KR20080028980A - Hard-coated body and method for production thereof - Google Patents

Hard-coated body and method for production thereof Download PDF

Info

Publication number
KR20080028980A
KR20080028980A KR1020087002457A KR20087002457A KR20080028980A KR 20080028980 A KR20080028980 A KR 20080028980A KR 1020087002457 A KR1020087002457 A KR 1020087002457A KR 20087002457 A KR20087002457 A KR 20087002457A KR 20080028980 A KR20080028980 A KR 20080028980A
Authority
KR
South Korea
Prior art keywords
layer
hard material
hard
coating
material layer
Prior art date
Application number
KR1020087002457A
Other languages
Korean (ko)
Inventor
잉올프 엔들라
Original Assignee
프라운호퍼-게젤샤프트 추르 푀르데룽 데어 안제반텐 포르슝 에 파우
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36822291&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20080028980(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 프라운호퍼-게젤샤프트 추르 푀르데룽 데어 안제반텐 포르슝 에 파우 filed Critical 프라운호퍼-게젤샤프트 추르 푀르데룽 데어 안제반텐 포르슝 에 파우
Publication of KR20080028980A publication Critical patent/KR20080028980A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process

Abstract

The invention relates to hard-coated bodies with a single-or multi-layer system containing at least one Ti1-xAlxN hard layer and a method for production thereof. The aim of the invention is to achieve a significantly improved wear resistance and oxidation resistance for such hard-coated bodies. Said hard-coated bodies are characterised in that the bodies are coated with at least one Ti1-xAl xN hard layer, generated by CVD without plasma stimulation present as a single-phase layer with cubic NaCl structure with a stoichiometric coefficient x > 0.75 to x = 0.93 and a lattice constant afcc between 0.412 nm and 0.405 nm, or as a multi-phase layer, the main phase being Ti1-xAlxN with a cubic NaCl structure with a stoichiometric coefficient x > 0.75 to x = 0.93 and a lattice constant afcc between 0.412 nm and 0.405 nm, with Ti1-x AlxN with a wurtzite structure and/or as TiNx with NaCl structure as further phase. Another feature of said hard layer is that the chlorine content is in the range of only 0.05 to 0.9 atom %. The invention further relates to a method for production of the body, characterised in that the body is coated in a reactor at temperatures from 700 °C to 900 °C by means of CVD without plasma stimulation with titanium halides, aluminium halides and reactive nitrogen compounds as precursors, mixed at elevated temperatures. Said coating can be applied to tools made from steel, hard metals, cermets and ceramics, such as drills, millers and indexable inserts.

Description

경질 코팅체 및 그 제조방법{Hard-coated body and method for production thereof}Hard coating and its manufacturing method {Hard-coated body and method for production}

본 발명은 하나 이상의 Ti1-xAlxN 경질 물질층(hard-material layer)을 포함하는 단일층 또는 복수층을 갖는 경질 물질 코팅체, 및 그 제조방법에 관한 것이다. 본 발명에 따른 코팅은 특히 드릴, 밀링 커터기, 및 커팅 인서트(cutting insert)와 같은 특히 강철, 경질 금속(hard metal), 서멧(cermet), 및 세라믹으로 제조된 도구에 사용될 수 있다. 본 발명에 따른 코팅체는 개선된 마찰-마모저항성 및 산화저항성을 가진다.The present invention relates to a hard material coating having a single layer or a plurality of layers comprising at least one Ti 1-x Al x N hard-material layer, and a method of manufacturing the same. The coating according to the invention can be used in particular in tools made of steel, hard metal, cermet, and ceramics, such as drills, milling cutters, and cutting inserts. The coating according to the invention has improved friction-wear resistance and oxidation resistance.

물질시스템 Ti-Al-N의 일정 영역에서 마찰-마모 보호층의 제조는 WO 03/085152 A2에 개시되었다. 상기 문헌에 따라 AlN 함량이 67%에 이르는 NaCl구조를 갖는 모노상 TiAlN 층을 제조하는 것이 가능하다. PVD에 의해 제조되는 이들 층은 0.412 nm 내지 0.424 nm의 격자 정수afcc를 갖는다(R. Cremer, M. Witthaut, A. von Richthofen, D. Neuschuz, Fresenius J. Anal. Chem. 361 (1998) 642-645). 이 러한 큐빅 TiAlN 층들은 비교적 높은 경도 및 마찰-마모 저항성을 갖는다. 그러나, AlN의 함량이 67%를 초과하는 경우, 큐빅 TiAlN 및 헥사고날 TiAlN의 혼합물이 형성되고, AlN 비율이 75%를 초과하면, 마찰 마모에 저항성을 나타내지 않는 더 부드러운 부르차이트(wurtzite)구조가 형성된다. The production of a friction-wear protective layer in certain regions of the material system Ti-Al-N is disclosed in WO 03/085152 A2. According to this document it is possible to produce monophasic TiAlN layers having a NaCl structure with an AlN content up to 67%. These layers made by PVD have a lattice constant a fcc of 0.412 nm to 0.424 nm (R. Cremer, M. Witthaut, A. von Richthofen, D. Neuschuz, Fresenius J. Anal. Chem. 361 (1998) 642 -645). These cubic TiAlN layers have a relatively high hardness and frictional wear resistance. However, when the content of AlN exceeds 67%, a mixture of cubic TiAlN and hexagonal TiAlN forms, and when the AlN ratio exceeds 75%, a softer wurtzite structure that does not exhibit resistance to frictional wear Is formed.

