JPH04332356A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH04332356A
JPH04332356A JP3014560A JP1456091A JPH04332356A JP H04332356 A JPH04332356 A JP H04332356A JP 3014560 A JP3014560 A JP 3014560A JP 1456091 A JP1456091 A JP 1456091A JP H04332356 A JPH04332356 A JP H04332356A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
pipe
branch
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3014560A
Other languages
Japanese (ja)
Other versions
JP2765243B2 (en
Inventor
Mari Sada
真理 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3014560A priority Critical patent/JP2765243B2/en
Publication of JPH04332356A publication Critical patent/JPH04332356A/en
Application granted granted Critical
Publication of JP2765243B2 publication Critical patent/JP2765243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/48Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow path resistance control on the downstream side of the diverging point, e.g. by an orifice

Abstract

PURPOSE:To flow ga-liquid two phase flow to each of dividing pipes of a refrigerant pipe in a multi-type air conditioner and to reduce a charging amount of refrigerant. CONSTITUTION:A plurality of branch pipes 9a,... for connecting an indoor electric expansion valve 6a,... and a utilization side heat exchanger 7a of each of indoor devices A are connected in parallel with a main pipe 9 of the refrigerant pipe to connect a compressor 1, a heat exchanger 3 at a heat source and an outdoor electric expansion valve 4 within an outdoor device X. A pressure reducing mechanism 20a,... are disposed near the branch part of each of the branch pipes 9a with the main pipe 9. With such an arrangement, the flow is changed to a liquid single phase flow at the main pipe 9, ga-liquid two-phase flow at the branch pipe so as to reduce an amount of refrigerant charging. Then, a degree of decreasing pressure of each of pressure reducing mechanisms 20a,... is lowered as a length of the branch pipe 9a is elongated more. As a capacity of the utilization side heat exchanger 7a is high, it is lowered, and as a diameter of the branch pipe 9a is high, its value is set high. With such an arrangement, a difference in pressure loss and a capacity difference at the utilization side heat exchanger are accommodated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、一台の室外ユニットに
対して複数の室内ユニットを互いに並列に接続した空気
調和装置に係り、特に、冷媒充填量の低減対策に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner in which a plurality of indoor units are connected in parallel to one outdoor unit, and particularly relates to measures for reducing the amount of refrigerant charged.

【0002】0002

【従来の技術】従来より、例えば実開平1―10266
1号公報に開示される如く、一台の室外ユニットに対し
て複数台の室内ユニットを配置し、室外ユニットの各機
器を主管により接続する一方、室内ユニットの各機器を
分岐管により接続し、主管に対して各分岐管を並列に接
続することにより、閉回路の冷媒回路を形成するように
したいわゆるマルチ形空気調和装置は公知の技術である
[Prior Art] Conventionally, for example, Utility Model Application Publication No. 1-10266
As disclosed in Publication No. 1, a plurality of indoor units are arranged for one outdoor unit, each device of the outdoor unit is connected by a main pipe, and each device of the indoor unit is connected by a branch pipe, A so-called multi-type air conditioner in which a closed refrigerant circuit is formed by connecting branch pipes in parallel to a main pipe is a well-known technology.

【0003】0003

【発明が解決しようとする課題】ところで、上記従来の
ようなマルチ形空気調和装置において、冷房運転時に各
室内ユニットにおける膨張弁直前の冷媒状態が均一であ
ることが望ましく、さらに、各利用側熱交換器が十分な
能力を発揮するためにはその冷媒状態がある一定の範囲
内に収まっている必要がある。このため、液管における
圧力損失をできるだけ小さくすべく、冷媒管を十分保温
シ―ルして、液冷媒単相で配管内を流通させる方式が一
般的に採られている。しかるに、近年、冷媒使用量を低
減させるべき要請が強いが、上記のように全ての配管内
を液単相流で流通させると、特にマルチ形空気調和装置
では配管長さが数10mにも及ぶために、冷媒充填量が
莫大になり、冷媒充填量を低減することが困難である。
[Problems to be Solved by the Invention] By the way, in the conventional multi-type air conditioner described above, it is desirable that the refrigerant state immediately before the expansion valve in each indoor unit be uniform during cooling operation, and furthermore, it is desirable to In order for the exchanger to exhibit sufficient capacity, the refrigerant condition must fall within a certain range. For this reason, in order to minimize the pressure loss in the liquid pipes, a method is generally adopted in which the refrigerant pipes are sufficiently heat-insulated and sealed, and a single phase of liquid refrigerant is allowed to flow through the pipes. However, in recent years, there has been a strong demand to reduce the amount of refrigerant used, but if a single-phase liquid flow is used in all piping as described above, the length of the piping can reach tens of meters, especially in multi-type air conditioners. Therefore, the amount of refrigerant charged becomes enormous, and it is difficult to reduce the amount of refrigerant charged.

【0004】一方、液側の主管内を気液二相流で流通さ
せることにより、冷媒充填量を低減することが考えられ
るが、上記のようなマルチ形空気調和装置の場合、主管
から分岐管に冷媒を分流させる際、二相流では気液比率
を一様に分配するつまりボイド率を一定に各分岐管に分
配するのは非常に困難であるため偏流を生じていた。特
殊な装置を必要とするという問題があった。
On the other hand, it is possible to reduce the amount of refrigerant charged by circulating a gas-liquid two-phase flow in the main pipe on the liquid side. When dividing the refrigerant into two-phase flow, it is very difficult to distribute the gas-liquid ratio uniformly, that is, to distribute the void ratio uniformly to each branch pipe, resulting in uneven flow. There was a problem that special equipment was required.

【0005】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、主管では液冷媒のみの単相流とする
一方、分岐管では気液二相流とし、さらに各室内ユニッ
トにおける冷媒状態を均一化させることにより、空調機
能を良好に維持しながら、冷媒充填量の低減を図ること
にある。
[0005] The present invention has been made in view of the above, and its purpose is to provide a single-phase flow of only liquid refrigerant in the main pipe, while a gas-liquid two-phase flow in the branch pipe, and to provide a gas-liquid two-phase flow in each indoor unit. The objective is to reduce the amount of refrigerant charged while maintaining good air conditioning function by uniformizing the refrigerant state.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
、請求項1の発明が講じた手段は、図1に示すように、
圧縮機(1)、熱源側熱交換器(3)及び室外減圧弁(
4)が配設された室外ユニット(X)に対して、室内減
圧弁(6a)及び利用側熱交換器(7a)を有する複数
台の室内ユニット(A),…を配置し、上記室外ユニッ
ト(X)の各機器(1),(3),(4)を冷媒配管の
主管(9)により順次接続する一方、上記各室内ユニッ
ト(A),…の各機器(6a)及び(7a),…をそれ
ぞれ冷媒配管の分岐管(9a),…により接続し、該各
分岐管(9a),…を上記主管(9)に対して互いに並
列に接続してなる冷媒回路(10)を備えた空気調和装
置を前提とする。
[Means for Solving the Problem] In order to achieve the above object, the means taken by the invention of claim 1 are as shown in FIG.
Compressor (1), heat source side heat exchanger (3), and outdoor pressure reducing valve (
4), a plurality of indoor units (A), ... each having an indoor pressure reducing valve (6a) and a user-side heat exchanger (7a) are arranged for the outdoor unit (X) in which the above-mentioned outdoor unit is installed. Each device (1), (3), (4) of (X) is connected sequentially through the main pipe (9) of the refrigerant piping, while each device (6a) and (7a) of each indoor unit (A), ... , ... are connected by branch pipes (9a), ... of refrigerant piping, respectively, and each of the branch pipes (9a), ... is connected in parallel to the main pipe (9). It is assumed that an air conditioner is installed.

【0007】そして、上記各分岐管(9a),…の上記
主管(9)との液側分岐部付近には各分岐管(9a),
…への冷媒を減圧するための減圧機構(20a),…が
介設され、該各減圧機構(20a),…の減圧度を当該
分岐管(9a),…の長さが長いほど低く設定する構成
としたものである。
[0007]The branch pipes (9a), . . . have respective branch pipes (9a), .
A pressure reducing mechanism (20a),... is provided to reduce the pressure of the refrigerant to..., and the degree of pressure reduction of each pressure reducing mechanism (20a),... is set lower as the length of the branch pipe (9a),... is longer. It is configured to do this.

【0008】請求項2の発明の講じた手段は、上記請求
項1の発明において、各減圧機構(20a),…の減圧
度を当該室内ユニット(A),…の利用側熱交換器(7
a),…の容量が大きいほど低く設定したものである。
The means taken by the invention of claim 2 is that in the invention of claim 1, the degree of pressure reduction of each pressure reducing mechanism (20a), ... is adjusted to the user side heat exchanger (7) of the indoor unit (A), ...
The larger the capacity of a), . . . is, the lower the value is set.

【0009】請求項3の発明の講じた手段は、上記請求
項1又は2に発明において、各減圧機構(20a),…
の減圧度を当該分岐管(9a),…の径が大きいほど高
く設定したものである。
The means taken by the invention of claim 3 is that in the invention of claim 1 or 2, each pressure reducing mechanism (20a),...
The degree of pressure reduction is set higher as the diameter of the branch pipe (9a), . . . becomes larger.

【0010】0010

【作用】以上の構成により、請求項1の発明では、空気
調和装置の冷房運転時、熱源側熱交換器(3)で凝縮液
化された冷媒が主管(9)内を液単相流で流れた後、各
分岐管(9a),…に分岐して、各室内ユニット(A)
,…に流れる。そのとき、各分岐管(9a)〜(9c)
と主管(9)との分岐部に減圧機構(20a),…が設
けられているので、液冷媒の一部が蒸発液化し、その後
気液二相流で流れる。したがって、空気調和装置全体の
冷媒充填量が低減することになる。
[Operation] With the above configuration, in the invention of claim 1, during the cooling operation of the air conditioner, the refrigerant condensed and liquefied in the heat source side heat exchanger (3) flows in the main pipe (9) in a liquid single-phase flow. After that, it branches into each branch pipe (9a),... and connects each indoor unit (A).
, flows to... At that time, each branch pipe (9a) to (9c)
Since the pressure reducing mechanism (20a), . Therefore, the amount of refrigerant charged in the entire air conditioner is reduced.

【0011】その場合、分岐管(9a),…の長さが長
いほど圧力損失が大きくなり、特に気液二相流の場合、
圧力損失の差によって各室内減圧弁(6a),…直前に
おける圧力等の冷媒状態が大きく変化するが、本発明で
は、各減圧機構(20a),…の減圧度が当該分岐管(
9a),…の長さが長いほど低く設定されているので、
各分岐管(9a),…における圧力損失の差が補償され
、各室内減圧弁(6a),…直前の冷媒圧力が略均一化
されて、各利用側熱交換器(7a),…の能力が適正に
確保される。したがって、分岐管(9a),…の配管長
に差がある場合にも、配管径を微細に変更することなく
、減圧機構(9a),…の減圧度の設定により、各室内
ユニット(A),…における空調機能を良好に維持しな
がら、冷媒充填量の低減が可能となる。
[0011] In that case, the longer the length of the branch pipes (9a),...
Although the refrigerant state such as the pressure immediately before each indoor pressure reducing valve (6a), etc. changes greatly due to the difference in pressure loss, in the present invention, the degree of pressure reduction in each pressure reducing mechanism (20a),...
9a) The longer the length of..., the lower the setting is, so
The difference in pressure loss in each branch pipe (9a), ... is compensated for, the refrigerant pressure immediately before each indoor pressure reducing valve (6a), ... is approximately equalized, and the capacity of each user-side heat exchanger (7a), ... will be properly secured. Therefore, even if there is a difference in the length of the branch pipes (9a), ..., each indoor unit (A) ,... while maintaining good air conditioning function, it is possible to reduce the amount of refrigerant charged.

【0012】請求項2の発明では、各室内ユニット(A
),…の利用側熱交換器(7a),…の容量に差がある
場合、容量が大きいほど多くの冷媒循環量が必要となる
が、当該利用側熱交換器(7a),…の容量が大きいほ
ど各減圧機構(9a),…の減圧度が低く設定されてい
るので、利用側熱交換器(7a),…の能力が適正に確
保され、各室内ユニット(A),…における空調能力が
良好に維持されることになる。
[0012] In the invention of claim 2, each indoor unit (A
),... If there is a difference in the capacity of the user-side heat exchanger (7a), ..., the larger the capacity, the more refrigerant circulation is required, but the capacity of the user-side heat exchanger (7a), ... The larger the value, the lower the degree of pressure reduction of each pressure reduction mechanism (9a), ... is set, so the capacity of the user side heat exchanger (7a), ... is properly secured, and the air conditioning in each indoor unit (A), ... Capacity will be maintained well.

【0013】請求項3の発明では、分岐管(9a),…
の径が大きくなるほど減圧機構(20a),…の減圧度
が高く設定されているので、径の増大に応じて低下する
各分岐管(9a),…の圧力損失の差が補償され、径の
変更による圧力損失の調整と相俟って、室内減圧弁(6
a),…直前の冷媒圧力がより微細に均一化され、円滑
な運転が確保されることになる。
[0013] In the invention of claim 3, the branch pipes (9a),...
The degree of pressure reduction in the pressure reducing mechanism (20a),... is set higher as the diameter of the branch tube (9a) increases. In addition to adjusting the pressure loss by changing the indoor pressure reducing valve (6
a),...The refrigerant pressure just before is made more finely uniform, and smooth operation is ensured.

【0014】[0014]

【実施例】以下、本発明の実施例について、図1〜図4
に基づき説明する。
[Example] The following is an example of the present invention in FIGS. 1 to 4.
The explanation will be based on.

【0015】図1は実施例に係る空気調和装置の冷媒配
管系統を示し、一台の室外ユニット(X)に対して三台
の室内ユニット(A)〜(C)が並列に接続されたマル
チ形に構成されている。上記室外ユニット(X)には、
吸入した冷媒を圧縮して吐出する圧縮機(1)と、冷房
運転時には図中実線のごとく、暖房運転時には図中破線
のごとく接続が切換わる四路切換弁(2)と、冷房運転
時には凝縮器として、暖房運転時には蒸発器として機能
する熱源側熱交換器(3)と、暖房運転時に冷媒を減圧
する室外減圧弁として機能する室外電動膨張弁(4)と
、液冷媒を貯溜するためのレシ―バ(5)と、上記圧縮
機(1)に吸入される冷媒中の液冷媒を除去するアキュ
ムレ―タ(8)とが主要機器として配置されており、上
記各機器は冷媒配管の主管(9)により順次直列に接続
されている。
FIG. 1 shows a refrigerant piping system of an air conditioner according to an embodiment, in which three indoor units (A) to (C) are connected in parallel to one outdoor unit (X). organized into shapes. The above outdoor unit (X) includes:
A compressor (1) compresses and discharges the sucked refrigerant, a four-way switching valve (2) that switches connections as shown in the solid line in the figure during cooling operation and as shown in the broken line in the figure during heating operation, and condenses during cooling operation. They include a heat source side heat exchanger (3) that functions as an evaporator during heating operation, an outdoor electric expansion valve (4) that functions as an outdoor pressure reducing valve that reduces the pressure of the refrigerant during heating operation, and a A receiver (5) and an accumulator (8) for removing liquid refrigerant from the refrigerant sucked into the compressor (1) are arranged as main equipment, and each of the above equipment is connected to the main pipe of the refrigerant pipe. (9) are connected in series.

【0016】一方、上記各室内ユニット(A)〜(C)
には、互いに異なる容量を有し、冷房運転時には蒸発器
として、暖房運転時には凝縮器として機能する利用側熱
交換器(7a)〜(7c)と、冷房運転時には冷媒を減
圧し、暖房運転時には冷媒流量を調節する室内減圧弁と
しての室内電動膨張弁(6a)〜(6c)とが設けられ
ており、上記各室内ユニット(A)〜(C)の各機器(
6a)〜(6c),(7a)〜(7c)は、それぞれ冷
媒配管の分岐管(9a)〜(9c)により接続されてお
り、さらに、各分岐管(9a)〜(9c)は、上記主管
(9)の両端に設けられた液分流器(14)及びガス分
流器(15)間に互いに並列に接続されている。すなわ
ち、上記空気調和装置の各主要機器(1)〜(8)は、
主管(9)及び分岐管(9a)〜(9c)により、閉回
路を形成するように順次接続され、熱移動を生じさせる
ように冷媒が循環する主冷媒回路(10)が構成されて
いる。
On the other hand, each of the above indoor units (A) to (C)
The use side heat exchangers (7a) to (7c) have different capacities and function as evaporators during cooling operation and as condensers during heating operation. Indoor electric expansion valves (6a) to (6c) are provided as indoor pressure reducing valves that adjust the refrigerant flow rate, and each of the equipment (
6a) to (6c), (7a) to (7c) are connected by branch pipes (9a) to (9c) of the refrigerant piping, respectively, and each branch pipe (9a) to (9c) is connected to the above-mentioned branch pipes (9a) to (9c). A liquid flow divider (14) and a gas flow divider (15) provided at both ends of the main pipe (9) are connected in parallel to each other. That is, each main equipment (1) to (8) of the air conditioner is as follows:
The main pipe (9) and branch pipes (9a) to (9c) are connected in sequence to form a closed circuit, and constitute a main refrigerant circuit (10) in which refrigerant circulates to cause heat transfer.

【0017】ここで、本発明の特徴として、上記各分岐
管(9a)〜(9c)の液分流器(14)からの分岐部
(冷房運転時における液冷媒の入口部)には、各々各分
岐管(9a)〜(9c)の長さ,径及び各利用側熱交換
器(7a)〜(7c)の容量に対応した減圧度を有する
減圧機構としてのキャピラリチュ―ブ(20a)〜(2
0c)が設けられている。該各キャピラリチュ―ブ(2
0a),(20b),(20c)は、冷媒配管の主管(
9)の液側端部に設けられた液分流器(14)から分岐
する分岐管(9a),(9b),(9c)の液冷媒の冷
房運転時における入口部に設けられていて、各キャピラ
リチュ―ブ(20a),(20b),(20c)の内径
に応じて、その減圧度が各室内ユニット(A),(B)
,(C)の利用側熱交換器(7a),(7b),(7c
)の容量、各分岐管(9a),(9b),(9c)の径
及び長さに対し、下記表1のように設定されている。
[0017] Here, as a feature of the present invention, each branch pipe (9a) to (9c) is connected to the branch part (the inlet part of the liquid refrigerant during cooling operation) from the liquid flow divider (14), respectively. Capillary tubes (20a) to (20a) to (20a) as pressure reduction mechanisms having a degree of pressure reduction corresponding to the length and diameter of branch pipes (9a) to (9c) and the capacity of each user-side heat exchanger (7a) to (7c). 2
0c) is provided. Each capillary tube (2
0a), (20b), and (20c) are the main pipes (
The liquid refrigerant is provided at the inlet portion of the branch pipes (9a), (9b), and (9c) branching from the liquid flow divider (14) provided at the liquid side end of the liquid refrigerant during cooling operation. Depending on the inner diameter of the capillary tubes (20a), (20b), and (20c), the degree of pressure reduction varies between each indoor unit (A) and (B).
, (C) user-side heat exchangers (7a), (7b), (7c)
), the diameter and length of each branch pipe (9a), (9b), (9c) are set as shown in Table 1 below.

【0018】[0018]

【表1】[Table 1]

【0019】ただし、上記表1において、L,LM,M
,HM,Hは減圧度を示し、低い側から順に記載されて
いる。すなわち、上記表1に示すように、各キャピラリ
チュ―ブ(20a),(20b),(20c)の減圧度
は、分岐管(9a)〜(9c)の長さが長いほど低く、
利用側熱交換器(7a)〜(7c)の容量が大きいほど
低く、かつ分岐管(9a)〜(9c)の径が大きいほど
高く設定されている。
However, in Table 1 above, L, LM, M
, HM, H indicate the degree of reduced pressure, and are listed in order from the lowest side. That is, as shown in Table 1 above, the degree of pressure reduction of each capillary tube (20a), (20b), (20c) is lower as the length of the branch pipes (9a) to (9c) is longer;
The larger the capacity of the utilization side heat exchangers (7a) to (7c) is, the lower the value is, and the larger the diameter of the branch pipes (9a) to (9c) is, the higher the value is set.

【0020】したがって、上記実施例では、空気調和装
置の冷房運転時、圧縮機(1)から吐出された冷媒が冷
媒配管の主管(9)を流れ、熱源側熱交換器(3)で凝
縮液化され、レシ―バ(5)に貯溜された後、液分流器
(14)から各分岐管(9a)〜(9c)に分岐して各
室内ユニット(A)〜(C)に流れる。そして、各電動
膨張弁(6a)〜(6c)で絞られて各利用側熱交換器
(7a)〜(7c)で蒸発した後、ガス分流器(15)
で合流して室外ユニット(X)に流入し、アキュムレ―
タ(8)を経て圧縮機(1)に戻る。この循環を繰り返
すことにより、各利用側熱交換器(7a)〜(7c)で
室内空気との熱交換により吸収した熱を熱源側熱交換器
(3)で室外空気に放出して、各室内の冷房を行う。
Therefore, in the above embodiment, during cooling operation of the air conditioner, the refrigerant discharged from the compressor (1) flows through the main pipe (9) of the refrigerant piping, and is condensed and liquefied in the heat source side heat exchanger (3). After being stored in the receiver (5), the liquid is branched from the liquid flow divider (14) to each of the branch pipes (9a) to (9c) and flows to each of the indoor units (A) to (C). Then, after being throttled by each electric expansion valve (6a) to (6c) and evaporated by each use-side heat exchanger (7a) to (7c), the gas flow divider (15)
and flows into the outdoor unit (X), accumulator.
It returns to the compressor (1) via the compressor (8). By repeating this circulation, the heat absorbed through heat exchange with the indoor air in each user side heat exchanger (7a) to (7c) is released to the outdoor air in the heat source side heat exchanger (3), and each indoor Perform air conditioning.

【0021】そのとき、上記各分岐管(9a)〜(9c
)の液分流器(14)との分岐部付近に、それぞれ各分
岐管(9a)〜(9c)への冷媒を減圧するための減圧
機構として機能するキャピラリチュ―ブ(20a)〜(
20c)が設けられているので、液分流器(14)まで
液単相流で流れてきた液冷媒の一部が蒸発液化して、そ
の後気液二相流で流れる。ここで、例えばビル等の建物
内では、各室に至る冷媒配管の分岐管(9a)〜(9c
)の長さは数10mにも至るので、従来のようにこの分
岐管(9a)〜(9c)内に液冷媒を充填すると、その
冷媒量は莫大なものになり、冷媒使用量低減の要請に応
えることはできない。それに対して、上記実施例のよう
に、各分岐管(9a)〜(9c)内を気液二相流で流通
させることにより、空気調和装置全体の冷媒充填量を低
減することができる。
At that time, each of the branch pipes (9a) to (9c)
Capillary tubes (20a) to (20a) to (20a), which function as pressure reduction mechanisms for reducing the pressure of the refrigerant to each of the branch pipes (9a) to (9c), are installed near the branching part between the liquid flow divider (14) and the liquid flow divider (14).
20c), a part of the liquid refrigerant that has flowed in a liquid single-phase flow to the liquid flow divider (14) is evaporated and liquefied, and then flows in a gas-liquid two-phase flow. Here, for example, in a building such as a building, branch pipes (9a) to (9c) of refrigerant piping leading to each room are used.
) is several tens of meters in length, so if liquid refrigerant were to be filled into these branch pipes (9a) to (9c) as in the past, the amount of refrigerant would be enormous, and there was a demand to reduce the amount of refrigerant used. cannot respond to On the other hand, as in the above-mentioned embodiment, by circulating the gas-liquid two-phase flow through each of the branch pipes (9a) to (9c), it is possible to reduce the amount of refrigerant charged in the entire air conditioner.

【0022】その場合、液分流器(14)までの主管(
9)内を気液二相流で流通させると、各分岐管(9a)
〜(9c)への分配が困難となるが、上記実施例のよう
に液側の主管(9)内では液単相流であるので、そのよ
うな問題は生じない。
In that case, the main pipe (
9) When a gas-liquid two-phase flow is caused to flow through each branch pipe (9a)
Although distribution to (9c) becomes difficult, such a problem does not occur because the flow is a liquid single phase in the main pipe (9) on the liquid side as in the above embodiment.

【0023】そして、上記各キャピラリチュ―ブ(20
a)〜(20c)の減圧度が配置される分岐管(9a)
〜(9c)の長さが長いほど低く設定されているので、
各分岐管(9a)〜(9c)における圧力損失の差が緩
和される。すなわち、分岐管(9a)〜(9c)の長さ
が長いほど圧力損失が大きくなり、特に気液二相流の場
合、圧力損失の差によって各室内電動膨張弁(6a)〜
(6b)直前における冷媒状態(冷媒圧力)が大きく変
化する。例えば、分岐管(9a)〜(9c)の長さは長
いものでは50m以上にも及ぶため、配管長が長いと圧
力損失により電動膨張弁(6a)直前の冷媒圧力が極め
て低くなり、他の利用側熱交換器(9a)〜(9c)直
前の冷媒圧力が高いと、冷媒流量が激減する。したがっ
て、利用側熱交換器(7a)〜(7c)の能力が十分発
揮できないことになる。それに対して、分岐管(9a)
〜(9c)の長さに応じて上述のように減圧度を調節す
ることにより、圧力損失の差が補償され、各室内電動膨
張弁(6a)〜(6c)の冷媒圧力が略均一化されて、
各利用側熱交換器(7a)〜(7c)の能力が適正に発
揮される。よって、各室内ユニット(A)〜(C)にお
ける空調機能を良好に維持しながら、冷媒充填量の低減
を図ることができるのである。
[0023] Then, each capillary tube (20
Branch pipe (9a) in which pressure reduction degrees of a) to (20c) are arranged
~(9c) is set lower as the length is longer, so
The difference in pressure loss in each branch pipe (9a) to (9c) is alleviated. That is, the longer the length of the branch pipes (9a) to (9c), the greater the pressure loss, and especially in the case of gas-liquid two-phase flow, the difference in pressure loss causes each indoor electric expansion valve (6a) to
(6b) The immediately preceding refrigerant state (refrigerant pressure) changes significantly. For example, the length of the branch pipes (9a) to (9c) can be as long as 50 m or more, so if the pipe length is long, the refrigerant pressure just before the electric expansion valve (6a) will be extremely low due to pressure loss, and other When the refrigerant pressure immediately before the use-side heat exchangers (9a) to (9c) is high, the refrigerant flow rate is drastically reduced. Therefore, the capacity of the utilization side heat exchangers (7a) to (7c) cannot be fully demonstrated. On the other hand, branch pipe (9a)
By adjusting the degree of pressure reduction as described above according to the length of ~ (9c), the difference in pressure loss is compensated, and the refrigerant pressures of the indoor electric expansion valves (6a) ~ (6c) are approximately equalized. hand,
The capacity of each user-side heat exchanger (7a) to (7c) is properly exhibited. Therefore, it is possible to reduce the amount of refrigerant charged while maintaining the air conditioning function of each of the indoor units (A) to (C) well.

【0024】特に、このような冷媒配管長の差に起因す
る圧力損失の差は、配管径の変更によっても可能である
が、多くの種類の口径を有する冷媒配管を準備すること
はコストアップにつながる。それに対して、キャピラリ
チュ―ブ(20a)〜(20c)の内径及び長さの差で
容易に調節しうる減圧度で圧力損失の差を補償すること
により、コストアップが抑制されることになる。
In particular, the difference in pressure loss caused by the difference in refrigerant pipe length can be corrected by changing the pipe diameter, but preparing refrigerant pipes with many different diameters increases costs. Connect. On the other hand, by compensating for the difference in pressure loss with the degree of pressure reduction that can be easily adjusted by changing the inner diameter and length of the capillary tubes (20a) to (20c), cost increases can be suppressed. .

【0025】また、各室内ユニット(A)〜(C)の各
利用側熱交換器(7a)〜(7cに容量差がある場合、
各利用側熱交換器(7a)〜(7c)の能力が大きいほ
ど、同じ冷媒状態を維持するのに必要な冷媒循環量は多
くなる。したがって、各利用側熱交換器(7a)〜(7
c)の容量が大きいほど減圧度を低くすることにより、
各利用側熱交換器(7a)〜(7c)に必要な冷媒循環
量が確保され、その能力が良好に発揮されることになる
[0025] Furthermore, if there is a difference in capacity between the user-side heat exchangers (7a) to (7c) of the indoor units (A) to (C),
The larger the capacity of each of the user-side heat exchangers (7a) to (7c) is, the larger the amount of refrigerant circulation required to maintain the same refrigerant state is. Therefore, each user side heat exchanger (7a) to (7
By lowering the degree of pressure reduction as the capacity of c) increases,
The necessary amount of refrigerant circulation is ensured in each of the user-side heat exchangers (7a) to (7c), and their capabilities are effectively exhibited.

【0026】さらに、各分岐管(9a)〜(9c)の径
が大きくなるほど圧力損失は小さくなるので、分岐管(
9a)〜(9a)の径が大きくなるほどキャピラリチュ
―ブ(20a)〜(20c)の減圧度を高くすることに
より、各分岐管(9a)〜(9c)間の圧力損失差を補
償することができる。特に分岐管(9a)〜(9c)の
長さに応じてその配管径を変更することにより、圧力損
失を調節することができるが、上述のように口径が少し
ずつ異なる多くの種類の配管を準備することはコストア
ップを招くので、上記表1に示すように、数種の配管径
で圧力損失を大まかに調節する一方、各キャピラリチュ
―ブ(20a)〜(20c)の減圧度の設定により、配
管径による調節と相俟って圧力損失の差を微細に補償す
ることができる。よって、室内電動膨張弁(6a)〜(
6c)直前の冷媒圧力をより均一化でき、円滑な運転を
確保することができるのである。
Furthermore, the larger the diameter of each branch pipe (9a) to (9c), the smaller the pressure loss.
By increasing the degree of pressure reduction of the capillary tubes (20a) to (20c) as the diameters of the capillary tubes (9a) to (9a) become larger, the pressure loss difference between each branch pipe (9a) to (9c) is compensated for. Can be done. In particular, pressure loss can be adjusted by changing the pipe diameter according to the length of the branch pipes (9a) to (9c), but as mentioned above, many types of pipes with slightly different diameters can be used. Since preparation would increase costs, as shown in Table 1 above, while roughly adjusting the pressure loss with several pipe diameters, it is necessary to set the degree of pressure reduction for each capillary tube (20a) to (20c). This makes it possible to finely compensate for differences in pressure loss in conjunction with adjustment by pipe diameter. Therefore, the indoor electric expansion valves (6a) to (
6c) The pressure of the refrigerant immediately before can be made more uniform, and smooth operation can be ensured.

【0027】なお、上記実施例では、本発明を主管(9
)の両端に分流器(14),(15)を配置したいわゆ
るヘッダ―分岐方式による空気調和装置に適用した例を
説明したが、本発明はかかる実施例に限定されるもので
はない。図3は上記実施例の変形例を示し、主管(9)
の途中から各分岐管(9a)〜(9c)が分岐するいわ
ゆるライン方式の空気調和装置に適用した例を示し、各
分流器(14),(15)が設けられていない点以外は
上記実施例と同様である。
[0027] In the above embodiment, the present invention is carried out by the host (9).
), the present invention is not limited to such an embodiment. FIG. 3 shows a modification of the above embodiment, in which the main pipe (9)
An example of application to a so-called line-type air conditioner in which branch pipes (9a) to (9c) branch out from the middle of the flowchart is shown, and the above implementation is shown except that the flow dividers (14) and (15) are not provided. Similar to the example.

【0028】この変形例においても、上記実施例と同様
に、各分岐管(9a)〜(9b)の長さ,径及び利用側
熱交換器(7a)〜(7c)の容量に応じて各キャピラ
リチュ―ブ(20a)〜(20c)の減圧度を設定する
ことにより、上記実施例と同様の効果を得ることができ
る。
In this modification, as in the above embodiment, the length and diameter of each branch pipe (9a) to (9b) and the capacity of the utilization side heat exchanger (7a) to (7c) are determined. By setting the degree of pressure reduction of the capillary tubes (20a) to (20c), the same effects as in the above embodiment can be obtained.

【0029】また、本発明の減圧機構はキャピラリチュ
―ブに限定されるものではなく、図2は減圧機構として
ノズルを使用した例である。図4はその変形例を示し、
分岐管(9a)を途中の大径部で分割し、分割された各
端部にキャピラリチュ―ブ(20a)の外径部を嵌合さ
せた例である。この場合にも、液単相流の区間を極めて
短く限定することができ、上記実施例と同様の冷媒充填
量低減効果を発揮しうることはいうまでもない。
Further, the pressure reducing mechanism of the present invention is not limited to a capillary tube, and FIG. 2 shows an example in which a nozzle is used as the pressure reducing mechanism. FIG. 4 shows a modified example,
This is an example in which the branch pipe (9a) is divided at a large diameter part in the middle, and the outer diameter part of the capillary tube (20a) is fitted into each of the divided ends. In this case as well, it is possible to limit the section of the liquid single-phase flow to an extremely short length, and it goes without saying that the same effect of reducing the amount of refrigerant charged as in the above embodiment can be achieved.

【0030】[0030]

【発明の効果】以上説明したように、請求項1の発明に
よれば、空気調和装置の室外ユニットの各機器を主管で
接続する一方、室内ユニットの各機器を分岐管で接続し
、主管に対して各分岐管を互いに並列に接続して冷媒回
路を形成するとともに、各分岐管の主管からの液側分岐
部付近に、減圧機構を設け、この各減圧機構の減圧度を
当該分岐管の長さが長いほど低く設定するようにしたの
で、液冷媒の一部を蒸発液化させて分岐管内を気液二相
流で流すことにより冷媒充填量を低減させることができ
るとともに、配管径を微細に変更することなく配管長差
に基づく圧力損失の差を補償して各室内減圧弁直前の冷
媒状態を略均一化することができ、よって、各室内ユニ
ットにおける空調機能を良好に維持しながら、冷媒充填
量の低減を図ることができる。
As explained above, according to the invention of claim 1, each device of the outdoor unit of an air conditioner is connected to the main pipe, while each device of the indoor unit is connected to the main pipe by the branch pipe. In contrast, the branch pipes are connected in parallel to each other to form a refrigerant circuit, and a pressure reduction mechanism is provided near the liquid side branch from the main pipe of each branch pipe, and the degree of pressure reduction of each pressure reduction mechanism is adjusted to the degree of pressure reduction of the branch pipe. The longer the length, the lower the setting, so part of the liquid refrigerant evaporates and liquefies and flows through the branch pipe in a gas-liquid two-phase flow, reducing the amount of refrigerant charged. It is possible to compensate for the difference in pressure loss due to the difference in piping length without having to change the refrigerant state to approximately equalize the refrigerant state immediately before the pressure reducing valve in each room. It is possible to reduce the amount of refrigerant charged.

【0031】請求項2の発明によれば、上記請求項1の
発明において、当該利用側熱交換器の容量が大きいほど
各減圧機構の減圧度を低く設定するようにしたので、各
室内ユニット利用側熱交換器の容量に差がある場合にも
、各利用側熱交換器の冷媒状態が適正に維持することが
でき、よって、各室内ユニットにおける空調能力を良好
に維持することができる。
According to the invention of claim 2, in the invention of claim 1, the degree of pressure reduction of each pressure reduction mechanism is set to be lower as the capacity of the user-side heat exchanger is larger, so that each indoor unit is used more efficiently. Even when there is a difference in the capacity of the side heat exchangers, the refrigerant state of each user side heat exchanger can be maintained appropriately, and therefore, the air conditioning capacity of each indoor unit can be maintained satisfactorily.

【0032】請求項3の発明によれば、上記請求項1又
は2の発明において、分岐管の径が大きくなるほど減圧
機構の減圧度を高く設定するようにしたので、径の増大
に応じて低下する各分岐管の圧力損失の差が補償され、
径の変更による圧力損失の調節と相俟って、室内減圧弁
直前の冷媒圧力をより微細に均一化させることができ、
よって、著効を発揮することができる。
According to the invention of claim 3, in the invention of claim 1 or 2, the degree of pressure reduction of the pressure reduction mechanism is set higher as the diameter of the branch pipe increases, so that the degree of pressure reduction decreases as the diameter increases. The difference in pressure loss of each branch pipe is compensated for,
Together with adjusting the pressure loss by changing the diameter, the refrigerant pressure just before the indoor pressure reducing valve can be made more finely uniform.
Therefore, it can be highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例に係る空気調和装置の冷媒配管系統図で
ある。
FIG. 1 is a refrigerant piping system diagram of an air conditioner according to an embodiment.

【図2】減圧機構にノズルを使用したときの構造を示す
縦断面図である。
FIG. 2 is a longitudinal sectional view showing the structure when a nozzle is used in the pressure reduction mechanism.

【図3】実施例の変形例に係る空気調和装置の冷媒配管
系統図である。
FIG. 3 is a refrigerant piping system diagram of an air conditioner according to a modification of the embodiment.

【図4】減圧機構にノズルを使用したときの変形例の構
造を示す縦断面図である。
FIG. 4 is a longitudinal cross-sectional view showing a structure of a modified example when a nozzle is used in the pressure reduction mechanism.

【符号の説明】[Explanation of symbols]

1    圧縮機 3    熱源側熱交換器 4    室外電動膨張弁(室外減圧弁)6    室
内電動膨張弁(室内減圧弁)9    主管 9a〜9c  分岐管 10  冷媒回路
1 Compressor 3 Heat source side heat exchanger 4 Outdoor electric expansion valve (outdoor pressure reducing valve) 6 Indoor electric expansion valve (indoor pressure reducing valve) 9 Main pipes 9a to 9c Branch pipes 10 Refrigerant circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機(1)、熱源側熱交換器(3)
及び室外減圧弁(4)が配設された室外ユニット(X)
に対して、室内減圧弁(6a)及び利用側熱交換器(7
a)を有する複数台の室内ユニット(A),…を配置し
、上記室外ユニット(X)の各機器(1),(3),(
4)を冷媒配管の主管(9)により順次接続する一方、
上記各室内ユニット(A),…の各機器(6a)及び(
7a),…をそれぞれ冷媒配管の分岐管(9a),…に
より接続し、該各分岐管(9a),…を上記主管(9)
に対して互いに並列に接続してなる冷媒回路(10)を
備えた空気調和装置において、上記各分岐管(9a),
…の上記主管(9)との液側分岐部付近には各分岐管(
9a),…への冷媒を減圧するための減圧機構(20a
),…が介設され、該各減圧機構(20a),…の減圧
度は当該分岐管(9a),…の長さが長いほど低く設定
されていることを特徴とする空気調和装置。
[Claim 1] Compressor (1), heat source side heat exchanger (3)
and an outdoor unit (X) equipped with an outdoor pressure reducing valve (4)
In contrast, the indoor pressure reducing valve (6a) and the user side heat exchanger (7
a), and each device (1), (3), (
4) are sequentially connected through the main pipe (9) of the refrigerant piping,
Each indoor unit (A) above, each device (6a) and (
7a),... are connected by branch pipes (9a),... of the refrigerant piping, respectively, and the branch pipes (9a),... are connected to the main pipe (9).
In an air conditioner including a refrigerant circuit (10) connected in parallel to each other, each of the branch pipes (9a),
Each branch pipe (
9a), a pressure reducing mechanism (20a) for reducing the pressure of the refrigerant to...
), ... are interposed, and the degree of pressure reduction of each of the pressure reduction mechanisms (20a), ... is set lower as the length of the branch pipe (9a), ... is longer.
【請求項2】  請求項1記載の空気調和装置において
、各減圧機構(20a),…の減圧度は当該室内ユニッ
ト(A),…の利用側熱交換器(7a),…の容量が大
きいほど低く設定されていることを特徴とする空気調和
装置。
[Claim 2] In the air conditioner according to claim 1, the degree of pressure reduction of each pressure reduction mechanism (20a), ... is such that the capacity of the user-side heat exchanger (7a), ... of the indoor unit (A), ... is large. An air conditioner characterized by being set at a low temperature.
【請求項3】  請求項1又は2記載の空気調和装置に
おいて、各減圧機構(20a),…の減圧度は当該分岐
管(9a),…の径が大きいほど高く設定されているこ
とを特徴とする空気調和装置。
3. The air conditioner according to claim 1 or 2, wherein the degree of pressure reduction of each pressure reducing mechanism (20a),... is set higher as the diameter of the branch pipe (9a),... is larger. air conditioning equipment.
JP3014560A 1991-02-05 1991-02-05 Air conditioner Expired - Fee Related JP2765243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3014560A JP2765243B2 (en) 1991-02-05 1991-02-05 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3014560A JP2765243B2 (en) 1991-02-05 1991-02-05 Air conditioner

Publications (2)

Publication Number Publication Date
JPH04332356A true JPH04332356A (en) 1992-11-19
JP2765243B2 JP2765243B2 (en) 1998-06-11

Family

ID=11864544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3014560A Expired - Fee Related JP2765243B2 (en) 1991-02-05 1991-02-05 Air conditioner

Country Status (1)

Country Link
JP (1) JP2765243B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170104A (en) * 1996-12-05 1998-06-26 Daikin Ind Ltd Flow distributing device and air conditioner
JP2007085648A (en) * 2005-09-22 2007-04-05 Sanyo Electric Co Ltd Air conditioner
CN1324280C (en) * 2002-11-26 2007-07-04 乐金电子(天津)电器有限公司 Refrigeration circulation and control method thereof
JP2010139220A (en) * 2008-12-15 2010-06-24 Mitsubishi Electric Corp Expansion valve mechanism, and air conditioner installed with the same
JP2012141112A (en) * 2011-01-06 2012-07-26 Hitachi Appliances Inc Air conditioner
CN102798256A (en) * 2012-04-20 2012-11-28 广东美的暖通设备限公司 Device for regulating capacity output of outdoor unit heat exchanger of multi-connected machine set
CN103162476A (en) * 2011-12-15 2013-06-19 同方人工环境有限公司 Structure with double thermostatic expansion valves
WO2019142575A1 (en) * 2018-01-22 2019-07-25 ダイキン工業株式会社 Branch unit, refrigeration device, and method for installing refrigeration device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035050U (en) * 1973-07-11 1975-04-14
JPS59110871U (en) * 1983-01-17 1984-07-26 株式会社東芝 air conditioner
JPS6229057U (en) * 1985-08-06 1987-02-21

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035050U (en) * 1973-07-11 1975-04-14
JPS59110871U (en) * 1983-01-17 1984-07-26 株式会社東芝 air conditioner
JPS6229057U (en) * 1985-08-06 1987-02-21

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170104A (en) * 1996-12-05 1998-06-26 Daikin Ind Ltd Flow distributing device and air conditioner
CN1324280C (en) * 2002-11-26 2007-07-04 乐金电子(天津)电器有限公司 Refrigeration circulation and control method thereof
JP2007085648A (en) * 2005-09-22 2007-04-05 Sanyo Electric Co Ltd Air conditioner
JP4739883B2 (en) * 2005-09-22 2011-08-03 三洋電機株式会社 Air conditioner
JP2010139220A (en) * 2008-12-15 2010-06-24 Mitsubishi Electric Corp Expansion valve mechanism, and air conditioner installed with the same
JP2012141112A (en) * 2011-01-06 2012-07-26 Hitachi Appliances Inc Air conditioner
CN103162476A (en) * 2011-12-15 2013-06-19 同方人工环境有限公司 Structure with double thermostatic expansion valves
CN102798256A (en) * 2012-04-20 2012-11-28 广东美的暖通设备限公司 Device for regulating capacity output of outdoor unit heat exchanger of multi-connected machine set
WO2019142575A1 (en) * 2018-01-22 2019-07-25 ダイキン工業株式会社 Branch unit, refrigeration device, and method for installing refrigeration device
JP2019128057A (en) * 2018-01-22 2019-08-01 ダイキン工業株式会社 Installation method for refrigerating device

Also Published As

Publication number Publication date
JP2765243B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
CN100419350C (en) Supercooling apparatus of simultaneous cooling and heating type multiple air conditioner
JP4922669B2 (en) Air conditioner and heat exchanger for air conditioner
US11739991B2 (en) Air conditioning system and control method for air conditioning system
JP3352469B2 (en) Air conditioner
US20010037649A1 (en) Air conditioner using flammable refrigerant
JP3087745B2 (en) Refrigeration equipment
JP2020020576A (en) Refrigeration cycle device and air conditioner including the same
JP2804527B2 (en) Air conditioner
JPH04332356A (en) Air conditioner
CN209415818U (en) A kind of air-conditioning system
CN113606773A (en) Heat exchanger module, heat exchanger group, air conditioning system and use control method
CN104879950A (en) Air conditioner all-in-one machine system and control method thereof
CN107560213A (en) Air-conditioning system and air-conditioning
CN109654597B (en) Air conditioning system capable of adjusting heat exchange quantity
JP2698118B2 (en) Air conditioner
JP2760500B2 (en) Multi-room air conditioner
CN212006013U (en) Multi-split air conditioning system
JP3336628B2 (en) Refrigeration equipment
JP2800428B2 (en) Air conditioner
JP2698117B2 (en) Air conditioner
CN111059615A (en) Multi-split air conditioning system
CN112797516A (en) Air conditioning system
CN114593466B (en) air conditioner
CN110736152A (en) Condenser, air conditioner outdoor unit and air conditioner
CN220689309U (en) Three-tube multifunctional refrigerating device with heat recovery function

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080403

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100403

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees