KR20070073685A - Maximum torque control system for induction motor - Google Patents

Maximum torque control system for induction motor Download PDF

Info

Publication number
KR20070073685A
KR20070073685A KR1020070057166A KR20070057166A KR20070073685A KR 20070073685 A KR20070073685 A KR 20070073685A KR 1020070057166 A KR1020070057166 A KR 1020070057166A KR 20070057166 A KR20070057166 A KR 20070057166A KR 20070073685 A KR20070073685 A KR 20070073685A
Authority
KR
South Korea
Prior art keywords
induction motor
controller
torque
current
maximum torque
Prior art date
Application number
KR1020070057166A
Other languages
Korean (ko)
Inventor
정동화
김상선
최정식
고재섭
이정호
Original Assignee
순천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단 filed Critical 순천대학교 산학협력단
Priority to KR1020070057166A priority Critical patent/KR20070073685A/en
Publication of KR20070073685A publication Critical patent/KR20070073685A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/001Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using fuzzy control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0014Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using neural networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines

Abstract

A maximum torque control system for an induction motor is provided to reduce the energy consumption of an electronic apparatus by minimizing a stator current flowing through the induction motor. A speed measuring unit(5) measures an actual speed of an induction motor, which is inputted from the induction motor to a speed controller. An FNN(Fuzzy Neural Network) controller(6) receives an error between an instruction speed and the actual speed as an input and outputs an instruction torque. A maximum torque controller receives the instruction torque and outputs a magnetic flux component instruction current, a torque component instruction current, and an instruction slip angular speed. A current controller(2) receives the torque component instruction current, the magnetic flux component instruction current, and a magnetic flux position, and outputs phase voltage instruction values. A space vector PWM(Pulse Width Modulation) inverter(3) receives the phase voltage instruction values and drives the induction motor.

Description

유도전동기 최대토크 제어시스템 {Maximum Torque Control System for Induction Motor}Maximum Torque Control System for Induction Motor

도 1은 종래의 유도전동기 제어시스템의 구성도1 is a configuration diagram of a conventional induction motor control system

도 2는 본 발명의 최대토크 제어시스템의 구성도2 is a block diagram of a maximum torque control system of the present invention

도 3은 본 발명의 최대토크 제어시스템을 이용한 유도전동기 최대토크 제어 시스템의 구성도3 is a configuration diagram of an induction motor maximum torque control system using the maximum torque control system of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Description of the code | symbol about the principal part of drawing>

1: PI 제어기(Proportional-Integral Controller)1: Proportional-Integral Controller

2: 전류 제어기(Current Controller)2: Current Controller

3: 공간벡터 PWM 인버터(Space Vector Pulse Width Modulation Inverter, S-V PWM)3: Space Vector Pulse Width Modulation Inverter (S-V PWM)

4: 유도 전동기(Induction Motor, IM)4: Induction Motor (IM)

5: 속도 측정기5: speed meter

6: FNN 제어기(Fuzzy Neural Network Controller)6: FNNy Neural Network Controller

7: 최대토크 제어기(Maximum Torque Controller)7: Maximum Torque Controller

본 발명은 전동기의 최대토크(Maximum Torque per Ampere) 제어시스템에 관한 것으로, 전동기의 운전상태에 따라 최대토크 제어가 가능하도록 FNN 제어기와 최대토크 제어기를 이용하여 최대토크 제어를 하는 시스템에 관한 것에 관한 것이다.The present invention relates to a maximum torque control system for a motor, and a system for controlling maximum torque using a FNN controller and a maximum torque controller to enable maximum torque control according to an operating state of a motor. will be.

본 발명은 퍼지제어와 신경회로망을 결합한 FNN 제어기와 고정자 전류를 최소화하여 토크를 최대화하는 최적의 기준전류를 이용하는 최대토크 제어기로 구성되며, 광범위한 속도영역에서 최대토크 발생, 과도 특성에서 다양한 속도추정 능력, 부하 및 관성 등 파라미터 변동에 고성능 및 강인성을 갖는다.The present invention consists of a FNN controller combining fuzzy control and neural networks, and a maximum torque controller using an optimal reference current that maximizes torque by minimizing stator currents. It has high performance and robustness against parameter variations such as load, load and inertia

도 1은 종래의 유도전동기 제어시스템의 구성도이다.1 is a block diagram of a conventional induction motor control system.

유도전동기의 속도를 사용자가 원하는 속도로 설정한 지령속도(

Figure 112007505988286-PAT00016
)와 유도전동기(4)의 실제속도(ω r )를 비교하여 PI 제어기(1), 전류 제어기(2) 및 공간벡터 PWM 인버터(3)로 유도전동기(4)를 제어한다.Command speed that set speed of induction motor to user's desired speed (
Figure 112007505988286-PAT00016
) And the induction motor 4 is controlled by the PI controller 1, the current controller 2, and the space vector PWM inverter 3 by comparing the actual speed ω r of the induction motor 4 with each other.

여기서, PI 제어기(1)는 유도전동기(4)의 비선형성 때문에 과도상태에서 양호한 성능을 기대하기 어렵다. 특히 PI 제어기(1)의 이득계수를 조절하여도 시스템의 성능 향상에는 한계가 있으며 외란, 속도 및 부하 등의 파라미터가 변동할 경우 고성능 및 강인성을 기대하기 어렵다.Here, the PI controller 1 cannot expect good performance in the transient state because of the nonlinearity of the induction motor 4. In particular, even if the gain coefficient of the PI controller 1 is adjusted, there is a limit in improving the performance of the system, and it is difficult to expect high performance and robustness when parameters such as disturbance, speed, and load change.

또한, 고성능 토크제어는 지령전류를 추종하는 전류제어기를 위하여 빠르고 충분한 전류응답을 필요로 한다. 그러나 인버터의 DC 링크에서의 전압과 전류의 한 계 때문에 전동기의 입력 전압 및 전류가 제한된다. 따라서 전동기에서 발생한 토크는 이러한 입력 제한 때문에 안전한 동작을 위하여 제한될 수 있다.In addition, high performance torque control requires fast and sufficient current response for the current controller to follow the command current. However, the limits of voltage and current at the DC link of the inverter limit the input voltage and current of the motor. Therefore, torque generated in the motor can be limited for safe operation because of this input limitation.

가변속 제어시스템은 생산력을 높이기 위하여 가능한 고속으로 지령속도를 추종해야 하므로 입력 전압과 전류의 조건에서 최대토크를 발생할 수 있는 제어방식이 필요하다.Since the variable speed control system must follow the command speed as fast as possible to increase productivity, a control method that can generate the maximum torque under the input voltage and current conditions is required.

본 발명은 위와 같은 문제점을 해결할 수 있는 유도전동기 최대토크 제어시스템을 제공하는데 그 목적이 있다.It is an object of the present invention to provide an induction motor maximum torque control system that can solve the above problems.

본 발명은 위와 같은 목적을 달성하기 위하여 FNN 제어기와 고정자 전류를 최소화하여 토크를 최대로 하는 최적의 기준 전류를 이용하는 최대토크 제어기를 이용한다.The present invention uses the maximum torque controller using the optimal reference current to maximize the torque by minimizing the stator current and the FNN controller to achieve the above object.

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명의 최대토크 제어시스템의 구성도이다. 본 발명에서는 광범위한 속도영역에서 최대토크 발생, 과도 특성에서 다양한 속도추정 능력, 부하 및 관성 등 파라미터 변동에 고성능 및 강인성을 발휘하도록 FNN 제어기(6)와 최대토크 제어기(7)를 이용한다. FNN 제어기(6)는 퍼지제어와 신경회로망을 혼합한 제어기이고, 최대토크 제어기(7)는 고정자 전류를 최소화하여 토크를 최대화하는 최적의 기준 전류를 이용하는 최대토크 제어기이다.2 is a configuration diagram of the maximum torque control system of the present invention. In the present invention, the FNN controller 6 and the maximum torque controller 7 are used to exhibit high performance and robustness against parameter variations such as maximum torque generation in a wide range of speeds, various speed estimation capabilities in transient characteristics, load and inertia, and the like. The FNN controller 6 is a controller in which fuzzy control and neural network are mixed, and the maximum torque controller 7 is a maximum torque controller using an optimal reference current which minimizes the stator current to maximize torque.

도 2에 도시되어 있는 바와 같이, 지령속도(

Figure 112007505988286-PAT00017
)와 유도전동기(4)의 실제속도 (ω r )를 비교하여 오차를 FNN 제어기(6)에 입력하고 지령토크(
Figure 112007505988286-PAT00018
)를 출력하며 최대 토크 제어기(7)는 고정자 전류를 최소화하여 토크를 최대로 하는 최적의 기준 전류를 이용하여 자속성분의 기준 전류(
Figure 112007505988286-PAT00019
)와 토크성분의 기준전류(
Figure 112007505988286-PAT00020
) 및 지령 슬립 각 속도(
Figure 112007505988286-PAT00021
)를 출력한다. 여기서 출력토크를 최대로 하는 조건과 최적의 기준 전류는 다음 수학식으로 구한다.As shown in Fig. 2, the command speed (
Figure 112007505988286-PAT00017
) Is compared with the actual speed ( ω r ) of the induction motor (4), and the error is input to the FNN controller (6).
Figure 112007505988286-PAT00018
The maximum torque controller 7 outputs the reference current of the magnetic flux component using the optimal reference current that minimizes the stator current to maximize the torque.
Figure 112007505988286-PAT00019
) And reference current of torque component (
Figure 112007505988286-PAT00020
) And command slip angular velocity (
Figure 112007505988286-PAT00021
) Here, the condition of maximizing the output torque and the optimum reference current are calculated by the following equation.

[수학식 1][Equation 1]

Figure 112007505988286-PAT00001
Figure 112007505988286-PAT00001

[수학식 2][Equation 2]

Figure 112007505988286-PAT00002
Figure 112007505988286-PAT00002

[수학식 3][Equation 3]

Figure 112007505988286-PAT00003
Figure 112007505988286-PAT00003

여기서here

Figure 112007505988286-PAT00004
Figure 112007505988286-PAT00004

[수학식 4][Equation 4]

Figure 112007505988286-PAT00005
Figure 112007505988286-PAT00005

자속이 정격보다 낮으면 최대 슬립 각속도는 수학식(2)와 같다. 매우 큰 토크에 대하여 슬립 각속도는 자속 조건을 초과할 수 없다. 동작의 자속제한 모드에서 슬립 각속도의 표현은 수학식(3)에서 |Ø s |=1로 설정하여 얻을 수 있으며 ω s 를 구하는 수학식은 다음과 같다.If the magnetic flux is lower than the rating, the maximum slip angular velocity is given by Equation (2). For very large torques, the slip angular velocity cannot exceed the flux condition. The expression of the slip angular velocity in the flux limiting mode of operation is expressed by Equation (3) | It can be obtained by setting Ø s | = 1, and the equation for obtaining ω s is as follows.

[수학식 5][Equation 5]

Figure 112007505988286-PAT00006
Figure 112007505988286-PAT00006

여기서here

Figure 112007505988286-PAT00007
Figure 112007505988286-PAT00007

일정 슬립과 동작의 자속 제한영역 사이에서 한계점은 수학식(2)에서 ω s 에 의하여 설정되고 한계점을 초과하는 ω s 는 수학식(5)를 이용한다. 수학식(5)에서 한계 T e 를 구하는 수학식은 다음과 같다.Limit between the magnetic flux limit of the predetermined area and the sleep operation is ω s ω s set by Equation (2) is greater than the threshold is used in the equation (5). The equation for obtaining the limit T e from Equation (5) is as follows.

[수학식 6][Equation 6]

Figure 112007505988286-PAT00008
Figure 112007505988286-PAT00008

T e T e,bp 에서 필요한 각 속도는 수학식(2)에서 주어지고 τ r ω s =1이다. T e T e,bp 에서 필요한 슬립 각속도는 수학식(5)에서 주어지고 τ r ω s 를 구하는 수학식은 다음과 같다. The required angular velocity at T e < T e, bp is given by Equation (2) and τ r ω s = 1. The slip angular velocity required in T e > T e, bp is given by Equation (5), and the equation for obtaining τ r ω s is as follows.

[수학식 7][Equation 7]

수학식(1)을 i qs 에 대한 식으로 풀면 다음 식과 같다.Solving Equation (1) by the equation for i qs is as follows.

[수학식8][Equation 8]

Figure 112007505988286-PAT00010
Figure 112007505988286-PAT00010

여기서

Figure 112007505988286-PAT00022
이다.here
Figure 112007505988286-PAT00022
to be.

수학식(8)을 피크 교류전류

Figure 112007505988286-PAT00023
에 대입하여 정리하면 다음 식과 같다.Equation (8) is the peak AC current
Figure 112007505988286-PAT00023
If we sum up and substitute for, we get

[수학식 9][Equation 9]

Figure 112007505988286-PAT00011
Figure 112007505988286-PAT00011

|i s |가 최소가 되는 i ds 를 구하기 위하여 di s /di ds = 0 조건을 구한다.| i s | is obtained by di s / di ds = 0 condition to obtain the i ds is minimized.

[수학식 10][Equation 10]

Figure 112007505988286-PAT00012
Figure 112007505988286-PAT00012

도 3은 본 발명의 최대토크 제어시스템을 이용한 유도전동기 최대토크 제어 시스템의 구성도이다. 이 유도전동기 최대토크 제어시스템은 유도전동기(4)로부터 FNN 제어기(6)에 입력되는 유도전동기(4)의 실제속도(ω r )를 도출하기 위한 속도 측정기(5), 지령속도(

Figure 112007505988286-PAT00024
)와 실제속도(ω r )의 오차를 입력으로 받아 지령토크(
Figure 112007505988286-PAT00025
)를 출력하는 FNN 제어기(6), 지령토크(
Figure 112007505988286-PAT00026
)를 입력받아 자속성분 지령전류(
Figure 112007505988286-PAT00027
)와 토크성분의 지령전류(
Figure 112007505988286-PAT00028
) 및 지령 슬립 각속도(
Figure 112007505988286-PAT00029
)를 출력하는 최대토크 제어기(7), 토크성분의 지령전류(
Figure 112007505988286-PAT00030
)와 자속성분의 지령전류(
Figure 112007505988286-PAT00031
) 및 동기 회전자 자속의 위치(θ e )를 입력받아 상전압 지령치(
Figure 112007505988286-PAT00032
,
Figure 112007505988286-PAT00033
,
Figure 112007505988286-PAT00034
)을 출력하는 전류 제어기(2), 상기 상전압 지령치 (
Figure 112007505988286-PAT00035
,
Figure 112007505988286-PAT00036
,
Figure 112007505988286-PAT00037
)를 받아 유도전동기(4)을 구동하는 공간벡터 PWM 인버터(3)를 포함한다.3 is a block diagram of an induction motor maximum torque control system using the maximum torque control system of the present invention. This induction motor maximum torque control system includes a speed measuring device 5 for deriving the actual speed ω r of the induction motor 4 input from the induction motor 4 to the FNN controller 6, and the command speed (
Figure 112007505988286-PAT00024
Command torque ( ω r )
Figure 112007505988286-PAT00025
FNN controller 6 which outputs), command torque (
Figure 112007505988286-PAT00026
), The magnetic flux component command current (
Figure 112007505988286-PAT00027
) And torque command current (
Figure 112007505988286-PAT00028
) And command slip angular velocity (
Figure 112007505988286-PAT00029
Torque controller 7 outputting), command current of torque component (
Figure 112007505988286-PAT00030
) And command current of magnetic flux component
Figure 112007505988286-PAT00031
) And the phase voltage command value ( θ e )
Figure 112007505988286-PAT00032
,
Figure 112007505988286-PAT00033
,
Figure 112007505988286-PAT00034
Current controller 2 for outputting the phase voltage command value
Figure 112007505988286-PAT00035
,
Figure 112007505988286-PAT00036
,
Figure 112007505988286-PAT00037
) And a space vector PWM inverter (3) for driving the induction motor (4).

상기 FNN 제어기(6)는 유도전동기(4)의 지령속도(

Figure 112007505988286-PAT00038
)와 속도(ω r )의 오차를 입력받아 지령토크(
Figure 112007505988286-PAT00039
)를 출력하고 최대토크 제어기(7)는 지령토크(
Figure 112007505988286-PAT00040
)를 입력받아 자속성분 지령전류(
Figure 112007505988286-PAT00041
)와 토크성분의 지령전류(
Figure 112007505988286-PAT00042
) 및 지령 슬립 각속도(
Figure 112007505988286-PAT00043
)를 전류 제어기(2)에 인가한다. 그러면 이 전류 제어기(2)는 자속성분 지령전류(
Figure 112007505988286-PAT00044
)와 토크성분의 지령전류(
Figure 112007505988286-PAT00045
) 및 동기 회전자 자속의 위치(θ e )를 사용하여 상전압 지령치(
Figure 112007505988286-PAT00046
,
Figure 112007505988286-PAT00047
,
Figure 112007505988286-PAT00048
)를 출력한다. 출력된 상전압 지령치 (
Figure 112007505988286-PAT00049
,
Figure 112007505988286-PAT00050
,
Figure 112007505988286-PAT00051
)를 공간벡터 PWM 인버터(3)에 인가하여 유도전동기(4)를 구동한다.The FNN controller 6 is a command speed of the induction motor 4 (
Figure 112007505988286-PAT00038
) And the speed (torque command receives the error of ω r) (
Figure 112007505988286-PAT00039
) And the maximum torque controller (7) is the command torque (
Figure 112007505988286-PAT00040
), The magnetic flux component command current (
Figure 112007505988286-PAT00041
) And torque command current (
Figure 112007505988286-PAT00042
) And command slip angular velocity (
Figure 112007505988286-PAT00043
) Is applied to the current controller 2. This current controller 2 then generates a flux component command current (
Figure 112007505988286-PAT00044
) And torque command current (
Figure 112007505988286-PAT00045
) And synchronous time-phase voltage command value by using the position e) of the electron flux (
Figure 112007505988286-PAT00046
,
Figure 112007505988286-PAT00047
,
Figure 112007505988286-PAT00048
) Output phase voltage setpoint (
Figure 112007505988286-PAT00049
,
Figure 112007505988286-PAT00050
,
Figure 112007505988286-PAT00051
) Is applied to the space vector PWM inverter 3 to drive the induction motor 4.

이와 같이, 본 발명에서 제시한 FNN 제어기(6)와 최대토크 제어기(7)는 최적의 지령전류를 계산함으로써 최대토크 제어가 가능하여 시스템이 고성능화하고 강인성을 갖게 된다.As described above, the FNN controller 6 and the maximum torque controller 7 proposed in the present invention are capable of controlling the maximum torque by calculating the optimum command current so that the system has high performance and robustness.

도 3에는 FNN 제어기(6)와 최대토크 제어기(7)를 적용한 유도전동기(4)의 최대토크 제어시스템이 도시되어 있으나, 본 발명의 최대토크 제어시스템은 다른 유형의 전동기에도 쉽게 적용할 수 있다.3 shows the maximum torque control system of the induction motor 4 to which the FNN controller 6 and the maximum torque controller 7 are applied, the maximum torque control system of the present invention can be easily applied to other types of motors. .

위에서 설명한 바와 같이, 본 발명은 FNN 제어기와 최대토크 제어기를 이용함으로써 유도전동기의 광범위한 속도영역에 적절하게 대응할 수 있고, 파라미터 변동과 같은 시스템 변화에 강인성과 고성능을 유지할 수 있어 산업기기의 효율을 높이고 에너지 절감에 기여할 수 있다.As described above, the present invention can adequately cope with a wide range of speeds of induction motors by using the FNN controller and the maximum torque controller, and can maintain the robustness and high performance against system changes such as parameter variations, thereby increasing the efficiency of industrial equipment. It can contribute to energy savings.

또, 본 발명은 FNN 제어기가 퍼지제어와 신경회로망을 혼합한 형태이고, 최대토크 제어기는 시스템의 고정자 전류를 최소화하여 토크를 최대로 하는 최적의 기준전류를 이용하므로 기존의 제어시스템과 비교하여 응답특성이 양호하다.In addition, the present invention is a form of the FNN controller is a mixture of fuzzy control and neural network, the maximum torque controller responds compared to the conventional control system because the maximum torque controller uses the optimal reference current to maximize the torque by minimizing the stator current of the system The property is good.

또한, 본 발명의 최대토크 제어시스템에 의하면 수렴속도를 빠르게 계산할 수 있고 최적의 지령 전류값을 구할 수 있다.In addition, according to the maximum torque control system of the present invention, the convergence speed can be calculated quickly and the optimum command current value can be obtained.

Claims (4)

유도전동기 제어시스템에 있어서, 퍼지제어와 신경회로망을 혼합 결합한 FNN 제어기와 고정자 전류를 최소화하여 토크를 최대로 하는 최적의 기준 전류를 이용하는 최대토크 제어기를 이용하는 것을 특징으로 하는 유도전동기 최대토크 제어시스템Induction motor control system, the maximum torque control system of the induction motor, characterized in that using the FNN controller combining the fuzzy control and the neural network and the maximum torque controller using the optimum reference current to minimize the stator current to maximize the torque 제1항에 있어서, 상기 최대토크 제어기는 지령토크(
Figure 112007505988286-PAT00052
)를 입력받아 고정자 전류를 최소화하여 토크를 최대화하는 최적의 기준전류를 이용하여 자속성분 지령전류(
Figure 112007505988286-PAT00053
)와 토크성분의 지령전류(
Figure 112007505988286-PAT00054
) 및 지령 슬립 각속도(
Figure 112007505988286-PAT00055
)를 출력하는 것을 특징으로 하는 유도전동기 최대토크 제어시스템
The method of claim 1, wherein the maximum torque controller is command torque (
Figure 112007505988286-PAT00052
) By using the optimal reference current to maximize the torque by minimizing the stator current.
Figure 112007505988286-PAT00053
) And torque command current (
Figure 112007505988286-PAT00054
) And command slip angular velocity (
Figure 112007505988286-PAT00055
Induction motor maximum torque control system, characterized in that outputting
제1항에 있어서, 상기 최대토크 제어기에 입력되는 지령토크(
Figure 112007505988286-PAT00056
)는 FNN 제어기를 통해 출력되는 것을 특징으로 하는 유도전동기 최대토크 제어시스템
The method of claim 1, wherein the command torque input to the maximum torque controller (
Figure 112007505988286-PAT00056
) Is the maximum torque control system of the induction motor, characterized in that output through the FNN controller
유도전동기 제어시스템에 있어서, 상기 유도전동기의 최대토크 제어에 필요한 자속성분 지령전류(
Figure 112007505988286-PAT00057
)와 토크성분의 지령전류(
Figure 112007505988286-PAT00058
) 및 지령 슬립 각속도(
Figure 112007505988286-PAT00059
)를 출력하는 최대토크 제어기, 상기 유도전동기로부터 FNN 제어기에 입력되는 유도전동기의 실제속도(ω r )를 도출하기 위한 속도 측정기, 상기 유도전동기의 지령속도 (
Figure 112007505988286-PAT00060
)와 실제속도(ω r )의 오차를 입력받아 지령토크(
Figure 112007505988286-PAT00061
)를 출력하는 FNN 제어기, 상기 자속성분 지령전류(
Figure 112007505988286-PAT00062
)와 토크성분의 지령전류(
Figure 112007505988286-PAT00063
) 및 동기 회전자 자속의 위치(θ e )를 입력받아 상전압 지령치(
Figure 112007505988286-PAT00064
,
Figure 112007505988286-PAT00065
,
Figure 112007505988286-PAT00066
)를 출력하는 전류 제어기 및 상기 상전압 지령치(
Figure 112007505988286-PAT00067
,
Figure 112007505988286-PAT00068
,
Figure 112007505988286-PAT00069
)를 받아 상기 유도전동기를 구동하는 공간벡터 PWM 인버터를 포함하여 구성되는 것을 특징으로 하는 유도전동기 최대토크 제어시스템
In an induction motor control system, a magnetic flux component command current required for maximum torque control of the induction motor (
Figure 112007505988286-PAT00057
) And torque command current (
Figure 112007505988286-PAT00058
) And command slip angular velocity (
Figure 112007505988286-PAT00059
) Is a maximum torque controller, a speed measuring device for deriving the actual speed ( ω r ) of the induction motor input to the FNN controller from the induction motor, the command speed of the induction motor (
Figure 112007505988286-PAT00060
Command torque ( ω r )
Figure 112007505988286-PAT00061
FNN controller for outputting the magnetic flux component command current (
Figure 112007505988286-PAT00062
) And torque command current (
Figure 112007505988286-PAT00063
) And the phase voltage command value ( θ e )
Figure 112007505988286-PAT00064
,
Figure 112007505988286-PAT00065
,
Figure 112007505988286-PAT00066
) And a current controller for outputting the phase voltage setpoint (
Figure 112007505988286-PAT00067
,
Figure 112007505988286-PAT00068
,
Figure 112007505988286-PAT00069
Induction motor maximum torque control system comprising a space vector PWM inverter for driving the induction motor
KR1020070057166A 2007-06-12 2007-06-12 Maximum torque control system for induction motor KR20070073685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070057166A KR20070073685A (en) 2007-06-12 2007-06-12 Maximum torque control system for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070057166A KR20070073685A (en) 2007-06-12 2007-06-12 Maximum torque control system for induction motor

Publications (1)

Publication Number Publication Date
KR20070073685A true KR20070073685A (en) 2007-07-10

Family

ID=38508203

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070057166A KR20070073685A (en) 2007-06-12 2007-06-12 Maximum torque control system for induction motor

Country Status (1)

Country Link
KR (1) KR20070073685A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497154A (en) * 2011-12-23 2012-06-13 中冶南方(武汉)自动化有限公司 Method for avoiding shutdown of frequency converter under instantaneous power-down situation
CN102621582A (en) * 2012-03-27 2012-08-01 淄博威特电气有限公司 Method for detecting positions of underground metal pipelines by aid of space vector method and device
KR101271732B1 (en) * 2008-10-17 2013-06-04 삼성테크윈 주식회사 Apparatus for controlling electric motor dipressed magnetic flux output
KR101272393B1 (en) * 2012-02-10 2013-06-07 엘에스산전 주식회사 Apparatus for controlling inverter
CN103595321A (en) * 2013-09-27 2014-02-19 江苏大学 Method for constructing decoupling controller of five-degree-of-freedom alternating-current active magnetic bearing
CN107093971A (en) * 2017-06-14 2017-08-25 安徽工业大学 The moment controlling system and control method of a kind of permagnetic synchronous motor
CN108445794A (en) * 2018-02-28 2018-08-24 辽宁科技大学 A kind of induction machine pincers clamping controller system and control method
CN109245665A (en) * 2018-11-22 2019-01-18 哈尔滨工业大学 A kind of motor servo control method based on data study
CN110345013A (en) * 2019-07-24 2019-10-18 曲阜师范大学 Magnetic suspension vertical shaft Wind turbines control method based on Neural Network model predictive control
CN110401391A (en) * 2019-07-31 2019-11-01 青岛大学 Asynchronous motor stochastic system fuzzy self-adaption dynamic surface control method
CN110971169A (en) * 2019-12-20 2020-04-07 长安大学 Permanent magnet synchronous motor direct torque control method based on fuzzy output duty ratio
CN111313789A (en) * 2020-02-12 2020-06-19 长安大学 Dual-fuzzy control-based direct torque control method for permanent magnet synchronous motor
CN117335689A (en) * 2023-11-24 2024-01-02 太原理工大学 Moment optimal control method for cutting part of multi-servo driving coal mining machine

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271732B1 (en) * 2008-10-17 2013-06-04 삼성테크윈 주식회사 Apparatus for controlling electric motor dipressed magnetic flux output
CN102497154A (en) * 2011-12-23 2012-06-13 中冶南方(武汉)自动化有限公司 Method for avoiding shutdown of frequency converter under instantaneous power-down situation
KR101272393B1 (en) * 2012-02-10 2013-06-07 엘에스산전 주식회사 Apparatus for controlling inverter
CN102621582A (en) * 2012-03-27 2012-08-01 淄博威特电气有限公司 Method for detecting positions of underground metal pipelines by aid of space vector method and device
CN103595321A (en) * 2013-09-27 2014-02-19 江苏大学 Method for constructing decoupling controller of five-degree-of-freedom alternating-current active magnetic bearing
CN107093971A (en) * 2017-06-14 2017-08-25 安徽工业大学 The moment controlling system and control method of a kind of permagnetic synchronous motor
CN108445794B (en) * 2018-02-28 2021-08-27 辽宁科技大学 Induction machine clamp holding controller system and control method
CN108445794A (en) * 2018-02-28 2018-08-24 辽宁科技大学 A kind of induction machine pincers clamping controller system and control method
CN109245665A (en) * 2018-11-22 2019-01-18 哈尔滨工业大学 A kind of motor servo control method based on data study
CN110345013A (en) * 2019-07-24 2019-10-18 曲阜师范大学 Magnetic suspension vertical shaft Wind turbines control method based on Neural Network model predictive control
CN110401391B (en) * 2019-07-31 2020-08-25 青岛大学 Fuzzy self-adaptive dynamic surface control method for asynchronous motor stochastic system
CN110401391A (en) * 2019-07-31 2019-11-01 青岛大学 Asynchronous motor stochastic system fuzzy self-adaption dynamic surface control method
CN110971169A (en) * 2019-12-20 2020-04-07 长安大学 Permanent magnet synchronous motor direct torque control method based on fuzzy output duty ratio
CN110971169B (en) * 2019-12-20 2021-06-25 长安大学 Permanent magnet synchronous motor direct torque control method based on fuzzy output duty ratio
CN111313789A (en) * 2020-02-12 2020-06-19 长安大学 Dual-fuzzy control-based direct torque control method for permanent magnet synchronous motor
CN111313789B (en) * 2020-02-12 2021-07-23 长安大学 Dual-fuzzy control-based direct torque control method for permanent magnet synchronous motor
CN117335689A (en) * 2023-11-24 2024-01-02 太原理工大学 Moment optimal control method for cutting part of multi-servo driving coal mining machine
CN117335689B (en) * 2023-11-24 2024-02-20 太原理工大学 Moment optimal control method for cutting part of multi-servo driving coal mining machine

Similar Documents

Publication Publication Date Title
KR20070073685A (en) Maximum torque control system for induction motor
JP5156352B2 (en) AC motor control device
JP4958431B2 (en) Electric motor control device
JP5120670B2 (en) Control device for motor drive device
KR100655702B1 (en) Control method for permanent magnet synchronous motor and control system thereof
JP5120669B2 (en) Control device for motor drive device
Stojan et al. Novel field-weakening control scheme for permanent-magnet synchronous machines based on voltage angle control
EP2979356B1 (en) Motor drive circuit and method of driving a motor
WO2010137416A1 (en) Control device for motor-driving device
WO2018043502A1 (en) Inverter control device and electric motor driving system
JP5856438B2 (en) Power converter
JP2010200430A (en) Drive controller for motors
JP4522273B2 (en) Motor control device and motor drive system having the same
JP4402600B2 (en) Synchronous motor drive system and synchronous motor drive method
JP3586078B2 (en) Power converter
JPH08275599A (en) Control method for permanent magnet synchronous motor
JP4596906B2 (en) Electric motor control device
KR20070073684A (en) Maximum torque control system for ipmsm
JP2013187931A (en) Motor control device
WO2014132731A1 (en) Inverter device, construction machine, and motor control method
JP2005229717A (en) Current sensorless-control method and device of synchronous motor
CN113302832A (en) Power conversion device
JP2018042315A (en) Inverter controller
JP6177623B2 (en) Synchronous motor controller
KR101401778B1 (en) Flux controller for pemanent magnetic synchronous motor drive

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application