この場合、下流のコイル53が、上流のコイル51よりも細径のコイルで構成されている。
この構造では、下流のコイル53が絞りの機能を果たし、冷媒を減圧する欠点が生じ、たとえば下流のコイル53が上流のコイル51の50%以下の内径となると、絞り過ぎによる欠点が大きくなることが判明している。したがって、下流のコイル53の内径は、上流のコイル51の内径の50%以上とすることが望ましい。
It is desirable that the spiral flow path of the supercooling device 50 is gradually formed to have a small diameter from upstream to downstream. The realization of this configuration is difficult in terms of production technology with the configuration of FIG. 3, and in order to approximate the best mode and make it easy to manufacture in terms of production technology, as shown in FIG. 51 and 53 are employed, and in this case, the downstream coil 53 is constituted by a coil having a diameter smaller than that of the upstream coil 51.
In this structure, the downstream coil 53 functions as a throttle and has a drawback of reducing the pressure of the refrigerant. Is known. Therefore, the inner diameter of the downstream coil 53 is desirably 50% or more of the inner diameter of the upstream coil 51.

本実施の形態では、過冷却装置50は、図1に示すように、熱源側ユニット20の筐体24の外側で、機械室100の側壁面に沿って略鉛直に配置される。この構造とすると、凝縮器22を経た冷媒は、二本のコイル51,53の流路を、下から上に流れる構造となり、冷媒は、二本のコイル51,53の流路内を、重力の影響を受けつつ、スピン回転を受けて、流速を増加して流れる。
この過冷却装置(二本のコイル51,53)50を略鉛直に配置したことで、凝縮器22を経た冷媒が、過冷却を受けて、ほぼ完全に液化した冷媒となって、減圧装置32に送られることが判明している。
また、過冷却装置50を、熱源側ユニット20の筐体24の外側で、機械室100の側壁面に沿って配置する構造とすると、既に従来の冷凍装置が設置されており、たとえば過冷却装置50を後付けする際に、その組み付け工事が容易になる。
In the present embodiment, the supercooling device 50 is disposed substantially vertically along the side wall surface of the machine room 100 outside the housing 24 of the heat source side unit 20 as shown in FIG. With this structure, the refrigerant that has passed through the condenser 22 has a structure in which the flow path of the two coils 51, 53 flows from the bottom to the top, and the refrigerant flows through the flow path of the two coils 51, 53 through gravity. It is affected by the spin rotation, increases the flow velocity and flows.
By arranging the supercooling device (two coils 51, 53) 50 substantially vertically, the refrigerant that has passed through the condenser 22 undergoes supercooling and becomes almost completely liquefied refrigerant, and the decompression device 32 is provided. Has been found to be sent to.
Further, if the supercooling device 50 is configured to be disposed along the side wall surface of the machine room 100 outside the housing 24 of the heat source side unit 20, a conventional refrigeration device is already installed. When retrofitting 50, the assembling work becomes easy.

つぎに、冷凍装置10の作用を説明する。
本実施の形態では、圧縮機21で吐出された冷媒は、凝縮器22で液化し、配管24を経て、過冷却装置50に流入する。この過冷却装置50は、図2に示すように、二本のコイル51,53を直列に接続した構成となっており、一段のコイル51で、重力の影響を受けつつ、スピン回転を受けて、流速を増加して流れる。
つぎに、一段のコイル51よりも細径の二段のコイル53に流入し、ここで、再び、重力の影響を受けつつ、スピン回転を受けて、流速を増加して流れる。
Next, the operation of the refrigeration apparatus 10 will be described.
In the present embodiment, the refrigerant discharged from the compressor 21 is liquefied by the condenser 22 and flows into the supercooling device 50 through the pipe 24. As shown in FIG. 2, the supercooling device 50 has a configuration in which two coils 51 and 53 are connected in series. The single coil 51 is subjected to spin rotation while being affected by gravity. Flow with increasing flow rate.
Next, it flows into the two-stage coil 53 having a diameter smaller than that of the one-stage coil 51, where it again receives the spin rotation while being influenced by gravity, and increases the flow velocity.

この過程において、冷媒は、スピン回転及び増速され、過冷却される。
本出願人は、種々の実証試験を行った結果、冷媒が、本構成の過冷却装置50を流れる過程において、冷媒が、スピン回転及び増速され、過冷却されて、ほぼ完全に液化することを突き止めた。すなわち、過冷却装置50を経た冷媒は、過冷却装置50を含まない従来のサイクルで液管41を流れる冷媒に比べて、ほぼ完全に液化することが判明した。ほぼ完全に液化した冷媒は、減圧装置32で減圧され、蒸発器31に流入し、冷凍庫200の冷却に供される。本構成では、冷媒が過冷却され、ほぼ完全に液化して減圧される分だけ、従来に比べ、冷凍効率が格段に向上する。実証試験によると、従来比で、16%の省エネ化が達成できた。
In this process, the refrigerant is spin-rotated and accelerated, and is supercooled.
As a result of various verification tests, the present applicant has found that the refrigerant is almost completely liquefied by being spin-rotated and accelerated and being supercooled in the process of flowing through the supercooling device 50 of this configuration. I found out. That is, it has been found that the refrigerant that has passed through the supercooling device 50 is almost completely liquefied compared to the refrigerant that flows through the liquid pipe 41 in a conventional cycle that does not include the supercooling device 50. The substantially completely liquefied refrigerant is decompressed by the decompression device 32, flows into the evaporator 31, and is used for cooling the freezer 200. In this configuration, the refrigeration efficiency is remarkably improved as compared with the prior art by the amount that the refrigerant is supercooled and almost completely liquefied and decompressed. According to the demonstration test, energy savings of 16% were achieved compared to the previous model.

