KR20080017314A - 이동 불꽃 점화기를 고압에서 동작시키기 위한 방법 및장치 - Google Patents

이동 불꽃 점화기를 고압에서 동작시키기 위한 방법 및장치 Download PDF

Info

Publication number
KR20080017314A
KR20080017314A KR1020077026690A KR20077026690A KR20080017314A KR 20080017314 A KR20080017314 A KR 20080017314A KR 1020077026690 A KR1020077026690 A KR 1020077026690A KR 20077026690 A KR20077026690 A KR 20077026690A KR 20080017314 A KR20080017314 A KR 20080017314A
Authority
KR
South Korea
Prior art keywords
current
plasma
igniter
pulse
pulses
Prior art date
Application number
KR1020077026690A
Other languages
English (en)
Other versions
KR101250046B1 (ko
Inventor
아터 서큐어
사이몬 서큐어
프레데릭 에이치. 3세 셀몬
Original Assignee
나이트, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나이트, 인크. filed Critical 나이트, 인크.
Publication of KR20080017314A publication Critical patent/KR20080017314A/ko
Application granted granted Critical
Publication of KR101250046B1 publication Critical patent/KR101250046B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/06Other installations having capacitive energy storage
    • F02P3/08Layout of circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/06Other installations having capacitive energy storage
    • F02P3/08Layout of circuits
    • F02P3/0807Closing the discharge circuit of the storage capacitor with electronic switching means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/06Other installations having capacitive energy storage
    • F02P3/08Layout of circuits
    • F02P3/0807Closing the discharge circuit of the storage capacitor with electronic switching means
    • F02P3/0815Closing the discharge circuit of the storage capacitor with electronic switching means using digital techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/50Sparking plugs having means for ionisation of gap
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Spark Plugs (AREA)
  • Plasma Technology (AREA)

Abstract

고압 기관을 포함하는 내연 기관의 점화기(바람직하게는 이동 불꽃 점화기)를 동작시키는 점화 회로 및 방법. 전극 사이에 브레이크다운을 유발하여 전극 사이의 절연체의 표면 위에서 점화기에 고전류 전기 방전을 초래하고, 상기 표면에 인접한 공기와 연료의 혼합물 내에 플라즈마 핵의 형성을 초래하기에 충분한 고전압이 점화기의 전극에 인가된다. 브레이크다운에 이어, 펄스들 사이에 플라즈마를 통해 낮은 "시머" 전류를 갖는 상태로 하나 이상의 저전압 및 저전류 펄스의 시퀀스가 상기 전극에 인가되어 전체적 플라즈마 재조합을 방지하고, 각 펄스에 의해 플라즈마 핵이 전극의 자유 단부를 향해 이동할 수 있게 한다.
고압 기관, 점화기, 브레이크다운, 펄스의 시퀀스, 시머 전류, 플라즈마 핵

Description

이동 불꽃 점화기를 고압에서 동작시키기 위한 방법 및 장치 {METHOD AND APPARATUS FOR OPERATING TRAVELING SPARK IGNITER AT HIGH PRESSURE}
관련 출원
본 출원은 전체가 본 명세서에 참고로 포함되고 발명의 명칭 및 양수인이 동일하고 2005년 4월 19일자로 출원된 이전의 미국 가특허 출원 제60/672,892호에 대한 35 USC 119(e)하의 이득을 청구한다.
본 발명은 플라즈마 발생, 점화기 및 내연(IC) 기관의 분야에 관한 것이다. 특히, 본 발명은 점화 방법 및 그에 사용하기 위한 점화 장치, 구체적으로는, 고압 기관을 포함하지만 이에 제한되지는 않는 다양한 용례를 위한 점화 방법 및 장치에 관한 것이지만, 이에 한정되는 것은 아니다. 보다 구체적으로는, 몇몇 태양은 특히, 고압에서 동작하는 내연 기관에서, 그 성능 및 수명을 최대화하도록 이동 불꽃 점화기에 방전 전류를 전달하는 것에 관한 것이다.
다양한 이유로, 내연 기관 및 유사한 연소 환경에서 압력을 증가시키는 것이 최근 관심사가 되고 있으며, 여기에는 이들 환경에서 동작할 수 있는 점화원에 대한 수요가 동반된다. 예로서, 자동차 회사 및 내연 기관의 제조업자들은 종래의 내연 기관보다 매우 높은 압력에서 동작하는 IC 기관을 갖는 차량을 제공할 수 있 게 되는 것을 선호한다. 그러나, 현재까지, 이런 기관을 위한 효율적이고 실용적인 점화 시스템은 존재하지 않는다. 무엇보다도, 관심사는 점화기(스파크 플러그)의 수명 및 점화기 발화의 신뢰성이다.
이동 불꽃 점화기(TSI)는 내연 기관을 위한 촉망되는 스파크 플러그 대체물로서 논의되어온 장치이지만, 고압 기관에 대해서는 종전에 고려된 바 없다. 예를 들어, TSI는, 예로서 양자 모두가 본 발명과 동일한 양수인에게 양도되어 있고 TSI 장치 및 점화 시스템에 대한 그 설명에 대해 그 전체가 참조로 포함되어 있는 미국 특허 제6,321,733호 및 제6,474,321호를 포함하는 다수의 이전 특허들에 개시되어 있다.
간단히, TSI-기반 점화 시스템은 로렌쯔 힘에 의해 (열적 힘과 함께, 보다 적은 정도로) 점화기의 전극을 따라 전파되고, 연소실 내로 추진되는 대형 플라즈마 핵(large plasma kernel)을 제공한다. 점화 핵(즉, 플라즈마)상에 작용하는 로렌쯔 힘은 플라즈마 내의 방전 전류에 의해 생성되며, 플라즈마는 점화기의 전극에서 동일한 전류에 의해 유발되는 자기장과 상호작용한다. 로렌쯔 힘의 크기는 이 전류의 제곱에 비례한다. 정상 압력(즉, 약 120psi의 최대치)에서 동작하는 기관에서, 이동 불꽃 점화기는 비슷한 방전 에너지에 대하여, 이들이 생성하는, 종래의 스파크 플러그보다 약 100-200배 큰 대형 플라즈마 체적 때문에, 종래의 스파크 플러그에 비해 현저한 장점을 제공한다. 증가된 효율과 감소된 배기물이 달성될 수 있다.
그러나, 보다 높은 기관 동작 압력에 대하여, 점화기의 전극들 사이에 방전 을 개시하기 위해 필요한 브레이크다운(breakdown) 전압은 종래의 압력에서 동작하는 기관보다 현저히 높다. 이는 임의의 스파크 플러그에 대해서와 같이, TSI에 대해 문제점을 유발한다. 종래의 스파크 플러그에서와 같이, TSI의 전극은 절연체라 지칭되는 부재에 의해 이격된 관계로 유지되며, 이 절연체는 세라믹 같은 절연 재료로 형성된다. 높은 브레이크 전압은 절연체와 전극 양자 모두에 문제점을 유발한다.
전극들 사이에서 연장하는 절연체의 표면을 따른 브레이크다운 전압은 TSI, 또는 전극들 사이에 유사한 간극을 갖는 임의의 종래의 스파크 플러그에서 전극을 더 따른 것보다 낮다. 사실, 브레이크다운 전압의 이러한 차이는 연소실 내의 증가하는 압력에 직결되어 변한다. 결과적으로, 절연체 표면을 따른 브레이크다운 전압이 압력과 함께 증가하더라도, 이러한 증가는 절연체 표면으로부터 떨어진 전극의 노출부 사이의 브레이크다운 전압의 증가보다 작다. 브레이크다운이 발생할 때 (그 결과로서, 플라즈마를 통한 저항이 급속히 강하함), 전류는 급속히 상승하고, 절연체 표면을 따라 플라즈마를 형성하는 데 매우 큰 전류가 전도되어, 플라즈마 상에 작용하는 로렌쯔 힘의 증가를 유발한다. 이러한 급속히 상승하는 전류는 매우 고온의 플라즈마를 생성하기도 하지만, 절연체의 표면 부근에 강력한 충격파도 생성한다. 이 전류가 크면 클수록, 플라즈마 팽창과 그에 따른 결과 충격파가 빨라진다. 이들의 조합된 효과는 절연체의 변형 및/또는 파괴를 유발할 수 있다.
부가적으로, 높은 전류는, 높은 전류, 가열 및 그로부터 초래되는 열이온 방출에 의해 영향을 받는 절연체 표면 부근에서 전극의 매우 급속한 침식을 발생시킨 다.
유사한 문제점이 고 형상비 방전 간극(저 형상비 방전 간극을 갖는 TSI와는 대조적으로)을 따라 이동하는 플라즈마 내에 로렌쯔 힘을 발생시키는 텍사스 대학(University of Texas) "레일플러그(railplug)"에 기초한 점화기에서도 증명되었다.
레일플러그 및 TSI 양자 모두가 비교적 저압에서 현저한 플라즈마 이동을 발생시키지만, 연소실 압력이 고압으로 증가될 때, 플라즈마는 다르게 거동하며, 이는 불만스러운 결과를 초래하는 거동의 이러한 차이이다. 저압 환경에서, 압력에 의해 플라즈마 상에 작용되는 힘은 비교적 작다. 플라즈마는 로렌쯔 힘에 응답하여 쉽게 전극을 따라 이동한다. 그러나, 점화실 압력이 증가되면, 이 압력은 로렌쯔 힘에 저항하고, 그에 따라 플라즈마 이동에 저항하는 현저한 크기의 힘을 제공한다. 결과적으로, 플라즈마는 보다 집중되고 자체적으로 쇠약해지는 경향을 갖고, 특정 전류 임계치 미만에서, 분산된 플라즈마 구름을 갖는 대신, 매우 국지적인 플라즈마-아크-가 전극 사이에 형성된다. 이 아크는 비록, 저압의 경우 플라즈마 구름보다 매우 작은 체적을 점유하지만, 유사한 에너지를 수용한다. 결과적으로, 전류 밀도가 보다 높고, 아크가 존재하는 전극에서, 아크-전극 계면에 보다 높은 국지적 온도와 보다 많은 전력 밀도가 존재한다. 즉, 이들 계면에서 전류 밀도가 매우 높아 저압 환경보다 전극에 국지적 가열을 더 유발한다. 순차적으로, 전극의 국지적 가열은 전자 및 이온의 열이온 방출을 유발한다. 관찰되는 영향은 아크가 전극 상의 비교적 고정된 위치에서 자체적으로 "부착"하는 것으로 보여, "부 착점"에 전체 방전 에너지가 누적될 때 전극의 침식을 유발하고, 이는 저밀도의 분산된 플라즈마 접촉 영역이 전극에 대한 현저한 훼손 없이 전극을 따라 이동하는 저압 환경과는 대조적이다.
동시에, 로렌쯔 힘 및 열적 힘에 의해 영향을 받는 플라즈마는 아크 부착점으로부터 물러난다(bow out). 이는 자기장 라인이 더 이상 전극들 사이의 전류에 직교하지 않게 하여 주어진 전류에 의해 발생되는 로렌쯔 힘의 크기를 감소시킨다. 따라서, 다른 문제점들에 부가하여, 플라즈마에 인가되는 기동력에 손실이 있다.
전체적으로, 저압 환경에 비해, 플라즈마 이동이 감소하며, 아크 부착점에서 전극 마모가 현저히 증가된다.
따라서, 일반적으로 플라즈마 발생기에 대한 수요, 개선된 점화 시스템에 대한 수요, 내연 기관에 사용하기 위한 점화 시스템에 대한 수요 및 고압 기관과 함께 사용할 수 있으면서 상업적으로 실용적인, 대형 점화 핵을 발생시키는 점화 시스템 및 방법에 대한 수요를 포함하는 다양한 수요가 존재한다.
이동 불꽃 점화기가 고압 연소 환경에서 사용되는 경우, 점화기의 전극과 절연체 재료에 대한 상술한 부정적 영향을 극복할 필요가 또한 존재한다. 예로서, 본 명세서에 참조로 포함되어 있는 미국 특허 제5,704,321호, 제6,131,542호, 제6,321,733호, 제6,474,321호, 제6,662,793호 및 제6,553,981호를 참조하기 바란다. 즉, 절연체와 전극이 방전에 의해 파괴되지 않고 상당한 (바람직하게는, 저압 기관에서 종래의 스파크 플러그에 비견할만한) 수명을 나타내는, 고압 연소 기관에 사용하기 위한 점화기 및 점화 시스템에 대한 수요가 존재한다. 바람직하게, 이런 이동 불꽃 점화기 및 점화 시스템은 고압 및 초고압(즉, 수백 psi)에서 뿐만 아니라, 보다 낮은 종래의 압력에서도 내연 기관 작동에 사용 가능하고 유용할 것이다.
플라즈마를 생성 및 유지하고 이동 불꽃 점화기를 작동시키며 내연 기관 및 기타 기관, 특히 고압 내연 기관을 위한 점화를 제공하는 새로운 방법 및 해당 응 장치에 의해 상술한 수요 및 다른 수요가 해결되며, 장점들이 제공된다. 통상적으로, 점화기의 플라즈마 개시 영역에서 플라즈마 핵을 개시하기 위해 점화기에 높은 초기 브레이크다운 전압이 인가되지만, 이는 TSI 점화기와 함께 기존에 사용되던 것보다 낮은 전류에서 인가되는 것이 바람직하며, 이는 브레이크다운 전류가 큰 로렌쯔 힘을 발생시킬 필요가 없기 때문이다. 브레이크다운 전류 펄스 이후, 재조합을 발생시키면서 플라즈마를 지속시키고, (통상적으로, 점화기 전극들 사이의 절연체 표면 상의 또는 그에 인접한) 개시 영역으로부터 플라즈마가 쉽게 분리되게 (또는 분리 가능하게) 하도록 다양한 메커니즘이 사용될 수 있다. 플라즈마가 완전히 재조합될 기회를 갖기 이전에, 전류는 다시 온(on) 상태로 되어 (바람직하게는 브레이크다운 펄스보다 사실상 작은 전류로) 짧은 후속(follow-on) 에너지 펄스를 제공한다. 후속 전류 펄스는 로렌쯔 힘의 대응 펄스를 생성하여 플라즈마를 그 이전 위치로부터 멀어지는 방향으로, 더욱이 점화기의 전극을 따라, 이동시킨다. 연속 펄스들 사이에 "오프(off)" 간격을 갖는 상태로 다수의 이런 후속 펄스가 제공될 수 있으며, 이 간격 동안 하나 이상의 메커니즘이 플라즈마를 지속시키며 플라즈마의 단지 부분적 재조합만을 가능하게 한다. 이는 "시머링(simmering)"이라 지칭된다. 플라즈마의 전체 재조합 이전에, 전류의 다음 후속 펄스가 전극을 따라 추가로 플라즈마를 "가속(kick)"시키며, 최종 후속 펄스는 전극으로부터 플라즈마를 배출시킨다. 시머링을 발생시키기 위한 한 가지 메커니즘은 점화기를 통한 전류를 "시머 전류"라 하는 비교적 낮은 (그러나, 0은 아닌) 레벨로 감소시키는 것이다. 대안으로, 시머 전류가 인가되지 않는 경우, 재조합을 유지시키면서 다음 후속 펄스가 도달하는 시간까지 플라즈마 핵의 "전체적" 재조합을 방지하기 위한 다수의 다른 기술 중 임의의 기술을 사용하여 유사한 효과가 달성될 수 있다. 예로서, 후속 펄스는 펄스 사이에서 단지 부분적 재조합만이 발생하도록 서로 매우 근접하게 이어지도록 시기가 설정될 수 있으며, 가능한 파형 성형될 수 있으며, 또는 각 후속 펄스에 높은 서브브레이크다운 전압이 선행될 수 있으며, 또는 플라즈마가 RF 또는 레이저 에너지에 의해 여기될 수 있다. 즉, 전체적인 플라즈마 재조합을 방지하는 다양한 방법이 고려된다. 재조합과 관련하여 "전체적"이라는 것은 플라즈마가 사실상 소거되어 플라즈마의 재점화를 위해 높은 에너지가 필요하다는 것을 의미한다.
본 발명은 다수의 방식 또는 태양으로 명시되며, 예시적 구현예들이 이하에 제시된다. 본 기술 분야의 숙련자들에게 본 발명을 실시하는 다른 방식은 명백할 것이다. 다양한 태양은 단독으로, 또는 다수의 조합 중 임의의 조합으로 실시될 수 있으며, 이들 모두를 일일이 열거할 수는 없다. 다양한 실시예의 특징은 예시된 것들 이외의 조합으로 실시될 수 있으며, 간결성을 위해, 모든 실시예와 연계하여 모든 특징들을 예시하지는 않는다.
본 발명의 태양은 적어도 이하를 포함한다:
플라즈마 발생 방법이며, 전극 사이에 브레이크다운을 유발하여 개시 영역에서 점화기에 고전류 전기 방전을 초래하고, 상기 개시 영역에 인접한 플라즈마 핵의 형성을 초래하기에 충분한 크기인 고전압을 점화기에 인가하는 단계와, 브레이크다운에 이어, 적어도 두 개의 비교적 저전압의 후속 펄스의 시퀀스를 상기 전극에 인가하는 단계를 포함하여, 플라즈마 핵은 상기 후속 펄스에 의해 상기 전극의 자유 단부를 향해 강제 이동되는 플라즈마 발생 방법.
플라즈마 발생 방법이며, 전극 사이에 브레이크다운을 유발하여 개시 영역에서 점화기에 고전류 전기 방전을 초래하고, 상기 개시 영역에 인접한 플라즈마 핵의 형성을 초래하기에 충분한 크기인 고전압을 점화기에 인가하는 단계와, 브레이크다운에 이어, 전극에 대한 전류 아크의 분산 부착을 유지하기에 충분히 낮은 전류의 하나 이상의 비교적 저전압의 후속 펄스의 시퀀스를 상기 전극에 인가하는 단계를 포함하여, 플라즈마 핵은 상기 후속 펄스의 영향하에 상기 전극의 자유 단부로 강제되어 그를 향해 이동할 수 있는 플라즈마 발생 방법.
개시 영역은 상기 전극 사이에 배치된 절연체의 표면 상에 또는 절연체의 표면에 인접하게 존재할 수 있다. 내연 기관을 위한 후속 펄스의 전류는 약 3과 약 450 암페어 사이일 수 있다. 이 방법은 적어도 하나의 후속 펄스 이전에 플라즈마의 전체적 핵 재조합을 방지하는 단계를 더 포함할 수 있다. 전체적 재조합을 방지하는 단계는 상기 시퀀스의 펄스들 사이에, 플라즈마 핵의 전체적 재조합을 방지하기에 충분한 시머 전류를 점화기 전극 사이에 유지하는 단계를 포함할 수 있다. 또한, 이는 후속 펄스들 사이에, 상기 사이 간격의 적어도 일부 동안, 점화기 전극 양단에 브레이크다운 전압 미만의, 그러나 상기 간격의 종료 이전의 전체적 재조합을 방지하기에 충분한 전류를 유지하기에 충분한 전압을 유지하는 단계를 포함할 수 있다. 점화기는 이동 불꽃 점화기일 수 있다. 상기 시퀀스의 연속적 펄스들은 약 2 내지 600μsec의 간격만큼, 바람직하게는, 약 20 내지 250μsec의 간격만큼, 가장 바람직하게는 50 내지 100μsec의 간격만큼 분리되어 있다. 상기 후속 펄스 각각은 약 3 내지 450 암페어의 최대 크기를 가질 수 있다. 이 크기는 비균일할 수 있다. 후속 펄스는 약 20 내지 120 암페어의 최대 크기를 가질 수 있으며, 이는 비균일할 수 있다. 상기 후속 전류 펄스 각각은 약 200μsec 미만의 평균 지속기간을 가질 수 있으며, 이는 비균일할 수 있다. 후속 펄스는 약 10 내지 5000V, 바람직하게는 약 20 내지 275V의 평균 크기를 가질 수 있다. 후속 펄스는 모두 동일한 극성의 전압 및 전류를 가질 필요가 없으며, 후속 펄스의 전류는 일정할 필요가 없다.
연료 점화 방법이며, 점화기의 전극 사이에 브레이크다운을 유발하여 개시 영역에서 점화기에 고전류 전기 방전을 초래하고, 상기 개시 영역에 인접한 플라즈마 핵의 형성을 초래하기에 충분한 크기의 고전압을 연소 가능한 연료가 존재하는 상태에서 점화기에 인가하는 단계와, 브레이크다운에 이어, 둘 이상의 비교적 낮은 전압의 후속 펄스의 시퀀스를 상기 전극에 인가하는 단계를 포함하여, 플라즈마 핵은 상기 후속 펄스에 의해 상기 전극의 자유 단부를 향해 강제 이동되는 연료 점화 방법. 개시 영역은 상기 전극 사이에 배치된 절연체의 표면 상에 또는 절연체의 표면에 인접하게 존재할 수 있다. 점화기는 내연 기관 내에 있을 수 있다. 가솔린 연료 내연 기관에 대하여 후속 펄스의 전류는 약 3과 450 암페어 사이일 수 있다. 상기 방법은 후속 펄스 이전에 플라즈마의 전체적 핵 재조합을 방지하는 단계를 더 포함한다.
전체적 재조합을 방지하는 단계는 상기 시퀀스의 펄스들 사이에, 플라즈마 핵의 전체적 재조합을 방지하기에 충분한 전류(시머 전류라 지칭됨)를 플라즈마 핵을 통해 유지하는 단계를 포함할 수 있다. 또한, 플라즈마 핵의 전체적 재조합을 방지하는 단계는 후속 펄스 사이의 간격에, 상기 사이 간격의 적어도 일부 동안, 점화기의 전극 양단에 브레이크다운 전압 미만의, 그러나 상기 간격의 종료 이전의 전체적 재조합을 방지하기에 충분한 전류를 플라즈마를 통해 유지하기에 충분한 전압을 유지하는 단계를 포함할 수 있다.
후속 펄스는 모두 동일한 극성의 전압 및 전류를 가질 필요가 없으며, 일정할 필요가 없다.
점화기는 점화 시기에 비교적 높은 압력이 존재하는 내연 기관 내에 존재할 수 있다.
이 방법은 후속 펄스 이후, 플라즈마 핵의 이온화 레벨이 소정 레벨 미만으로 떨어진 시기에 플라즈마 핵이 성장하게 하여 전체적 재조합이 이루어지기 이전에 다음 후속 펄스가 이어지게 하기에 충분한 전류 및 비교적 낮은 전압으로 플라즈마 핵을 재촉발 또는 재점화하는 단계를 더 포함할 수 있다.
이 방법은 또한 적어도 몇몇 후속 펄스 쌍 사이에 플라즈마 핵을 시머링하는 단계를 포함할 수 있다.
내연 기관 내의 점화기에 전력을 공급하기 위한 점화 회로이며, 점화기가 기관의 공기와 연료의 혼합물 내에 배치될 때, 점화기의 전극 사이의 개시 영역에서, 점화기의 전극 사이에 높은 전류로, 전기적 브레이크다운 방전을 유발할 수 있는 고전압을 제공하여 상기 방전에 의해 상기 영역에 플라즈마 핵이 형성되게 하는 고전압 제공 수단과, 하나 이상의 비교적 저전압 및 저전류 펄스의 시퀀스를 제공하는 수단을 포함하고, 상기 하나 이상의 비교적 저전압 및 저전류 펄스의 시퀀스는 플라즈마 핵이 상기 저전압 저전류 펄스에 의해 상기 전극의 자유 단부를 향해 강제 이동되게 하기에 충분한 전압 및 전류 크기와 타이밍을 갖는 점화 회로. 전기적 브레이크다운 방전을 유발할 수 있는 고전압 제공 수단은 주 권선 및 점화기의 일 전극에 대한 접속을 위한 리드를 갖는 이차 권선을 갖는 고전압 저인덕턴스 점화 코일과, 이차 권선에 고전압 펄스를 유도하도록 주 권선에 신호를 트리거하기 위한 회로를 포함할 수 있다. 비교적 저전압 펄스의 시퀀스를 제공하는 수단은 비교적 저전압 소스와, 상기 펄스 각각에 대해, 비교적 저전압 소스와 펄스 변압기에 의해 충전되는 커패시터를 포함하고, 펄스 변압기는 상기 리드에 접속되는 이차 권선과, 주 권선을 포함하고, 커패시터는 트리거 신호에 응답하여 주 권선을 통해 방전되어 상기 리드에 상기 펄스를 유도할 수 있다. 점화 회로는 브레이크다운 방전과 제1 후속 펄스 사이의 간격에서, 상기 간격 중의 플라즈마 핵의 전체적 재조합을 방지하기에 충분한 시머 전류를 점화기에 제공하기 위한 수단을 더 포함할 수 있다. 또한, 이는 각 연속적 후속 펄스들의 쌍 사이에서 플라즈마 핵의 전체적 재조합을 방지하기에 충분한 시머 전류를 점화기에 상기 그 사이에서 제공하기 위한 수단을 포함할 수 있다. 점화기 코일은 포화 가능한 코어를 포함하고, 포화 가능한 코어 상에는 주 권선 및 이차 권선이 형성되며, 코어는 상기 전기적 브레이크다운이 발생할 때 실질적으로 포화되어, 그 후 이차 권선이 실질적으로 감소된 인덕턴스를 갖게 되는 것이 바람직하다.
내연 기관의 점화기에 전력을 공급하기 위한 점화 회로이며, 점화기에 접속된 출력부 상에서 펄스를 생성하는 고전압 펄스 발생기와, 출력부 상에서 하나 이상의 비교적 저전압 및 저전류의 후속 펄스의 시퀀스를 생성하는 저전압 펄스 발생기를 포함하고, 상기 고전압 펄스 발생기는 상기 펄스의 최대 전압은 점화기에 전달되는 경우, 상기 점화기가 공기와 연료의 혼합물 내에 배치되어 있을 때, 전극들 사이의 개시 영역에서 점화기의 전극들 사이에 브레이크다운 방전 및 결과적인 고전류를 유발하여 상기 방전에 의해 상기 표면에 인접하게 플라즈마 핵이 형성되게 할 수 있고, 상기 저전압 및 저전류의 후속 펄스는 상기 저전압 저전류 펄스에 의해 플라즈마 핵을 상기 전극의 자유 단부를 향해 강제 이동시키기에 충분한 전압 및 전류 크기와 타이밍을 갖는 점화 회로. 또한, 브레이크다운 방전과 제1 후속 펄스 사이의 간격에, 상기 간격 도중의 플라즈마 핵의 전체적 재조합을 방지하기에 충분한 시머 전류를 출력 라인에 공급하는 시머 전류원이 포함될 수 있다. 마찬가지로, 상기 후속 펄스 사이의 간격의 적어도 일부 동안, 브레이크 전압 미만의, 그러나 상기 간격 도중의 플라즈마 핵의 전체적 재조합을 방지하는 전압을 후속 펄스들 사이에 유지하는 전압원이 존재할 수 있다.
도면, 특히 도8 내지 도10 중 어느 하나에 예시 및 설명된 바와 실질적으로 같은 점화 회로.
또한, 점화 회로는 후속 펄스 이후, 플라즈마 핵의 이온화 레벨이 소정 레벨 미만으로 떨어진 시기에 플라즈마 핵이 성장하여 전체적 재조합이 이루어지기 이전에 다음 후속 펄스가 이어지게 하기에 충분한 전류 및 비교적 저전압으로 플라즈마 핵을 재촉발 또는 재점화하도록 동작하는 수단을 포함할 수 있다.
첨부 도면은 실척대로 도시된 것은 아니다. 도면에서, 다양한 도면에 예시되어 있는 동일 또는 거의 동일한 각각의 구성요소는 동일 번호로 표시되어 있다. 명료성을 위해, 모든 도면에 모든 구성요소가 표시되어 있지 않을 수 있다. 도면에서,
도1은 동작 원리를 예시하는 종래 기술의 이동 불꽃 점화기의 개략 단면 예시도이다.
도2는 도1의 TSI를 위한 전형적인 종래 기술의 점화 회로의 부분 개략 부분 블록도이다.
도3은 도2에 도시된 유형의 점화 회로를 사용한, 도1에 도시된 바와 같은 점화기의 전극들 사이의 전압의 일반화된 표현이다.
도4는 고압 환경에서 동작하는 TSI에서, TSI 내의 전류 펄스에 의한 플라즈마 구름이 생성되고 후속하는 플라즈마가 쇠퇴되는 것을 예시하는 개략도이다.
도5는 본 발명의 교시에 따른 TSI에 인가되는 구동 전류의 일 예의 파형이 다.
도6 및 도7은 도5의 파형에서 예시된 원리에 따라 동작하는 TSI에서 도4의 플라즈마 구름의 이동을 예시하는 개략도이다.
도8은 예로서 도5의 구동 신호 또는 파형을 포함하는, 본 명세서에서 교시되는 바와 같은 TSI를 위한 전류 구동 파형을 생성하기 위해 사용할 수 있는 점화 구동 회로의 일 예에 대한 단순화된 개략적 회로도이다.
도9는 본 명세서에서 교시되는 바와 같은 TSI에 점화 구동을 발생시키기 위한 점화 회로의 다른 실시예의 단순화된 부분 블록 부분 개략 회로도이다.
도10은 본 명세서에서 교시되는 바와 같은 TSI에 점화 구동을 발생시키기 위한 점화 회로의 또 다른 실시예의 단순화된 부분 블록 부분 개략 회로도이다.
도11은 본 명세서에서 교시되는 바와 같은 TSI에 점화 구동을 발생시키기 위한 점화 회로의 또 다른 실시예의 단순화된 부분 블록 부분 개략 회로도이다.
본 발명의 다수 태양과, 전술된 것보다 상세한 본 발명에 의해 해결되는 문제점과, 본 발명의 태양을 실시하기 위한 점화 회로의 예의 단일 실시예가 본 명세서에서 더 상세히 설명된다.
제1 태양에 따르면, 내연 기관의 점화기를 동작시키는 방법이 예시되며, 이는 상기 고전압은 전극들 사이의 개시 영역(예로서, 절연체의 표면 위)에서 전극들 사이에 전기적 방전 브레이크다운이 발생되도록 하여 점화기의 고전류 전기 방전과 상기 표면에 인접한 공기 또는 공기와 연료의 혼합물 내에 플라즈마 핵의 형성을 초래하기에 충분한 크기인 고전압을 점화기의 전극에 인가하는 단계와, 브레이크다운에 이어 상기 전극에 하나 이상의 저전압 및 저전류 펄스들의 시퀀스(바람직하게는 시머 전류)를 인가하는 단계를 포함하여, 플라즈마 핵이 상기 저전압 저전류 펄스에 의해 상기 전극의 자유 단부를 향해 강제 이동되게 한다.
브레이크다운과 상기 시퀀스의 제1 펄스 사이에, 그리고 시퀀스의 펄스들 사이에, 플라즈마의 전체적 재조합을 방지하기에 충분한 전류가 플라즈마 핵을 통해 유지되는 것이 바람직하다. 대안으로, 브레이크다운과 시퀀스의 제1 펄스 사이 및 시퀀스의 부가적인 후속 펄스들 사이의 간격이 충분히 짧아서 이런 펄스의 시작 이전에 전체적 재조합이 발생하지 않는 경우 이러한 전류는 유지될 필요가 없다. (전체적 재조합이 발생한다면, 이후에 플라즈마 형성 프로세스를 재시작하기 위해 높은 브레이크다운 전압이 필요하다.) 후속 펄스의 시작 이전의 전체적 재조합이 회피되는 경우(방식에 무관), 후속 펄스는 비교적 (다수의 기존 접근법들에 비해, 그러나 여전히 상당한) 저전압 펄스일 수 있으며, 이는 여전히 플라즈마를 전진시키기에 적절한 로렌쯔 힘을 제공하고, 이는 자체적으로, 전극을 따라 이동할 수 있는 전류 아크를 생성한다. 다른 대안으로서, 재조합은 후속 펄스의 시작 이전에 전극 양단에 비교적 높은 (그러나, 브레이크다운 미만의) 전압을 부여함으로써, 재조합이 느려질 수 있다. 이 모든 세 가지 메커니즘은 고 에너지 브레이크다운 조건의 재생성을 필요로 하지 않고, 이동하는 플라즈마 핵의 형성을 촉진하며, 고정된 위치에서 전극에 전류 경로가 "재부착"되는 경향을 감소시킨다. 후속 펄스의 수는 설계 요구조건 및/또는 동작 조건에 따라 변한다.
점화기는 이동 불꽃 점화기인 것이 바람직하다.
시퀀스의 제1 펄스는 약 2 내지 약 100μsec, 바람직하게는 약 10 내지 약 20μsec의 간격만큼 브레이크다운 방전에 후속하는 것이 바람직하지만, 이는 사용되는 연료 혼합물의 특정 종류에 있어 플라즈마를 위한 재조합 시간에 의존한다. 상기 후속 펄스 각각은 약 5 내지 200 암페어의 최대 크기를 갖는 것이 바람직하다. 그러나, 이 크기는 균일할 필요는 없다. 상기 저전압 저전류 펄스는 바람직하게는 약 25 내지 105 암페어, 보다 바람직하게는 약 40 내지 80 암페어의 최대 크기를 갖는다. 이 펄스는 약 2 내지 약 200μsec의 지속기간을 가질 수 있다. 상기 시퀀스 내의 연속적 펄스들은 바람직하게는 약 10 내지 500μsec, 보다 바람직하게는 40 내지 120μsec의 간격만큼 분리되지만, 이 간격은 균일하지 않을 수 있다. 전압에 관하여, 상기 펄스 각각은 통상적으로, 약 50 내지 5000V의 크기를 가질 수 있으며, 보다 바람직하게는 약 300 내지 500V의 크기를 가질 수 있다. 모든 펄스는 동일한 극성의 전압 또는 전류를 가질 필요는 없으며, 펄스 내의 전압 및 전류 중 어느 쪽도 일정할 필요는 없다. 상술한 숫자들은 단지 모두 대표적인 것이며, 본 발명에 대한 어떠한 고유 제한도 반영하려는 것은 아니다. 적절한 실시예에서, 다른 범위가 사용될 수 있다. 그렇지만, 이들 숫자들은 다른 점화 시스템 및 방법과의 차이를 식별하는 데 도움을 주는 데에 유용할 수 있다.
본 발명은 고압 기관에서의 사용을 목적으로 하지만 이에 한정되는 것은 아니다.
관련 태양에 따라서, 내연 기관의 점화기에 전력을 공급하기 위해 점화 회로 가 제공되고, 이 회로는 점화기가 공기와 연료의 혼합물 내에 배치될 때 개시 영역에서 (예로서, 전극을 분리시키는 절연체의 표면 상에서 또는 그 위에서) 점화기의 전극들 사이에 비교적 고전류로 (그러나, 바람직하게는 기존 TSI가 사용하는 것보다는 낮은 고전류로) 브레이크다운 방전을 유발할 수 있는 고전압을 제공하여 방전에 의해 플라즈마 핵이 상기 표면에 인접하게 형성되게 하는 고전압 제공 수단과, 후속 펄스에 의해 플라즈마 핵이 상기 전극의 자유 단부를 향해 이동하게 하는 로렌쯔 힘 펄스를 생성하기에 충분한 전압 및 전류 크기와 타이밍을 갖는 하나 이상의 비교적 저전압 및 저전류의 후속 펄스의 시퀀스를 제공하는 수단을 포함한다. 브레이크다운을 유발할 수 있는 고전압 제공 수단은 주 권선과 이차 권선을 포함하고 이차 권선은 점화기의 일 전극에 대한 접속을 위한 리드를 갖는 고전압 저인덕턴스 점화 코일과, 이차 권선 내에 고전압 펄스를 유도하기 위해 주 권선에 신호를 트리거하기 위한 회로를 포함할 수 있다.
비교적 저전압 (즉, 서브 브레이크다운 전압) 펄스의 시퀀스를 제공하는 수단은 저전압 소스와, 각 상기 펄스 각각에 대하여, 저전압 소스와 펄스 변압기에 의해 충전되는 커패시터를 포함하고, 펄스 변압기는 상기 리드에 접속된 제1 권선과, 제2 권선을 가지며, 커패시터는 트리거 신호에 응답하여 제2 권선을 통해 방전되어 상기 리드 내에 상기 펄스를 유도한다. 점화 회로는 브레이크다운 방전과 제1 저전압 펄스 사이의 간격에서, 상기 간격 중의 플라즈마 핵의 전체적 재조합을 방지하기에 충분한 시머 전류를 점화기에 제공하기 위한 수단을 더 포함할 수 있다. 또한, 연속적 후속 펄스 사이의 간격에, 상기 간격 중의 플라즈마 핵의 전체 적 재조합을 방지하기에 충분한 시머 전류를 점화기에 제공하기 위한 수단을 포함할 수도 있다. 대안으로, 비교적 저전압 펄스의 시퀀스를 제공하기 위한 수단은 플라즈마 커널의 전체적 재조합이 간격 중에 발생하지 않기에 충분히 짧은 간격만큼 시간적으로 분리된 펄스를 제공하는 수단을 포함한다. 다른 대안으로서, 비교적 저전압 펄스의 시퀀스를 제공하는 수단은 높은 서브 브레이크다운 전압을 각각의 이런 후속 펄스에 선행시키는 수단을 포함할 수 있다.
다른 태양에 따르면, 내연 기관의 점화기에 전력을 공급하기 위한 점화 회로가 예시되며, 이 회로는 점화기에 접속된 출력부 상에서 펄스를 생성하는 고전압 펄스 발생기와, 하나 이상의 저전압 및 저전류 펄스의 시퀀스를 출력부 상에 생성하는 저전압 펄스 발생기를 포함하고, 상기 펄스의 최대 전압은 상기 점화기가 공기와 연료의 혼합물 내에 배치되는 경우, 점화기에 전달될 때, 점화기의 전극 사이의 개시 영역에서 (예로서, 전극을 분리시키는 절연체의 표면에 인접 영역에서), 고전류로, 브레이크다운 방전을 유발하여 상기 방전에 의해 상기 표면에 인접하게 플라즈마 핵이 형성되게 할 수 있고, 상기 하나 이상의 저전압 및 저전류 펄스의 시퀀스는 상기 저전압 및 저전류 펄스에 의해 플라즈마 핵이 상기 전극의 자유 단부를 향해 이동되게 하기에 충분한 전압 및 전류 크기와 타이밍을 갖는다. 점화 회로는 브레이크다운 방전과 제1 저전압 펄스 사이의 간격에, 상기 간격 도중의 플라즈마의 전체적 재조합을 방지하기에 충분한 시머 전류를 출력부 상에 공급하는 시머 전류원을 더 포함할 수 있다. 대안으로, 회로는 후속 펄스 발생기를 포함할 수 있으며, 후속 펄스 발생기는 펄스의 간격 사이에 플라즈마의 전체적 재조합이 이루어지지 않도록 가까이 서로 이어지는 (즉, 충분히 짧은 간격만큼 분리되어 있는) 후속 펄스를 출력부 상에 공급한다. 다른 대안으로서, 회로는 비교적 저전압 펄스의 시퀀스를 제공하는 펄스 소스와, 이런 후속 펄스 각각에 선행하여, 비교적 저전압 펄스가 시작될 때 전체적 재조합이 발생하지 않도록 전체적 재조합을 지연시키기에 충분한 서브 브레이크다운 고전압을 제공하는 고전압 소스를 포함할 수 있다.
따라서, 본 발명은 하기의 설명에 설명된 또는 도면에 예시된 구성요소 집합의 배열 및 구성의 세부사항에 그 용례가 한정되지 않는다. 본 발명은 다양한 방식으로 수행 또는 실시될 수 있으며, 다른 실시예가 가능하다. 모든 실시예는 단지 예로서 제시되어 있다. 또한, 여기서 사용된 표현 및 용어는 설명을 위한 것이며, 제한으로서 간주되지 않아야 한다. 본 명세서에서 "내포하는", "포함하는" 또는 "갖는", "보유하는", "수반하는" 및 그 다른 변형들은 그 후 나열된 항목들과, 그 등가체 및 부가적인 항목들을 포함하는 것을 의미한다.
이제, 고압 기관의 점화기를 동작시키고자 할 때 겪는 문제점을 더 이해하는 것이 바람직하다. 이동 불꽃 점화기(TSI)는 본질적으로 작은 플라즈마 건으로 이루어지는 점화 장치이다. 통상적 TSI가 도1에 예시되어 있으며, 이는 미국 특허 제6,321,733호로부터 취해진 도면이다. 절연체(예로서, 세라믹) 재료(14)는 전극 이격을 유지한다. 플라즈마(16)는 그곳에서 발생하는 고전압 브레이크다운 프로세스로 인해, 절연체의 표면을 따라 생성된다. 방전 전류가 플라즈마를 통과할 때, 플라즈마의 온도 및 체적은 증가하여 플라즈마 고유저항 및 저항의 추가 감소를 초 래한다. 이는 플라즈마 내의 전류를 증가시키며, 플라즈마 내의 전류는 주로 점화기에 공급되는 전류를 생성하는 전기 방전 회로의 임피던스에 의해 제한된다.
TSI를 동작시키기 위한 전형적인 점화 회로가 도2에 도시되어 있으며, 이 도면도 미국 특허 제6,321,733호로부터 취해진 것이다. 이 회로는 두 개의 주요 부분으로 구성된다. 즉, (1) 종래의 점화 시스템(42)과, (2) 커패시터(44, 45)와 저전압 전원(44)과 다이오드(50)를 포함하는 후속 전류 발생기. 종래의 점화 시스템(42)은 전극(18, 20) 사이의 절연체 표면(56)을 따른 스파크 간극 내에 (고전류에서) 브레이크다운을 생성하기 위한 고전압을 제공하여 이 표면 부근의 가스상 연소 혼합물 내에 초기 플라즈마를 형성한다. 후속 전류 발생기는 브레이크다운 방전 이후, 스파크 간극 내에 최초 플라즈마를 통해 전류를 제공하여 보다 큰 플라즈마 체적을 형성한다. 저항기(54)는 커패시터(48)를 위한 최대 전류를 제한하기 위해 사용된다(반드시 이럴 필요는 없음). 전형적인 전압 방전 프로파일(실척대로는 아님)이 미국 특허 제6,474,321호로부터 취해진 도3에 도시되어 있다.
종래의 점화 시스템(42)은 시간 t=t0에 방전 간극에 방전을 개시한다. 결과적으로, 고전압(HV) 점화 변압기 내의 2차 코일 내의 전압은 t=t1에, 스파크 간극 내에서 브레이크다운 전압에 도달할 때까지 상승한다. t=t1에서, 브레이크다운이 이루어진 이후, t=t2에 방전 간극 양단의 전압은 낮은 플라즈마 고유저항에 대응하는 약 500V 이하의 값으로 급속히 강하한다. 시간 t=t3에서, 대략 커패시터(46, 48)로부터의 에너지 모두가 전달되고, 이어서 전압 및 전류가 시간 t=t4에서 전압 및 전류가 대략 영(0)의 값으로 급속히 감소할 때까지 전압은 실질적으로 일정하다. 간결성을 위해, t3으로부터 t4까지의 간격은 무시할 수 있는 짧은 것으로 가정한다. 간격 Δt=t3-t2는 커패시터(46, 48)에 저장된 에너지 및 브레이크다운 발생 이후 방전 간극을 통한 후속 전류의 전압에 관련되어 있다. 하기의 에너지 균형 방정식이 이 변수에 관련한다.
Figure 112007082269312-PCT00001
여기서 V(t)는 시간의 함수로서의, 방전 간극을 형성하는 전극 사이의 전압이며, 이런 전압은 시간 t2에 초기값(Vt2)을 가지고, t>t4에 최종값 Vt4 ≒ 0를 가지며, i(t)는 시간의 함수로서의 스파크 간극내의 전류이고, C는 방전하는 커패시턴스의 합[여기서는, 커패시터(46, 48)의 커패시턴스의 합]이다. 시간 간격 Δt=t3 - t2에서, 제1 근사화로서, V(t) ≒ V0이고, 거의 상수라고 가정할 수 있으며, 따라서, Vt2 2 - Vt4 2 ≒ V0 2이다. 플라즈마 고유저항이 일정하다고 추가로 가정하는 경우, i(t) ≒ i0라고 가정할 수 있다. 이들 단순화 가정들을 사용하여 C, V0 및 i0에 의해 설명되는 회로 파라미터와 Δt(t4-t3<<Δt이므로, Δt≒t4-t2) 사이의 기본 관계 를 얻을 수 있다.
Δt=CV0/2i0
이 간단한 관계는 커패시터상의 주어진 동작(비교적 낮은) 전압(V0)에 대한 방전 동안의 평균 전류(i0) 및 커패시턴스의 함수로서 펄스 지속기간에 대한 정보를 제공한다. 점화기에 제공되는 주어진 에너지(이하, 주어진 V0 및 C)에 대하여, 이 관계는 전류(i0)가 증가하면 펄스 지속기간(Δt)이 감소하여야 한다는 것을 교시한다. 그러나, 전류(i0)의 증가는 또한, 로렌쯔 힘(FL)을 증가시킨다. 로렌쯔 힘의 증가는 플라즈마를 절연체 표면으로부터 멀어지는 방향으로 보다 신속하게, 전극의 단부를 향해, 기관의 연소실 내로 이동시킨다. 그러나, 연소실 내의 압력은 점화기 내에 상쇄 압력 힘(FP)을 제공한다. 힘(FP)은 로렌쯔 힘에 대항하여 작용하여 전극의 길이(l)(즉, l은 연소실 내부를 향한 전극의 자유 단부와 절연체의 표면 사이의 거리임)에 독립적으로, 플라즈마의 속도가 소정 제한값을 초과하여 증가하는 것을 방지한다.
플라즈마를 이동시키기 위해 가용한 순수한 힘은 압력 힘(FP)과 로렌쯔 힘(FL) 사이의 편차이다(플라즈마 상의 열적 힘은 플라즈마 전파의 초기 단계에서만 현저하며, 절연체 표면으로부터 플라즈마가 멀리 이동함에 따라 신속히 감소하기 때문에, 플라즈마 상의 열적 힘은 무시할 수 있는 것으로 가정함). 압력 힘을 극 복하는 방식을 이해하기 위해, 힘의 모델을 형성하는 것이 유용하다. 로렌쯔 힘(FL)은 유효 플라즈마 표면적(Spl)으로 승산된, 잘 알려진 관계(pB = B2/8π)에 의해 주어지는 플라즈마 상의 자기 압력(pB)으로서 나타내질 수 있다.
Figure 112007082269312-PCT00002
가스 압력 힘(Fp)은 Fp = pSpl의 형태로 표현될 수 있으며, 여기서 p는 연소 혼합물(그 이동 동안 플라즈마에 대면함)로부터의 유효 가스 압력이다. 그러므로, 플라즈마 이동을 관장하는 순수 힘을 위한 방정식은 아래와 같이 표현될 수 있다.
Figure 112007082269312-PCT00003
여기서, υpl은 플라즈마 속도이고, mpl은 플라즈마 질량이다. 순차적으로, 플라즈마 질량은 플라즈마 질량 밀도(ρpl)와 플라즈마 체적 Vpl = SplΔlpl의 곱으로서 표현될 수 있고, 여기서 Δlpl은 플라즈마에 의해 순간적으로 점유되는 전극 길이의 부분을 나타내는 분율이다.
순수 힘 방정식은 소정의 대략적인 가정에 의해 단순화될 수 있으며, 이로부터 유용한 관계가 유도된다. 플라즈마 형성 이후, 플라즈마 체적은 플라즈마가 전극을 따라 전파할 때 일정하다고 가정할 수 있으며, 따라서, Spl, Δlpl 및 ρpl은 상수이고, 힘 FL 및 Fp도 상수이다. 이때, 이를 적분함으로써 이하를 얻을 수 있다.
Figure 112007082269312-PCT00004
여기서, 초기 플라즈마 속도(υt2)는 그 최종 속도(υpl)보다 매우 작다고 가정된다.
FL을 B2으로 대체하고 Fp가 위와 같으면 이하를 얻을 수 있으며, 여기서 B=
Figure 112007082269312-PCT00005
이고, α는 상수 계수이다.
Figure 112007082269312-PCT00006
1/2Δtυpl ≒l이기 때문에, 아래와 같이 기재할 수 있다.
Figure 112007082269312-PCT00007
이 방정식으로부터, 비교적 작은 압력(즉, p<<αi0 2)에 대하여, Δti0 ≒상수임을 관찰할 수 있고, 이 파라미터 범위에서, 증가하는 i0는 감소하는 Δt를 초래한다. 그후, 상술한 관계로부터, 방전 에너지를 실제로 증가시키지 않고 i0를 증가시키면 플라즈마가 보다 신속하게 이동될 수 있다는 것을 알 수 있다(물론, 이는 단지 ρplΔpl≒상수에 대해서만 참이며, i0의 증가와 함께, ρplΔpl도 증가할 수 있고, 그래서 소정의 부가적인 에너지가 필요할 수 있다).
그러나, p<<αi0 2이 참이 아닐 때(즉, 가정이 오류임), 이때, 증가하는 압력(p)은 p/αi2≥1을 초래할 수 있으며, 플라즈마는 함께 이동하는 것을 중단할 수 있다. 이런 경우에, p/αi2<1인 지점까지 i>i0를 증가시킬 필요가 있다. 그러나, 이는 증가된 Δt 및 i로 인해, 에너지의 현저한 증가를 필요로 한다.
플라즈마의 재조합 프로세스는 추가적 장애물을 제공한다. 비교적 저온 연소 혼합물과 접촉하는 고온 플라즈마의 전방 부분은 급속히 냉각된다. 고압에서 플라즈마 재조합율은 1/T3 /2로서 변하는 플라즈마 온도(T)의 함수이다. 이 때문에, 저온에서, 플라즈마 재조합은 차가운 가스상 혼합물과 상호작용하는 그 전파 전방부에서 매우 신속하게 발생한다. 고압에서, 이런 재조합율은 플라즈마 전파 속도만큼 빠를 수 있으며, 이는 로렌쯔 힘-유도 이동이 재조합의 속도에 의해 완전히 무효화되어, 플라즈마가 사실상 정지상태로 서있게 할 수 있다는 것을 의미한다. 이런 상황에서, 전극을 따른 순수 플라즈마 속도는 실질적으로 0이며, 플라즈마는 전체 방전 동안 절연체의 표면 부근에 정지한 것으로 보여진다. 물론, 존재하는 가스가 플라즈마의 전방 에지보다 더 고온이기 때문에 비록 매우 느린 속도이지만, 마찬가지로, 플라즈마는 절연체의 표면 부근에서 재조합한다. 결과적으로, 절연체 표면 부근의 플라즈마 고유저항은 플라즈마의 전방 에지보다 낮고, 대부분의 방전 전류는 이 영역에 집중되어, 절연체 부근에서의 추가적 플라즈마 재조합을 방지한다.
상술한 바와 같이, 동작 연소실 압력을 증가시키면 플라즈마 상의 순수 기동력이 낮아지고, 그래서 이는 보다 느리게 이동하며, 이에 따라 플라즈마를 연소실로 이동시키기 위해 소요되는 시간이 증가된다. 따라서, 충분히 큰 압력에 대하여, 플라즈마는 점화기의 단부에 도달할 수 없다.
플라즈마가 너무 느려지는 것을 방지하기 위해, 플라즈마 내로 공급되는 에너지를 증가시키기 위해 방전 전류가 상승되어야만 한다. 그러나, 증가된 에너지 입력은 절연체 부근에 집중된다. 이는 큰 문제가 된다. 절연체 상에 부여되는 열적 응력이 존재하고, 충격파가 생성되며, 이는 절연체에 손상을 줄 수 있다. 또한, 절연체 부근의 전극의 부분 상에 큰 열적 영향이 존재한다. 점화 회로가 플라즈마를 효과적으로 이동시키는 순수 힘을 생성하기에 충분한 에너지를 공급하는 것으로 가정하면, 이때, 연소실 내의 압력이 보다 높으면 높을수록, 절연체와 전극 상의 부정적 영향은 더 심해진다. 이들 부정적 영향을 방지하기 위해 소정조치가 취해지지 않는 한, 이들 조건은 고압 환경에서 절연체와 전극 수명을 감소시킨다.
증가하는 가스(즉, 연소 혼합물) 압력에 따른 이동 불꽃 점화기의 수명의 감소의 문제점은 플라즈마의 전방(연소실에 대면)과 플라즈마의 후방(절연체에 대면)에서의 재조합 속도 사이의 편차를 감소시킴으로써, 적어도 부분적으로, 크게 감소되거나 심지어 제거된다. 플라즈마 재조합을 보다 대칭이 되게 함으로써, 플라즈마 상의 현저한 순수 힘이 연소실 내로 지향된다.
도4는 이 문제점을 개략적으로 예시한다. 비교적 짧은 제1 전류 펄스는 점선으로 표시된 바와 같이, 플라즈마(42)의 체적을 형성한다. 이 제1 펄스 동안, 플라즈마의 중심은 로렌쯔 힘의 영향하에서 절연체(14)로부터 멀어지는 방향으로 우측으로 이동한다. 펄스가 비교적 짧은 지속기간으로 이루어지기 때문에, 절연체 표면도 표면 부근의 가스도 크게 가열되지 않는다. 따라서, 제1 전류 펄스가 종료한 이후, 플라즈마는 그 후방(좌측) 측부와 그 전방(우측) 측부에서 매우 대칭적으로 재조합하며, 비교적 좁은 플라즈마 핵(44)을 남긴다. 좁은 플라즈마 핵은 상술한 바와 같이, 여전히 아크를 지원할 수 있다.
본 발명은 점화기를 여기하기 위해 다른 접근법을 사용하여 플라즈마 재조합의 대칭성을 향상시킨다. 몇몇 짧은 전류 방전 버스트(후속 펄스)가 브레이크다운 펄스 이후, 시간 t2와 t3 사이에 인가된다. 후속 펄스는 적당히 높은 피크 전류 크기를 갖지만, 브레이크다운 펄스보다는 현저히 작다. 브레이크다운 펄스와 제1 후속 펄스 사이, 그리고 후속 펄스들 사이에, 전체적 재조합을 방지하기 위해, (시머) 전류가 낮은 0이 아닌 값으로 유지되는 것이 바람직하다.
상술한 바와 같은 TSI를 여기시키기 위해 사용될 수 있는 점화 전류의 일 예를 위한 파형이 예시된 도5에서, 브레이크다운은 시간 t1(최대전류가 이어지는 피크 전압)에 발생하고, 시간 t1 *에서 완료된다. 시간 t2에서 시작하여, 일련의 (하나 이상의) 낮은 크기의 전류 펄스(52A-52E)(즉, 비록, 펄스의 수는 가변적이지만, 본 예에서는 5개 펄스)가 점화기의 전극들 사이에 제공된다. 방전 간격은 시간 t3에서 플라즈마가 전극의 단부에 도달할 때 종료한다. 플라즈마는 시간 t1에 절연체에서 시작된다. 각 펄스들(52)의 지속기간(τ1, τ2...τn)과 그 피크 전류 크기(i0)는 점화기 디자인 및 가스 압력(p)에 따라 선택되어야 한다. 이동 불꽃 점화기에서, 펄스 지속기간 및 크기는 전극들의 길이 및 그들 사이의 간극에 따라 선택되는 것이 바람직하다. 실험은 주어진 점화기 디자인 및 그 동작의 최대 압력에 대한 이들 파라미터들의 값들의 설정의 만족스러운 방법이며, 당장에는 최상의 방법이다.
또한, 펄스 사이의 시간은 점화기 디자인 및 압력에 의존한다. t1 * 에서 거의 0의 레벨에 도달할 때의 브레이크다운 전류와, Δtb ,l로 표시된 제1 후속 펄스(52A) 사이의 시간은 브레이크다운 전압 및 전극들 사이의 절연체의 특정사항에 의존한다. 시머 전류(is)는 0이 아니며, 이 때문에, 전체적 플라즈마 재조합을 피하는 것을 돕고, 이렇게 하지 않으면, 다음 펄스를 개시하기 위해, 큰 전압(브레이크다운 전압에 비견할만한)이 필요해진다. 그래서, 전류(is)는 각 서브 시퀀스 펄스를 촉진하며, 부가적인 브레이크다운 펄스를 필요로 하지 않고, 그 형성을 가능하게 한다. 하기의 표는 400psi 압력에서 모사된 연소실에서 동작하는 TSI와 함께 사용할 수 있는 것으로 판명된 파라미터 값들을 제공한다:
전극 길이: l=2.5mm
피크 펄스 전류: i0 ≒ 20-40암페어
k-펄스의 지속기간: τk ≒ 10-20μsec
두 연속적 펄스(k, k+1) 사이의 시간: Δtk ,k+1 ≒ 50-100μsec
n(즉, 펄스의 수) ≒ 3 내지 4
시머 전류: is ≒ 1-3암페어
브레이크다운의 종료와 제1 후속 펄스 사이의 시간: Δtb ,1 ≒ 5-20μsec
이들 파라미터는 압력(p)의 값이나 다른 디자인의 스파크 플러그에 대하여 현저히 다를 수 있다. 예로서, 이전 예의 것과 유사한, 그리고 p=900psi의 압력에서 동작하는 TSI에 대하여, 유용한 것으로 판명된 적절한 파라미터는 아래와 같다:
i0 ≒ 60-80암페어
τk ≒ 20-40μsec
Δtk ,k+1 ≒ 30-40μsec
n ≒ 7 내지 10 펄스
is ≒ 3-5암페어
Δtb ,1 ≒ 3-10μsec
비록, 피크 펄스값(i0) 및 펄스 지속기간(τk) 및 개별 펄스 사이의 시간(Δtk,k+1)이 상수로서 예시되었지만, 이들은 균일하거나 일정할 필요가 없다. 예로서, 이들은 실제로 시간의 함수로서 증가 또는 감소할 수 있다.
도6 및 도7은 이 펄스형 구동 체계에 의해 생성된 동작을 개략적으로 예시한 다. 브레이크다운 펄스는 이미 발생되었으며, 제1 후속 펄스는 도4에서와 같이, 절연체의 표면으로부터 떨어진 위치 Δl1에 존재하는 것으로 가정된다. 제1 펄스에 이어지는 시간 간격 Δt1 ,2 이후, 다음 펄스(τ2)가 발생하고, 그 후 플라즈마는 절연체의 표면으로부터 떨어진 새로운 위치 Δl2에 존재한다. 각 연속적 펄스와 함께, 플라즈마 핵은 우측으로 이동되고, 그 후 펄스의 종료시, 최종적으로(도7) 플라즈마가 n 전류 펄스 이후 전극의 단부에 도달하고, 연소실내로 배출될 때까지, 재조합이 허용된다(도6, 2개 펄스 이후 플라즈마 위치를 도시). 후속 펄스의 수(n)는 챔버 내의 압력(p), 점화기 파라미터(예로서, 전극 길이, 전극 사이의 간극 및 전극의 형상)와, 전류 방전 파라미터(예로서, 펄스의 피크값, 그 지속기간, 펄스간 간격 및 펄스 사이의 최소 전류값)에 의존한다. 적절한 값을 발견하기 위해서는 몇 번의 실험이 필요할 수 있다.
비록, 전류 펄스가 도5에서 양의 펄스인 것으로 예시되어 있지만, 음의 펄스도 사용될 수 있거나, 교류 펄스 또는 복수개의 몇몇 다른 패턴이 사용될 수도 있다는 것을 이해하여야 한다. 로렌쯔 힘(FL)은 전류의 제곱에 비례하며, 따라서, 전류 극성에 독립적이다. 부가적으로, 도5에 직사각형으로 예시된 방전 전류 펄스는 삼각형 형상 또는 사인곡선 형상 같은 임의의 적절한 파형을 가질 수 있다.
상술한 바와 같이, 증가된 동작 압력에서, 절연체의 표면을 따른 전압의 브레이크다운 또한 증가한다. 브레이크다운 전압의 증가는 절연체 및 전극의 수명에 부정적인 영향을 갖는다. 이런 부정적 영향은 브레이크다운 전류를 제한함으로써 피해지거나 크게 감소될 수 있다. 예로서, 후술된 바와 같이, 고전압 회로에 저항기를 도입하는 것은 브레이크다운 방전이 후속 방전 펄스의 전체 간격에 비해 짧은 지속기간으로 이루어질 때, 현저한 에너지 낭비 없이 브레이크다운 전류를 제한한다. 전류를 제한하는 것은 동작 모드가 기존 TSI 시스템의 것과는 실질적으로 달라지게 한다. 미국 특허 제6,321,733호 및 제6,474,321호에 예시된 것들 같은 기존 TSI 시스템에서, 최대 가속 및 플라즈마 속도를 생성하기 위해, 높은 브레이크다운 전류에 커패시터로부터의 높은 전류가 즉시 이어지는 것이 바람직하다. 목적은 단일 방전 펄스 내에 플라즈마가 전극의 단부에 도달하고 연소실 내로 이동하게 하는 것이다. 대조적으로, 고압 환경에서, 브레이크다운에 이은 플라즈마 이동은 작다. 따라서, 브레이크다운 전류가 실제로 현저한 플라즈마 이동을 생성하기 위해서가 아니라, 절연체 표면 부근에 플라즈마를 생성하기 위해서만 사용되기 때문에, 브레이크다운 전류를 제한하는 것이 수용될 수 있다.
브레이크다운 전류 펄스의 종료와 제1 후속 전류 펄스 사이의 간격(Δtb , t1)은 방전 전류의 피크값에 의존한다. 저항기(Rb)는 순차적으로 압력(p)에 의존하는, 인가된 브레이크다운 전압에 의존하는 저항기의 값에 의존하는 지연 시간이 아닌 이 전류 제한 효과를 달성하기 위해 사용된다고 가정한다. 따라서, 저항기(Rb)의 값은 절연체에 대한 응력 및 전극 마모를 최소화하도록 선택될 수 있다.
도8은 도5에 도시된 바와 같은 브레이크다운 펄스와 후속 펄스를 생성하기 위한 전자 회로의 예를 위한 개략적인 부분 회로도를 보여준다. 도8에서, 브레이 크다운 펄스와 하나의 후속 펄스만을 생성하기 위한 회로가 예시되어 있다. 필요한 부가적인 각 후속 펄스에 대하여, 점선 내에 수납된 회로(110)가 복제될 수 있고, 모든 이런 회로는 그 부스트 변압기(102)의 이차 권선과 직렬 접속될 수 있고, 그래서 각각의 이런 회로는 순차적으로 점화기에 시퀀스화된 펄스 중 하나를 전달한다(병렬 배열도 가능하다는 것을 주의하여야 한다).
브레이크다운 방전을 제공하기 위한 고전압은 SCR(104A)의 스위칭을 유발하도록 104에서 인가된 신호에 의해 트리거된 고 에너지 점화 코일(100)에 의해 발생된다. 코일(100)은 텍사스주 엘파소 소재의 오토트로닉 콘트롤스 코포레이션(Autotronic Controls Corporation)에 의해 판매되는 코일 모델 8261 d/b/a MSD 이그니션 같은, 그러나 이들에 한정되지 않는, 임의의 적절한 점화 코일일 수 있다. 비록, 본 산업에서 "점화 코일"이라 일반적으로 지칭되지만, 요소(100)는 실제로, 변압기이다. 상술한 모델 8261 점화 코일은 저인덕턴스 일차측을 가지며, 주 코일이 여기될 때, 그 이차 코일로부터 42-43kV 출력을 제공한다. 변압기(100)의 이차 코일은 [부스트 변압기(102)의 이차 코일(102B)을 통해] 점화기의 하나 이상의 전극으로 직접적으로 접속되며, 점화기의 다른 전극은 접지된다.
고저항에 의해 각각 병렬화된 다이오드의 스트링은 점화 코일(100)의 출력 전합을 단일 극성으로 제한하고, 링잉 현상(ringring)을 방지한다.
브레이크다운 펄스 이후, 105에서 트리거 신호가 인가되어 후속 펄스가 발생되게 한다. 부스트 변압기(102)는 커패시터(103)를 방전시킴으로써 유도된 전류의 펄스를 점화기(101)로의 고전압 라인(HVL)에 공급한다. 커패시터(103)는 예로서, 약 500V 같은 비교적 저전압으로 충전되고, 그 후 변압기(102)의 주 코일(102A)을 통해, SCR(105A)을 통해 접지로 방전된다.
트리거 신호는 고정된 또는 프로그램가능한 파라미터 중 어느 하나를 제공할 수 있는 임의의 적절한 회로에 의해 생성될 수 있다.
또한, 고전압 라인에 접속된 점화기 전극(들)은 다이오드(107)의 스트링과 RC 네트워크(111)를 통해 표시된 500V 공급원 같은 저전압 공급원에 접속된다. 네트워크(111) 내의 저항기 값은 시머 전류(is)를 전달하도록 설정된다.
도8의 점화 회로는 브레이크다운 전압을 발생시키고, 필요한 개시 전류 및 전류의 후속 펄스를 전달하기 위한 단지 한가지 방식을 나타낸다는 것을 유의하여야 한다. 비견할만한 펄스를 발생시키는 임의의 다른 적절한 메커니즘이 사용될 수 있다. 예로서, 사인곡선형 전류 펄스 같은 발진 전류 펄스를 제공할 수 있는 공진 전류 회로가 각각 단일 펄스를 생성하는 예시된 복수의 서브 회로 대신 사용될 수 있다. 또한, 전압 및 다이오드의 극성들의 적절한 반전에 의해, 도8의 회로는 양의 펄스 대신 음의 펄스를 생성하기 위해 사용될 수 있다.
점화 회로 구조(단순화된 형태의)의 다른 예가 도9에 130으로 도시되어 있다. 단지 기본 회로 구성요소만이 도시되어 있으며, 실제 구현예는 다른 통상적 구성요소를 필요로 할 수 있다는 것을 이해할 수 있을 것이다. 전력 공급원(132)은 전압(단지 구별의 목적을 위해 "고" 전압이라 지칭됨)을 공급한다. 이 전압은 변압기(134)에 의해 승압될 때, 점화기(미도시)에 플라즈마를 생성하기에 충분한 브레이크다운 전압을 생성할 수 있게 하기에 충분히 높다. 전력 공급원은 주 권선의 다른 단부와 접지 사이에 접속된 커패시터(138)를 충전하기 위해, 다이오드(136)를 통해, 주 권선(134A)의 제1 단부에 접속되어 있다. 펄스 발생기(142)는 펄스의 트레인 또는 시퀀스를 공급한다. 제1 펄스 상에서, 펄스 발생기(142)로부터의 출력 신호는 전기적으로 제어된 스위치(144)를 폐쇄시킨다. 이 작용은 다이오드(136)의 아노드를 접지시켜, 공급원(132)의 분리를 실행하여 단락 회로화되지 않게 하며, 커패시터(138)가 주 권선을 통해 방전될 수 있게 한다. 변압기(134)는 적절한 코어 셋업 변압기이다. HV 공급원(132)은 통상적으로 수백 볼트의 출력 전압을 갖는다. 스위치(144)의 폐쇄는 변압기 일차측 양단에 큰 전압 스윙을 발생시킨다. 통상적으로, 약 1:35 내지 1:40의 권선비가 변압기에 사용될 수 있으며, 이는 일차측 상의 수백볼트 스윙을 이차 권선(134B) 양단에 수만 볼트 범위까지 승압시킨다. 이 수만 볼트는 점화기(이차 권선의 일 단부에 접속됨, 그러나 미도시)에 인가될 때 브레이크다운을 발생시키기에 충분하다.
또한, 상술한 펄스는 변압기(134)의 코어를 포화시키는 것이 바람직하다.
코어 포화로 인해, 포화가 완전히 쇠퇴하기 이전에 펄스 발생기에 의해 다음 펄스가 공급되는 경우, 이런 펄스는 출력 라인(152) 상에 브레이크다운-레벨 출력 전압을 생성하지 않는다.
154에서 주 권선(134B)의 다른 단부 및 커패시터(156)의 일 단부는 다이오드(158)를 경유하여 접지에 결속된다. 커패시터(156)는 보호 다이오드(164)를 통해 "저전압"(LV) 공급원에 의해 충전된다. 펄스 발생기(142)로부터의 펄스가 전기 스위치(166)에 의해 수신될 때, 노드(168)는 접지되고, 커패시터(156)는 직렬 접속된 다이오드(172), 저항기(174) 및 스위치(168)를 통해 접지된다.
저전압 공급원(162)은 통상적으로 0 내지 1000 볼트 범위의 전압을 공급할 수 있다. 커패시터(156)는 전형적인 점화 시스템의 대형 커패시턴스이며, 저항기(174)는 방전 전류(변압기의 이차 권선(134)을 통해 견인된)를 약 50 암페어(보다 낮은 전류가 후속 펄스에 충분한 경우보다 작음)로 제한하도록 크기설정될 수 있다.
다이오드(182, 184)는 단지 그 각각의 스위치를 그들에 손상을 줄 수 있는 반대 극성 스파이크로부터 보호한다.
공급원(132, 162)은 별개로서 도시되어 있지만, 몇몇 용례에서 단일 공급원이 사용될 수 있다. 또한, 용어 저전압 및 고전압은 비록, 이것이 가장 전형적이기는 하지만, 공급원(132)의 출력이 공급원(162)의 출력보다 높은 전압에 있는 것이 필수적인 것은 아니다.
다이오드(164)는 연계된 스위치가 폐쇄되었을 때, 단락 회로화된 출력을 갖게되는 것으로부터 그 연계된 전력 공급원을 보호하기 위해 다이오드(136)와 동일한 이유로 포함되어 있다.
공급원(132, 162)의 정확한 구조에 따라, 대응 커패시터의 충전 시간 및 공급원의 출력 전류를 제한하기 위해, 필요에 따라, 공급원 및 대응 스위치(144 또는 166) 중 하나 또는 양자 모두 사이에 직렬로 저항을 배치하는 것이 바람직할 수도 있다.
스위치(144, 166)는 SCR, IGBT[특히, 스위치(144)용], MCT 및 현존하는 또는 미래에 출현할 수 있는 기타 고전압 스위칭 요소 같은 다양한 반도체를 사용하여 구현될 수 있다.
작은 커패시터(159)는 큰 역방향 스파이크에 대항하여 다이오드(158)를 보호하면서, 급속한 전압 변화에 대한 접지로의 저 임피던스 경로를 제공하는 바이패스 다이오드(158)일 수 있다.
다른 변형들이 가능하다. 예로서, 단일 펄스 발생기 작동 스위치(144, 166) 대신, 각 스위치는 서로 다른 펄스 발생기에 의해 작동될 수 있거나, 하나의 펄스 발생기가 스위치를 구동하는 상이한 출력들 또는 다르게 상태조정된 출력 신호들(가능하게는 공통 신호로부터 유도됨)과 함께 사용될 수 있다. 또는, 도10에 도시된 바와 같은 두 개의 스위치 대신 스위칭 요소(예로서, MCT)(186)라 지칭되는 하나의 스위치가 사용될 수 있다. (비록, 이들이 전력 공급원의 세부사항에 따라 불필요할 수 있지만, 도10에는 저항기(R)가 명시적으로 도시되어 있다.) 서로 다른 펄스 발생기들이 스위치들 각각을 구동하는 경우, 이들은 독립적으로 제어될 수 있으며, 이는 다양한 동작 모드가 수용될 수 있게 한다.
도9에서, 선택적이라는 것을 표시하기 위해 점선 박스 내에 저항기(174)가 도시되어 있다. 공급원(162)이 후속 전류 펄스의 원하는 크기를 제어하기 위해 커패시터(156)와 연계하여 설정될 수 있다는 사실에 무관하게, 커패시터(156) 내에 저장된 모든 에너지가 아크에 전달될 수 없다. 각 펄스의 간격에 걸쳐 후속 펄스의 전류를 유지하기 위해, 커패시터(156)는 제어된 속도로 방전되어야만 한다. 이 를 수행하는 한가지 방법은 저항기(174) 같은 저항기를 통해 커패시터를 방전시키는 것이다. 불행히, 저항기(174)의 사용은 다량의 저장된 에너지가 열로 소산되는 결과를 초래한다. 사실, 플라즈마의 이동에 사용되는 것보다 저항기(156) 내의 열로서 더 많은 에너지가 소실될 수 있다. 따라서, 이 회로는 에너지의 비효율적 사용의 단점을 갖는다.
스위치 요소(166)를 제어된 전류 드레인 경로로 형성함으로써 회로의 효율을 향상시키고, 열 소산을 감소시키는 것이 가능하다. 이때, 커패시터(156)의 전류 드레인을 제한하기 위해 저항(174)을 사용하는 대신, 스위치 트랜지스터(또는 유사 요소)는 수요를 고려하여 제어된 방전을 제공한다. 보다 구체적으로, 도11에 도시된 바와 같이, 능동 스위칭 요소[여기서, MOSFET(166')라 지칭됨]가 저항기(192)를 통해 노드(168)로부터 접지에 접속된다. 이 저항기 양단의 전압은 트랜지스터(166')를 통한 실제 전류의 특정을 위한 프록시로서 감지된다. 펄스 발생기와 트랜지스터(166')의 게이트 사이에 개재된 게이트 구동 로직(194)은 저항기(192) 상의 전압에 응답하여 트랜지스터를 스위칭 규제기로서 동작시키며, 가변 듀티 사이클 및 저항기(174)의 사용으로부터 발생하는 것보다 낮은 결과적인 전력 소산을 갖는다. 구동 로직(194)은 다양한 방식으로 구현될 수 있으며, 고정된 로직을 포함할 수 있거나, 로직을 동작시키기 위하여 마이크로콘트롤러를 포함할 수 있는 프로그램가능한 로직을 포함할 수 있다. 마이크로콘트롤러를 사용하는 장점은 이때, 로직이 여기에 설명된 다양한 모드-예로서, 시머 전류를 갖거나 갖지 않는-를 수행하도록 회로를 동작시키도록 구동될 수 있다는 것이다.
비록, 점화 회로의 예시된 실시예로부터 양의 극성의 펄스의 발생이 초래되지만, 전자장치에 대한 기술의 숙련자는 필요 시, 이로부터 쉽게 음의 극성의 펄스, 그리고, 심지어, 가변 극성의 펄스를 생성하는 점화 회로를 안출 할 수 있을 것이다. 또한, 몇몇 또는 모든 트리거 펄스들이 출력 펄스와 다른 극성이 되는 것이 바람직할 수도 있다.
구동 로직의 세부 설계와, 브레이크다운 전압, 후속 펄스, 점화기 등을 위한 파라미터는 모두 점화 시스템이 충족시켜야할 필요가 있는 특정 기관 제원에 의존한다. 이들 요구조건 및 비용, 부품 가용성 등 같은 고려사항은 마찬가지로 구성요소 선택에 영향을 준다. 이들 파라미터 중 일부의 결정은 점화 시스템 또는 회로가 사용될 기관(들)의 모델에 대한 소정 정도의 실험을 필요로할 수 있다.
비록, 문제점들 및 그 해법을 단지 TSI의 일 형태를 사용하여 설명하였지만, 양자 모두는 병렬 및 동축 전극들 양자 모두를 사용하는 다른 TSI 디자인에도 균등하게 적용된다.
특정 방법 및 장치가 고압 및 초고압에서 동작하는 내연기관을 사용하여 본 명세서에서 설명되었지만, 이 방법은 또한 보다 낮은 종래의 압력에서 동작하는 내연 기관 또는 심지어 종래의 스파크 플러그와 함께도 사용될 수 있다는 것을 이해할 수 있을 것이다. 그러나, 아마도 장점은 이동 불꽃 점화기에서 가장 클 것이다.
또한, 비록 동작 이론이 제시되었지만, 이 이론의 응용을 매우 제한할 수 있는 다수의 단순화 가정이 존재한다. 그럼에도 불구하고, 청구된 바와 같은 본 발 명은 모사된 고압 기관 환경에서 작동하는 점화 시스템을 생성하며, 분석의 임의의 단순화 또는 에러가 본 발명의 가치를 저하시키는 것으로 이해하지 않아야 한다.
현재까지 본 발명의 적어도 하나의 실시예의 다수의 태양을 설명하였지만, 본 기술의 숙련자는 다양한 대안, 변경 및 개선을 쉽게 안출할 수 있다는 것을 이해하여야 하며, 이들은 본 발명의 개념 및 범주 내에 존재한다. 따라서, 상술한 설명 및 도면은 단지 예시일 뿐이다.

Claims (60)

  1. 플라즈마 발생 방법이며,
    a) 전극 사이에 브레이크다운을 유발하여 개시 영역에서 점화기에 고전류 전기 방전을 초래하고, 상기 개시 영역에 인접한 플라즈마 핵의 형성을 초래하기에 충분한 크기인 고전압을 점화기에 인가하는 단계와,
    b) 브레이크다운에 이어, 적어도 두 개의 비교적 저전압의 후속 펄스의 시퀀스를 상기 전극에 인가하는 단계를 포함하여,
    플라즈마 핵은 상기 후속 펄스에 의해 상기 전극의 자유 단부를 향해 강제 이동되는 플라즈마 발생 방법.
  2. 플라즈마 발생 방법이며,
    a) 전극 사이에 브레이크다운을 유발하여 개시 영역에서 점화기에 고전류 전기 방전을 초래하고, 상기 개시 영역에 인접한 플라즈마 핵의 형성을 초래하기에 충분한 크기인 고전압을 점화기에 인가하는 단계와,
    b) 브레이크다운에 이어, 전극에 대한 전류 아크의 분산 부착을 유지하기에 충분히 낮은 전류의 하나 이상의 비교적 저전압의 후속 펄스의 시퀀스를 상기 전극에 인가하는 단계를 포함하여,
    플라즈마 핵은 상기 후속 펄스의 영향 하에 상기 전극의 자유 단부로 강제되어 그를 향해 이동할 수 있는 플라즈마 발생 방법.
  3. 제1항 또는 제2항에 있어서, 개시 영역은 상기 전극 사이에 배치된 절연체의 표면 상에 또는 절연체의 표면에 인접하게 존재하는 플라즈마 발생 방법.
  4. 제3항에 있어서, 내연 기관을 위한 후속 펄스의 전류는 약 3과 약 450 암페어 사이인 플라즈마 발생 방법.
  5. 제1항 또는 제2항에 있어서, 적어도 하나의 후속 펄스 이전에 플라즈마의 전체적 핵 재조합을 방지하는 단계를 더 포함하는 플라즈마 발생 방법.
  6. 제5항에 있어서, 전체적 재조합을 방지하는 단계는 상기 시퀀스의 펄스들 사이에, 플라즈마 핵의 전체적 재조합을 방지하기에 충분한 시머 전류를 점화기 전극 사이에 유지하는 단계를 포함하는 플라즈마 발생 방법.
  7. 제5항에 있어서, 플라즈마 핵의 전체적 재조합을 방지하는 단계는 후속 펄스들 사이에, 상기 사이 간격의 적어도 일부 동안, 점화기 전극 양단에 브레이크다운 전압 미만의, 그러나 상기 간격의 종료 이전의 전체적 재조합을 방지하기에 충분한 전류를 유지하기에 충분한 전압을 유지하는 단계를 포함하는 플라즈마 발생 방법.
  8. 제1항, 제2항, 제4항, 제6항 또는 제7항 중 어느 한 항에 있어서, 점화기는 이동 불꽃 점화기인 플라즈마 발생 방법.
  9. 제1항 또는 제2항에 있어서, 상기 시퀀스의 연속적 펄스들은 약 2 내지 600μsec의 간격만큼 분리되어 있는 플라즈마 발생 방법.
  10. 제1항 또는 제2항에 있어서, 상기 시퀀스의 연속적 펄스들은 약 20 내지 250μsec의 간격만큼 분리되어 있는 플라즈마 발생 방법.
  11. 제9항에 있어서, 상기 후속 펄스 각각은 약 3 내지 450 암페어의 최대 크기를 갖는 플라즈마 발생 방법.
  12. 제11항에 있어서, 상기 크기는 비균일한 플라즈마 발생 방법.
  13. 제11항에 있어서, 상기 후속 펄스는 약 20 내지 120 암페어의 최대 크기를 갖는 플라즈마 발생 방법.
  14. 제13항에 있어서, 상기 크기는 비균일한 플라즈마 발생 방법.
  15. 제9항에 있어서, 상기 후속 전류 펄스 각각은 약 200μsec 미만의 평균 지속기간을 갖는 플라즈마 발생 방법.
  16. 제9항에 있어서, 상기 간격은 비균일한 플라즈마 발생 방법.
  17. 제10항에 있어서, 상기 간격은 비균일한 플라즈마 발생 방법.
  18. 제1항 또는 제2항에 있어서, 상기 시퀀스의 연속적 펄스들은 약 50 내지 100 μsec의 간격만큼 분리되어 있는 플라즈마 발생 방법.
  19. 제18항에 있어서, 상기 간격은 비균일한 플라즈마 발생 방법.
  20. 제1항 또는 제2항에 있어서, 후속 펄스는 약 10 내지 5000V의 크기를 갖는 플라즈마 발생 방법.
  21. 제1항 또는 제2항에 있어서, 후속 펄스는 약 20 내지 275V의 평균 크기를 갖는 플라즈마 발생 방법.
  22. 제1항 또는 제2항에 있어서, 후속 펄스는 모두 동일한 극성의 전압 및 전류를 갖지는 않는 플라즈마 발생 방법.
  23. 제1항 또는 제2항에 있어서, 후속 펄스의 전류는 일정하지 않은 플라즈마 발 생 방법.
  24. 제4항에 있어서, 점화기는 이동 불꽃 점화기인 플라즈마 발생 방법.
  25. 연료 점화 방법이며,
    a) 점화기의 전극 사이에 브레이크다운을 유발하여 개시 영역에서 점화기에 고전류 전기 방전을 초래하고, 상기 개시 영역에 인접한 플라즈마 핵의 형성을 초래하기에 충분한 크기의 고전압을 연소 가능한 연료가 존재하는 상태에서 점화기에 인가하는 단계와,
    b) 브레이크다운에 이어, 둘 이상의 비교적 낮은 전압의 후속 펄스의 시퀀스를 상기 전극에 인가하는 단계를 포함하여,
    플라즈마 핵은 상기 후속 펄스에 의해 상기 전극의 자유 단부를 향해 강제 이동되는 연료 점화 방법.
  26. 제25항에 있어서, 개시 영역은 상기 전극 사이에 배치된 절연체의 표면 상에 또는 절연체의 표면에 인접하게 존재하는 연료 점화 방법.
  27. 제25항에 있어서, 점화기는 내연 기관 내에 있는 연료 점화 방법.
  28. 제27항에 있어서, 가솔린 연료 내연 기관에 대하여 후속 펄스의 전류는 약 3 과 450 암페어 사이인 연료 점화 방법.
  29. 제25항 내지 제28항 중 어느 한 항에 있어서, 후속 펄스 이전에 플라즈마의 전체적 핵 재조합을 방지하는 단계를 더 포함하는 연료 점화 방법.
  30. 제29항에 있어서, 전체적 재조합을 방지하는 단계는 상기 시퀀스의 펄스들 사이에, 플라즈마 핵의 전체적 재조합을 방지하기에 충분한 전류(시머 전류라 지칭됨)를 플라즈마 핵을 통해 유지하는 단계를 포함하는 연료 점화 방법.
  31. 제29항에 있어서, 플라즈마 핵의 전체적 재조합을 방지하는 단계는 후속 펄스 사이의 간격에서, 상기 간격의 적어도 일부 동안, 점화기의 전극 양단에 브레이크다운 전압 미만의, 그러나 상기 간격의 종료 이전의 전체적 재조합을 방지하기에 충분한 전류를 플라즈마를 통해 유지하기에 충분한 전압을 유지하는 단계를 포함하는 연료 점화 방법.
  32. 제25항 내지 제28항 중 어느 한 항에 있어서, 점화기는 이동 불꽃 점화기인 연료 점화 방법.
  33. 제25항에 있어서, 상기 시퀀스의 연속적 펄스들은 약 600μsec 미만의 간격만큼 분리되어 있는 연료 점화 방법.
  34. 제33항에 있어서, 상기 간격은 약 20 내지 약 250μsec인 연료 점화 방법.
  35. 제33항에 있어서, 상기 후속 펄스 각각은 약 3 내지 450 암페어의 최대 크기를 갖는 연료 점화 방법.
  36. 제35항에 있어서, 상기 후속 펄스는 약 20 내지 120 암페어의 최대 크기를 갖는 연료 점화 방법.
  37. 제35항 또는 제36항에 있어서, 상기 크기는 비균일한 연료 점화 방법.
  38. 제35항에 있어서, 상기 후속 전류 펄스 각각은 약 200μsec 미만의 지속기간을 갖는 연료 점화 방법.
  39. 제25항에 있어서, 상기 시퀀스의 연속적 펄스는 약 10 내지 500μsec의 간격만큼 분리되어 있는 연료 점화 방법.
  40. 제33항에 있어서, 상기 간격은 비균일한 연료 점화 방법.
  41. 제25항에 있어서, 상기 시퀀스의 연속적 펄스는 약 50 내지 100μsec의 간격 만큼 분리되어 있는 연료 점화 방법.
  42. 제41항에 있어서, 상기 간격은 비균일한 연료 점화 방법.
  43. 제25항에 있어서, 후속 펄스는 약 50 내지 5000V의 크기를 갖는 연료 점화 방법.
  44. 제25항에 있어서, 후속 펄스는 약 20 내지 275V의 평균 크기를 갖는 연료 점화 방법.
  45. 제25항에 있어서, 후속 펄스는 모두 동일한 극성의 전압 및 전류를 갖지는 않는 연료 점화 방법.
  46. 제25항에 있어서, 후속 펄스의 전류는 일정하지 않은 연료 점화 방법.
  47. 제25항에 있어서, 점화기는 점화 시기에 비교적 높은 압력이 존재하는 내연 기관 내에 있는 연료 점화 방법.
  48. 제1항, 제2항 또는 제25항 중 어느 한 항에 있어서, 후속 펄스 이후, 플라즈마 핵의 이온화 레벨이 소정 레벨 미만으로 떨어진 시기에 플라즈마 핵이 성장하게 하여 전체적 재조합이 이루어지기 이전에 다음 후속 펄스가 이어지게 하기에 충분한 전류 및 비교적 저전압으로 플라즈마 핵을 재촉발 또는 재점화하는 단계를 더 포함하는 방법.
  49. 제48항에 있어서, 적어도 몇몇 후속 펄스 쌍 사이에 플라즈마 핵을 시머링하는 단계를 더 포함하는 방법.
  50. 내연 기관 내의 점화기에 전력을 공급하기 위한 점화 회로이며,
    a) 점화기가 기관의 공기와 연료의 혼합물 내에 배치될 때, 점화기의 전극 사이의 개시 영역에서, 점화기의 전극 사이에 높은 전류로, 전기적 브레이크다운 방전을 유발할 수 있는 고전압을 제공하여 상기 방전에 의해 상기 영역에 플라즈마 핵이 형성되게 하는 고전압 제공 수단과,
    b) 하나 이상의 비교적 저전압 및 저전류 펄스의 시퀀스를 제공하는 수단을 포함하고,
    상기 하나 이상의 비교적 저전압 및 저전류 펄스의 시퀀스는 플라즈마 핵이 상기 저전압 저전류 펄스에 의해 상기 전극의 자유 단부를 향해 강제 이동되게 하기에 충분한 전압 및 전류 크기와 타이밍을 갖는 점화 회로.
  51. 제24항에 있어서, 전기적 브레이크다운 방전을 유발할 수 있는 고전압 제공 수단은 주 권선 및 점화기의 일 전극에 대한 접속을 위한 리드를 갖는 이차 권선을 갖는 고전압 저인덕턴스 점화 코일과, 이차 권선에 고전압 펄스를 유도하도록 주 권선에 신호를 트리거하기 위한 회로를 포함하는 점화 회로.
  52. 제25항에 있어서, 비교적 저전압 펄스의 시퀀스를 제공하는 수단은 비교적 저전압 소스와, 상기 펄스 각각에 대해, 비교적 저전압 소스와 펄스 변압기에 의해 충전되는 커패시터를 포함하고, 펄스 변압기는 상기 리드에 접속되는 이차 권선과, 주 권선을 포함하고, 커패시터는 트리거 신호에 응답하여 주 권선을 통해 방전되어 상기 리드에 상기 펄스를 유도하는 점화 회로.
  53. 제24항 내지 제26항 중 어느 한 항에 있어서, 브레이크다운 방전과 제1 후속 펄스 사이의 간격에서, 상기 간격 도중에 플라즈마 핵의 전체적 재조합을 방지하기에 충분한 시머 전류를 점화기에 제공하기 위한 수단을 더 포함하는 점화 회로.
  54. 제27항에 있어서, 각 연속적 후속 펄스들의 쌍 사이의 간격에서, 상기 간격 도중에 플라즈마 핵의 전체적 재조합을 방지하기에 충분한 시머 전류를 점화기에 제공하기 위한 수단을 더 포함하는 점화 회로.
  55. 제25항 또는 제26항에 있어서, 점화기 코일은 포화 가능한 코어를 포함하고, 포화 가능한 코어 상에는 주 권선 및 이차 권선이 형성되며, 코어는 상기 전기적 브레이크다운이 발생할 때 실질적으로 포화되어, 그 후 이차 권선이 실질적으로 감 소된 인덕턴스를 갖게 되는 점화 회로.
  56. 내연 기관의 점화기에 전력을 공급하기 위한 점화 회로이며,
    a) 점화기에 접속된 출력부 상에서 펄스를 생성하는 고전압 펄스 발생기와,
    b) 출력부 상에서 하나 이상의 비교적 저전압 및 저전류의 후속 펄스의 시퀀스를 생성하는 저전압 펄스 발생기를 포함하고,
    상기 고전압 펄스 발생기는 상기 펄스의 최대 전압은 점화기에 전달되는 경우, 상기 점화기가 공기와 연료의 혼합물 내에 배치되어 있을 때, 전극들 사이의 개시 영역에서 점화기의 전극들 사이에 브레이크다운 방전 및 결과적인 고전류를 유발하여 상기 방전에 의해 상기 표면에 인접하게 플라즈마 핵이 형성되게 할 수 있고,
    상기 저전압 및 저전류의 후속 펄스는 상기 저전압 저전류 펄스에 의해 플라즈마 핵을 상기 전극의 자유 단부를 향해 강제 이동시키기에 충분한 전압 및 전류 크기와 타이밍을 갖는 점화 회로.
  57. 제56항에 있어서, 브레이크다운 방전과 제1 후속 펄스 사이의 간격에, 상기 간격 도중의 플라즈마 핵의 전체적 재조합을 방지하기에 충분한 시머 전류를 출력 라인에 공급하는 시머 전류원을 더 포함하는 점화 회로.
  58. 제56항에 있어서, 상기 후속 펄스 사이의 간격 중 적어도 일부 동안, 브레이 크 전압 미만의, 그러나 상기 간격 도중의 플라즈마 핵의 전체적 재조합을 방지하는 전압을 후속 펄스들 사이에 유지하는 전압원을 더 포함하는 점화 회로.
  59. 도면, 특히 도8 내지 도10 중 어느 하나에 예시 및 설명된 바와 실질적으로 동일한 점화 회로.
  60. 제50항 내지 제59항 중 어느 한 항에 있어서, 후속 펄스 이후, 플라즈마 핵의 이온화 레벨이 소정 레벨 미만으로 떨어진 시기에 플라즈마 핵이 성장하게 하여 전체적 재조합이 이루어지기 이전에 다음 후속 펄스가 이어지게 하기에 충분한 전류 및 비교적 저전압으로 플라즈마 핵을 재촉발 또는 재점화하도록 동작하는 수단을 포함하는 점화 회로.
KR1020077026690A 2005-04-19 2006-04-19 이동 불꽃 점화기를 고압에서 동작시키기 위한 방법 및장치 KR101250046B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US67289205P 2005-04-19 2005-04-19
US60/672,892 2005-04-19
PCT/US2006/014840 WO2006113850A1 (en) 2005-04-19 2006-04-19 Method and apparatus for operating traveling spark igniter at high pressure

Publications (2)

Publication Number Publication Date
KR20080017314A true KR20080017314A (ko) 2008-02-26
KR101250046B1 KR101250046B1 (ko) 2013-04-03

Family

ID=36747126

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077026690A KR101250046B1 (ko) 2005-04-19 2006-04-19 이동 불꽃 점화기를 고압에서 동작시키기 위한 방법 및장치

Country Status (8)

Country Link
US (12) US7467612B2 (ko)
EP (3) EP1878098B1 (ko)
JP (1) JP5377958B2 (ko)
KR (1) KR101250046B1 (ko)
CN (1) CN101218722B (ko)
AT (1) ATE535972T1 (ko)
ES (1) ES2968856T3 (ko)
WO (1) WO2006113850A1 (ko)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250046B1 (ko) * 2005-04-19 2013-04-03 나이트, 인크. 이동 불꽃 점화기를 고압에서 동작시키기 위한 방법 및장치
JP4967835B2 (ja) * 2006-12-20 2012-07-04 株式会社デンソー プラズマ式点火装置
FR2913297B1 (fr) * 2007-03-01 2014-06-20 Renault Sas Optimisation de la generation d'une etincelle d'allumage radio-frequence
EP2180172B1 (en) 2007-07-12 2014-05-07 Imagineering, Inc. Internal combustion engine
JP2009036123A (ja) * 2007-08-02 2009-02-19 Nissan Motor Co Ltd 非平衡プラズマ放電式エンジン
US8783220B2 (en) 2008-01-31 2014-07-22 West Virginia University Quarter wave coaxial cavity igniter for combustion engines
US8887683B2 (en) * 2008-01-31 2014-11-18 Plasma Igniter LLC Compact electromagnetic plasma ignition device
JP4952641B2 (ja) * 2008-04-14 2012-06-13 株式会社デンソー 内燃機関の点火システム
JP2011034953A (ja) * 2009-02-26 2011-02-17 Ngk Insulators Ltd プラズマイグナイター及び内燃機関の点火装置
JP5425575B2 (ja) * 2009-09-18 2014-02-26 ダイハツ工業株式会社 火花点火式内燃機関の燃焼状態判定方法
DE102010015344B4 (de) * 2010-04-17 2013-07-25 Borgwarner Beru Systems Gmbh Verfahren zum Zünden eines Brennstoff-Luft-Gemisches einer Verbrennungskammer, insbesondere in einem Verbrennungsmotor durch Erzeugen einer Korona-Entladung
US9181920B2 (en) * 2011-04-04 2015-11-10 Federal-Mogul Ignition Company System and method for detecting arc formation in a corona discharge ignition system
EP2737201A1 (en) 2011-07-26 2014-06-04 Knite, Inc. Traveling spark igniter
US20130308245A1 (en) * 2012-05-18 2013-11-21 Honeywell International Inc. Inductive start and capacitive sustain ignition exciter system
EP2929174A2 (en) 2012-11-29 2015-10-14 Advanced Fuel and Ignition System Inc. Multi-spark and continuous spark ignition module, system, and method
US9617965B2 (en) * 2013-12-16 2017-04-11 Transient Plasma Systems, Inc. Repetitive ignition system for enhanced combustion
PE20170722A1 (es) 2014-04-08 2017-07-04 Plasma Igniter Inc Generacion de plasma de resonador de cavidad coaxial de senal doble
US9828967B2 (en) * 2015-06-05 2017-11-28 Ming Zheng System and method for elastic breakdown ignition via multipole high frequency discharge
CN105221319A (zh) * 2015-08-31 2016-01-06 中国科学院电工研究所 一种用于点火和辅助燃烧的滑动放电反应器
US10590887B2 (en) 2016-05-20 2020-03-17 Alphaport, Inc. Spark exciter operational unit
US10837369B2 (en) 2017-08-23 2020-11-17 General Electric Company Igniter assembly for a gas turbine combustor
KR102644960B1 (ko) 2017-11-29 2024-03-07 코멧 테크놀로지스 유에스에이, 인크. 임피던스 매칭 네트워크 제어를 위한 리튜닝
US20190186369A1 (en) 2017-12-20 2019-06-20 Plasma Igniter, LLC Jet Engine with Plasma-assisted Combustion
US10995672B2 (en) 2018-07-12 2021-05-04 General Electric Company Electrical waveform for gas turbine igniter
US10859058B1 (en) 2019-01-31 2020-12-08 Tom Rothenbuhler Direct fuel injected spark igniter for internal combustion engines
US11527385B2 (en) 2021-04-29 2022-12-13 COMET Technologies USA, Inc. Systems and methods for calibrating capacitors of matching networks
US11114279B2 (en) 2019-06-28 2021-09-07 COMET Technologies USA, Inc. Arc suppression device for plasma processing equipment
US11107661B2 (en) 2019-07-09 2021-08-31 COMET Technologies USA, Inc. Hybrid matching network topology
US11596309B2 (en) 2019-07-09 2023-03-07 COMET Technologies USA, Inc. Hybrid matching network topology
US11521832B2 (en) 2020-01-10 2022-12-06 COMET Technologies USA, Inc. Uniformity control for radio frequency plasma processing systems
US11887820B2 (en) 2020-01-10 2024-01-30 COMET Technologies USA, Inc. Sector shunts for plasma-based wafer processing systems
US11670488B2 (en) 2020-01-10 2023-06-06 COMET Technologies USA, Inc. Fast arc detecting match network
US11830708B2 (en) 2020-01-10 2023-11-28 COMET Technologies USA, Inc. Inductive broad-band sensors for electromagnetic waves
US11961711B2 (en) 2020-01-20 2024-04-16 COMET Technologies USA, Inc. Radio frequency match network and generator
US11605527B2 (en) 2020-01-20 2023-03-14 COMET Technologies USA, Inc. Pulsing control match network
US11373844B2 (en) 2020-09-28 2022-06-28 COMET Technologies USA, Inc. Systems and methods for repetitive tuning of matching networks
US11923175B2 (en) 2021-07-28 2024-03-05 COMET Technologies USA, Inc. Systems and methods for variable gain tuning of matching networks
CN114109692B (zh) * 2021-11-26 2022-09-27 山东大学 一种快脉冲多点放电系统及发动机燃烧控制方法
CN114234940B (zh) * 2021-12-16 2023-08-15 国网四川省电力公司电力科学研究院 一种高压电力线路树线放电基础数据的测量系统及方法
US11657980B1 (en) 2022-05-09 2023-05-23 COMET Technologies USA, Inc. Dielectric fluid variable capacitor

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3413518A (en) 1967-01-31 1968-11-26 Ass Elect Ind Sliding spark ignition system with an inductance and capacitor in series with a three electrode spark plug
US3567987A (en) 1968-06-06 1971-03-02 Gerald L Schnurmacher Spark plug construction
GB1410471A (en) 1971-11-16 1975-10-15 Ass Eng Ltd Ignition devices
US3788293A (en) * 1972-11-10 1974-01-29 Mcculloch Corp Low impedance capacitor discharge system and method
US3908146A (en) * 1972-12-11 1975-09-23 Lacrex Brevetti Sa Break ignition plug and ignition device
JPS5142245B2 (ko) 1974-07-08 1976-11-15
DE2533046C3 (de) * 1975-07-24 1978-11-30 Robert Bosch Gmbh, 7000 Stuttgart Zündeinrichtung für Brennkraftmaschinen
US4122816A (en) 1976-04-01 1978-10-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Plasma igniter for internal combustion engine
US4369756A (en) 1980-01-11 1983-01-25 Nissan Motor Co., Ltd. Plasma jet ignition system for internal combustion engine
JPS60551B2 (ja) 1980-02-29 1985-01-08 日産自動車株式会社 プラズマ点火装置
JPS5732069A (en) 1980-07-31 1982-02-20 Nissan Motor Co Ltd Igniter for internal combustion engine
JPS5756668A (en) 1980-09-18 1982-04-05 Nissan Motor Co Ltd Plasma igniter
JPS5756667A (en) 1980-09-18 1982-04-05 Nissan Motor Co Ltd Plasma igniter
JPS57140567A (en) * 1981-02-23 1982-08-31 Nissan Motor Co Ltd Plasma ignition device for internal combustion engine
JPS57165673A (en) 1981-04-07 1982-10-12 Nissan Motor Co Ltd Plasma ignition device
JPS57203867A (en) 1981-06-09 1982-12-14 Nissan Motor Co Ltd Plasma ignition apparatus
JPS57198372U (ko) * 1981-06-12 1982-12-16
JPS57206776A (en) 1981-06-16 1982-12-18 Nissan Motor Co Ltd Plasma ignition device
JPS58162718A (ja) 1982-03-23 1983-09-27 Nissan Motor Co Ltd ディーゼルエンジン始動用点火装置
US4493297A (en) 1982-09-27 1985-01-15 Geo-Centers, Inc. Plasma jet ignition device
US4487192A (en) * 1983-04-18 1984-12-11 Ford Motor Co Plasma jet ignition system
US4760820A (en) 1983-07-20 1988-08-02 Luigi Tozzi Plasma jet ignition apparatus
US4471732A (en) 1983-07-20 1984-09-18 Luigi Tozzi Plasma jet ignition apparatus
US4766855A (en) 1983-07-20 1988-08-30 Cummins Engine Co., Inc. Plasma jet ignition apparatus
US4677960A (en) 1984-12-31 1987-07-07 Combustion Electromagnetics, Inc. High efficiency voltage doubling ignition coil for CD system producing pulsed plasma type ignition
US4774914A (en) 1985-09-24 1988-10-04 Combustion Electromagnetics, Inc. Electromagnetic ignition--an ignition system producing a large size and intense capacitive and inductive spark with an intense electromagnetic field feeding the spark
GB8529223D0 (en) 1985-11-27 1986-01-02 Lucas Ind Plc Monitoring gas turbine engine
DE3544176C1 (de) 1985-12-13 1987-05-21 Beru Werk Ruprecht Gmbh Co A Zuendkerze mit kombinierten Gleit- und Luftfunkenstrecken
US4841925A (en) * 1986-12-22 1989-06-27 Combustion Electromagnetics, Inc. Enhanced flame ignition for hydrocarbon fuels
WO1988004729A1 (en) 1986-12-22 1988-06-30 Combustion Electromagnetics, Inc. Formation of electric field discharges
US4893605A (en) * 1987-06-25 1990-01-16 Mitsubishi Denki Kabushiki Kaisha Ignition device for internal combustion engine
US5007389A (en) 1987-12-17 1991-04-16 Ryohei Kashiwara Ignition plug for internal combustion engines and a process for igniting gas mixture by the use thereof
US4805570A (en) 1987-12-23 1989-02-21 Brunswick Corporation Multipoint spark ignition system
US4846129A (en) 1988-02-09 1989-07-11 Chrysler Motors Corporation Ignition system improvements for internal combustion engines
US4930473A (en) 1988-12-09 1990-06-05 Texas Ignitors Company, Inc. Swirl chamber and spark plug assembly
US4996967A (en) 1989-11-21 1991-03-05 Cummins Engine Company, Inc. Apparatus and method for generating a highly conductive channel for the flow of plasma current
US5211142A (en) 1990-03-30 1993-05-18 Board Of Regents, The University Of Texas System Miniature railgun engine ignitor
US5076223A (en) 1990-03-30 1991-12-31 Board Of Regents, The University Of Texas System Miniature railgun engine ignitor
US5228425A (en) 1991-01-04 1993-07-20 Sylvan Simons Ignition system for internal combustion engine
US5131376A (en) 1991-04-12 1992-07-21 Combustion Electronics, Inc. Distributorless capacitive discharge ignition system
US5187404A (en) 1991-08-05 1993-02-16 Cooper Industries, Inc. Surface gap igniter
US5197448A (en) 1991-08-23 1993-03-30 Massachusetts Institute Of Technology Dual energy ignition system
US5207208A (en) 1991-09-06 1993-05-04 Combustion Electromagnetics Inc. Integrated converter high power CD ignition
US5429103A (en) * 1991-09-18 1995-07-04 Enox Technologies, Inc. High performance ignition system
KR950002633B1 (ko) 1991-10-15 1995-03-23 미쯔비시 덴끼 가부시기가이샤 내연기관용 점화장치 및 방법
GB9124824D0 (en) 1991-11-22 1992-01-15 Ortech Corp Plasma-arc ignition system
US5456241A (en) 1993-05-25 1995-10-10 Combustion Electromagnetics, Inc. Optimized high power high energy ignition system
US5377633A (en) 1993-07-12 1995-01-03 Siemens Automotive L.P. Railplug direct injector/ignitor assembly
US5423306A (en) 1993-10-22 1995-06-13 Trigger, Deceased; Vernon A. Internal plasma-combustion engine system
US5619959A (en) 1994-07-19 1997-04-15 Cummins Engine Company, Inc. Spark plug including magnetic field producing means for generating a variable length arc
US5555862A (en) 1994-07-19 1996-09-17 Cummins Engine Company, Inc. Spark plug including magnetic field producing means for generating a variable length arc
US5513605A (en) 1994-08-22 1996-05-07 Board Of Regents, The University Of Texas System Cooled railplug
US5517961A (en) 1995-02-27 1996-05-21 Combustion Electromagnetics, Inc. Engine with flow coupled spark discharge
US5754011A (en) 1995-07-14 1998-05-19 Unison Industries Limited Partnership Method and apparatus for controllably generating sparks in an ignition system or the like
US5564403A (en) 1995-10-16 1996-10-15 Caterpillar Inc. Spark ignition system and spark plug for ultra lean fuel/air mixtures
US5704321A (en) * 1996-05-29 1998-01-06 The Trustees Of Princeton University Traveling spark ignition system
US6321733B1 (en) * 1996-05-29 2001-11-27 Knite, Inc. Traveling spark ignition system and ignitor therefor
US6131555A (en) * 1998-04-20 2000-10-17 Cummins Engine Company, Inc. System for controlling ignition energy of an internal combustion engine
WO2000077391A1 (en) 1999-06-16 2000-12-21 Knite, Inc. Add on unit to conventional ignition systems to provide a follow-on current through a spark plug
WO2001020161A1 (en) 1999-09-15 2001-03-22 Knite, Inc. Electronic circuits for plasma-generating devices
MXPA02002939A (es) * 1999-09-15 2003-07-14 Knite Inc Ignitor de chispa movil de larga duracion y sistema de circuitos de encendido asociado.
DE10031875A1 (de) 2000-06-30 2002-01-10 Bosch Gmbh Robert Zündverfahren und entsprechende Zündvorrichtung
AT409406B (de) 2000-10-16 2002-08-26 Jenbacher Ag Zündsystem mit einer zündspule
FR2817444B1 (fr) * 2000-11-27 2003-04-25 Physiques Ecp Et Chimiques Generateurs et circuits electriques pour alimenter des decharges instables de haute tension
US6701904B2 (en) * 2001-05-17 2004-03-09 Altronic, Inc. Capacitive discharge ignition system with extended duration spark
US6568362B2 (en) 2001-06-12 2003-05-27 Ut-Battelle, Llc Rotating arc spark plug
NL1019448C2 (nl) * 2001-11-29 2003-06-03 Simon Lucas Goede Verbrandingsmotor en ontstekingscircuit voor een verbrandingsmotor.
US6670777B1 (en) * 2002-06-28 2003-12-30 Woodward Governor Company Ignition system and method
JP4460940B2 (ja) * 2003-05-07 2010-05-12 株式会社ニューパワープラズマ 多重放電管ブリッジを備えた誘導プラズマチャンバ
US7518085B1 (en) * 2003-05-30 2009-04-14 Alameda Applied Sciences Corp. Vacuum arc plasma thrusters with inductive energy storage driver
US7066161B2 (en) * 2003-07-23 2006-06-27 Advanced Engine Management, Inc. Capacitive discharge ignition system
US7188466B2 (en) * 2004-02-10 2007-03-13 General Electric Company Passive, high-temperature amplifier for amplifying spark signals detected in igniter in gas turbine engine
KR101250046B1 (ko) 2005-04-19 2013-04-03 나이트, 인크. 이동 불꽃 점화기를 고압에서 동작시키기 위한 방법 및장치
US7121270B1 (en) * 2005-08-29 2006-10-17 Vimx Technologies Inc. Spark generation method and ignition system using same
JP4778301B2 (ja) 2005-11-22 2011-09-21 日本特殊陶業株式会社 プラズマジェット点火プラグおよびその点火装置
JP4669486B2 (ja) * 2006-03-22 2011-04-13 日本特殊陶業株式会社 プラズマジェット点火プラグおよびその点火システム
DE102006037039B4 (de) 2006-08-08 2010-06-24 Siemens Ag Hochfrequenz-Zündvorrichtung
JP2008177142A (ja) 2006-12-19 2008-07-31 Denso Corp プラズマ式点火装置
JP5696837B2 (ja) 2008-02-22 2015-04-08 エールリッヒ,メルヴィン 内燃機関用のプラズマプラグ
EP2737201A1 (en) 2011-07-26 2014-06-04 Knite, Inc. Traveling spark igniter

Also Published As

Publication number Publication date
EP2426796A3 (en) 2013-03-20
JP2008537061A (ja) 2008-09-11
US20160381779A1 (en) 2016-12-29
EP1878098A1 (en) 2008-01-16
US20200367352A1 (en) 2020-11-19
EP1878098B1 (en) 2011-11-30
US20140091712A1 (en) 2014-04-03
ATE535972T1 (de) 2011-12-15
US20210059038A1 (en) 2021-02-25
KR101250046B1 (ko) 2013-04-03
EP2908393A2 (en) 2015-08-19
US20090194513A1 (en) 2009-08-06
EP2908393B1 (en) 2023-10-04
US11419204B2 (en) 2022-08-16
CN101218722A (zh) 2008-07-09
US7467612B2 (en) 2008-12-23
US8622041B2 (en) 2014-01-07
EP2908393A3 (en) 2015-12-16
JP5377958B2 (ja) 2013-12-25
US20110309749A1 (en) 2011-12-22
CN101218722B (zh) 2011-11-30
US20070062502A1 (en) 2007-03-22
WO2006113850A1 (en) 2006-10-26
US8186321B2 (en) 2012-05-29
US20230114936A1 (en) 2023-04-13
ES2968856T3 (es) 2024-05-14
EP2426796A2 (en) 2012-03-07
US20180368247A1 (en) 2018-12-20
US20180359844A1 (en) 2018-12-13
US20170105275A1 (en) 2017-04-13
EP2426796B1 (en) 2014-11-12
US20220030694A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
KR101250046B1 (ko) 이동 불꽃 점화기를 고압에서 동작시키기 위한 방법 및장치
JP4240225B2 (ja) 可燃性の気体混合物に点火するための、コロナ放電を生成し持続させるための点火システムと点火方法
US5416297A (en) Plasma arc torch ignition circuit and method
JPS618470A (ja) 内燃機関の燃料−空気混合物の燃焼開始方法及びその装置
KR101922545B1 (ko) 아크 형성이 선택적으로 강화되는 코로나 점화 시스템
JP3214567B2 (ja) 内熱機関の容量性放電点火装置及びその火花放電発生方法
JP5474120B2 (ja) 内燃機関の点火装置および点火方法
US8274776B2 (en) Disabling a target using electrical energy
EP0589494B1 (en) Discharge exciting pulse laser device
US6953032B2 (en) Combustion engine and ignition circuit for a combustion engine
JPH09159166A (ja) バーナ用放電点火装置及び燃料噴射バーナの放電点火方法
RU2343650C2 (ru) Способ создания высокоэнтальпийной газовой струи на основе импульсного газового разряда
Chan et al. Ignition System Designed to Extend the Plug Life, and the Lean Limit in a Natural Gas Engine
CN116234138A (zh) 一种高压瞬时纳秒脉冲等离子体点火装置及方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170914

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180927

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190314

Year of fee payment: 7