또한 AlN 함량이 증가됨에 따라, 큐빅 TiAlN 층의 산화 저항성이 증가됨이 알려져 있다(M. Kawate, A. Kimura, T. Suzuki, Surface and Coatings Technology 165 (2003) 163-167). 그러나, PVD에 의한 TiAlN 제조에 관한 과학적 문헌에 의하면 750℃ 이상에서는 높은 비율의 AlN을 갖는, 즉 x > 0.75인 Ti1 - xAlxN 상의 모노상 큐빅 TiAlN 층은 형성될 수 없으며, 헥사고날 부르차이트 구조가 항상 존재한다는 견해를 제시하고 있다(K. Kutschej, P.H. Mayrhofer, M. Kathrein, C. Michotte, P. Polcik, C. Mitterer, Proc. 16th Int. Plansee Seminar, May 30 June 03, 2005, Reutte, Austria, Vol. 2, p. 774 - 788).It is also known that as the AlN content increases, the oxidation resistance of the cubic TiAlN layer increases (M. Kawate, A. Kimura, T. Suzuki, Surface and Coatings Technology 165 (2003) 163-167). However, according to the scientific literature on the TiAlN produced by PVD in more than 750 ℃ having a high rate of AlN, i.e. x> 0.75 of Ti 1 - mono-phase cubic zirconia on the x Al x N TiAlN layer can not be formed, hexagonal It suggests that there is always a burchite structure (K. Kutschej, PH Mayrhofer, M. Kathrein, C. Michotte, P. Polcik, C. Mitterer, Proc. 16th Int. Plansee Seminar, May 30 June 03, 2005, Reutte, Austria, Vol. 2, p. 774-788).

x가 0.9에 이르는 모노상 Ti1 - xAlxN 경질 물질층이 플라즈마 CVD에 의해 제조될 수 있음이 개시되었다(R. Prange, Diss. RTHW Aachen, 1999, Fortschritt-Berichte VDI [Progress Reports of the Association of German Engineers], 2000, Series 5, No. 576, 및 O. Kyrylov et al., Surface and Coating Techn. 151-152 (2002) 359-364). 그러나 이는 층 조성물의 균일성이 불충분하고, 층내에 비교적 높은 함량의 염소가 존재한다는 단점이 있다. 또한 공정 수행이 복잡하고, 많은 노력이 요구된다.x is a mono-phase up to 0.9 Ti 1 - x Al x N hard material layer has been disclosed that the same may be prepared by plasma CVD (R. Prange, Diss RTHW Aachen , 1999, Fortschritt-Berichte VDI [Progress Reports of the. Association of German Engineers], 2000, Series 5, No. 576, and O. Kyrylov et al., Surface and Coating Techn. 151-152 (2002) 359-364). However, this has the disadvantage of insufficient uniformity of the layer composition and the presence of a relatively high content of chlorine in the layer. In addition, the process is complex and requires a lot of effort.

공지된 Ti1 - xAlxN 경질물질층을 제조하기 위하여, 종래 기술에 따라 PVD 방법 또는 플라즈마 CVD 방법이 사용되고, 700℃ 이하의 온도에서 상기 방법들이 작동되었다(A. Holing, L. Hultman, M. Oden, J. Sjoen, L. Karlsson, J. Vac. Sci. Technol. A 20 (2002)5, 1815 - 1823, 및 D. Heim, R. Hochreiter, Surface and Coatings Technology 98 (1998) 1553 - 1556). 그러나 이들 방법은 복잡한 기하학적 구조의 구성성분에 의한 코팅이 어려운 단점이 있다. PVD는 매우 표적화된 공정이고, 플라즈마 파워 밀도가 층의 Ti/Al 원자 비율에 직접적으로 영향을 미치기 때문에 플라즈마 CVD는 고수준의 플라즈마 균일성을 요구한다. 현재 산업적으로 거의 독점적으로 사용되고 있는 PVD 방법으로는 x가 0.75를 초과하는 모노상 큐빅 Ti1 -xAlxN 층을 생성할 수 없다.In order to produce a known Ti 1 - x Al x N hard material layer, the PVD method or the plasma CVD method is used according to the prior art, and the above methods are operated at temperatures below 700 ° C (A. Holing, L. Hultman, M. Oden, J. Sjoen, L. Karlsson, J. Vac. Sci. Technol.A 20 (2002) 5, 1815-1823, and D. Heim, R. Hochreiter, Surface and Coatings Technology 98 (1998) 1553- 1556). However, these methods have the disadvantage that coating by components of complex geometry is difficult. PVD is a highly targeted process and plasma CVD requires a high level of plasma uniformity because the plasma power density directly affects the Ti / Al atomic ratio of the layer. The PVD method, which is currently used almost exclusively in industry, cannot produce monophasic cubic Ti 1 -x Al x N layers with x exceeding 0.75.

큐빅 TiAlN 층은 준안정(metastable)구조이기 때문에, 1000℃ 이상의 고온에서 종래의 CVD 방법에 의해 제조하는 것은 근본적으로 불가능한데, 1000℃이상에서는 TiN 및 헥사고날 AlN의 혼합물이 생성되기 때문이다. Since the cubic TiAlN layer is a metastable structure, it is fundamentally impossible to manufacture by the conventional CVD method at a high temperature of 1000 ° C or higher, since a mixture of TiN and hexagonal AlN is produced above 1000 ° C.

미국 특허 6,238,739 B1호에는 알루미늄 클로라이드 및 티타늄 클로라이드 가스 혼합물 및 NH3 및 H2를 사용하는 경우, 플라즈마 지지 없이 열적 CVD 공정에 의해 550℃ 내지 650℃에서, x가 0.1 내지 0.6인 Ti1 - xAlxN층을 수득할 수 있음을 개시하였다. 이러한 특별한 열적 CVD 방법의 결점은 층의 화학양론(stoichiometry)에 있어 x가 0.6 이하로 한정되는 점과 온도가 650℃ 이하로 한정되는 점이다. 이러한 낮은 코팅 온도는 층내 12 원자%에 이르는 높은 염소 함량을 초래하며, 이는 사용에 매우 유해하다(S. Anderbouhr, V. Ghetta, E. Blanquet, C. Chabrol, F. Schuster, C. Bernard, R. Madar, Surface and Coatings Technology 115 (1999) 103 - 110).U.S. Patent 6,238,739 B1 describes the use of aluminum chloride and titanium chloride gas mixtures and NH 3 and H 2 , It was disclosed that a Ti 1 - x Al x N layer having x of 0.1 to 0.6 can be obtained at 550 ° C. to 650 ° C. by a thermal CVD process without plasma support. The drawbacks of this particular thermal CVD method are that x is limited to 0.6 or less in the stoichiometry of the layer, and the temperature is limited to 650 ° C. or less. This low coating temperature results in a high chlorine content of up to 12 atomic percent in the layer, which is very detrimental to use (S. Anderbouhr, V. Ghetta, E. Blanquet, C. Chabrol, F. Schuster, C. Bernard, R). Madar, Surface and Coatings Technology 115 (1999) 103-110).

본 발명은 목적은 개선된 마찰마모저항성 및 산화저항성을 갖는 하나 이상의 Ti1-xAlxN 경질 물질층을 함유하는 단일층 또는 복수층을 갖는 경질물질 코팅체를 제공하는 것이다. It is an object of the present invention to provide a hard material coating having a single layer or a plurality of layers containing at least one layer of Ti 1-x Al x N hard material having improved abrasion resistance and oxidation resistance.

상기 목적은 본 발명의 청구된 특성에 의해 달성된다. This object is achieved by the claimed features of the present invention.

본 발명에 따른 경질물질 코팅체는 플라즈마 자극 없이 CVD에 의해 제조되는 하나 이상의 Ti1-xAlxN 경질 물질층에 의해 코팅되고, 상기 층은 화학양론 계수(stoichiometry coefficient) x가 0.75 < x ≤0.93이며 격자 상수 afcc 가 0.412 nm 내지 0.405 nm인 큐빅 NaCl 구조의 모노상 층으로서 존재하거나, 또는 그 주상(main phase)이 화학양론 계수 x가 0.75 < x ≤0.93이고 격자 상수 afcc 가 0.412 nm 내지 0.405 nm인 큐빅 NaCl 구조를 갖는 Ti1-xAlxN로 이루어지고 부르차이트 구조의 Ti1-xAlxN 및/또는 NaCl 구조의 TiNx 추가상(additional phase)으로 포함하는 복수상 Ti1-xAlxN 경질 물질층인 것을 특징으로 한다. 이러한 Ti1-xAlxN 경질 물질층은 염소 함량이 단지 0.05 내지 0.9 원자%인 것을 추가적인 특징으로 한다. Ti1-xAlxN 경질 물질층의 염소 함량이 단지 0.1 내지 0.5 원자%이고, 산소 함량이 0.1 내지 5 원자%인 경우 유리하다. The hard material coating according to the present invention is coated with at least one layer of Ti 1-x Al x N hard material produced by CVD without plasma stimulation, the layer having a stoichiometry coefficient x of 0.75 <x ≦ 0.93 and lattice constant a fcc is present as a monophasic layer of cubic NaCl structure with 0.412 nm to 0.405 nm, or its main phase has stoichiometric coefficient x of 0.75 <x ≤0.93 and lattice constant a fcc of 0.412 nm Ti 1-x Al x N having a cubic NaCl structure of from 0.405 nm, and Ti 1-x Al x N of a brookite structure and / or TiN x of a NaCl structure It is characterized in that the multi-phase Ti 1-x Al x N hard material layer comprising an additional phase (additional phase). This Ti 1-x Al x N hard material layer is further characterized by a chlorine content of only 0.05 to 0.9 atomic percent. It is advantageous if the chlorine content of the Ti 1-x Al x N hard material layer is only 0.1 to 0.5 atomic% and the oxygen content is 0.1 to 5 atomic%.

Ti1-xAlxN 경질물질층의 경도(hardness value)는 2500 HV 내지 3800 HV이다. The hardness value of the Ti 1-x Al x N hard material layer is 2500 HV to 3800 HV.

본 발명에 따르면, 30 중량%까지의 무정형 층 구성성분(amorphous layer components)이 Ti1-xAlxN 경질물질층에 포함될 수 있다. According to the invention, up to 30% by weight of amorphous layer components can be included in the Ti 1-x Al x N hard material layer.

본 발명에 따르면 몸체(body)상에 존재하는 층은 큐빅 Ti1-xAlxN 상의 높은 AlN 비율로 인하여, 종래 기술에 비하여, 현저히 개선된 산화저항성과 2500 HV 내지 3800 HV의 높은 경도를 가지는 바, 이러한 경도와 산화 저항성의 조합은 지금까지 달성된 바 없으며, 양호한 마찰-마모 저항성, 특히 고온에서 매우 높은 마찰-마모 저항성을 결과한다.According to the present invention, the layer present on the body has a significantly improved oxidation resistance and a high hardness of 2500 HV to 3800 HV compared to the prior art, due to the high AlN ratio on the cubic Ti 1-x Al x N phase. Bars, such a combination of hardness and oxidation resistance have not been achieved so far and result in good friction-wear resistance, in particular very high friction-wear resistance at high temperatures.

본 발명의 코팅체의 제조를 위하여, 본 발명은 반응기 내에서 700℃ 내지 900℃의 온도 범위에서 플라즈마 자극없이 CVD에 의해 몸체를 코팅하며, 상승된 온도에서 혼합된 티타늄 할로게나이드(titanium halogenide), 알루미늄 할로게나이드(aluminum halogenide), 및 반응성 질소 화합물(reactive nitrogen compound)을 전구체로서 사용하는 것을 특징으로 하는 제조방법을 제공한다.For the production of the coating of the present invention, the present invention is to coat the body by CVD without plasma stimulation in the temperature range of 700 ℃ to 900 ℃ in the reactor, mixed with titanium halogenide (titanium halogenide) at elevated temperature , Aluminum halogenide, and a reactive nitrogen compound are used as precursors.

