JP3336628B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JP3336628B2
JP3336628B2 JP13894192A JP13894192A JP3336628B2 JP 3336628 B2 JP3336628 B2 JP 3336628B2 JP 13894192 A JP13894192 A JP 13894192A JP 13894192 A JP13894192 A JP 13894192A JP 3336628 B2 JP3336628 B2 JP 3336628B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
evaporator
pipe
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13894192A
Other languages
Japanese (ja)
Other versions
JPH05332641A (en
Inventor
順一郎 田中
雅之 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP13894192A priority Critical patent/JP3336628B2/en
Publication of JPH05332641A publication Critical patent/JPH05332641A/en
Application granted granted Critical
Publication of JP3336628B2 publication Critical patent/JP3336628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は、冷凍装置に関し、さ
らに詳しくは多数の冷媒パスを有する蒸発器を備えた冷
凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus, and more particularly to a refrigerating apparatus having an evaporator having a plurality of refrigerant paths.

【0002】[0002]

【従来の技術】近年、冷凍装置における蒸発器のコンパ
クト化、冷凍空調機器の省冷媒のために熱交換器におけ
る伝熱管の細径化が求められるようになってきている。
2. Description of the Related Art In recent years, it has been required to reduce the size of a heat transfer tube in a heat exchanger in order to reduce the size of an evaporator in a refrigerating apparatus and save refrigerant in a refrigerating and air-conditioning apparatus.

【0003】ところで、伝熱管の製造性、蒸発器の製作
性という観点からすると、伝熱管の外径を3mm程度と
するのがコストパフォーマンス的に限界である。なお、
従来多用されている伝熱管は9.52mm程度の外径を
有するものとされてきている。
By the way, from the viewpoint of manufacturability of the heat transfer tube and manufacturability of the evaporator, the outer diameter of the heat transfer tube is limited to about 3 mm in terms of cost performance. In addition,
Conventionally, a heat transfer tube often used has an outer diameter of about 9.52 mm.

【0004】上記したような要求から、外径3〜5mm
の伝熱管を使用しようとすると、管径が小さくなった分
だけ冷媒側の圧力損失が増大して、熱交換器性能が低下
することとなるため、冷媒パス数を4〜10倍程度に増
大させる必要が生じる。
[0004] From the above requirements, the outer diameter is 3 to 5 mm.
If the heat transfer tube is used, the pressure loss on the refrigerant side increases due to the decrease in the tube diameter, and the heat exchanger performance decreases, so the number of refrigerant paths increases to about 4 to 10 times. Need to be done.

【0005】上記したような理由から蒸発器における冷
媒パス数を増大させると、冷媒分配機能に優れた分流器
を使用したとしても、現状では各冷媒パスへの冷媒の均
等分配が極めて困難になり、蒸発器における冷媒の偏流
が生じて性能低下を余儀なくされる。
[0005] If the number of refrigerant paths in the evaporator is increased for the reasons described above, it is extremely difficult at present to evenly distribute the refrigerant to each refrigerant path even if a flow divider having an excellent refrigerant distribution function is used. In addition, the refrigerant drifts in the evaporator, and the performance is inevitably reduced.

【0006】また、蒸発器においては、該蒸発器を流通
する風速分布が不均一となって偏流が生じる場合がある
が、各冷媒パスの配列によって偏流を防止しようとする
と、冷媒パス数の増加により1冷媒パス当たりの伝熱管
本数が減少することから、伝熱管の配列による対応では
偏流防止ができなくなるという不具合が生ずる。
Further, in the evaporator, there is a case where the wind speed distribution flowing through the evaporator becomes non-uniform and a drift occurs. However, if the arrangement of the refrigerant paths prevents the drift, the number of the refrigerant paths increases. As a result, the number of heat transfer tubes per refrigerant path is reduced, so that there is a problem that it is not possible to prevent the drift by using the arrangement of the heat transfer tubes.

【0007】一方、蒸発器における冷媒偏流の熱交換性
能に及ぼす影響を考察すると、蒸発器における熱交換能
力は、湿り状態ではほぼ等しい値を示すのに対して乾き
状態では能力低下が著しいという事実があり、冷媒パス
において冷媒偏流が生ずると、各冷媒パスの出口側にお
いて合流後の温度より高い温度となる冷媒パスが存在す
ることとなるため(即ち、乾き状態の冷媒パスが存在す
ることとなるため)、熱交換能力の低下が避けられない
こととなる。従って、この能力低下分を補償するために
は蒸発器を大型化する必要が生ずることとなる。
On the other hand, considering the influence of the refrigerant drift on the heat exchange performance in the evaporator, the fact that the heat exchange capacity in the evaporator shows almost the same value in the wet state, but the decrease in the capacity is remarkable in the dry state. When a refrigerant drift occurs in the refrigerant path, there is a refrigerant path having a temperature higher than the temperature after merging at the outlet side of each refrigerant path (that is, a refrigerant path in a dry state exists. ), A decrease in heat exchange capacity is inevitable. Therefore, it is necessary to increase the size of the evaporator in order to compensate for the reduced capacity.

【0008】なお、ヒートポンプ式冷凍装置に、冷房サ
イクル・暖房サイクル共に吸入管となる管路を形成する
熱交換チューブを備えた熱交換器形受液器を付設して、
蒸発器の出口冷媒を湿り加減となすとともに、蒸発器か
ら圧縮機に供給される吸入ガスを高温液冷媒と熱交換さ
せて圧縮機の湿り運転を回避するようにしたものが提案
されている(例えば、実開昭50ー67463号公報参
照)。
[0008] The heat pump type refrigerating apparatus is provided with a heat exchanger type receiver having a heat exchange tube which forms a pipe which serves as a suction pipe for both the cooling cycle and the heating cycle.
There has been proposed a method in which the refrigerant at the outlet of the evaporator is adjusted to be wet and the suction gas supplied from the evaporator to the compressor is exchanged with the high-temperature liquid refrigerant to avoid the wet operation of the compressor ( For example, see Japanese Utility Model Laid-Open No. 50-67463).

【0009】[0009]

【発明が解決しようとする課題】ところが、上記公知例
のものの場合、上記したように極めて多数の冷媒パス数
(例えば、従来例の4〜10倍の冷媒パス数)を有する
蒸発器を用いた場合に生ずるであろう上記不具合(即
ち、各冷媒パスへの冷媒均等分配の困難さ)等について
は全く考慮されておらず、しかも吸入ガスと液冷媒とを
熱交換させるための熱交換器の構成についても具体的に
開示されていない。
However, in the case of the above-mentioned known example, as described above, an evaporator having an extremely large number of refrigerant paths (for example, four to ten times the number of refrigerant paths in the conventional example) is used. No consideration is given to the above-mentioned problems that may occur in such a case (that is, difficulty in uniformly distributing the refrigerant to each refrigerant path), and the heat exchanger for exchanging heat between the suction gas and the liquid refrigerant is not considered. The configuration is not specifically disclosed.

【0010】つまり、極めて多数の冷媒パス数を有する
蒸発器を用いた冷凍装置において、蒸発器(換言すれ
ば、冷凍装置自体)の小型化を図りつつ、冷媒偏流が生
じた場合であっても冷凍能力が最大限に得られるように
するという課題を解決すべき方途については開示されて
いない。
That is, in a refrigerating apparatus using an evaporator having an extremely large number of refrigerant paths, even if a refrigerant drift occurs while reducing the size of the evaporator (in other words, the refrigerating apparatus itself). It does not disclose how to solve the problem of maximizing refrigeration capacity.

【0011】本願発明は、上記の点に鑑みてなされたも
ので、極めて多数の冷媒パス数を有する蒸発器の冷凍能
力を最大限に生かしつつ、蒸発器の小型化ひいては冷凍
装置の小型化を図ることを目的とするものである。
The present invention has been made in view of the above points, and has been made to reduce the size of an evaporator and, consequently, the size of a refrigeration system while maximizing the refrigeration capacity of an evaporator having an extremely large number of refrigerant paths. The purpose is to achieve it.

【0012】[0012]

【課題を解決するための手段】請求項1の発明では、上
記課題を解決するための手段として、図面に示すよう
に、圧縮機1、凝縮器として作用する熱交換器3あるい
は8、膨張機構4あるいは6および蒸発器として作用し
且つ多数の冷媒パスを有する熱交換器8あるいは3を備
えた冷凍装置において、前記膨張機構4あるいは6を、
前記熱交換器3あるいは8における各冷媒パスの出口側
冷媒が湿り状態となるように設定するとともに、内管と
なる吸入管14と外管となる高温液冷媒管15とからな
る二重管構造の液ーガス熱交換器13を付設し且つ冷媒
流量をG(kg/h)、二重管長さをL(mm)、外管
の内径をD0(mm)、内管の外径Di(mm)とする
時、1.1(G/Di)0.58・L0.33≦Do−Di≦
0.33Diとなしている。
According to the first aspect of the present invention, as a means for solving the above problems, as shown in the drawings, a compressor 1, a heat exchanger 3 or 8 acting as a condenser, an expansion mechanism. In a refrigerating apparatus including a heat exchanger 4 or 6 and a heat exchanger 8 or 3 having a plurality of refrigerant paths, the expansion mechanism 4 or 6 includes:
A double-pipe structure including a suction pipe 14 serving as an inner pipe and a high-temperature liquid refrigerant pipe 15 serving as an outer pipe, in which the outlet-side refrigerant of each refrigerant path in the heat exchanger 3 or 8 is set to be in a wet state. And the refrigerant flow rate is G (kg / h), the length of the double pipe is L (mm), the inner diameter of the outer pipe is D 0 (mm), and the outer diameter of the inner pipe is Di (mm). ), 1.1 (G / Di) 0.58 · L 0.33 ≤ Do-Di ≤
0.33 Di.

【0013】[0013]

【作用】請求項1の発明では、上記手段によって次のよ
うな作用が得られる。
According to the first aspect of the present invention, the following effects can be obtained by the above means.

【0014】即ち、極めて多数の冷媒パス数を有する蒸
発器を使用した場合であっても、蒸発器出口冷媒を湿り
状態とすることにより、蒸発器としての能力を最大限に
活用できるとともに、液ーガス熱交換器13によって蒸
発器出口冷媒が過熱され、圧縮機1への液バックが防止
できる。
That is, even when an evaporator having an extremely large number of refrigerant paths is used, by making the evaporator outlet refrigerant wet, the ability of the evaporator can be maximized, The refrigerant at the evaporator outlet is overheated by the gas heat exchanger 13, so that the liquid back to the compressor 1 can be prevented.

【0015】しかも、 1.1(G/Di)0.58・L0.33≦Do−Di≦0.33Di としたことにより、熱貫流率が向上し且つ圧力損失が低
減される。
Moreover, by setting 1.1 (G / Di) 0.58 · L 0.33 ≦ Do−Di ≦ 0.33Di, the heat transmission coefficient is improved and the pressure loss is reduced.

【0016】[0016]

【発明の効果】請求項1の発明によれば、圧縮機1、凝
縮器として作用する熱交換器3あるいは8、膨張機構4
あるいは6および蒸発器として作用し且つ多数の冷媒パ
スを有する熱交換器8あるいは3を備えた冷凍装置にお
いて、前記膨張機構4あるいは6を、前記熱交換器3あ
るいは8における各冷媒パスの出口側冷媒が湿り状態と
なるように設定するとともに、内管となる吸入管14と
外管となる高温液冷媒管15とからなる二重管構造の液
ーガス熱交換器13を付設し且つ冷媒流量をG(kg/
h)、二重管長さをL(mm)、外管の内径をD0(m
m)、内管の外径Di(mm)とする時、1.1(G/
Di)0.58・L0.33≦Do−Di≦0.33Diとなし
て、極めて多数の冷媒パス数を有する蒸発器を使用した
場合であっても、蒸発器出口冷媒を湿り状態とすること
により、蒸発器としての能力を最大限に活用できるとと
もに、液ーガス熱交換器13によって蒸発器出口冷媒が
過熱され、圧縮機1への液バックが防止できるようにし
たので、蒸発器として作用する熱交換器3あるいは8お
よび液ーガス熱交換器13のコンパクト化を図ることが
できるという優れた効果がある。しかも、D0−Diを
最適範囲に設定したことにより、熱貫流率の向上および
圧力損失の低減も図れるという効果もある。
According to the first aspect of the present invention, the compressor 1, the heat exchanger 3 or 8 acting as a condenser, and the expansion mechanism 4
Alternatively, in the refrigerating apparatus provided with the heat exchanger 8 or 3 having a large number of refrigerant paths and acting as an evaporator, the expansion mechanism 4 or 6 is connected to an outlet side of each refrigerant path in the heat exchanger 3 or 8. In addition to setting the refrigerant to be in a wet state, a liquid-gas heat exchanger 13 having a double pipe structure including a suction pipe 14 serving as an inner pipe and a high-temperature liquid refrigerant pipe 15 serving as an outer pipe is provided, and the flow rate of the refrigerant is reduced. G (kg /
h), the length of the double pipe is L (mm), and the inner diameter of the outer pipe is D 0 (m
m), when the outer diameter of the inner tube is Di (mm), 1.1 (G /
Di) Even if an evaporator having an extremely large number of refrigerant paths is used by setting 0.58 · L 0.33 ≦ Do−Di ≦ 0.33Di, the evaporator outlet refrigerant is made to be in a wet state, thereby evaporating. The liquid-gas heat exchanger 13 allows the refrigerant at the outlet of the evaporator to be overheated and prevents the liquid from flowing back to the compressor 1, so that the heat exchanger acting as an evaporator can be used. There is an excellent effect that 3 or 8 and the liquid-gas heat exchanger 13 can be made compact. Moreover, by setting D 0 -Di to the optimum range, there is also an effect that the heat transmission coefficient can be improved and the pressure loss can be reduced.

【0017】[0017]

【実施例】以下、添付の図面を参照して、本願発明の幾
つかの好適な実施例を説明する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0018】図1および図2には、本願発明の実施例1
にかかる冷凍装置が示されている。本実施例の冷凍装置
は、圧縮機1、四路切換弁2、冷房運転時に凝縮器とし
て作用し、暖房運転時に蒸発器として作用する熱源側熱
交換器3、逆止弁5を併設してなる暖房用膨張機構4、
逆止弁7を併設してなる冷房用膨張機構6および冷房運
転時に蒸発器として作用し、暖房運転時に凝縮器として
作用する利用側熱交換器8を順次接続して構成された冷
媒サイクルを有している。符号9は熱源側熱交換器3に
付設されたヘッダー、10は熱源側熱交換器3に付設さ
れた分流器、11は利用側熱交換器8に付設された分流
器、12は利用側熱交換器8に付設されたヘッダーであ
る。なお、この冷媒サイクルにおいては、四路切換弁2
の切換作動により、冷房運転時には実線矢印で示す方向
に、暖房運転時には点線矢印で示す方向に冷媒が流通せ
しめられることとなっている。
FIGS. 1 and 2 show a first embodiment of the present invention.
Is shown. The refrigerating apparatus according to the present embodiment includes a compressor 1, a four-way switching valve 2, a heat source side heat exchanger 3 acting as a condenser during a cooling operation and acting as an evaporator during a heating operation, and a check valve 5. Heating expansion mechanism 4,
The refrigerant cycle includes a cooling expansion mechanism 6 provided with a check valve 7 and a use-side heat exchanger 8 acting as an evaporator during cooling operation and as a condenser during heating operation. are doing. Reference numeral 9 denotes a header attached to the heat source side heat exchanger 3, 10 denotes a shunt attached to the heat source side heat exchanger 3, 11 denotes a shunt attached to the use side heat exchanger 8, 12 denotes use side heat This is a header attached to the exchange 8. In this refrigerant cycle, the four-way switching valve 2
Is switched in the direction indicated by the solid line arrow during the cooling operation, and in the direction indicated by the dotted line arrow during the heating operation.

【0019】本実施例の場合、前記熱源側熱交換器3お
よび利用側熱交換器8は、極めて多数(本実施例の場
合、9本)の冷媒パスを備えて構成されている。従っ
て、分流器10,11の冷媒分配性能を最大限に向上さ
せたとしても、各冷媒パスへの冷媒均等分配が不可能と
なっている。そこで、本実施例においては、熱源側熱交
換器3および利用側熱交換器8を蒸発器として作用させ
ている場合には、それらの出口冷媒が湿り状態となるよ
うに、暖房用膨張機構4および冷房用膨張機構6の減圧
量が設定されている。このようにしたことにより、熱源
側熱交換器3および利用側熱交換器8にたとえ冷媒偏流
が生じたとしても、蒸発器としての能力が最大限に確保
できることとなる(換言すれば、蒸発器のコンパクト化
が図れる)。
In the case of the present embodiment, the heat source side heat exchanger 3 and the use side heat exchanger 8 are provided with an extremely large number (in this embodiment, nine) of refrigerant paths. Therefore, even if the refrigerant distribution performance of the flow splitters 10 and 11 is maximized, it is impossible to distribute refrigerant evenly to each refrigerant path. Therefore, in the present embodiment, when the heat source side heat exchanger 3 and the use side heat exchanger 8 are operated as evaporators, the heating expansion mechanism 4 is operated so that the outlet refrigerant thereof becomes wet. In addition, the pressure reduction amount of the cooling expansion mechanism 6 is set. By doing so, even if a refrigerant drift occurs in the heat source side heat exchanger 3 and the use side heat exchanger 8, the capacity as an evaporator can be secured to the maximum (in other words, the evaporator). Can be made more compact).

【0020】しかして、本実施例の冷凍装置には、内管
となる吸入管14と外管となる高温液冷媒管15とから
なる二重管構造の液ーガス熱交換器13が付設されてい
る。該液ーガス熱交換器13は、図2に示すように、冷
媒流量をG(kg/h)、二重管長さをL(mm)、外
管の内径をD0(mm)、内管の外径Di(mm)とす
る時、 1.1(G/Di)0.58・L0.33≦Do−Di≦0.33Di となるように寸法設定されている。
The refrigeration apparatus of this embodiment is provided with a liquid-gas heat exchanger 13 having a double-pipe structure including a suction pipe 14 serving as an inner pipe and a high-temperature liquid refrigerant pipe 15 serving as an outer pipe. I have. As shown in FIG. 2, the liquid-gas heat exchanger 13 has a refrigerant flow rate of G (kg / h), a double pipe length of L (mm), an outer pipe inner diameter of D 0 (mm), and an inner pipe of the inner pipe. When the outer diameter is set to Di (mm), dimensions are set such that 1.1 (G / Di) 0.58 · L 0.33 ≤ Do-Di ≤ 0.33 Di.

【0021】上記寸法設定は、熱貫流率および液側圧力
損失を考慮すると、下記のようにして決定される。
The above-mentioned dimension setting is determined as follows in consideration of the heat transmission coefficient and the liquid-side pressure loss.

【0022】吸入管14の管内熱伝達率(即ち、ガス側
熱伝達率)αoおよび吸入管14の管外熱伝達率(即
ち、液側熱)αiは次式で与えられる。
The in-tube heat transfer coefficient (ie, gas side heat transfer coefficient) αo of the suction pipe 14 and the out-of-tube heat transfer coefficient (ie, liquid side heat) αi of the suction pipe 14 are given by the following equations.

【0023】 αo≒560/(Do−Di)・(G/Di)0.8 αi≒850/Di・(G/Di)0.8 そして、αo≧2αiであれば熱交換器として性能上問
題とならないところから、上記2式から Do−Di≦0.33Di が得られる。
Αo ≒ 560 / (Do−Di) · (G / Di) 0.8 αi ≒ 850 / Di · (G / Di) 0.8 If αo ≧ 2αi, there is no problem in performance as a heat exchanger. From the above two equations, Do-Di ≦ 0.33Di is obtained.

【0024】一方、環状部(即ち、液側)の圧力損失Δ
Pは次式で与えられる。
On the other hand, the pressure loss Δ in the annular portion (ie, the liquid side)
P is given by the following equation.

【0025】 ΔP=0.64×10-2/(Do−Di)3・(G/Di)1.75・L そして、膨張機構の制御性より圧力損失ΔPは4kg/
cm2程度に抑えるのが望ましいところから、 Do−Di≧1.1(G/Di)0.58・L0.33 が得られる。
ΔP = 0.64 × 10 −2 / (Do−Di) 3 · (G / Di) 1.75 · L Further, from the controllability of the expansion mechanism, the pressure loss ΔP is 4 kg /
Since it is desirable to suppress the density to about cm 2 , Do-Di ≧ 1.1 (G / Di) 0.58 · L 0.33 is obtained.

【0026】従って、 1.1(G/Di)0.58・L0.33≦Do−Di≦0.33Di となるように設定するのが望ましいこととなるのであ
る。
Therefore, it is desirable to set 1.1 (G / Di) 0.58 · L 0.33 ≦ Do−Di ≦ 0.33Di.

【0027】上記のように構成したことにより、極めて
多数の冷媒パス数を有する蒸発器(換言すれば、冷房運
転時の利用側熱交換器8あるいは暖房運転時の熱源側熱
交換器3)を使用した場合であっても、蒸発器出口冷媒
を湿り状態とすることにより、蒸発器としての能力を最
大限に活用できるとともに、液ーガス熱交換器13によ
って蒸発器出口冷媒が過熱され、圧縮機1への液バック
が防止できることとなるのである。従って、蒸発器8
(あるいは3)および液ーガス熱交換器13のコンパク
ト化を図ることができることとなるのである。しかも、
0−Di(即ち、環状部の通路断面積)を最適範囲に
設定したことにより、熱貫流率の向上および圧力損失の
低減も図れるのである。
With the above configuration, the evaporator having an extremely large number of refrigerant paths (in other words, the use side heat exchanger 8 during the cooling operation or the heat source side heat exchanger 3 during the heating operation) is used. Even when used, by making the evaporator outlet refrigerant moist, the capacity of the evaporator can be maximized, and the evaporator outlet refrigerant is overheated by the liquid-gas heat exchanger 13 and the compressor The liquid back to 1 can be prevented. Therefore, the evaporator 8
(Or 3) and the liquid-gas heat exchanger 13 can be made more compact. Moreover,
By setting D 0 -Di (that is, the cross-sectional area of the passage of the annular portion) in the optimum range, it is possible to improve the heat transmission coefficient and reduce the pressure loss.

【0028】本願発明は、上記実施例の構成に限定され
るものではなく、発明の要旨を逸脱しない範囲において
適宜設計変更可能なことは勿論である。
The present invention is not limited to the configuration of the above-described embodiment, and it is needless to say that the design can be changed as appropriate without departing from the gist of the invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の実施例1にかかる冷凍装置の冷媒サ
イクル図である。
FIG. 1 is a refrigerant cycle diagram of a refrigeration apparatus according to Embodiment 1 of the present invention.

【図2】本願発明の実施例1にかかる冷凍装置における
液ーガス熱交換器の断面図である。
FIG. 2 is a cross-sectional view of the liquid-gas heat exchanger in the refrigeration apparatus according to the first embodiment of the present invention.

【符号の説明】 1は圧縮機、2は四路切換弁、3は熱源側熱交換器、
4,6は膨張機構、8は利用側熱交換器、9,12はヘ
ッダー、13は液ーガス熱交換器、14は吸入管、15
は高温冷媒管。
[Description of Signs] 1 is a compressor, 2 is a four-way switching valve, 3 is a heat source side heat exchanger,
4, 6 are expansion mechanisms, 8 is a use side heat exchanger, 9 and 12 are headers, 13 is a liquid-gas heat exchanger, 14 is a suction pipe, 15
Is a high-temperature refrigerant pipe.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25B 39/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) F25B 39/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機(1)、凝縮器として作用する熱
交換器(3あるいは8)、膨張機構(4あるいは6)お
よび蒸発器として作用し且つ多数の冷媒パスを有する熱
交換器(8あるいは3)を備えた冷凍装置であって、前
記膨張機構(4あるいは6)を、前記熱交換器(3ある
いは8)における各冷媒パスの出口側冷媒が湿り状態と
なるように設定するとともに、内管となる吸入管(1
4)と外管となる高温液冷媒管(15)とからなる二重
管構造の液ーガス熱交換器(13)を付設し且つ冷媒流
量をG(kg/h)、二重管長さをL(mm)、外管の
内径をD0(mm)、内管の外径Di(mm)とする
時、 1.1(G/Di)0.58・L0.33≦Do−Di≦0.33Di となしたことを特徴とする冷凍装置。
1. A compressor (1), a heat exchanger (3 or 8) acting as a condenser, an expansion mechanism (4 or 6) and a heat exchanger (8) acting as an evaporator and having multiple refrigerant paths. Or 3) a refrigerating apparatus comprising: the expansion mechanism (4 or 6) is set such that an outlet side refrigerant of each refrigerant path in the heat exchanger (3 or 8) is in a wet state; Inhalation pipe (1
4) A liquid-gas heat exchanger (13) having a double pipe structure comprising a high temperature liquid refrigerant pipe (15) serving as an outer pipe is provided, and the refrigerant flow rate is G (kg / h) and the double pipe length is L. (Mm), the inner diameter of the outer tube is D 0 (mm), and the outer diameter of the inner tube is Di (mm). 1.1 (G / Di) 0.58 · L 0.33 ≦ Do-Di ≦ 0.33Di A refrigeration system characterized by the following.
JP13894192A 1992-05-29 1992-05-29 Refrigeration equipment Expired - Fee Related JP3336628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13894192A JP3336628B2 (en) 1992-05-29 1992-05-29 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13894192A JP3336628B2 (en) 1992-05-29 1992-05-29 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH05332641A JPH05332641A (en) 1993-12-14
JP3336628B2 true JP3336628B2 (en) 2002-10-21

Family

ID=15233733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13894192A Expired - Fee Related JP3336628B2 (en) 1992-05-29 1992-05-29 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3336628B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3948475B2 (en) 2005-09-20 2007-07-25 ダイキン工業株式会社 Air conditioner
JP3982545B2 (en) 2005-09-22 2007-09-26 ダイキン工業株式会社 Air conditioner
KR100677934B1 (en) * 2006-05-09 2007-02-06 (주)뉴그린테크 Hot water production apparatus of heat pump
KR100952648B1 (en) * 2008-10-31 2010-04-13 (주) 삼영이엔지 Heat pump accumulating heat from air in water
KR101233209B1 (en) * 2010-11-18 2013-02-15 엘지전자 주식회사 Heat pump
WO2016017460A1 (en) * 2014-07-31 2016-02-04 三菱電機株式会社 Refrigerant distributor, heat exchanger, and refrigeration cycle apparatus

Also Published As

Publication number Publication date
JPH05332641A (en) 1993-12-14

Similar Documents

Publication Publication Date Title
US3866439A (en) Evaporator with intertwined circuits
US6688137B1 (en) Plate heat exchanger with a two-phase flow distributor
JP3056151B2 (en) Heat exchanger
US6536231B2 (en) Tube and shell heat exchanger for multiple circuit refrigerant system
EP1083395B1 (en) Combined evaporator/accumulator/suction line heat exchanger
US20160054038A1 (en) Heat exchanger and refrigeration cycle apparatus
EP0249472A2 (en) Refrigeration system with hot gas pre-cooler
JP2004286246A (en) Parallel flow heat exchanger for heat pump
US11885570B2 (en) Cooling system
JP3336628B2 (en) Refrigeration equipment
CN212006013U (en) Multi-split air conditioning system
JP2001099522A (en) Radiator for supercritical vapor compressing type freezing cycle
US11614260B2 (en) Heat exchanger for heat pump applications
JPH04332356A (en) Air conditioner
JP2903745B2 (en) Stacked refrigerant evaporator
JP2004332958A (en) Heat exchanger of air conditioner
JP2727754B2 (en) Ice making equipment
CN211716926U (en) Dry evaporator and air conditioning unit
JPH03158666A (en) Evaporator
JPH06129732A (en) Refrigerant condenser
WO2023203683A1 (en) Heat exchanger and air conditioning device
JPH07103609A (en) Heat exchanger for freezing cycle
JPH109718A (en) Air conditioner
JPS61101776A (en) Refrigerant flow branching device for heat exchanger
JP2000161806A (en) Heat pump apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees