KR20070073684A - Maximum torque control system for ipmsm - Google Patents

Maximum torque control system for ipmsm Download PDF

Info

Publication number
KR20070073684A
KR20070073684A KR1020070057165A KR20070057165A KR20070073684A KR 20070073684 A KR20070073684 A KR 20070073684A KR 1020070057165 A KR1020070057165 A KR 1020070057165A KR 20070057165 A KR20070057165 A KR 20070057165A KR 20070073684 A KR20070073684 A KR 20070073684A
Authority
KR
South Korea
Prior art keywords
ipmsm
speed
current
controller
control system
Prior art date
Application number
KR1020070057165A
Other languages
Korean (ko)
Inventor
정동화
김상선
최정식
고재섭
이정호
Original Assignee
순천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단 filed Critical 순천대학교 산학협력단
Priority to KR1020070057165A priority Critical patent/KR20070073684A/en
Publication of KR20070073684A publication Critical patent/KR20070073684A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A maximum torque control system for an IPMSM(Interior Permanent Magnet Synchronous Motor) is provided to reduce energy consumption of an electronic apparatus through an optimal reference current for maximizing an operation torque of the IPMSM. A speed measuring unit(5) measures an actual speed of an IPMSM, which is inputted from the IPMSM to a speed controller. The speed controller(1) receives an error between an instruction speed and the actual speed as an input and outputs a torque component instruction current. A field weakening controller(6) receives the torque component instruction current and the actual speed of the IPMSM and outputs a magnetic flux component instruction current. A current controller(2) receives the torque component instruction current and the magnetic flux component instruction current and outputs phase voltage instruction values. A space vector PWM(Pulse Width Modulation) inverter(3) receives the phase voltage instruction values and drives the IPMSM.

Description

IPMSM 최대토크 제어시스템 {Maximum Torque Control System for IPMSM}IPMSM Maximum Torque Control System for IPMSM

도 1은 종래의 IPMSM 제어시스템의 구성도1 is a configuration diagram of a conventional IPMSM control system

도 2는 본 발명의 최대토크 제어시스템에 따른 전류궤적도2 is a current trace diagram according to the maximum torque control system of the present invention

도 3은 본 발명에 따른 IPMSM 최대토크 제어시스템 구성도Figure 3 is a configuration diagram of IPMSM maximum torque control system according to the present invention

<도면의 주요 부분에 대한 부호의 설명><Description of the code | symbol about the principal part of drawing>

1: 속도 제어기(Speed Controller)1: Speed Controller

2: 전류 제어기(Current Controller)2: Current Controller

3: 공간벡터 PWM 인버터(Space Vector Pulse Width Modulation Inverter, S-V PWM)3: Space Vector Pulse Width Modulation Inverter (S-V PWM)

4: IPMSM(Interior Permanent Magnet Synchronous Motor)4: Interior Permanent Magnet Synchronous Motor (IPMSM)

5: 속도 측정기5: speed meter

6: 약계자 제어기(Field Weakening Controller )6: Field Weakening Controller

본 발명은 전동기 최대토크(Maximum Torque per Ampere) 제어시스템에 관한 것으로, 전동기의 운전상태에 따라 약계자 제어기를 이용하여 토크를 최대화하는 최적의 기준 전류를 이용하는 전동기 최대토크 제어시스템에 관한 것이다. 본 발명은 광범위한 속도영역에서 최대토크 발생, 과도 특성에서 다양한 속도추정능력, 부하 및 관성 등 파라미터 변동에 고성능 및 강인성을 갖는다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor maximum torque control system, and to an electric motor maximum torque control system using an optimum reference current for maximizing torque by using a field weakening controller according to an operating state of an electric motor. The present invention has high performance and robustness against parameter variations such as maximum torque generation in a wide range of speeds, various speed estimation capabilities in transient characteristics, load and inertia.

도 1은 종래의 IPMSM 제어시스템의 구성도이다. 전동기 속도를 사용자가 원하는 속도로 설정한 지령속도(

Figure 112007505988130-PAT00012
)와 IPMSM(4)의 실제속도(ω r)를 비교하여 속도 제어기(1), 전류 제어기(2) 및 공간벡터 PWM 인버터(3)로 IPMSM(4)을 제어한다.1 is a block diagram of a conventional IPMSM control system. Command speed that sets the motor speed to the desired speed
Figure 112007505988130-PAT00012
) And the IPMSM 4 are controlled by the speed controller 1, the current controller 2, and the space vector PWM inverter 3 by comparing the actual speed ω r of the IPMSM 4).

상기 IPMSM(4)은 영구자석을 회전자 철심에 매입하여 기계적으로 강인한 회전자 구조로 되어 있고, 회전자는 돌극성이고 유효공극이 작아 전기자반작용 효과가 현저한 장점이 있으나 자속의 직접제어가 불가능하다. 이러한 특성 때문에 일정 토크영역과 자속을 감소시켜 고속까지 운전할 수 있는 일정 출력영역에서 용이하게 동작할 수 없다.The IPMSM 4 has a rotor structure that is mechanically robust by embedding a permanent magnet in the rotor core, and the rotor has a salient polarity and a small effective void, so that the effect of electromagnetism is remarkable, but direct control of magnetic flux is impossible. Because of this characteristic, it cannot be easily operated in the constant torque area and the constant output area that can operate at high speed by reducing the magnetic flux.

Morimoto는 약계자 제어를 위하여 피드포워드 비간섭 제어기에 의한 전압보상기와 전류제어기를 제시하였다. 이 전압보상기는 동작조건을 동조할 경우 양호하게 동작할 수 있으나, 온도의 상승과 DC 링크전압 등이 변화하여 영구자석의 자속이 약화되는 특별한 전압오차가 발생하면 전압보상기의 부적절한 동작 때문에 드라이브 시스템의 성능이 악화될 수 있다.Morimoto presented a voltage compensator and a current controller by a feedforward non-interference controller for weak field control. The voltage compensator can operate well when the operating conditions are tuned. However, if a special voltage error occurs that causes the magnetic flux of the permanent magnet to weaken due to a rise in temperature and a change in the DC link voltage, the drive compensator may cause an improper operation of the voltage compensator. Performance may deteriorate.

또, Krishnan은 약계자와 토크를 동시에 제어하는 방안을 제시하였고, Zhu는 온라인으로 수행되는 최적의 약계자 제어 등을 제시하였다. 그러나 토크제어는 d, q축 전류평면의 관점에서 접근한 것으로, 매우 고속인 확장된 속도영역의 운전을 효율적으로 할 수 있고 다양한 제어모드의 원활한 전이를 위한 연구가 필요하다.In addition, Krishnan proposed the method of controlling the weak field and torque at the same time, and Zhu suggested the optimal field weakness control performed online. However, torque control is approached from the viewpoint of d and q axis current planes, and it is possible to efficiently operate the extended speed range which is very high speed, and it is necessary to study for smooth transition of various control modes.

본 발명은 위와 같은 문제점을 해결하기 위하여 토크를 최대화하는 최적의 기준 전류를 이용하여 최대토크를 제어하는 최대토크 제어시스템을 제공하는데 그 목적이 있다.An object of the present invention is to provide a maximum torque control system for controlling the maximum torque by using an optimum reference current to maximize the torque in order to solve the above problems.

본 발명의 또 다른 목적은 본 발명의 최대토크 제어시스템을 이용한 IPMSM 최대토크 제어시스템을 제공하는데 있다.Still another object of the present invention is to provide an IPMSM maximum torque control system using the maximum torque control system of the present invention.

본 발명은 위와 같은 목적을 달성하기 위하여 전동기의 운전 상태에 따라 토크를 최대화하는 최적의 기준 전류를 이용하여 최대토크를 제어하는 약계자 제어기를 이용한다.The present invention uses the field weakening controller to control the maximum torque by using the optimum reference current to maximize the torque in accordance with the operating state of the motor to achieve the above object.

본 발명에서는 최대토크 동작을 위하여 최적 d축 전류를 결정하고 이 전류를 각 제어모드에서 사용한다. 최대토크를 발생시키기 위하여 전류 제어기의 출력인 인버터의 출력전압은 DC 링크전압을 최대로 이용한다.In the present invention, the optimum d- axis current is determined for maximum torque operation and this current is used in each control mode. In order to generate the maximum torque, the output voltage of the inverter, the output of the current controller, uses the DC link voltage to the maximum.

제어모드의 원활한 전이는 지령신호에 기초하여 자동적으로 수행하여 광범위한 속도영역에서 최대토크 발생, 과도 특성에서 다양한 속도추정 능력, 부하 및 관성 등 파라미터 변동에 고성능 및 강인성 제어를 수행 할 수 있다.The smooth transition of the control mode is automatically performed based on the command signal, so that high performance and robustness control can be performed for parameter variations such as maximum torque generation in a wide range of speed, various speed estimation capability in transient characteristics, load and inertia.

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명의 최대토크 제어시스템에 따른 전류궤적도이다.2 is a current trace diagram according to the maximum torque control system of the present invention.

모드 I : 일정 최대 토크에 의한 전류제한 영역(ω r ω 1)Mode I: Current limit area due to constant maximum torque ( ω r < ω 1 )

최대토크를 위한 최적 전류각과 전류제한에서 동작하는 최대토크를 발생하는 저속영역이다. 이는 i d -i q 평면의 일정 토크궤적에서는 A점과 일치하며 토크궤적은 일정 전류원과 접하게 된다. 전압제한은 모드I에서 최고의 속도로 정의한다. 이 영역에서 최대토크 제어를 수행한다.It is a low speed area that generates the maximum torque operating at the optimum current angle and the current limit for the maximum torque. This coincides with point A in the constant torque trajectory of the i d -i q plane and the torque trajectory is in contact with the constant current source. Voltage limit is defined as the highest speed in mode I. Perform maximum torque control in this area.

모드Ⅱ : 전류와 전압의 제한영역(ω 1 ω r ω 2)Mode II: Restriction Area of Current and Voltage ( ω 1 < ω r < ω 2 )

전동기는 A점에서 B점까지 일정 전류원을 따라 동작한다. 이 영역에서는 일정 전압타원의 크기가 감소하므로 속도가 증가하게 된다.The motor operates along a constant current source from point A to point B. In this region, the speed increases because the size of the constant voltage ellipse decreases.

모드Ⅲ : 전압제한 영역(ω 2 ω r)Mode III: Voltage Limit Area ( ω 2 < ω r )

속도를 더욱 증가시키면 전류가 감소하게 되며 이 경우에 전류제한에 있는 전류를 발생시키기 위하여 전압이 낮아지게 되어 전압을 충분히 낼 수 없다. 전동기는 일정 토크궤적이 일정 전압타원에 접해 있는 최적조건에서 동작한다. 즉, 토크는 B점 이상의 속도에 대한 각 값에서 최대화가 된다.Increasing the speed further decreases the current, in which case the voltage is lowered to generate a current that is within the current limit, making it unable to produce sufficient voltage. The motor operates under optimum conditions where a constant torque trace is in contact with a constant voltage ellipse. That is, the torque is maximized at each value for speed above point B.

도 3은 본 발명에 따른 IPMSM 최대토크 제어시스템 구성도이다.3 is a block diagram of an IPMSM maximum torque control system according to the present invention.

IPMSM(4)으로부터 속도 제어기(5)에 입력되는 IPMSM(4)의 실제속도(ω r)를 도출하기 위한 속도 측정기(5), 지령속도(

Figure 112007505988130-PAT00013
)와 속도(ω r)의 오차를 입력으로 받아 토크성분 지령전류(
Figure 112007505988130-PAT00014
)를 출력하는 속도 제어기(1), 토크성분 지령전류(
Figure 112007505988130-PAT00015
)와 IPMSM(4)의 실제속도(ω r)를 입력받아 자속성분 지령전류(
Figure 112007505988130-PAT00016
)를 출력하는 약계자 제 어기(6), 토크성분의 지령전류(
Figure 112007505988130-PAT00017
)와 자속성분의 지령전류(
Figure 112007505988130-PAT00018
)를 입력받아 상전압 지령치(
Figure 112007505988130-PAT00019
,
Figure 112007505988130-PAT00020
,
Figure 112007505988130-PAT00021
)를 출력하는 전류 제어기(2), 상기 상전압 지령치(
Figure 112007505988130-PAT00022
,
Figure 112007505988130-PAT00023
,
Figure 112007505988130-PAT00024
)를 받아 IPMSM(4)을 구동하는 공간벡터 PWM 인버터(3)를 포함한다.The speed measuring device 5 for deriving the actual speed ω r of the IPMSM 4 input to the speed controller 5 from the IPMSM 4, the command speed (
Figure 112007505988130-PAT00013
) And the speed (torque component command current receiving as input the error ω r) (
Figure 112007505988130-PAT00014
Speed controller 1, torque component command current (
Figure 112007505988130-PAT00015
) And the actual flux component command current ( ω r ) of the IPMSM (4)
Figure 112007505988130-PAT00016
Weak field controller (6) outputting
Figure 112007505988130-PAT00017
) And command current of magnetic flux component
Figure 112007505988130-PAT00018
) And the phase voltage setpoint (
Figure 112007505988130-PAT00019
,
Figure 112007505988130-PAT00020
,
Figure 112007505988130-PAT00021
Current controller 2 for outputting the phase voltage command value
Figure 112007505988130-PAT00022
,
Figure 112007505988130-PAT00023
,
Figure 112007505988130-PAT00024
) And a space vector PWM inverter (3) for driving the IPMSM (4).

상기 약계자 제어기(6)는 토크성분 지령전류(

Figure 112007505988130-PAT00025
)와 IPMSM(4)의 실제속도(ω r)를 입력으로 받아 자속성분 지령전류(
Figure 112007505988130-PAT00026
)를 출력하고, 속도 제어기(1)는 지령속도(
Figure 112007505988130-PAT00027
)와 속도(ω r)의 오차를 입력으로 받아 토크성분 지령전류(
Figure 112007505988130-PAT00028
)를 출력한다. 전류 제어기(2)는 토크성분의 지령전류(
Figure 112007505988130-PAT00029
)와 자속성분의 지령전류(
Figure 112007505988130-PAT00030
)를 입력받아 상전압 지령치(
Figure 112007505988130-PAT00031
,
Figure 112007505988130-PAT00032
,
Figure 112007505988130-PAT00033
)를 공간벡터 PWM 인버터(3)에 인가하여 IPMSM(4)을 구동한다.The field weakening controller 6 is a torque component command current (
Figure 112007505988130-PAT00025
) And the actual flux component ω r of the IPMSM (4) as input
Figure 112007505988130-PAT00026
) And the speed controller (1)
Figure 112007505988130-PAT00027
) And the speed (torque component command current receiving as input the error ω r) (
Figure 112007505988130-PAT00028
) The current controller 2 is a command current of the torque component (
Figure 112007505988130-PAT00029
) And command current of magnetic flux component
Figure 112007505988130-PAT00030
) And the phase voltage setpoint (
Figure 112007505988130-PAT00031
,
Figure 112007505988130-PAT00032
,
Figure 112007505988130-PAT00033
) Is applied to the space vector PWM inverter 3 to drive the IPMSM 4.

상기의 약계자 제어기(6)에 의한 자속성분 지령전류(

Figure 112007505988130-PAT00034
)를 구하는 방법은Magnetic flux component command current by the field weakening controller 6 described above
Figure 112007505988130-PAT00034
) How to get

(1) 토크성분 지령전류

Figure 112007505988130-PAT00035
와 실제속도 ω r를 입력받아 자속성분 지령전류(
Figure 112007505988130-PAT00036
)는 i d1, i d2i d3 에 의하여 계산된다. 여기에서 i d1은 수학식(1)에 의해서 계산되는 모드I의 전류값, i d2는 수학식(2에 의해서 계산되는 모드Ⅱ의 전류값 이며, i d3는 수학식(3)에 의해서 계산되는 모드Ⅲ의 전류값 이다.(1) Torque component command current
Figure 112007505988130-PAT00035
And the actual speed ω r receives the magnetic flux component current command (
Figure 112007505988130-PAT00036
) Is calculated by i d1 , i d2 and i d3 . Where i d1 is the current value of Mode I calculated by Equation (1), i d2 is the current value of Mode II calculated by Equation (2), and i d3 is calculated by Equation (3). Current value of mode III.

(2) 기저속도 이하에서는 요구되는 출력전압이 정격전압보다 작은데, i d2가정격전압과 일치하기 때문에 i d1i d2보다 작게 된다. 따라서 조건 i d1i d2에서는 모드 I에서 동작하고 자속성분 지령전류

Figure 112007505988130-PAT00037
i d1이 된다.(2) Below the base speed, the required output voltage is smaller than the rated voltage. I d1 is smaller than i d2 because it matches the i d2 home rated voltage. Therefore, under condition i d1i d2 , it operates in mode I and the flux component command current
Figure 112007505988130-PAT00037
Becomes i d1 .

(3) 기저속도 이상으로 속도가 증가할 경우에는 전동기를 동작시키기 위하여 가능한 모드가 모드Ⅱ와 모드Ⅲ이다. i d2i d3가 조건 i d3i d2을 만족하면 전동기는 모드Ⅱ에서 동작하고 자속성분 지령전류

Figure 112007505988130-PAT00038
i d2가 된다. 그러나 이와는 반대로 조건 i d3i d2을 만족하지 않을 경우에는 전동기는 모드Ⅲ에서 동작하고 자속성분 지령전류
Figure 112007505988130-PAT00039
i d3가 된다.(3) When the speed increases above the base speed, the possible modes for operating the motor are Mode II and Mode III. If i d2 and i d3 satisfy the condition i d3i d2 , the motor operates in mode II and the flux component command current
Figure 112007505988130-PAT00038
Becomes i d2 . On the contrary, if the condition i d3i d2 is not satisfied, the motor operates in mode III and the flux component command current
Figure 112007505988130-PAT00039
Becomes i d3 .

[수학식 1][Equation 1]

Figure 112007505988130-PAT00001
Figure 112007505988130-PAT00001

[수학식 2][Equation 2]

Figure 112007505988130-PAT00010
Figure 112007505988130-PAT00010

[수학식 3][Equation 3]

Figure 112007505988130-PAT00011
Figure 112007505988130-PAT00011

이와 같이 본 발명에서 제시한 약계자 제어기(6)는 최적의 지령전류를 계산함으로써 본 발명의 제어기는 최대토크 제어를 수행하여 시스템의 고성능 및 강인성을 갖게 한다.As described above, the field weakening controller 6 proposed in the present invention calculates the optimum command current so that the controller of the present invention performs the maximum torque control to have high performance and robustness of the system.

도 3에서 약계자 제어기(6)를 적용한 IPMSM(4)의 최대토크 제어시스템을 도시하였으나, 본 발명의 최대토크 제어시스템은 다른 유형의 전동기에도 쉽게 적용 할 수 있다.Although the maximum torque control system of the IPMSM 4 to which the field weakening controller 6 is applied is shown in FIG. 3, the maximum torque control system of the present invention can be easily applied to other types of electric motors.

위에서 설명한 바와 같이, 본 발명은 약계자 제어기를 사용함으로써 광범위한 속도영역에 적절하게 대응할 수 있고, 파라미터 변동과 같은 시스템 변화에 강인성과 고성능을 유지함으로써 산업기기의 효율을 높이고 총체적으로 에너지 절감에 기여할 수 있다.As described above, the present invention can adequately cope with a wide range of speeds by using the field weakening controller, and can increase the efficiency of the industrial equipment and contribute to the overall energy saving by maintaining the robustness and high performance against system changes such as parameter variations. have.

본 발명의 최대토크 제어시스템은 전동기의 운전상태에 따라서 토크를 최대화하는 최적의 기준전류를 이용함으로써 기존의 제어시스템과 비교하여 응답특성이 양호하다.The maximum torque control system of the present invention has better response characteristics than the conventional control system by using an optimum reference current that maximizes torque in accordance with the operating state of the motor.

또한, 본 발명의 최대토크 제어시스템에 의하면 수렴속도를 빠르게 계산할 수 있고 최적의 지령 전류값을 구할 수 있다.In addition, according to the maximum torque control system of the present invention, the convergence speed can be calculated quickly and the optimum command current value can be obtained.

Claims (3)

전동기 제어시스템에 있어서, 약계자 제어기를 이용하여 토크를 최대화하는 최적의 기준전류로 자속성분 지령전류(
Figure 112007505988130-PAT00040
)를 출력하는 것을 특징으로 하는 전동기 최대토크 제어시스템
In an electric motor control system, the magnetic flux component command current (A) is an optimal reference current that maximizes torque by using a field weakening controller.
Figure 112007505988130-PAT00040
Motor maximum torque control system characterized in that
제1항에 있어서, 상기 약계자 제어기예 의해 자속성분 지령전류(
Figure 112007505988130-PAT00041
)를 계산함에 있어 전동기의 운전상태에 따라서 다음 수학식(1), (2), (3)에 의하여 계산되는 것을 특징으로 하는 전동기 최대토크 제어시스템
The magnetic flux component command current according to claim 1,
Figure 112007505988130-PAT00041
In calculating), the maximum torque control system for the motor, characterized in that it is calculated by the following equations (1), (2), (3):
[수학식 1][Equation 1]
Figure 112007505988130-PAT00004
Figure 112007505988130-PAT00004
[수학식 2][Equation 2]
Figure 112007505988130-PAT00005
Figure 112007505988130-PAT00005
[수학식 3][Equation 3]
Figure 112007505988130-PAT00006
Figure 112007505988130-PAT00006
IPMSM 제어시스템에 있어서, IPMSM의 최대토크 제어에 필요한 자속성분 지령 전류(
Figure 112007505988130-PAT00042
)를 출력하는 약계자 제어기, 상기 IPMSM로부터 속도 제어기에 입력되는 IPMSM의 실제속도(ω r)를 도출하기 위한 속도 측정기, IPMSM의 지령속도(
Figure 112007505988130-PAT00043
)와 속도(ω r)의 오차를 입력받아 토크성분 지령전류(
Figure 112007505988130-PAT00044
)를 출력하는 속도 제어기, 상기 자속 성분 지령전류(
Figure 112007505988130-PAT00045
)와 상기 토크성분의 지령전류(
Figure 112007505988130-PAT00046
)를 입력받아 상전압 지령치(
Figure 112007505988130-PAT00047
,
Figure 112007505988130-PAT00048
,
Figure 112007505988130-PAT00049
)를 출력하는 전류 제어기 및 상기 상전압 지령치(
Figure 112007505988130-PAT00050
,
Figure 112007505988130-PAT00051
,
Figure 112007505988130-PAT00052
)를 받아 상기 IPMSM을 구동하는 공간벡터 PWM 인버터를 포함하는 것을 특징으로 하는 IPMSM 최대토크 제어시스템
In the IPMSM control system, the flux component command current required for maximum torque control of the IPMSM (
Figure 112007505988130-PAT00042
Weak field controller outputting the speed controller, a speed measuring device for deriving the actual speed ( ω r ) of the IPMSM input to the speed controller from the IPMSM, and a command speed of the IPMSM (
Figure 112007505988130-PAT00043
) And receives the error of the speed r), the torque component current command (
Figure 112007505988130-PAT00044
Speed controller for outputting the magnetic flux component command current
Figure 112007505988130-PAT00045
) And the command current of the torque component (
Figure 112007505988130-PAT00046
) And the phase voltage setpoint (
Figure 112007505988130-PAT00047
,
Figure 112007505988130-PAT00048
,
Figure 112007505988130-PAT00049
) And a current controller for outputting the phase voltage setpoint (
Figure 112007505988130-PAT00050
,
Figure 112007505988130-PAT00051
,
Figure 112007505988130-PAT00052
IPMSM maximum torque control system comprising a space vector PWM inverter for driving the IPMSM
KR1020070057165A 2007-06-12 2007-06-12 Maximum torque control system for ipmsm KR20070073684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070057165A KR20070073684A (en) 2007-06-12 2007-06-12 Maximum torque control system for ipmsm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070057165A KR20070073684A (en) 2007-06-12 2007-06-12 Maximum torque control system for ipmsm

Publications (1)

Publication Number Publication Date
KR20070073684A true KR20070073684A (en) 2007-07-10

Family

ID=38508202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070057165A KR20070073684A (en) 2007-06-12 2007-06-12 Maximum torque control system for ipmsm

Country Status (1)

Country Link
KR (1) KR20070073684A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101259747B1 (en) * 2011-10-05 2013-04-30 중앙대학교 산학협력단 Method and apparatus for optimal efficiency controling of inverter and ipmsm operating system using the same
KR101271732B1 (en) * 2008-10-17 2013-06-04 삼성테크윈 주식회사 Apparatus for controlling electric motor dipressed magnetic flux output
KR101272393B1 (en) * 2012-02-10 2013-06-07 엘에스산전 주식회사 Apparatus for controlling inverter
KR20160044706A (en) * 2014-10-15 2016-04-26 동아전장주식회사 Method for controlling a condenser motor installed in a bus conditioner
CN109873590A (en) * 2019-04-09 2019-06-11 湘潭大学 A kind of weak magnetism speed expansion method of IPM synchronous motor for electric vehicle
KR102212726B1 (en) 2020-08-31 2021-02-04 김보화 Electric cooker with heat diffusion structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271732B1 (en) * 2008-10-17 2013-06-04 삼성테크윈 주식회사 Apparatus for controlling electric motor dipressed magnetic flux output
KR101259747B1 (en) * 2011-10-05 2013-04-30 중앙대학교 산학협력단 Method and apparatus for optimal efficiency controling of inverter and ipmsm operating system using the same
KR101272393B1 (en) * 2012-02-10 2013-06-07 엘에스산전 주식회사 Apparatus for controlling inverter
KR20160044706A (en) * 2014-10-15 2016-04-26 동아전장주식회사 Method for controlling a condenser motor installed in a bus conditioner
CN109873590A (en) * 2019-04-09 2019-06-11 湘潭大学 A kind of weak magnetism speed expansion method of IPM synchronous motor for electric vehicle
KR102212726B1 (en) 2020-08-31 2021-02-04 김보화 Electric cooker with heat diffusion structure

Similar Documents

Publication Publication Date Title
Shao et al. Low-cost variable speed drive based on a brushless doubly-fed motor and a fractional unidirectional converter
Aghili Optimal feedback linearization control of interior PM synchronous motors subject to time-varying operation conditions minimizing power loss
JP5862125B2 (en) Control device for power converter
CN108900119B (en) Permanent magnet synchronous motor model prediction control method based on dead zone effect
KR20070073685A (en) Maximum torque control system for induction motor
Lin et al. Infinite speed drives control with MTPA and MTPV for interior permanent magnet synchronous motor
WO2013177862A1 (en) Variable speed fan system and control method thereof
US9724997B2 (en) Electric motor temperature compensation
KR20070073684A (en) Maximum torque control system for ipmsm
Wang et al. Comparative study of flux-weakening control methods for PMSM drive over wide speed range
JP4706344B2 (en) Control device for synchronous motor
JP2014023338A (en) Permanent magnet motor and drive method for the same, and control device for the permanent magnet motor
JP2009017706A (en) Motor controller and motor control method
CN101814888A (en) Method for suppressing low-speed oscillation of hybrid stepper motor
KR20070080249A (en) Efficiency optimization system of ipmsm using neural-network
Ma et al. Torque ripple reduction for mutually coupled switched reluctance motor by bipolar excitations
JP2009095099A (en) Pulse amplitude modulation controller for permanent-magnet synchronous motors
Pothi et al. A new control strategy for hybrid-excited switched-flux permanent magnet machines without the requirement of machine parameters
JP2019146360A (en) Inverter controller
JP2014068499A (en) Motor controller
EP4220935A1 (en) Electric motor control
Khan et al. Direct torque control of induction motor drive with flux optimization
Li et al. Quantitative characteristic comparison between sensorless six step and field oriented control methods for permanent magnet brushless DC motors
JP5381218B2 (en) Electric motor control device
KR20050033601A (en) Hybrid pi(hbpi) control system for speed control of induction motor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application