본 발명에 따르면, 반응성 질소 화합물로서 NH3 및/또는 N2H4 을 사용할 수 있다. According to the invention, NH 3 and / or N 2 H 4 can be used as the reactive nitrogen compound.

이러한 전구체들은 반응기내에서 증착 영역(deposition zone)의 바로 전에 혼합되는 것이 바람직하다.Such precursors are preferably mixed in the reactor just before the deposition zone.

전구체의 혼합은 본 발명에 따라 150℃ 내지 900℃의 온도범위에서 수행된다.Mixing of the precursors is carried out in a temperature range of 150 ° C. to 900 ° C. according to the invention.

이러한 코팅 공정은 바람직하게 102 Pa 내지 105 Pa의 압력 범위에서 수행된다.This coating process is preferably carried out in a pressure range of 10 2 Pa to 10 5 Pa.

본 발명에 따른 방법을 사용함으로써, 비교적 간단한 열적 CVD 공정을 사용하여 700℃ 내지 900℃에서 102 Pa 내지 105 Pa의 압력으로, NaCl 구조를 갖는 Ti1-xAlxN 층을 제조할 수 있다. x<0.75인 기지의 Ti1-xAlxN 층 조성물 및 다른 방법으로는 제조될 수 없는 x> 0.75인 새로운 형태의 조성물 모두를 상기 방법을 사용하여 수득할 수 있다. 본 발명의 방법은 복잡한 기하학적 구조의 구성성분에 대해서도 균일한 코팅을 할 수 있다.By using the method according to the invention, a Ti 1-x Al x N layer having a NaCl structure can be produced at a pressure of 10 2 Pa to 10 5 Pa at 700 ° C. to 900 ° C. using a relatively simple thermal CVD process. have. Both known Ti 1-x Al x N layer compositions of x &lt; The method of the present invention allows uniform coating even for components of complex geometries.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하며, 하기 실시예는 본 발명을 제한하지 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples, and the following Examples do not limit the present invention.

도 1은 본 발명의 일실시예에 따른 Ti1 - xAlxN 경질물질층의 회절패턴을 나타낸 것이고,Figure 1 shows a diffraction pattern of the Ti 1 - x Al x N hard material layer according to an embodiment of the present invention,

도 2는 본 발명의 다른 실시예에 따른 Ti1 - xAlxN 경질물질층의 회절패턴을 나타낸 것이다.2 is Ti 1 according to another embodiment of the present invention shows the diffraction pattern of the Al x x N hard material layer.

실시예 1Example 1

본 발명에 따라 열적 CVD 방법에 의해 Ti1 - xAlxN 층을 WC/Co 경질 금속 커팅 인서트상에 증착하였다. 이를 위해, 800℃, 1 kPa의 압력하에서, 내경 75 mm의 핫월(hot-wall) CVD 반응기내로 20 ml/min의 AlCl3, 3.5 ml/min의 TiCl4, 1400 ml/min의 H2, 400 ml/min의 아르곤 가스 혼합물을 도입하였다. Ti 1 - x Al x N layers were deposited on the WC / Co hard metal cutting insert by thermal CVD method according to the present invention. To this end, under a pressure of 800 ° C., 1 kPa, into a hot-wall CVD reactor with an internal diameter of 75 mm, 20 ml / min AlCl 3 , 3.5 ml / min TiCl 4 , 1400 ml / min H 2 , 400 ml / min of argon gas mixture was introduced.

100 ml/min의 NH3 및 200 ml/min의 N2 혼합물을 제2 가스 공급으로 반응기 내로 통과시켰다. 이들 두 가스 기류의 혼합은 기질 운반체의 10 cm 전방에서 이루어졌다. 30분의 코팅 시간이 지난 후, 두께 6 ㎛의 검은 회색층이 수득되었다. A mixture of 100 ml / min NH 3 and 200 ml / min N 2 was passed into the reactor with a second gas feed. The mixing of these two gas streams was done 10 cm in front of the substrate carrier. After 30 minutes of coating time, a black gray layer of 6 μm in thickness was obtained.

스위핑 인시던스(sweeping incidence)로 수행한 X-레이 박막 분석 결과 오직 큐빅 Ti1 - xAlxN 상만이 발견되었다(도 1의 X-선 회절패턴(diffractogram) 참조).Sweeping insideonseu (sweeping incidence) a X- ray films results only cubic Ti 1 carried out in-the x Al x N sangman been discovered (see the X- ray diffraction pattern (diffractogram) in Fig. 1).

격자 상수 afcc는 0.4085 nm로 측정되었다. WDX에 의해 측정한 결과 Ti:Al의 원자비율은 0.107이었다. 염소 및 산소 함량을 측정한 결과, 염소는 0.1 원자%이고, 산소는 2.0 원자%였다.The lattice constant a fcc was measured at 0.4085 nm. The atomic ratio of Ti: Al was 0.107 as measured by WDX. As a result of measuring the chlorine and oxygen content, chlorine was 0.1 atomic% and oxygen was 2.0 atomic%.

화학양론 계수 x는 0.90으로 산출되었다. 비커스 경도계로 측정한 결과, 층 의 경도는 3070 HV[0.05]였다. Ti1 - xAlxN 층은 공기내에서 1000℃ 까지 산화 저항성을 나타내었다. The stoichiometric coefficient x was calculated to be 0.90. The hardness of the layer was 3070 HV [0.05], as measured by a Vickers hardness tester. The Ti 1 - x Al x N layer showed oxidation resistance up to 1000 ° C. in air.

실시예Example 2 2

먼저 두께 1㎛의 티타늄 니트라이드층을 공지된 표준 CVD 공정에 의하여, 950℃에서 Si3N4 커팅 세라믹으로 제조된 커팅 인서트에 적용하였다. 그후, 실시예 1에 기재된 가스 혼합물을 사용하여, 1 kPa 압력 및 850℃에서 본 발명에 따른 CVD 방법에 의하여 검은 회색층이 증착하였다.First, by a known titanium nitride layer having a thickness 1㎛ standard CVD process, Si 3 N 4 at 950 ℃ It was applied to a cutting insert made of cutting ceramic. A black gray layer was then deposited by the CVD method according to the invention at 1 kPa pressure and 850 ° C. using the gas mixture described in Example 1.

X-선 박막 분석 결과, NaCl 구조를 갖는 Ti1 - xAlxN 및 부르차이트 구조의 AlN의 이종성(heterogeneous) 혼합물이 존재하는 것으로 확인되었다. 도 2의 X-선 회절구조에서, 큐빅 Ti1 - xAlxN 의 리플렉스(reflex)는 c로 표시되고, 헥사고날 AlN (부르차이트 구조)의 리플렉스는 h로 표시되었다. 층내에서 큐빅 Ti1 - xAlxN의 비율이 우세하였다.X- ray analysis films, Ti 1 having the NaCl structure was confirmed by the x Al x N and called heterologous (heterogeneous) mixture of the AlN in the difference tree structure exists. In the X- ray diffraction structure of Figure 2, the cubic Ti 1 - x Al x N in a reflex reflex (reflex) is represented by c, hexagonal AlN (called the difference bit structure) was represented by h. The ratio of x Al x N was dominant - cubic Ti 1 in the layer.

큐빅상의 격자 상수 afcc는 0.4075 nm로 측정되었다. 둘째로, 헥사고날 AlN 상은 격자상수 a = 0.3107 nm, 및 c = 0.4956 nm로 측정되었다. 비커스 경도계로 층의 경도를 측정한 결과, 경도는 3150 HV[0.01]이었다. 상기 이상(biphase) Ti1-xAlxN 층은 공기내에서 1050℃까지 산화 저항성을 나타내었다.The lattice constant a fcc of the cubic phase was measured to be 0.4075 nm. Second, the hexagonal AlN phase was measured with lattice constants a = 0.3107 nm, and c = 0.4956 nm. The hardness of the layer was measured with a Vickers hardness tester, and the hardness was 3150 HV [0.01]. The biphase Ti 1-x Al x N layer exhibited oxidation resistance up to 1050 ° C. in air.

Claims (10)

플라즈마 자극 없이 CVD에 의해 제조되는 하나 이상의 Ti1-xAlxN 경질 물질층을 포함하는 단일층 또는 복수층을 갖는 경질 물질 코팅체로서,A hard material coating having a single layer or a plurality of layers comprising at least one layer of Ti 1-x Al x N hard material produced by CVD without plasma stimulation, 상기 Ti1-xAlxN 경질 물질층은 화학양론 계수 x가 0.75 < x ≤0.93이며 격자 상수 afcc 가 0.412 nm 내지 0.405 nm인 큐빅 NaCl 구조의 모노상 층으로서 존재하거나, 또는 상기 Ti1-xAlxN 경질 물질층은 복수층으로서, 주상이 화학양론 계수 x가 0.75 < x ≤0.93이고 격자 상수 afcc 가 0.412 nm 내지 0.405 nm인 큐빅 NaCl 구조를 갖는 Ti1-xAlxN로 구성되고 부르차이트 구조의 Ti1-xAlxN 및/또는 NaCl 구조의 TiNx 추가상으로 포함하는 복수층이고, 상기 Ti1-xAlxN 경질물질층의 염소 함량이 0.05 내지 0.9 원자 %인 경질물질 코팅체.The Ti 1-x Al x N hard material layer exists as a monophasic layer of cubic NaCl structure having a stoichiometric coefficient x of 0.75 <x ≦ 0.93 and lattice constant a fcc of 0.412 nm to 0.405 nm, or the Ti 1- The x Al x N hard material layer is a plural layer composed of Ti 1-x Al x N having a cubic NaCl structure in which the main phase has a stoichiometric coefficient x of 0.75 <x ≤ 0.93 and a lattice constant a fcc of 0.412 nm to 0.405 nm. Ti 1-x Al x N and / or TiN x in NaCl structure A hard material coating comprising a plurality of additional layers, wherein the chlorine content of the Ti 1-x Al x N hard material layer is 0.05 to 0.9 atomic%. 제1항에 있어서,The method of claim 1, 상기 Ti1-xAlxN 경질물질층의 염소 함량이 0.1 내지 0.5 원자%인 것을 특징으로 하는 경질물질 코팅체.Hard material coating, characterized in that the chlorine content of the Ti 1-x Al x N hard material layer is 0.1 to 0.5 atomic%. 제1항에 있어서,The method of claim 1, 상기 Ti1 - xAlxN 경질물질층의 산소 함량이 0.1 내지 5 원자%인 것을 특징으로 하는 경질물질 코팅체.Hard material coating, characterized in that the oxygen content of the Ti 1 - x Al x N hard material layer is 0.1 to 5 atomic%. 제1항에 있어서,The method of claim 1, 상기 Ti1-xAlxN 경질물질층의 경도가 2500 HV 내지 3800 HV인 것을 특징으로 하는 경질물질 코팅체.Hard material coating, characterized in that the hardness of the Ti 1-x Al x N hard material layer is 2500 HV to 3800 HV. 제1항에 있어서,The method of claim 1, 상기 Ti1-xAlxN 경질물질층이 0 내지 30 중량%의 무정형 층 구성성분을 포함하는 것을 특징으로 하는 경질물질 코팅체.And wherein the Ti 1-x Al x N hard material layer comprises 0 to 30 weight percent of an amorphous layer component. 하나 이상의 Ti1-xAlxN 경질 물질층을 포함하는 단일층 또는 복수층을 갖는 경질 물질 코팅체의 제조방법으로서,A method of making a hard material coating having a single layer or a plurality of layers comprising at least one Ti 1-x Al x N hard material layer, 반응기 내에서 700℃ 내지 900℃의 온도 범위에서 플라즈마 자극없이 CVD에 의해 몸체를 코팅하며, 상승된 온도에서 혼합된 티타늄 할로게나이드, 알루미늄 할로게나이드, 및 반응성 질소 화합물을 전구체로서 사용하는 것을 특징으로 하는 제조방법.Coating the body by CVD without plasma stimulation in a temperature range of 700 ° C. to 900 ° C. in the reactor, and using titanium halogenide, aluminum halogenide, and reactive nitrogen compounds mixed at elevated temperatures as precursors The manufacturing method to make. 제6항에 있어서,The method of claim 6, 반응성 질소 화합물로서 NH3 및/또는 N2H4 을 사용하는 것을 특징으로 하는 제조방법.NH 3 and / or N 2 H 4 as a reactive nitrogen compound. 제6항에 있어서,The method of claim 6, 상기 전구체들을 반응기 내에서 증착 영역의 바로 전에 혼합하는 것을 특징으로 하는 제조방법.Wherein said precursors are mixed in the reactor just before the deposition zone. 제6항에 있어서,The method of claim 6, 상기 전구체들은 150℃ 내지 900℃의 온도 범위에서 혼합되는 것을 특징으로 하는 제조방법.The precursors are mixed, characterized in that in the temperature range of 150 ℃ to 900 ℃. 제6항에 있어서,The method of claim 6, 상기 코팅 공정이 102 Pa 내지 105 Pa의 압력 범위에서 수행되는 것을 특징으로 하는 제조방법.The coating process is characterized in that carried out in a pressure range of 10 2 Pa to 10 5 Pa.
KR1020087002457A 2005-07-04 2006-07-04 Hard-coated body and method for production thereof KR20080028980A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005032860A DE102005032860B4 (en) 2005-07-04 2005-07-04 Hard material coated bodies and process for their production
DE102005032860.1 2005-07-04

Publications (1)

Publication Number Publication Date
KR20080028980A true KR20080028980A (en) 2008-04-02

Family

ID=36822291

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087002457A KR20080028980A (en) 2005-07-04 2006-07-04 Hard-coated body and method for production thereof

Country Status (12)

Country Link
US (1) US7767320B2 (en)
EP (1) EP1902155B1 (en)
JP (1) JP4996602B2 (en)
KR (1) KR20080028980A (en)
CN (1) CN101218370B (en)
CA (1) CA2613091C (en)
DE (1) DE102005032860B4 (en)
ES (1) ES2567589T3 (en)
MX (1) MX2008000148A (en)
PL (1) PL1902155T3 (en)
RU (1) RU2405858C2 (en)
WO (1) WO2007003648A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190142359A (en) * 2017-08-15 2019-12-26 미츠비시 히타치 쓰루 가부시키가이샤 Sheath cutting tool

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005032860B4 (en) 2005-07-04 2007-08-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hard material coated bodies and process for their production
AT505221B1 (en) * 2007-05-08 2009-09-15 Bihler Edelstahl Gmbh TOOL WITH COATING
DE102007000512B3 (en) 2007-10-16 2009-01-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hard-coated body with a multi-layer system for tools and components such as drills, millers and indexable inserts, comprises a bonding layer applied on the body, a single- or multi-phase hard layer, and a phase gradient layer
DE102008013965A1 (en) 2008-03-12 2009-09-17 Kennametal Inc. Hard material coated body
DE102008013964A1 (en) * 2008-03-12 2009-09-17 Kennametal Inc. Hard material coated body
DE102008013966A1 (en) 2008-03-12 2009-09-17 Kennametal Inc. Hard material coated body
CN102002684B (en) * 2009-08-31 2014-07-30 日立金属株式会社 Slide part
DE102009046667B4 (en) 2009-11-12 2016-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Coated bodies of metal, hardmetal, cermet or ceramic, and methods of coating such bodies
AT510981B1 (en) 2011-03-18 2012-08-15 Boehlerit Gmbh & Co Kg COATED BODY, USE THEREOF AND METHOD FOR THE PRODUCTION THEREOF
AT510963B1 (en) 2011-03-18 2012-08-15 Boehlerit Gmbh & Co Kg COATED BODY AND METHOD FOR THE PRODUCTION THEREOF
EP2761058B1 (en) * 2011-09-30 2019-08-14 Oerlikon Surface Solutions AG, Pfäffikon Aluminum titanium nitride coating with adapted morphology for enhanced wear resistance in machining operations and method thereof
JP5838769B2 (en) * 2011-12-01 2016-01-06 三菱マテリアル株式会社 Surface coated cutting tool
JP5796778B2 (en) * 2012-01-23 2015-10-21 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer maintaining excellent heat resistance and wear resistance
JP6024981B2 (en) 2012-03-09 2016-11-16 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
AT511950B1 (en) 2012-03-14 2013-04-15 Boehlerit Gmbh & Co Kg Coated body and method of coating a body
JP5935479B2 (en) * 2012-04-20 2016-06-15 三菱マテリアル株式会社 Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting
JP5939509B2 (en) * 2012-07-25 2016-06-22 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
DE102012107129A1 (en) * 2012-08-03 2014-02-06 Walter Ag TiAIN coated tool
JP6090063B2 (en) * 2012-08-28 2017-03-08 三菱マテリアル株式会社 Surface coated cutting tool
JP5939396B2 (en) * 2012-09-28 2016-06-22 三菱マテリアル株式会社 Temperature sensor
JP5939397B2 (en) * 2012-09-28 2016-06-22 三菱マテリアル株式会社 Temperature sensor
JP6037113B2 (en) * 2012-11-13 2016-11-30 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6143158B2 (en) * 2012-12-28 2017-06-07 住友電工ハードメタル株式会社 Surface covering member and manufacturing method thereof
JP5618429B2 (en) * 2012-12-28 2014-11-05 住友電工ハードメタル株式会社 Surface covering member and manufacturing method thereof
US9103036B2 (en) 2013-03-15 2015-08-11 Kennametal Inc. Hard coatings comprising cubic phase forming compositions
JP6268530B2 (en) * 2013-04-01 2018-01-31 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6150109B2 (en) * 2013-04-18 2017-06-21 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
DE102013104254A1 (en) 2013-04-26 2014-10-30 Walter Ag Tool with CVD coating
US9896767B2 (en) 2013-08-16 2018-02-20 Kennametal Inc Low stress hard coatings and applications thereof
US9168664B2 (en) 2013-08-16 2015-10-27 Kennametal Inc. Low stress hard coatings and applications thereof
JP6238131B2 (en) * 2013-12-26 2017-11-29 住友電工ハードメタル株式会社 Coating and cutting tools
JP6270131B2 (en) * 2014-01-22 2018-01-31 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6394898B2 (en) * 2014-01-31 2018-09-26 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
DE102014103220A1 (en) 2014-03-11 2015-09-17 Walter Ag TiAIN layers with lamellar structure
JP6296298B2 (en) * 2014-08-28 2018-03-20 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
EP3000913B1 (en) 2014-09-26 2020-07-29 Walter Ag Coated cutting tool insert with MT-CVD TiCN on TiAI(C,N)
JP6120229B2 (en) 2015-01-14 2017-04-26 住友電工ハードメタル株式会社 Hard coating, cutting tool, and manufacturing method of hard coating
AT516062B1 (en) * 2015-01-15 2016-02-15 Boehlerit Gmbh & Co Kg Process for coating an article and coating made therewith
WO2016148056A1 (en) * 2015-03-13 2016-09-22 三菱マテリアル株式会社 Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance
JP6590255B2 (en) 2015-03-13 2019-10-16 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
KR20240005993A (en) * 2015-07-27 2024-01-12 발터 악티엔게젤샤프트 TOOL WITH TiAlN COATING
EP3382058A4 (en) 2015-11-25 2019-07-03 Mitsubishi Hitachi Tool Engineering, Ltd. Titanium aluminum nitride hard film, hard film coated tool, method for producing titanium aluminum nitride hard film, and method for producing hard film coated tool
KR102476668B1 (en) * 2015-12-07 2022-12-09 아이에이치아이 버넥스 아게 Coated Extrusion Tools
JP6638936B2 (en) 2016-01-13 2020-02-05 住友電工ハードメタル株式会社 Surface coated cutting tool and method of manufacturing the same
US9994958B2 (en) * 2016-01-20 2018-06-12 Sumitomo Electric Hardmetal Corp. Coating, cutting tool, and method of manufacturing coating
WO2017170603A1 (en) * 2016-03-31 2017-10-05 株式会社タンガロイ Coated cutting tool
JP6709517B2 (en) * 2016-04-07 2020-06-17 株式会社タンガロイ Coated cutting tools
CN109477215B (en) 2016-07-07 2020-11-27 三菱日立工具株式会社 Hard coating, hard coated tool and method for producing same
WO2018047733A1 (en) * 2016-09-06 2018-03-15 住友電工ハードメタル株式会社 Cutting tool and method for producing same
WO2018047735A1 (en) * 2016-09-06 2018-03-15 住友電工ハードメタル株式会社 Cutting tool and method for producing same
WO2018047734A1 (en) * 2016-09-06 2018-03-15 住友電工ハードメタル株式会社 Cutting tool and method of producing same
US11286570B2 (en) * 2017-01-26 2022-03-29 Walter Ag Coated cutting tool
JP6667713B2 (en) 2017-02-28 2020-03-18 住友電工ハードメタル株式会社 Surface coated cutting tool and method of manufacturing the same
US11123802B2 (en) 2017-02-28 2021-09-21 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method for manufacturing the same
WO2018158975A1 (en) 2017-02-28 2018-09-07 住友電工ハードメタル株式会社 Surface-coated cutting tool and production method therefor
JP7393946B2 (en) * 2017-04-07 2023-12-07 サンドビック インテレクチュアル プロパティー アクティエボラーグ coated cutting tools
CN109112500B (en) 2017-06-22 2022-01-28 肯纳金属公司 CVD composite refractory coating and application thereof
JP6931458B2 (en) * 2017-07-18 2021-09-08 三菱マテリアル株式会社 Surface coating cutting tool with excellent wear resistance and chipping resistance with a hard coating layer
EP3670043A4 (en) * 2017-08-15 2021-03-24 Mitsubishi Hitachi Tool Engineering, Ltd. Coated cutting tool
KR102064172B1 (en) * 2017-09-01 2020-01-09 한국야금 주식회사 Hard film having excellent wear resistance and toughness
WO2019181134A1 (en) * 2018-03-22 2019-09-26 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method therefor
US11274366B2 (en) 2018-03-22 2022-03-15 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method for manufacturing same
JP6565093B1 (en) * 2018-03-22 2019-08-28 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
EP3769869A4 (en) * 2018-03-22 2021-12-29 Sumitomo Electric Hardmetal Corp. Surface coated cutting tool and method for manufacturing same
JP6565091B1 (en) * 2018-03-22 2019-08-28 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
KR20200119334A (en) * 2018-03-22 2020-10-19 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Surface-coated cutting tool and its manufacturing method
EP3769870A4 (en) * 2018-03-22 2021-08-18 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and manufacturing method therefor
WO2020188313A2 (en) * 2018-07-10 2020-09-24 Next Biometrics Group Asa Thermally conductive and protective coating for electronic device
US20210105888A1 (en) * 2019-10-04 2021-04-08 Kennametal Inc. Coated nozzles for arc torches
US11293095B2 (en) 2020-06-02 2022-04-05 Sumitomo Electric Hardmetal Corp. Cutting tool
US11292065B2 (en) 2020-06-02 2022-04-05 Sumitomo Electric Hardmetal Corp. Cutting tool
US11390942B2 (en) 2020-06-02 2022-07-19 Sumitomo Electric Hardmetal Corp. Cutting tool
WO2022239139A1 (en) * 2021-05-12 2022-11-17 住友電工ハードメタル株式会社 Cutting tool
US20240051033A1 (en) 2022-08-10 2024-02-15 Iscar, Ltd. CUTTING TOOL WITH A TiAlN COATING HAVING RAKE AND RELIEF SURFACES WITH DIFFERENT RESIDUAL STRESSES

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4115616C2 (en) * 1991-03-16 1994-11-24 Leybold Ag Multi-layer hard material system for tools
US5330853A (en) * 1991-03-16 1994-07-19 Leybold Ag Multilayer Ti-Al-N coating for tools
JPH0533795A (en) 1991-07-24 1993-02-09 Sanyo Electric Co Ltd Electric fan
JP2999346B2 (en) * 1993-07-12 2000-01-17 オリエンタルエンヂニアリング株式会社 Substrate surface coating method and coating member
FR2745299B1 (en) * 1996-02-27 1998-06-19 Centre Nat Rech Scient TI1-XALXN COATING FORMATION PROCESS
FR2767841B1 (en) 1997-08-29 1999-10-01 Commissariat Energie Atomique PROCESS FOR THE PREPARATION BY CHEMICAL VAPOR DEPOSITION (CVD) OF A MULTI-LAYER COATING BASED ON Ti-Al-N
SE519005C2 (en) * 1999-03-26 2002-12-17 Sandvik Ab Coated cemented carbide inserts
SE9903089D0 (en) * 1999-09-01 1999-09-01 Sandvik Ab Coated grooving or parting insert
SE9903122D0 (en) * 1999-09-06 1999-09-06 Sandvik Ab Coated cemented carbide insert
JP2001341008A (en) 2000-06-02 2001-12-11 Hitachi Tool Engineering Ltd Titanium nitride-aluminum film coated tool and manufacturing method therefor
CN1190516C (en) * 2000-12-29 2005-02-23 中国科学院金属研究所 Ionic TiAlN coating for blade of air compressor in naval aircraft engine
CN100408237C (en) * 2002-01-21 2008-08-06 三菱麻铁里亚尔株式会社 Surface-coated cutting tool member having coating layer exhibiting superior wear resistance during high speed cutting operation and method for forming hard coating layer on surface of cutting tool
AU2003227598A1 (en) * 2002-04-11 2003-10-20 Cemecon Ag Coated bodies and a method for coating a body
SE526336C2 (en) * 2002-07-01 2005-08-23 Seco Tools Ab Cut with durable refractory coating of MAX phase
DE102005032860B4 (en) 2005-07-04 2007-08-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hard material coated bodies and process for their production
DE102009046667B4 (en) 2009-11-12 2016-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Coated bodies of metal, hardmetal, cermet or ceramic, and methods of coating such bodies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190142359A (en) * 2017-08-15 2019-12-26 미츠비시 히타치 쓰루 가부시키가이샤 Sheath cutting tool

Also Published As

Publication number Publication date
EP1902155B1 (en) 2016-02-03
ES2567589T3 (en) 2016-04-25
CA2613091C (en) 2017-07-04
MX2008000148A (en) 2008-03-26
JP2008545063A (en) 2008-12-11
US20090123779A1 (en) 2009-05-14
EP1902155A1 (en) 2008-03-26
JP4996602B2 (en) 2012-08-08
PL1902155T3 (en) 2016-07-29
CN101218370A (en) 2008-07-09
US7767320B2 (en) 2010-08-03
CN101218370B (en) 2010-06-23
RU2007145953A (en) 2009-08-10
DE102005032860A1 (en) 2007-01-11
RU2405858C2 (en) 2010-12-10
BRPI0613793A2 (en) 2011-02-15
DE102005032860B4 (en) 2007-08-09
WO2007003648A1 (en) 2007-01-11
CA2613091A1 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
KR20080028980A (en) Hard-coated body and method for production thereof
JP5431342B2 (en) Object coated with hard substance and method of manufacturing the same
JP5385259B2 (en) Coated cutting tool and manufacturing method thereof
US5834061A (en) Al2 O3 coated cutting tool preferably for near net shape machining
EP2276874B1 (en) A coated cutting tool and a method of making thereof
EP1988190A2 (en) Coated cutting tool
JPH07216549A (en) Coated hard article and its production
KR20190119088A (en) Articles made of metals, cemented carbides, ceramics or ceramics and coated with a hard material and methods of making such articles
JP3291775B2 (en) Surface coated cutting tool
US6673393B2 (en) Oxide coated cutting tool
JP2001009604A (en) Cutting tool made of surface coated tungsten carbide base cemented carbide in which hard coated layer has excellent abrasive resistance in high speed cutting
JP3236903B2 (en) Surface coated cutting tool
JP3119414B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP3304767B2 (en) Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance
JP3255041B2 (en) Surface-coated cermet cutting tools with excellent fracture resistance
JPH0929509A (en) Cutting tool made of surface-coated tungsten carbide grouped hard metal wherein hard coating layer has excellent interlayer adhesion
JPH08318408A (en) Surface covering tungsten carbide group cemented carbide-made cutting tool which has hard covering layer its excellent in inter-layer adhesion
BRPI0613793B1 (en) HARD MATERIAL COATED BODIES AND METHOD FOR THEIR PRODUCTION

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20131002

Effective date: 20140624

J2X1 Appeal (before the patent court)

Free format text: APPEAL AGAINST DECISION TO DECLINE REFUSAL

J302 Written judgement (patent court)

Free format text: JUDGMENT (PATENT COURT) FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20140725

Effective date: 20150709

J303 Written judgement (supreme court)

Free format text: JUDGMENT (SUPREME COURT) FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20150724

Effective date: 20151112