図4は、別の実施の形態を示す。
この実施の形態では、減圧装置32が、利用側ユニット30に配置され、過冷却装置50が、利用側ユニット30の近傍の、冷凍庫200の内壁面に沿って略鉛直に配置されている。この構造とすれば、二本のコイル51,53が、減圧装置32の間近に位置するため、下流のコイル53と減圧装置32との距離が短くなり、下流のコイル53を経た冷媒が蒸発によりガス化することなく、完全液化の状態で、直ちに減圧装置32に流入するため、その分だけ、冷凍効率が更に向上する。
FIG. 4 shows another embodiment.
In this embodiment, the decompression device 32 is disposed in the use side unit 30, and the supercooling device 50 is disposed substantially vertically along the inner wall surface of the freezer 200 in the vicinity of the use side unit 30. With this structure, since the two coils 51 and 53 are positioned in the vicinity of the decompression device 32, the distance between the downstream coil 53 and the decompression device 32 is shortened, and the refrigerant passing through the downstream coil 53 is evaporated. Since the gas immediately flows into the decompression device 32 in a completely liquefied state without being gasified, the refrigeration efficiency is further improved accordingly.

以上各実施の形態では、過冷却装置50を構成する二本のコイル51,53を、液管41に介装する工事を行うだけでよい。
したがって、既に従来の冷凍装置が設置されている倉庫1であっても、簡単な後付け工事により据え付けできる、等の効果を奏する。
As described above, in each of the embodiments, it is only necessary to perform the construction of interposing the two coils 51 and 53 constituting the supercooling device 50 in the liquid pipe 41.
Therefore, even if it is the warehouse 1 in which the conventional refrigeration apparatus is already installed, there is an effect that it can be installed by a simple retrofitting work.

以上、一実施の形態に基づいて、本発明を説明したが、本発明は、これに限定されるものではなく、種々の変更実施が可能である。たとえば過冷却装置50の流路径は、圧縮機の吐出容量に応じて設定された内径としており、冷媒へのスピン回転及び増速による過冷却効果が得られれば、液管41の内径より太くしてもよい。
また、本発明は、倉庫1への適用に限定されず、たとえば空調装置、冷却装置、家庭用冷蔵庫など、あらゆる冷凍装置に適用が可能である。
As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to this, A various change implementation is possible. For example, the channel diameter of the supercooling device 50 is set to an inner diameter set according to the discharge capacity of the compressor, and if the supercooling effect by spin rotation and acceleration to the refrigerant is obtained, it is made thicker than the inner diameter of the liquid pipe 41. May be.
Moreover, this invention is not limited to application to the warehouse 1, For example, it can apply to all freezing apparatuses, such as an air conditioner, a cooling device, and a household refrigerator.

1 冷蔵、冷凍倉庫
10 大型業務用冷凍装置
20 熱源側ユニット
21 圧縮機
22 凝縮器
23 アキュムレータ
24 筐体
30 利用側ユニット
31 蒸発器
32 減圧装置
34 筐体
40 ユニット間配管
41 液管
50 過冷却装置
51,53 コイル
100 機械室
200 冷凍庫
300 仕切り壁
DESCRIPTION OF SYMBOLS 1 Refrigeration, refrigeration warehouse 10 Large commercial refrigeration equipment 20 Heat source side unit 21 Compressor 22 Condenser 23 Accumulator 24 Case 30 Use side unit 31 Evaporator 32 Decompression device 34 Case 40 Unit piping 41 Liquid pipe 50 Supercooling device 51, 53 Coil 100 Machine room 200 Freezer 300 Partition wall

Claims (4)

圧縮機、凝縮器を備えた熱源側ユニットと、蒸発器を備えた利用側ユニットとを、ユニット間配管で接続した冷凍装置において、
前記ユニット間配管を構成する液管に、前記凝縮器で液化した冷媒を、減圧装置に至る前に、過冷却するための螺旋状の冷媒流路を有する過冷却装置を介装し
前記過冷却装置が、複数のコイルを直列に接続し、下流のコイルの内径を上流のコイルの内径よりも細く、かつ、下流のコイルの内径を上流のコイルの内径の50%以上とし、冷媒の流速を増加することで冷媒を過冷却する機能を備えた、
ことを特徴とする冷凍装置。
In a refrigeration apparatus in which a heat source side unit provided with a compressor and a condenser and a use side unit provided with an evaporator are connected by inter-unit piping.
The liquid pipe constituting the inter-unit piping is provided with a supercooling device having a spiral refrigerant flow path for supercooling the refrigerant liquefied by the condenser before reaching the decompression device ,
The supercooling device has a plurality of coils connected in series, the inner diameter of the downstream coil is smaller than the inner diameter of the upstream coil, and the inner diameter of the downstream coil is 50% or more of the inner diameter of the upstream coil. With the function of supercooling the refrigerant by increasing the flow rate of
A refrigeration apparatus characterized by that.
前記過冷却装置が、前記圧縮機の吐出容量に応じて設定された内径を有する管路をコイル状に巻いて構成されていることを特徴とする請求項1に記載の冷凍装置。  The refrigeration apparatus according to claim 1, wherein the supercooling device is configured by winding a pipe having an inner diameter set in accordance with a discharge capacity of the compressor in a coil shape. 前記過冷却装置が、前記螺旋状の流路内を下から上に冷媒を流すコイルを備え、重力の影響を受けつつ、冷媒の流速を増加することで冷媒を過冷却する機能を備えた、
ことを特徴とする請求項1又は2に記載の冷凍装置。
The supercooling device includes a coil for flowing a refrigerant from the bottom to the top in the spiral flow path, and has a function of supercooling the refrigerant by increasing the flow rate of the refrigerant while being influenced by gravity.
The refrigeration apparatus according to claim 1 or 2, wherein
前記減圧装置が、前記利用側ユニットに配置され、前記過冷却装置が、前記利用側ユニットの近傍に配置されていることを特徴とする請求項1乃至3のいずれか一項に記載の冷凍装置。  The refrigeration apparatus according to any one of claims 1 to 3, wherein the decompression device is disposed in the use side unit, and the supercooling device is disposed in the vicinity of the use side unit. .
JP2011290542A 2011-12-12 2011-12-12 Refrigeration equipment Active JP5938821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011290542A JP5938821B2 (en) 2011-12-12 2011-12-12 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011290542A JP5938821B2 (en) 2011-12-12 2011-12-12 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2013122363A JP2013122363A (en) 2013-06-20
JP5938821B2 true JP5938821B2 (en) 2016-06-22

Family

ID=48774410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011290542A Active JP5938821B2 (en) 2011-12-12 2011-12-12 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5938821B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161227A (en) * 2015-03-03 2016-09-05 シャープ株式会社 Heat source machine
JP2020016339A (en) * 2016-10-18 2020-01-30 株式会社エコラ・テック Radiator, condenser unit, and refrigeration cycle
CN111819404B (en) 2018-03-13 2021-08-17 株式会社E·T·L Refrigerating and heating system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127956U (en) * 1974-08-22 1976-02-28
JPS611323Y2 (en) * 1980-01-17 1986-01-17
JP2003279197A (en) * 2002-03-19 2003-10-02 Central Engineering Kk Heat exchanger for condensation of freezer-refrigerator system
JP3982545B2 (en) * 2005-09-22 2007-09-26 ダイキン工業株式会社 Air conditioner
JP4542054B2 (en) * 2006-02-27 2010-09-08 三菱電機株式会社 Refrigeration equipment
JP2009204271A (en) * 2008-02-29 2009-09-10 Tgk Co Ltd Refrigerating cycle

Also Published As

Publication number Publication date
JP2013122363A (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP2012237543A (en) Freezing cycle device
EP2690376B1 (en) Refrigerating cycle and refrigerator having the same
JP5938821B2 (en) Refrigeration equipment
CN103982943A (en) Multi-split air conditioning system
RU2013143743A (en) REFRIGERATING UNIT
CN102734869A (en) Air conditioner
CN201754002U (en) Embedded mounting structure of evaporator
CN205227949U (en) Vapour and liquid separator of air conditioner
CN104101135B (en) Light pipe evaporators and refrigerator
CN201954882U (en) Tri-gate refrigerator with three temperature zones
CN203657317U (en) Refrigerator and refrigerating system thereof
JP6273838B2 (en) Heat exchanger
CN203478748U (en) Air conditioner capillary fixing structure and air conditioner
CN204923296U (en) Air conditioner and refrigerator all -in -one
CN204421433U (en) Wine storage device and refrigeration plant thereof
US20120000240A1 (en) Refrigerant cooling device
CN202171290U (en) Air conditioner outdoor unit condenser
Abed et al. Experimental study on the effect of Capillary tube geometry on the performance of Vapour Compression refrigeration System
JP6458918B1 (en) Air conditioning system
WO2021117254A1 (en) Spot cooler device
CN206222537U (en) A kind of double-compressor pipeline structure
WO2015038745A1 (en) Carbon dioxide refrigeration system with a multi-way valve
CN203771814U (en) Evaporator for refrigerator and refrigerator
CN204177010U (en) Refrigerator
CN203116365U (en) Novel evaporator for refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160428

R150 Certificate of patent or registration of utility model

Ref document number: 5938821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350