KR20070057217A - 최적화된 액상 산화 방법 - Google Patents

최적화된 액상 산화 방법 Download PDF

Info

Publication number
KR20070057217A
KR20070057217A KR1020077007106A KR20077007106A KR20070057217A KR 20070057217 A KR20070057217 A KR 20070057217A KR 1020077007106 A KR1020077007106 A KR 1020077007106A KR 20077007106 A KR20077007106 A KR 20077007106A KR 20070057217 A KR20070057217 A KR 20070057217A
Authority
KR
South Korea
Prior art keywords
reaction medium
reaction zone
reaction
feed
oxidation
Prior art date
Application number
KR1020077007106A
Other languages
English (en)
Other versions
KR101169490B1 (ko
Inventor
알란 조지 원더스
브리드 마르셀 드
리 레이놀즈 파틴
웨인 스코트 스트라세르
Original Assignee
이스트만 케미칼 컴파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이스트만 케미칼 컴파니 filed Critical 이스트만 케미칼 컴파니
Publication of KR20070057217A publication Critical patent/KR20070057217A/ko
Application granted granted Critical
Publication of KR101169490B1 publication Critical patent/KR101169490B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1872Details of the fluidised bed reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/003Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • B01J8/222Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid in the presence of a rotating device only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/487Separation; Purification; Stabilisation; Use of additives by treatment giving rise to chemical modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/14Monocyclic dicarboxylic acids
    • C07C63/15Monocyclic dicarboxylic acids all carboxyl groups bound to carbon atoms of the six-membered aromatic ring
    • C07C63/261,4 - Benzenedicarboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 산화가능한 화합물의 액상 산화를 더욱 효율적이고 경제적으로 수행하기 위한 최적화된 방법 및 장치에 관한 것이다. 이러한 액상 산화는 비교적 낮은 온도에서 매우 효율적인 반응을 제공하는 기포탑 반응기에서 실시된다. 산화가능한 화합물이 파라-자일렌이고, 산화 반응으로부터의 생성물이 조질의 테레프탈산(CTA)인 경우, 종래의 고온 산화 공정에서 의해 CTA를 생성시키는 경우에 이용될 수 있는 것보다 더욱 경제적인 기법에 의해 상기 CTA 생성물을 정제 및 분리할 수 있다.
액상 산화, 파라-자일렌, 테레프탈산, 기포탑 반응기.

Description

최적화된 액상 산화 방법{OPTIMIZED LIQUID-PHASE OXIDATION}
본 발명은 일반적으로 방향족 화합물의 액상 촉매적 산화 방법에 관한 것이다. 본 발명의 한 요지는 다이알킬 방향족 화합물(예컨대, 파라-자일렌)을 부분 산화시켜 조질의 방향족 다이카복실산(예컨대, 조질의 테레프탈산)을 생성시키고, 이를 이후 정제 및 분리시킬 수 있는 방법에 관한 것이다. 본 발명의 다른 요지는 더욱 효과적이고 경제적인 액상 산화 공정을 제공하는 개선된 기포탑(bubble column) 반응기에 관한 것이다.
다양한 기존의 상업적 공정에 액상 산화 반응이 이용된다. 예를 들어, 현재 알데하이드의 산으로의 산화(예를 들어, 프로피온알데하이드의 프로피온산으로의 산화), 사이클로헥세인의 아디프산으로의 산화, 및 알킬 방향족 화합물의 알콜, 산 또는 이산으로의 산화에 액상 산화가 이용되고 있다. 마지막 카테고리(알킬 방향족 화합물의 산화)에서 특히 중요한 상업적 산화 공정은 파라-자일렌의 테레프탈산으로의 액상 촉매적 부분 산화이다. 테레프탈산은 다양한 용도를 갖는 중요한 화합물이다. 테레프탈산의 주된 용도는 폴리에틸렌 테레프탈레이트(PET) 제조시의 공급원료로서이다. PET는 병, 섬유 및 포장재 같은 제품을 제조하기 위하여 전 세계에서 다량으로 사용되는 널리 공지되어 있는 플라스틱이다.
파라-자일렌의 테레프탈산으로의 부분 산화를 비롯한 전형적인 액상 산화 공정에서는, 액상 공급물 스트림 및 기상 산화제 스트림을 반응기 내로 도입하고 반응기에서 다상 반응 매질을 생성시킨다. 반응기 내로 도입되는 액상 공급물 스트림은 하나 이상의 산화가능한 유기 화합물(예컨대, 파라-자일렌)을 함유하는 한편, 기상 산화제 스트림은 분자 산소를 함유한다. 기체로서 반응기 내로 도입되는 분자 산소의 적어도 일부는 반응 매질의 액상에 용해되어 산소가 액상 반응에 이용될 수 있도록 한다. 다상 반응 매질의 액상이 불충분한 농도의 분자 산소를 함유하는 경우(즉, 반응 매질의 특정 부분이 "산소-결핍"되는 경우), 바람직하지 못한 부반응이 불순물을 생성시키고/시키거나 의도된 반응이 속도 면에서 지연될 수 있다. 반응 매질의 액상이 산화가능한 화합물을 너무 적게 함유하면, 반응 속도가 바람직하지 못하게 낮을 수 있다. 또한, 반응 매질의 액상이 과량의 산화가능한 화합물을 함유하면, 추가적인 바람직하지 못한 부반응이 불순물을 생성시킬 수 있다.
종래의 액상 산화 반응기에는 그 안에 함유되는 다상 반응 매질을 혼합하기 위한 진탕(agitation) 수단이 설치되어 있다. 분자 산소가 반응 매질의 액상 내로 용해되는 것을 촉진시키고, 반응 매질의 액상중 용해된 산소의 농도를 비교적 균일하게 유지시키며, 반응 매질의 액상중 산화가능한 유기 화합물의 농도를 비교적 균일하게 유지시키고자, 반응 매질을 진탕시킨다.
흔히 예를 들어 연속 교반식 탱크 반응기(CSTR) 같은 용기에서 기계적 진탕 수단에 의해, 액상 산화되는 반응 매질을 진탕시킨다. CSTR에 의해 반응 매질을 완전히 혼합시킬 수 있기는 하지만, CSTR은 다수의 단점을 갖는다. 예를 들어, CSTR은 값비싼 모터, 유체-밀봉 베어링 및 구동 샤프트 및/또는 복잡한 교반 기계장치(mechanism)가 필요하기 때문에 비교적 높은 자본 비용을 갖는다. 또한, 종래의 CSTR의 회전 및/또는 진동 기계 구성요소는 규칙적인 정비를 필요로 한다. 이러한 정비에 수반되는 노력 및 작동중지 시간으로 인해, CSTR의 작동 비용이 늘어난다. 그러나, 규칙적인 정비에도 불구하고, CSTR에 사용되는 기계적 진탕 시스템은 기계 고장을 일으키기 쉽고 비교적 짧은 기간에 걸쳐 교체를 필요로 할 수 있다.
기포탑 반응기는 CSTR 및 다른 기계 진탕식 산화 반응기에 대한 호감가는 대안을 제공한다. 기포탑 반응기는 값비싸고 신뢰할 수 없는 기계 설비를 필요로 하지 않으면서 반응 매질을 진탕시킨다. 기포탑 반응기는 전형적으로 반응 매질이 함유되는 가늘고 긴 직립형 반응 대역을 포함한다. 주로 반응 매질의 액상을 통해 떠오르는 기포의 자연적인 부력에 의해 반응 대역의 반응 매질이 진탕된다. 기포탑 반응기에서 제공되는 이 자연적인 부력 진탕에 의해, 기계 진탕식 반응기에 관련된 자본 및 정비 비용이 감소된다. 또한, 기포탑 반응기에 수반되는 움직이는 기계 부품이 실질적으로 없기 때문에, 기계 진탕식 반응기보다 기계 고장을 덜 일으킨다.
종래의 산화 반응기(CSTR 또는 기포탑)에서 파라-자일렌의 액상 부분 산화를 수행하는 경우, 반응기로부터 회수되는 생성물은 전형적으로 조질의 테레프탈 산(CTA) 및 모액을 포함하는 슬러리이다. CTA는 이를 PET 제조용 공급원료로서 부적합하게 만드는 비교적 높은 수준의 불순물(예를 들어, 4-카복시벤즈알데하이드, 파라-톨루산, 플루오렌온 및 다른 색상을 나타내는 물체)을 함유한다. 따라서, 종래의 산화 반응기에서 생성된 CTA는 전형적으로 정제 공정을 거치게 하여, CTA를 PET 제조에 적합한 정제된 테레프탈산(PTA)으로 전환시킨다.
CTA를 PTA로 전환시키는 한 전형적인 정제 방법은 하기 단계를 포함한다: (1) CTA-함유 슬러리의 모액을 물로 대체하는 단계, (2) CTA/물 슬러리를 가열하여 CTA를 물에 용해시키는 단계, (3) CTA/물 용액을 촉매에 의해 수소화시켜, 불순물을 더욱 바람직하고/하거나 용이하게 분리될 수 있는 화합물로 전환시키는 단계, (4) 생성된 PTA를 다중 결정화 단계를 통해 수소화된 용액으로부터 침전시키는 단계, 및 (5) 결정화된 PTA를 나머지 액체로부터 분리하는 단계. 이 유형의 종래의 정제 방법은 효과적이기는 하지만 매우 비쌀 수 있다. 종래의 CTA 정제 방법의 높은 비용에 기여하는 공업적 요인은 예를 들어 물중 CTA의 용해를 촉진시키는데 필요한 열 에너지, 수소화에 필요한 촉매, 수소화에 요구되는 수소 스트림, 일부 테레프탈산의 수소화에 의해 야기되는 수율 손실 및 다단계 결정화에 필요한 다수개의 용기를 포함한다. 그러므로, 열에 의해 촉진되는 물에서의 용해, 수소화 및/또는 다단계 결정화를 필요로 하지 않으면서 정제될 수 있는 CTA 생성물을 제공하는 것이 바람직하다.
발명의 목적
따라서, 본 발명의 목적은 더욱 효과적이고 경제적인 액상 산화 반응기 및 방법을 제공하는 것이다.
본 발명의 다른 목적은 파라-자일렌의 테레프탈산으로의 액상 촉매적 부분 산화를 위한 더욱 효과적이고 경제적인 반응기 및 방법을 제공하는 것이다.
본 발명의 다른 목적은 불순물 생성을 감소시키면서 개선된 액상 산화 반응을 촉진시키는 기포탑 반응기를 제공하는 것이다.
본 발명의 또 다른 목적은 파라-자일렌의 액상 산화를 통해 조질 테레프탈산(CTA)을 제조한 후 CTA를 순수한 테레프탈산(PTA)으로 정제시키는, PTA를 생성시키기 위한 더욱 효과적이고 경제적인 시스템을 제공하는 것이다.
본 발명의 추가의 목적은 파라-자일렌을 산화시키고, 물중 CTA의 열-촉진된 용해, 용해된 CTA의 수소화 및/또는 수소화된 PTA의 다단계 결정화를 필요로 하지 않으면서 정제될 수 있는 CTA 생성물을 생성시키기 위한 기포탑 반응기를 제공하는 것이다.
첨부된 청구의 범위에서 정의되는 본 발명의 영역은 상기 나열된 목적을 모두 달성할 수 있는 방법 또는 장치로 한정되지 않음에 주목해야 한다. 그보다는, 청구되는 본 발명의 영역은 상기 나열된 모든 목적 또는 상기 나열된 목적중 임으의 목적을 달성하지 않는 다양한 시스템을 포괄할 수 있다. 당해 분야의 숙련자는 하기 상세한 설명 및 첨부된 도면을 검토할 때 본 발명의 추가적인 목적 및 이점을 용이하게 알 것이다.
발명의 개요
본 발명의 한 실시양태는 하기 단계를 포함하는 방법에 관한 것이다: (a) 분자 산소를 포함하는 산화제 스트림을 기포탑 반응기의 반응 대역 내로 도입하는 단계; (b) 반응 대역에 함유된 다상 반응 매질의 액상중에서 산화가능한 화합물을 산화시키는 단계(이 때, 산화에 의해 산화가능한 화합물의 약 10중량% 이상이 반응 대역 내에서 고상 생성물을 생성시키고, 반응 매질의 높이의 1/2에서의 시간-평균 표면 속도가 약 0.3m/초 이상임); 및 (c) 고상 생성물의 적어도 일부를 반응 대역으로부터 하나 이상의 상부 개구를 거쳐 회수하는 단계(이 때, 분자 산소의 적어도 일부가 상부 개구 아래의 반응 대역으로 들어감).
본 발명의 다른 실시양태는 하기 단계를 포함하는 방법에 관한 것이다: (a) 분자 산소를 포함하는 산화제 스트림을 기포탑 반응기의 반응 대역 내로 도입하는 단계; (b) 반응 대역에 함유된 다상 반응 매질의 액상중에서 산화가능한 화합물을 산화시키는 단계; 및 (c) 반응 매질의 적어도 일부를 반응 대역으로부터 하나 이상의 상부 개구를 거쳐 회수하는 단계(이 때, 분자 산소의 적어도 일부가 상부 개구 아래의 반응 대역으로 들어가고, 상부 개구에서의 반응 매질의 온도는 반응 대역 내의 최저 지점에서의 반응 매질의 온도보다 약 1℃ 이상 높음).
본 발명의 또 다른 실시양태는 하기 단계를 포함하는 테레프탈산의 제조 방법에 관한 것이다: (a) 파라-자일렌을 포함하는 우세하게 액상인 공급물 스트림을 기포탑 반응기의 반응 대역 내로 도입하는 단계; (b) 분자 산소를 포함하는 우세하게 기상인 산화제 스트림을 반응 대역 내로 도입하는 단계; (c) 반응 대역에 함유 된 3상 반응 매질의 액상에서 파라-자일렌을 산화시키는 단계; (d) 조질 테레프탈산의 적어도 일부를 반응 대역으로부터 하나 이상의 상부 개구를 거쳐 회수하는 단계(이 때, 파라-자일렌의 적어도 일부 및 분자 산소의 적어도 일부가 상부 개구 아래의 반응 대역으로 들어감); 및 (e) 제 2 산화 반응기에서 조질 테레프탈산의 적어도 일부를 산화시킴으로써 보다 순수한 테레프탈산을 생성시키는 단계.
본 발명의 또 다른 실시양태는 우세하게 액상인 스트림과 우세하게 기상인 스트림을 반응시킴으로써 고상 생성물을 생성시키기 위한 기포탑 반응기에 관한 것이다. 기포탑 반응기는 용기 쉘(shell), 하나 이상의 기체 개구, 하나 이상의 액체 개구, 및 하나 이상의 상부 생성물 개구를 포함한다. 용기 쉘은 긴 반응 대역을 한정한다. 반응 대역은 축 거리(L)에 의해 서로 이격된 통상적인 하부 말단 및 통상적인 상부 말단을 포함한다. 반응 대역은 최대 직경(D)를 가지며, L:D 비는 약 6:1 이상이다. 하나 이상의 기체 개구는 기상 스트림을 반응 대역으로 도입한다. 하나 이상의 기체 개구는 약 0.25D 미만의 축 거리로 반응 대역의 통상적인 하부 말단으로부터 이격된다. 하나 이상의 액체 개구는 액상 스트림을 반응 대역으로 도입한다. 모든 액체 개구에 의해 한정되는 누적 개방 면적의 약 50% 이상은 통상적인 하부 말단에 가장 근접하게 위치하는 기체 개구로부터 약 2.5D 미만으로 이격된다. 하나 이상의 상부 생성물 개구는 반응 대역으로부터의 고상 생성물을 회수한다. 생성물 개구는 하나 이상의 기체 개구 및 하나 이상의 액체 개구보다 통상적인 하부 말단으로부터 더 멀리 축 방향으로 위치한다.
본 발명의 바람직한 실시양태는 첨부된 도면을 참조하여 아래 상세하게 기재된다.
도 1은 반응기 내로의 공급물, 산화제 및 환류 스트림의 도입, 반응기에서의 다상 반응 매질의 존재 및 각각 반응기 상부 및 저부로부터의 기체 및 슬러리의 회수를 구체적으로 도시하는, 본 발명의 한 실시양태에 따라 제작된 산화 반응기의 측면도이다.
도 2는 산화제 스트림을 반응기 내로 도입하는데 사용되는 산화제 스파저(sparger)의 위치 및 구성을 구체적으로 도시하는, 도 3의 선(2-2)을 따라 취한 기포탑 반응기의 저부의 확대된 부분 측면도이다.
도 3은 산화제 스파저 상부의 산화제 개구를 구체적으로 도시하는, 도 2의 산화제 스파저의 상부 평면도이다.
도 4는 산화제 스파저 저부의 산화제 개구를 구체적으로 도시하는, 도 2의 산화제 스파저의 하부 평면도이다.
도 5는 산화제 스파저 상부 및 저부의 산화제 개구의 배향을 구체적으로 도시하는, 도 3의 선(5-5)을 따라 취한 산화제 스파저의 부분 측면도이다.
도 6은 공급물 스트림을 다수개의 수직 이격된 위치에서 반응기 내로 도입하기 위한 시스템을 구체적으로 도시하는, 기포탑 반응기의 저부의 확대된 측면도이다.
도 7은 도 6에 도시된 공급물 도입 시스템이 바람직한 방사상 공급 대역(FZ) 및 하나보다 많은 사분된 방위각(Q1, Q2, Q3, Q4) 내로 공급물 스트림을 분배하는 방식을 구체적으로 도시하는, 도 6의 선(7-7)을 따라 취한 부분 상부 평면도이다.
도 8은 도 7과 유사하지만 각각 복수개의 작은 공급물 개구를 갖는 바요넷(bayonet) 관을 사용하여 반응기 내로 공급물 스트림을 방출시키기 위한 다른 수단을 도시하는 부분 상부 평면도이다.
도 9는 공급물 분배 시스템이 산화제 스파저 상에 적어도 부분적으로 지지될 수 있음을 구체적으로 도시하는, 다수개의 용기 관통구(penetration)를 필요로 하지 않으면서 다수개의 수직 이격된 위치에서 공급물 스트림을 반응 대역 내로 도입하기 위한 다른 시스템의 등각 투상도이다.
도 10은 도 9에 도시된 단일-관통구 공급물 분배 시스템 및 산화제 스파저의 측면도이다.
도 11은 산화제 스파저 상에 지지된 단일-관통구 공급물 분배 시스템을 추가로 도시하는, 도 10의 선(11-11)을 따라 취한 부분 상부 평면도이다.
도 12는 고리 부재의 저부에 위치된 모든 산화제 개구를 갖는 다른 산화제 스파저의 등각 투상도이다.
도 13은 도 12의 다른 산화제 스파저의 상부 평면도이다.
도 14는 산화제 스트림을 반응 대역 내로 도입하기 위한 저부 개구의 위치를 구체적으로 도시하는, 도 12의 다른 산화제 스파저의 하부 평면도이다.
도 15는 하부 산화제 개구의 배향을 구체적으로 도시하는, 도 13의 선(15- 15)을 따라 취한 산화제 스파저의 부분 측면도이다.
도 16은 반응기의 저부 출구 근처에 내부 탈기 용기가 설치된 기포탑 반응기의 측면도이다.
도 17은 기포탑 반응기의 저부 출구에 위치된 내부 탈기 용기의 구성을 구체적으로 도시하는, 도 18의 선(17-17)을 따라 취한 도 16의 기포탑 반응기의 하부의 확대된 부분 측면도이다.
도 18은 탈기 용기에 배치된 소용돌이 방지 장치를 구체적으로 도시하는, 도 16의 선(18-18)을 따라 취한 부분 상부 평면도이다.
도 19는 탈기 용기의 저부에서 나가는 탈기된 슬러리의 일부를 사용하여 반응기의 저부에 연결된 재고량 제거(deinventorying) 라인을 플러쉬시킬 수 있는 방식을 도시하는, 외부 탈기 용기가 설치된 기포탑 반응기의 측면도이다.
도 20은 반응기의 높은 측부 위치로부터 회수되는 반응 매질의 기상을 분리시키기 위한 하이브리드(hybrid) 내부/외부 탈기 용기가 설치된 기포탑 반응기의 측면도이다.
도 21은 반응기의 저부 근처에 다른 하이브리드 탈기 용기가 설치된 기포탑 반응기의 측면도이다.
도 22는 반응기의 저부 헤드를 통해 산화제 스트림을 수용하는 유입 도관을 사용하는 다른 산화제 스파저의 사용을 구체적으로 도시하는, 도 21의 기포탑 반응기의 하부의 확대된 부분 측면도이다.
도 23은 반응기 하부 헤드의 복수개의 개구를 통해 반응기 내로 산화제 스트 림을 도입하기 위한 다른 수단(임의적으로는 반응기에 산화제 스트림을 더욱 고르게 분배시키기 위하여 충돌판을 사용함)을 구체적으로 도시하는, 도 22와 유사한 확대된 부분 측면도이다.
도 24는 반응 매질의 일부를 반응기의 상부로부터 반응기의 하부로 재순환시킴으로써 산화가능한 화합물의 개선된 분산을 돕는 내부 유동 도관을 사용하는 기포탑 반응기의 측면도이다.
도 25는 반응 매질의 일부를 반응기의 상부로부터 반응기의 하부로 재순환시킴으로써 산화가능한 화합물의 개선된 분산을 돕는 외부 유동 도관을 사용하는 기포탑 반응기의 측면도이다.
도 26은 들어가는 액체 공급물을 사용하여 반응 매질을 추출기(eductor) 내로 끌어들이고 공급물과 반응 매질의 혼합물을 고속으로 반응 대역 내로 방출시키는 추출기를 구체적으로 도시하는, 산화 반응기 내에서의 산화가능한 화합물의 분산을 개선시키는데 사용될 수 있는 수평 추출기의 부분 측면도이다.
도 27은 액체 공급물과 유입 기체를 혼합하고, 혼합된 2상 유체를 사용하여 반응 매질을 추출기 내로 끌어들이고, 액체 공급물, 유입 기체 및 반응 매질의 혼합물을 반응 대역 내로 고속으로 방출하는 추출기를 구체적으로 도시하는, 산화 반응기 내에서의 산화가능한 화합물의 분산을 개선시키는데 사용될 수 있는 수직 추출기의 부분 측면도이다.
도 28은 반응 매질에서의 특정 구배를 정량하기 위하여 동일한 부피의 30개의 수평 분층(slice)으로 이론적으로 분할되는 반응 매질을 구체적으로 도시하는, 다상 반응 매질을 함유하는 기포탑 반응기의 측면도이다.
도 29는 실질적으로 상이한 산소 농도 및/또는 산소 소비 속도를 갖는 반응 매질의 제 1 및 제 2의 개별적인 20% 연속 부피를 구체적으로 도시하는, 다상 반응 매질을 함유하는 기포탑 반응기의 측면도이다.
도 30은 용기가 실질적으로 상이한 산소 농도 및/또는 산소 소비 속도를 갖는 반응 매질의 별개의 20% 연속 부피를 함유함을 구체적으로 도시하는, 다상 반응 매질을 함유하고 임의적인 기계적 진탕이 이루어지거나 이루어지지 않는 2개의 적층(stacked) 반응 용기의 측면도이다.
도 31은 용기가 실질적으로 상이한 산소 농도 및/또는 산소 소비 속도를 갖는 반응 매질의 별개의 20% 연속 부피를 함유함을 구체적으로 도시하는, 다상 반응 매질을 함유하고 임의적인 기계적 진탕이 이루어지거나 이루어지지 않는 3개의 병렬(side-by-side) 반응 용기의 측면도이다.
도 32A 및 도 32B는 각 CTA 입자가 복수개의 느슨하게 결합된 CTA 부속입자(sub-particle)로 구성된 저밀도 고표면적 입자임을 구체적으로 도시하는, 본 발명의 한 실시양태에 따라 제조된 조질 테레프탈산(CTA) 입자의 확대도이다.
도 33A 및 도 33B는 종래의 CTA 입자가 도 32A 및 도 32B에 도시된 본 발명의 CTA 입자보다 더 큰 입자 크기, 더 낮은 밀도 및 더 낮은 표면적을 가짐을 구체적으로 도시하는, 종래 방식으로 제조된 CTA의 확대도이다.
도 34는 정제된 테레프탈산(PTA)을 제조하기 위한 종래 기술 방법의 단순화된 공정 흐름도이다.
도 35는 본 발명의 한 실시양태에 따른 PTA 제조 방법의 단순화된 공정 흐름도이다.
본 발명의 한 실시양태는 산화가능한 화합물의 액상 부분 산화에 관한 것이다. 이러한 산화는 바람직하게는 하나 이상의 진탕식 반응기에 함유된 다상 반응 매질의 액상에서 수행된다. 적합한 진탕식 반응기는 예를 들어 기포-진탕식 반응기(예컨대, 기포탑 반응기), 기계 진탕식 반응기(예를 들어, 연속 교반식 탱크 반응기) 및 유동 진탕식 반응기(예컨대, 제트 반응기)를 포함한다. 본 발명의 한 실시양태에서는, 단일 기포탑 반응기에서 액상 산화를 수행한다.
본원에 사용되는 용어 "기포탑 반응기"는 주로 반응 매질을 통한 기포의 상향 이동에 의해 반응 매질을 진탕하는, 다상 반응 매질에서의 화학 반응을 촉진시키기 위한 반응기를 일컫는다. 본원에 사용되는 용어 "진탕"은 반응 매질을 흩뜨려서 유체 유동 및/또는 혼합을 야기하는 작업을 말한다. 본원에 사용되는 용어 "대다수", "주로" 및 "우세하게"는 50%보다 더 많음을 의미한다. 본원에 사용되는 용어 "기계적 진탕"은 강성 또는 가요성 요소(들)의 반응 매질에 대한 또는 반응 매질 내에서의 물리적 움직임에 의해 야기되는 반응 매질의 진탕을 나타낸다. 예를 들어, 기계적 진탕은 반응 매질 중에 위치된 내부 교반기, 패들, 진동기 또는 음향 반사판의 회전, 진동 및/또는 떨림에 의해 제공될 수 있다. 본원에 사용되는 용어 "유동 진탕"은 반응 매질 중에서의 하나 이상의 유체의 고속 주입 및/또는 재순환에 의해 야기되는 반응 매질의 진탕을 일컫는다. 예를 들어, 유동 진탕은 노즐, 배출기 및/또는 추출기에 의해 제공될 수 있다.
본 발명의 바람직한 실시양태에서는, 산화 동안 기포탑 반응기의 반응 매질의 진탕의 약 40% 미만이 기계적 및/또는 유동 진탕에 의해 제공되고, 더욱 바람직하게는 진탕의 약 20% 미만이 기계적 및/또는 유동 진탕에 의해 제공되며, 가장 바람직하게는 진탕의 5% 미만이 기계적 및/또는 유동 진탕에 의해 제공된다. 바람직하게는, 산화 동안 다상 반응 매질에 부여되는 기계적 및/또는 유동 진탕의 양은 반응 매질 1m3당 약 3킬로와트 미만, 더욱 바람직하게는 약 2킬로와트 미만, 가장 바람직하게는 1킬로와트 미만이다.
이제, 도 1에는, 바람직한 기포탑 반응기(20)가 반응 구역(24) 및 분리 구역(26)을 갖는 용기 쉘(22)을 포함하는 것으로 도시되어 있다. 반응 구역(24)은 내부 반응 대역(28)을 한정하는 한편, 분리 구역(26)은 내부 분리 대역(30)을 한정한다. 우세하게 액상인 공급물 스트림을 공급물 입구(32a, 32b, 32c, 32d)를 통해 반응 대역(28) 내로 도입한다. 우세하게 기상인 산화제 스트림을 반응 대역(28)의 하부에 위치된 산화제 스파저(34)를 통해 반응 대역(28) 내로 도입한다. 액상 공급물 스트림과 기상 산화제 스트림은 협력하여 반응 대역(28) 내에 다상 반응 매질(36)을 형성한다. 다상 반응 매질(36)은 액상 및 기상을 포함한다. 더욱 바람직하게는, 다상 반응 매질(36)은 고상, 액상 및 기상 성분을 갖는 3상 매질을 포함한다. 반응 매질(36)의 고상 성분은 바람직하게는 반응 매질(36)의 액상에서 수행되는 산화 반응의 결과로서 반응 대역(28) 내에서 침전된다. 기포탑 반응기(20)는 반응 대역(28)의 저부 근처에 위치하는 슬러리 출구(38) 및 분리 대역(30)의 상부 근처에 위치하는 기체 출구(40)를 포함한다. 반응 매질(36)의 액상 및 고상 성분을 포함하는 슬러리 유출물은 슬러리 출구(38)를 통해 반응 대역(28)으로부터 회수되는 반면, 우세하게 기상인 유출물은 기체 출구(40)를 통해 분리 대역(30)으로부터 회수된다.
공급물 입구(32a, 32b, 32c, 32d)를 통해 기포탑 반응기(20) 내로 도입되는 액상 공급물 스트림은 바람직하게는 산화가능한 화합물, 용매 및 촉매 시스템을 포함한다.
액상 공급물 스트림에 존재하는 산화가능한 화합물은 바람직하게는 하나 이상의 하이드로카빌기를 포함한다. 더욱 바람직하게는, 산화가능한 화합물은 방향족 화합물이다. 더욱더 바람직하게는, 산화가능한 화합물은 하나 이상의 부착된 하이드로카빌기 또는 하나 이상의 부착된 치환된 하이드로카빌기 또는 하나 이상의 부착된 헤테로원자 또는 하나 이상의 부착된 카복실산 작용기(-COOH)를 갖는 방향족 화합물이다. 더더욱 바람직하게는, 산화가능한 화합물은 하나 이상의 부착된 하이드로카빌기 또는 하나 이상의 부착된 치환된 하이드로카빌기(부착된 기 각각은 1 내지 5개의 탄소 원자를 가짐)를 갖는 방향족 화합물이다. 더욱더 바람직하게는, 산화가능한 조성물은 각각 정확하게 하나의 탄소 원자를 포함하고 메틸기 및/또는 치환된 메틸기 및/또는 하나 이하의 카복실산기로 구성된 정확하게 2개의 부착된 기를 갖는 방향족 화합물이다. 더더욱 바람직하게는, 산화가능한 화합물은 파라-자일렌, 메타-자일렌, 파라-톨루알데하이드, 메타-톨루알데하이드, 파라-톨루산, 메타-톨루산 및/또는 아세트알데하이드이다. 가장 바람직하게는, 산화가능한 화합물은 파라-자일렌이다.
본원에 정의되는 "하이드로카빌기"는 수소 원자 또는 다른 탄소 원자에만 결합되는 하나 이상의 탄소 원자이다. 본원에 정의되는 "치환된 하이드로카빌기"는 하나 이상의 헤테로원자 및 하나 이상의 수소 원자에 결합되는 하나 이상의 탄소 원자이다. 본원에 정의되는 "헤테로원자"는 탄소 및 수소 원자 외의 모든 원자이다. 본원에 정의되는 방향족 화합물은 바람직하게는 6개 이상의 탄소 원자, 더더욱 바람직하게는 고리의 일부로서 탄소 원자만 갖는 방향족 고리를 포함한다. 이러한 방향족 고리의 적합한 예는 벤젠, 바이페닐, 터페닐, 나프탈렌 및 다른 탄소-계 융합된 방향족 고리를 포함하지만 이들로 한정되지는 않는다.
산화가능한 화합물의 적합한 예는 지방족 탄화수소(예를 들어, 알케인, 분지된 알케인, 환상 알케인, 지방족 알켄, 분지된 알켄 및 환상 알켄); 지방족 알데하이드(예를 들어, 아세트알데하이드, 프로피온알데하이드, 아이소뷰티르알데하이드 및 n-뷰티르알데하이드); 지방족 알콜(예를 들어, 에탄올, 아이소프로판올, n-프로판올, n-뷰탄올 및 아이소뷰탄올); 지방족 케톤(예컨대, 다이메틸 케톤, 에틸 메틸 케톤, 다이에틸 케톤 및 아이소프로필 메틸 케톤); 지방족 에스터(예컨대, 메틸 폼에이트, 메틸 아세테이트, 에틸 아세테이트); 지방족 퍼옥사이드, 과산 및 하이드로퍼옥사이드(예컨대, 3급-뷰틸 하이드로퍼옥사이드, 퍼아세트산 및 다이-3급-뷰틸 하이드로퍼옥사이드); 상기 지방족 부류와 다른 헤테로원자의 조합인 기를 갖는 지방족 화합물(예를 들어, 나트륨, 브롬, 코발트, 망간 및 지르코늄과 조합된 탄화수소, 알데하이드, 알콜, 케톤, 에스터, 퍼옥사이드, 과산 및/또는 하이드로퍼옥사이드의 하나 이상의 분자 분절을 포함하는 지방족 화합물); 하나 이상의 부착된 하이드로카빌기를 갖는 다양한 벤젠 고리, 나프탈렌 고리, 바이페닐, 터페닐 및 다른 방향족 기(예컨대, 톨루엔, 에틸벤젠, 아이소프로필벤젠, n-프로필벤젠, 네오펜틸벤젠, 파라-자일렌, 메타-자일렌, 오르토-자일렌, 트라이메틸벤젠의 모든 이성질체, 테트라메틸벤젠의 모든 이성질체, 펜타메틸벤젠, 헥사메틸벤젠, 에틸-메틸벤젠의 모든 이성질체, 다이에틸벤젠의 모든 이성질체, 에틸-다이메틸벤젠의 모든 이성질체, 다이메틸나프탈렌의 모든 이성질체, 에틸-메틸나프탈렌의 모든 이성질체, 다이에틸나프탈렌의 모든 이성질체, 다이메틸바이페닐의 모든 이성질체, 에틸-메틸바이페닐의 모든 이성질체, 및 다이에틸바이페닐의 모든 이성질체, 스틸벤 및 하나 이상의 부착된 하이드로카빌기를 갖는 스틸벤, 플루오렌 및 하나 이상의 부착된 하이드로카빌기를 갖는 플루오렌, 안트라센 및 하나 이상의 부착된 하이드로카빌기를 갖는 안트라센, 및 다이페닐에테인 및 하나 이상의 부착된 하이드로카빌기를 갖는 다이페닐에테인); 하나 이상의 부착된 하이드로카빌기 및/또는 다른 원자 또는 원자의 기에 연결될 수 있는 하나 이상의 부착된 헤테로원자를 갖는 다양한 벤젠 고리, 나프탈렌 고리, 바이페닐, 터페닐 및 다른 방향족 기(예를 들어, 페놀, 메틸페놀의 모든 이성질체, 다이메틸페놀의 모든 이성질체, 나프톨의 모든 이성질체, 벤질 메틸 에터, 브로모페놀의 모든 이성질체, 브로모벤젠, 알파-브로모톨루엔을 비롯한 브로모톨루엔의 모든 이성질체, 다이브로모벤젠, 코발트 나프텐에이트, 및 브로모바이페닐의 모든 이성질체); 하나 이상의 부착된 하이드로카빌기 및/또는 하나 이상의 부착된 헤테로원자 및/또는 하나 이상의 부착된 치환된 하이드로카빌기를 갖는 다양한 벤젠 고리, 나프탈렌 고리, 바이페닐, 터페닐 및 다른 방향족 기(예를 들어, 벤즈알데하이드, 브로모벤즈알데하이드의 모든 이성질체, 알파-브로모톨루알데하이드의 모든 이성질체를 비롯한 브롬화된 톨루알데하이드의 모든 이성질체, 하이드록시벤즈알데하이드의 모든 이성질체, 브로모-하이드록시벤즈알데하이드의 모든 이성질체, 벤젠 다이카복스알데하이드의 모든 이성질체, 벤젠 트라이카복스알데하이드의 모든 이성질체, 파라-톨루알데하이드, 메타-톨루알데하이드, 오르토-톨루알데하이드, 톨루엔 다이카복스알데하이드의 모든 이성질체, 톨루엔 트라이카복스알데하이드의 모든 이성질체, 톨루엔 테트라카복스알데하이드의 모든 이성질체, 다이메틸벤젠 다이카복스알데하이드의 모든 이성질체, 다이메틸벤젠 트라이카복스알데하이드의 모든 이성질체, 다이메틸벤젠 테트라카복스알데하이드의 모든 이성질체, 트라이메틸벤젠 트라이카복스알데하이드의 모든 이성질체, 에틸톨루알데하이드의 모든 이성질체, 트라이메틸벤젠 다이카복스알데하이드의 모든 이성질체, 테트라메틸벤젠 다이카복스알데하이드, 하이드록시메틸-벤젠, 하이드록시메틸-톨루엔의 모든 이성질체, 하이드록시메틸-브로모톨루엔의 모든 이성질체, 하이드록시메틸-톨루알데하이드의 모든 이성질체, 하이드록시메틸-브로모톨루알데하이드의 모든 이성질체, 벤질 하이드로퍼옥사이드, 벤조일 하이드로퍼옥사이드, 톨릴 메틸-하이드로퍼옥사이드의 모든 이성질체 및 메틸페놀 메틸-하이드로퍼옥사이드의 모든 이성질체); 하나 이상의 부착된 선택된 기(이 선택된 기는 하이드로카빌기 및/또는 부착된 헤테로원자 및/또는 치환된 하이드로카빌기 및/또는 카복실산기 및/또는 퍼옥시 산 기를 의미함)를 갖는 다양한 벤젠 고리, 나프탈렌 고리, 바이페닐, 터페닐 및 다른 방향족 기(예를 들어, 벤조산, 파라-톨루산, 메타-톨루산, 오르토-톨루산, 에틸벤조산의 모든 이성질체, 프로필벤조산의 모든 이성질체, 뷰틸벤조산의 모든 이성질체, 펜틸벤조산의 모든 이성질체, 다이메틸벤조산의 모든 이성질체, 에틸메틸벤조산의 모든 이성질체, 트라이메틸벤조산의 모든 이성질체, 테트라메틸벤조산의 모든 이성질체, 펜타메틸벤조산, 다이에틸벤조산의 모든 이성질체, 벤젠 다이카복실산의 모든 이성질체, 벤젠 트라이카복실산의 모든 이성질체, 메틸벤젠 다이카복실산의 모든 이성질체, 다이메틸벤젠 다이카복실산의 모든 이성질체, 메틸벤젠 트라이카복실산의 모든 이성질체, 브로모벤조산의 모든 이성질체, 다이브로모벤조산의 모든 이성질체, 알파-브로모톨루산을 비롯한 브로모톨루산의 모든 이성질체, 톨릴 아세트산, 하이드록시벤조산의 모든 이성질체, 하이드록시메틸-벤조산의 모든 이성질체, 하이드록시톨루산의 모든 이성질체, 하이드록시메틸-톨루산의 모든 이성질체, 하이드록시메틸-벤젠 다이카복실산의 모든 이성질체, 하이드록시브로모벤조산의 모든 이성질체, 하이드록시브로모톨루산의 모든 이성질체, 하이드록시메틸-브로모벤조산의 모든 이성질체, 카복시 벤즈알데하이드의 모든 이성질체, 다이카복시 벤즈알데하이드의 모든 이성질체, 퍼벤조산, 하이드로퍼옥시메틸-벤조산의 모든 이성질체, 하이드로퍼옥시메틸-하이드록시벤조산의 모든 이성질체, 하이드로퍼옥시카본일-벤조산의 모든 이성질체, 하이드로퍼옥시카본일-톨루엔의 모든 이성질체, 메틸바이페닐 카복실산의 모든 이성질체, 다이메틸바이페닐 카복실산의 모든 이성질체, 메틸바이페닐 다이카복실산의 모든 이성질체, 바이페닐 트라이카복실산의 모든 이성질체, 하나 이상의 부착된 선택된 기를 갖는 스틸벤의 모든 이성질체, 하나 이상의 부착된 선택된 기를 갖는 플루오렌온의 모든 이성질체, 하나 이상의 부착된 선택된 기를 갖는 나프탈렌의 모든 이성질체, 벤질, 하나 이상의 부착된 선택된 기를 갖는 벤질의 모든 이성질체, 벤조페논, 하나 이상의 부착된 선택된 기를 갖는 벤조페논의 모든 이성질체, 안트라퀴논, 하나 이상의 부착된 선택된 기를 갖는 안트라퀴논의 모든 이성질체, 하나 이상의 부착된 선택된 기를 갖는 다이페닐에테인의 모든 이성질체, 벤조쿠마린, 및 하나 이상의 부착된 선택된 기를 갖는 벤조쿠마린의 모든 이성질체)를 포함한다.
액상 공급물 스트림에 존재하는 산화가능한 화합물이 통상 고형 화합물(즉, 표준 온도 및 압력에서 고체)인 경우에는, 산화가능한 화합물을 반응 대역(28)에 도입할 때 용매에 실질적으로 용해시키는 것이 바람직하다. 대기압에서 산화가능한 화합물의 비점이 약 50℃ 이상인 것이 바람직하다. 더욱 바람직하게는, 산화가능한 화합물의 비점은 약 80 내지 약 400℃, 가장 바람직하게는 125 내지 155℃이다. 액상 공급물에 존재하는 산화가능한 화합물의 양은 바람직하게는 약 2 내지 약 40중량%, 더욱 바람직하게는 약 4 내지 약 20중량%, 가장 바람직하게는 6 내지 15중량%이다.
액상 공급물에 존재하는 산화가능한 화합물이 둘 이상의 상이한 산화가능한 화학약품의 혼합물을 포함할 수 있음에 주의한다. 이들 둘 이상의 상이한 화학약품을 액상 공급물 스트림으로 혼합하여 공급할 수 있거나 또는 다중 공급물 스트림으로 별도로 공급할 수 있다. 예를 들어, 파라-자일렌, 메타-자일렌, 파라-톨루알데하이드, 파라-톨루산 및 아세트알데하이드를 포함하는 산화가능한 화합물을 단일 입구 또는 다수개의 별도의 입구를 통해 반응기에 공급할 수 있다.
액상 공급물 스트림에 존재하는 용매는 바람직하게는 산 성분 및 물 성분을 포함한다. 용매는 바람직하게는 약 60 내지 약 98중량%, 더욱 바람직하게는 약 80 내지 약 96중량%, 가장 바람직하게는 85 내지 94중량%의 농도로 액상 공급물 스트림에 존재한다. 용매중 산 성분은 바람직하게는 주로 1 내지 6개의 탄소 원자, 더욱 바람직하게는 2개의 탄소 원자를 갖는 유기 저분자량 모노카복실산이다. 가장 바람직하게는, 용매의 산 성분은 주로 아세트산이다. 바람직하게는, 산 성분은 용매의 약 75중량% 이상, 더욱 바람직하게는 약 80중량% 이상, 가장 바람직하게는 85 내지 98중량%를 구성하고, 나머지는 주로 물이다. 기포탑 반응기(20) 내로 도입되는 용매는 예컨대 파라-톨루알데하이드, 테레프탈알데하이드, 4-카복시벤즈알데하이드(4-CBA), 벤조산, 파라-톨루산, 파라-톨루산 알데하이드, 알파-브로모-파라-톨루산, 아이소프탈산, 프탈산, 트라이멜리트산, 폴리방향족 화합물 및/또는 현탁된 미립자 같은 불순물을 소량 포함할 수 있다. 기포탑 반응기(20) 내로 도입되는 용매중 불순물의 총량이 약 3중량% 미만인 것이 바람직하다.
액상 공급물 스트림에 존재하는 촉매 시스템은 바람직하게는 산화가능한 화합물의 산화(부분 산화 포함)를 촉진시킬 수 있는 균질 액상 촉매 시스템이다. 더욱 바람직하게는, 촉매 시스템은 하나 이상의 다가 전이 금속을 포함한다. 더더욱 바람직하게는, 다가 전이금속은 코발트를 포함한다. 더욱더 바람직하게는, 촉매 시스템은 코발트 및 브롬을 포함한다. 가장 바람직하게는, 촉매 시스템은 코발트, 브롬 및 망간을 포함한다.
코발트가 촉매 시스템에 존재하는 경우, 액상 공급물 스트림에 존재하는 코발트의 양은, 반응 매질(36)의 액상중 코발트의 농도가 약 300 내지 약 6,000ppmw, 더욱 바람직하게는 약 700 내지 약 4,200ppmw, 가장 바람직하게는 1,200 내지 3,000ppmw로 유지되도록 하는 것이 바람직하다. 브롬이 촉매 시스템에 존재하는 경우, 액상 공급물 스트림에 존재하는 브롬의 양은 반응 매질(36)의 액상중 브롬의 농도가 약 300 내지 약 5,000ppmw, 더욱 바람직하게는 약 600 내지 약 4,000ppmw, 가장 바람직하게는 900 내지 3,000ppmw로 유지되도록 하는 것이 바람직하다. 망간이 촉매 시스템에 존재하는 경우, 액상 공급물 스트림에 존재하는 망간의 양은 반응 매질(36)의 액상중 망간의 농도가 약 20 내지 약 1,000ppmw, 더욱 바람직하게는 약 40 내지 약 500ppmw, 가장 바람직하게는 50 내지 200ppmw로 유지되도록 하는 것이 바람직하다.
상기 기재된, 반응 매질(36)의 액상중 코발트, 브롬 및/또는 망간의 농도는 시간-평균 및 부피-평균에 기초하여 표현된다. 본원에 사용되는 용어 "시간-평균"은 100초 이상의 연속적인 시간에 걸쳐 동일하게 측정된 10개 이상의 측정치의 평균을 일컫는다. 본원에 사용되는 용어 "부피-평균"은 특정 부피 전체에서 균일한 3차원 간격으로 측정된 10개 이상의 측정치의 평균을 말한다.
반응 대역(28) 내로 도입되는 촉매 시스템중 코발트 대 브롬의 중량비(Co:Br)는 바람직하게는 약 0.25:1 내지 약 4:1, 더욱 바람직하게는 약 0.5:1 내지 약 3:1, 가장 바람직하게는 0.75:1 내지 2:1이다. 반응 대역(28) 내로 도입되는 촉매 시스템중 코발트 대 망간의 중량비(Co:Mn)는 바람직하게는 약 0.3:1 내지 약 40:1, 더욱 바람직하게는 약 5:1 내지 약 30:1, 가장 바람직하게는 10:1 내지 25:1이다.
기포탑 반응기(20) 내로 도입되는 액상 공급물 스트림은 예를 들어 톨루엔, 에틸벤젠, 파라-톨루알데하이드, 테레프트알데하이드, 4-카복시벤즈알데하이드(4-CBA), 벤조산, 파라-톨루산, 파라-톨루산 알데하이드, 알파 브로모 파라-톨루산, 아이소프탈산, 프탈산, 트라이멜리트산, 폴리방향족 화합물 및/또는 현탁된 미립자 같은 불순물을 소량 포함할 수 있다. 테레프탈산을 제조하는데 기포탑 반응기(20)를 이용하는 경우에는, 메타-자일렌 및 오르토-자일렌도 불순물로 간주된다. 기포탑 반응기(20) 내로 도입되는 액상 공급물 스트림중 불순물의 총량이 약 3중량% 미만인 것이 바람직하다.
도 1은 산화가능한 화합물, 용매 및 촉매 시스템이 함께 혼합되어 단일 공급물 스트림으로서 기포탑 반응기(20) 내로 도입되는 실시양태를 도시하고 있으나, 본 발명의 다른 실시양태에서는, 산화가능한 화합물, 용매 및 촉매를 기포탑 반응기(20) 내로 별도로 도입할 수 있다. 예를 들어, 용매 및 촉매 입구(들)로부터 분리된 입구를 통해 순수한 파라-자일렌 스트림을 기포탑 반응기(20) 내로 공급할 수 있다.
산화제 스파저(34)를 통해 기포탑 반응기(20) 내로 도입되는 우세하게 기상인 산화제 스트림은 분자 산소(O2)를 포함한다. 바람직하게는, 산화제 스트림은 약 5 내지 약 40몰%, 더욱 바람직하게는 약 15 내지 약 30몰%, 가장 바람직하게는 18 내지 24몰%의 분자 산소를 포함한다. 산화제 스트림의 나머지가 산화에 대해 불활성인 질소 같은 기체 또는 기체들로 주로 구성되는 것이 바람직하다. 더욱 바람직하게는, 산화제 스트림은 본질적으로 분자 산소 및 질소로 이루어진다. 가장 바람직하게는, 산화제 스트림은 분자 산소 약 21몰% 및 질소 약 78 내지 약 81몰%를 포함하는 무수 공기이다. 본 발명의 다른 실시양태에서, 산화제 스트림은 실질적으로 순수한 산소를 포함할 수 있다.
다시 도 1을 보면, 기포탑 반응기(20)에는 바람직하게는 반응 매질(36)의 상부 표면(44) 위에 위치된 환류 분배기(42)가 설치되어 있다. 환류 분배기(42)는 당해 분야에 공지되어 있는 임의의 소적 형성 수단에 의해 우세하게 액상인 환류 스트림의 소적을 분리 대역(30) 내로 도입하도록 작동될 수 있다. 더욱 바람직하게는, 환류 분배기(42)는 반응 매질(36)의 상부 표면(44)을 향해 하향으로 소적의 스프레이를 생성시킨다. 바람직하게는, 소적의 하향 스프레이는 분리 대역(30)의 최대 수평 단면적의 약 50% 이상을 덮는다(즉, 대응하여 영향을 끼친다). 더욱 바람직하게는, 소적의 스프레이는 분리 대역(30)의 최대 수평 단면적의 약 75% 이상을 덮는다. 가장 바람직하게는, 소적의 스프레이는 분리 대역(30)의 최대 수평 단면적의 90% 이상을 덮는다. 이 하향 액체 환류 스프레이는 반응 매질(36)의 상부 표면(44)에서 또는 그보다 위에서 기포를 발생시키지 못하도록 하는데 도움을 줄 수 있으며, 또한 기체 출구(40)를 향해 유동하는 상향 이동 기체에 연행된 임의의 액체 또는 슬러리 소적을 분리시키는 데에도 도움을 줄 수 있다. 또한, 액체 환류는 기체 출구(40)를 통해 분리 대역(30)으로부터 회수되는 기상 유출물에 존재하는 미립자 및 가능하게는 침전되는 화합물(예컨대, 용해된 벤조산, 파라-톨루산, 4-CBA, 테레프탈산 및 촉매 금속 염)의 양을 감소시키는 역할을 할 수 있다. 또한, 환류 소적을 분리 대역(30) 내로 도입함으로써 증류 작용에 의해 기체 출구(40)를 통해 회수되는 기상 유출물의 조성을 조정할 수 있다.
환류 분배기(42)를 통해 기포탑 반응기(20) 내로 도입되는 액체 환류 스트림은 바람직하게는 공급물 입구(32a, 32b, 32c, 32d)를 통해 기포탑 반응기(20) 내로 도입되는 액상 공급물 스트림의 용매 성분과 대략 동일한 조성을 갖는다. 따라서, 액체 환류 스트림이 산 성분 및 물을 포함하는 것이 바람직하다. 환류 스트림의 산 성분은 바람직하게는 1 내지 6개의 탄소 원자, 더욱 바람직하게는 2개의 탄소 원자를 갖는 저분자량 유기 모노카복실산이다. 가장 바람직하게는, 환류 스트림의 산 성분은 아세트산이다. 바람직하게는, 산 성분은 환류 스트림의 약 75중량% 이상, 더욱 바람직하게는 약 80중량% 이상, 가장 바람직하게는 85 내지 98중량%를 구성하고, 나머지는 물이다. 환류 스트림이 전형적으로 액상 공급물 스트림의 용매와 실질적으로 동일한 조성을 갖기 때문에, 이러한 기재가 반응기 내로 도입되는 "전체 용매"를 일컫는 경우, 이러한 "전체 용매"는 환류 스트림 및 공급물 스트림의 용매 부분 둘 다를 포함한다.
기포탑 반응기(20)에서의 액상 산화 동안, 기체 및 슬러리 유출물 스트림을 반응 대역(28)으로부터 실질적으로 연속해서 회수하면서, 공급물, 산화제 및 환류 스트림을 반응 대역(28) 내로 실질적으로 연속해서 도입하는 것이 바람직하다. 본원에 사용되는 용어 "실질적으로 연속해서"는 10분 미만으로 단절되는 10시간 이상의 기간을 의미한다. 산화 동안, 산화가능한 화합물(예컨대, 파라-자일렌)을 1시간당 약 8,000kg 이상, 더욱 바람직하게는 약 13,000 내지 약 80,000kg, 더더욱 바람직하게는 약 18,000 내지 약 50,000kg, 가장 바람직하게는 22,000 내지 30,000kg의 속도로 반응 대역(28) 내로 실질적으로 연속해서 도입하는 것이 바람직하다. 들어가는 공급물, 산화제 및 환류 스트림의 유속이 실질적으로 변함없는 것이 바람직하지만, 여기에서는 본 발명의 한 실시양태가 혼합 및 물질 전달을 개선시키기 위하여 들어가는 공급물, 산화제 및/또는 환류 스트림을 펄스식으로 변동시키는 것을 고려함에 주의한다. 들어가는 공급물, 산화제 및/또는 환류 스트림을 펄스식으로 변동시켜 도입하는 경우, 이들의 유속이 본원에서 언급된 정상상태 유속의 약 0 내지 약 500%, 더욱 바람직하게는 본원에서 언급된 정상상태 유속의 약 30 내지 약 200%, 가장 바람직하게는 본원에서 언급된 정상상태 유속의 80 내지 120% 내에서 변화되는 것이 바람직하다.
기포탑 산화 반응기(20)에서의 반응의 평균 공간-시간 속도(STR)는 단위 시간당 반응 매질(36) 단위 부피당 공급되는 산화가능한 화합물의 질량(예컨대, 1시간당 1m3당 공급되는 파라-자일렌의 kg수)으로서 정의된다. 종래의 사용시에는, STR을 계산하기 전에 생성물로 전환되지 않은 산화가능한 화합물이 양을 전형적으로 공급물 스트림중 산화가능한 화합물의 양으로부터 뺀다. 그러나, 본원에 바람직한 산화가능한 화합물(예컨대, 파라-자일렌)중 다수는 전환율 및 수율이 전형적으로 높으며, 본원에서는 상기 언급한 바와 같이 이 용어를 정의하는 것이 편리하다. 특히 자본 비용 및 작동 인벤토리(inventory)상의 이유로, 반응을 높은 STR로 수행하는 것이 일반적으로 바람직하다. 그러나, 점점 더 높은 STR에서 반응을 수행하면 부분 산화의 품질 또는 수율에 영향을 끼칠 수 있다. 기포탑 반응기(20)는 산화가능한 화합물(예컨대, 파라-자일렌)의 STR이 약 25kg/m3/시간 내지 약 400kg/m3/시간, 더욱 바람직하게는 약 30kg/m3/시간 내지 약 250kg/m3/시간, 더욱더 바람직하게는 약 35kg/m3/시간 내지 약 150kg/m3/시간, 가장 바람직하게는 40kg/m3/시간 내지 100kg/m3/시간인 경우에 특히 유용하다.
기포탑 반응기(20)의 산소-STR은 단위 시간당 반응 매질(36)의 단위 부피당 소비되는 분자 산소의 중량(예를 들어, 1시간당 1m3당 소비되는 분자 산소의 kg 수)으로서 정의된다. 특히 자본 비용 및 용매의 산화에 의한 소비 면에서의 이유로, 높은 산소-STR로 반응을 수행하는 것이 통상적으로 바람직하다. 그러나, 점점 더 높은 산소-STR로 반응을 수행하면 결국 부분 산화의 품질 또는 수율을 감소시킨다. 특정 이론에 얽매이지 않으면서, 이는 가능하게는 계면 표면적에서 기상으로부터 액체 내로, 이어 벌크 액체 내로 분자 산소를 전달하는 속도에 관련되는 것으로 보인다. 산소-STR이 너무 높으면 반응 매질의 벌크 액상중 용해된 산소 함량이 너무 낮아질 수 있다.
전체-평균-산소-STR은 본원에서 단위 시간당 반응 매질(36)의 전체 부피에서 소비되는 모든 산소의 중량(예컨대, 1시간당 1m3당 소비되는 분자 산소의 kg 수)으로서 정의된다. 기포탑 반응기(20)는 전체-평균-산소-STR이 약 25kg/m3/시간 내지 약 400kg/m3/시간, 더욱 바람직하게는 약 30kg/m3/시간 내지 약 250kg/m3/시간, 더욱더 바람직하게는 약 35kg/m3/시간 내지 약 150kg/m3/시간, 가장 바람직하게는 40kg/m3/시간 내지 100kg/m3/시간인 경우에 특히 유용하다.
기포탑 반응기(20)에서의 산화 동안, 전체 용매(공급물 스트림 및 환류 스트림 둘 다로부터)의 물질 유속 대 반응 대역(28)에 들어가는 산화가능한 화합물의 물질 유속의 비가 약 2:1 내지 약 50:1, 더욱 바람직하게는 약 5:1 내지 약 40:1, 가장 바람직하게는 7.5:1 내지 25:1로 유지되는 것이 바람직하다. 바람직하게는, 공급물 스트림의 일부로서 도입되는 용매의 물질 유속 대 환류 스트림의 일부로서 도입되는 용매의 물질 유속의 비는 약 0.5:1 내지 환류 스트림 유동의 부재, 더욱 바람직하게는 약 0.5:1 내지 약 4:1, 더더욱 바람직하게는 약 1:1 내지 약 2:1, 가장 바람직하게는 1.25:1 내지 1.5:1로 유지된다.
기포탑 반응기(20)에서의 액상 산화 동안, 산화제 스트림을, 화학량론적 산소 요구량을 다소 초과하는 분자 산소를 제공하는 양으로 기포탑 반응기(20) 내로 도입하는 것이 바람직하다. 특정의 산화가능한 화합물을 사용하여 최선의 결과를 달성하는데 필요한 분자 산소를 초과하는 양은 액상 산화의 전체 경제적 측면에 영향을 끼친다. 기포탑 반응기(20)에서의 액상 산화 동안, 산화제 스트림의 물질 유속 대 반응기(20)에 들어가는 산화가능한 유기 화합물(예컨대, 파라-자일렌)의 물질 유속의 비를 약 0.5:1 내지 약 20:1, 더욱 바람직하게는 약 1:1 내지 약 10:1, 가장 바람직하게는 2:1 내지 6:1로 유지시키는 것이 바람직하다.
다시 도 1을 보면, 기포탑 반응기(20) 내로 도입되는 공급물, 산화제 및 환류 스트림은 협력하여 다상 반응 매질(36)의 적어도 일부를 형성한다. 반응 매질(36)은 바람직하게는 고상, 액상 및 기상을 포함하는 3상 매질이다. 상기 언급된 바와 같이, 산화가능한 화합물(예를 들어, 파라-자일렌)의 산화는 반응 매질(36)의 액상에서 우세하게 이루어진다. 따라서, 반응 매질(36)의 액상은 용해된 산소 및 산화가능한 화합물을 포함한다. 기포탑 반응기(20)에서 일어나는 산화 반응의 발열 특성 때문에, 공급물 입구(32a, 32b, 32c, 32d)를 통해 도입되는 용매(예컨대, 아세트산 및 물)의 일부가 비등/기화된다. 그러므로, 반응기(20)의 반응 매질(36)의 기상은 주로 기화된 용매 및 산화제 스트림의 미용해, 미반응 부분으로 이루어진다. 특정한 종래 기술의 산화 반응기는 열교환 관/핀(fin)을 이용하여 반응 매질을 가열 또는 냉각시킨다. 그러나, 이러한 열 교환 구조체는 본원에 기재된 본 발명의 반응기 및 방법에 바람직하지 못할 수 있다. 따라서, 기포탑 반응기(20)가 반응 매질(36)과 접촉하고 30,000와트/m2보다 큰 시간-평균 열 유량(flux)을 나타내는 표면을 실질적으로 포함하지 않는 것이 바람직하다.
반응 매질(36)의 액상에 용해되는 산소의 농도는 기상으로부터의 물질 전달 속도와 액상 내에서의 반응물 소비 속도 사이에서의 동적 평형치이다(즉, 공급되는 기상중 분자 산소의 분압이 용해되는 산소의 공급 속도의 한 인자이고 용해되는 산소의 상한 농도에 영향을 끼침에도 불구하고, 이는 상기 분압에 의해 단순하게 설정되지 않는다). 용해되는 산소의 양은 국부적으로 변하는데, 기포 계면 근처에서 더 높다. 전체적으로, 용해되는 산소의 양은 반응 매질(36)의 상이한 영역에서의 공급 및 수요 인자의 평형에 따라 달라진다. 일시적으로, 용해되는 산소의 양은 화학약품 소비 속도에 관련된 기체 및 액체 혼합의 균일성에 따라 달라진다. 반응 매질(36)의 액상중 용해되는 산소의 공급 및 수요를 대략적으로 매치시키기 위하여 디자인함에 있어서, 반응 매질(36)의 액상중 시간-평균 및 부피-평균 산소 농도를 약 1ppm몰보다 높게, 더욱 바람직하게는 약 4 내지 약 1,000ppm몰, 더욱더 바람직하게는 약 8 내지 약 500ppm몰, 가장 바람직하게는 12 내지 120ppm몰로 유지시키는 것이 바람직하다.
기포탑 반응기(20)에서 수행되는 액상 산화 반응은 바람직하게는 고체를 생성시키는 침전 반응이다. 더욱 바람직하게는, 기포탑 반응기(20)에서 수행되는 액상 산화는 반응 대역(28) 내로 도입된 산화가능한 화합물(예컨대, 파라-자일렌)의 약 10중량% 이상이 반응 매질(36) 중에서 고형 화합물(예컨대, 조질 테레프탈산 입자)을 생성시키도록 한다. 더더욱 바람직하게는, 액상 산화는 산화가능한 화합물의 약 50중량% 이상이 반응 매질(36)에서 고형 화합물을 생성시키도록 한다. 가장 바람직하게는, 액상 산화에 의해 산화가능한 화합물의 90중량% 이상이 반응 매질(36)에서 고형 화합물을 생성시킨다. 반응 매질(36)중 고체의 총량이 시간-평균 및 부피-평균에 기초하여 약 3중량%보다 높은 것이 바람직하다. 더욱 바람직하게는, 반응 매질(36)중 고체의 총량은 약 5 내지 약 40중량%, 더더욱 바람직하게는 약 10 내지 약 35중량%, 가장 바람직하게는 15 내지 30중량%로 유지된다. 기포탑 반응기(20)에서 생성된 산화 생성물(예컨대, 테레프탈산)의 상당 부분이 반응 매질(36)의 액상에 용해된 채로 유지되지 않고 반응 매질(36)에서 고체로서 존재하는 것이 바람직하다. 반응 매질(36)에 존재하는 고상 산화 생성물의 양은 반응 매질(36)중 전체 산화 생성물(고상 및 액상)의 약 25중량% 이상, 더욱 바람직하게는 반응 매질(36)중 전체 산화 생성물의 약 75중량% 이상, 가장 바람직하게는 반응 매질(36)중 전체 산화 생성물의 약 95중량% 이상이다. 반응 매질(36)중 고체의 양에 대해 상기 기재된 수치 범위는, 실질적으로 연속적인 시간에 걸친 기포탑 반응기(20)의 실질적인 정상 상태 작동에 적용되고, 기포탑 반응기(20)의 시동, 작동중지 또는 최적 미만의 작동에는 적용되지 않는다. 반응 매질(36)중 고체의 양은 비중 방법에 의해 결정된다. 이 비중 방법에서는, 슬러리의 대표적인 부분을 반응 매질로부터 회수하고 칭량한다. 반응 매질 내에 존재하는 전체적인 고체-액체 분배를 효과적으로 유지시키는 조건에서, 침전된 고체의 손실 없이, 또한 초기 액체 질량의 약 10% 미만을 고체 부분에 잔류시키면서 효과적으로, 침강 또는 여과에 의해 유리 액체를 고체 부분으로부터 제거한다. 고체에 잔류하는 액체는 고체의 승화 없이 효과적으로 건조할 때까지 증발시킨다. 잔류하는 고체 부분의 중량을 잰다. 고체 부분의 중량 대 원래 슬러리 부분의 중량의 비는 전형적으로 백분율로 표현되는 고체의 분율이다.
기포탑 반응기(20)에서 수행되는 침전 반응은 반응 매질(36)과 접촉하는 특정 강성 구조체의 표면 상에 오염(즉, 고체 축적)을 야기할 수 있다. 따라서, 본 발명의 한 실시양태에서는, 기포탑 반응기(20)가 반응 대역(28)에 내부 열 교환, 교반 또는 배플 구조체를 실질적으로 포함하지 않는 것이 바람직하다(이러한 구조체가 오염되기 쉽기 때문에). 반응 대역(28)에 내부 구조체가 존재하는 경우에는, 상당량의 위로 향하는 평면상 표면적을 포함하는 외표면을 갖는 내부 구조체를 피하는 것이 바람직하다(이러한 위로 향하는 평면상 표면이 오염되기 매우 쉽기 때문에). 그러므로, 임의의 내부 구조체가 반응 대역(28)에 존재하는 경우에는, 이러한 내부 구조체의 위로 향하는 노출된 외표면적 전체의 약 20% 미만이 수평으로부터 약 15° 미만으로 기울어진 실질적인 평면상 표면으로 이루어지는 것이 바람직하다.
다시 도 1을 살펴보면, 기포탑 반응기(20)의 물리적 구성은 불순물을 최소한으로 발생시키면서 산화가능한 화합물(예컨대, 파라-자일렌)의 산화를 최적화시키는데 도움을 준다. 용기 쉘(22)의 가늘고 긴 반응 구역(24)이 실질적인 원통형 주몸체부(46) 및 하부 헤드(48)를 포함하는 것이 바람직하다. 반응 대역(28)의 상부 말단은 원통형 주몸체부(46)의 상부를 가로질러 연장되는 수평 평면(50)에 의해 한정된다. 반응 대역(28)의 하부 말단(52)은 하부 헤드(48)의 최저 내부 표면에 의해 한정된다. 전형적으로, 반응 대역(28)의 하부 말단(52)은 슬러리 출구(38)용 개구에 근접하게 위치한다. 그러므로, 기포탑 반응기(20) 내에 한정된 가늘고 긴 반응 대역(28)은 원통형 주몸체부(46)의 연장 축을 따라 반응 대역(28)의 상부 말단(50)으로부터 저부 말단(52)까지 측정된 최대 길이 "L"을 갖는다. 반응 대역(28)의 길이 "L"은 바람직하게는 약 10 내지 약 100m, 더욱 바람직하게는 약 20 내지 약 75m, 가장 바람직하게는 25 내지 50m이다. 반응 대역(28)은 전형적으로 원통형 주몸체부(46)의 최대 내경과 동일한 최대 직경(폭) "D"를 갖는다. 반응 대역(28)의 최대 직경 "D"는 약 1 내지 약 12m, 더욱 바람직하게는 약 2 내지 약 10m, 더욱더 바람직하게는 약 3.1 내지 약 9m, 가장 바람직하게는 4 내지 8m이다. 본 발명의 바람직한 실시양태에서, 반응 대역(28)은 약 6:1 내지 약 30:1의 길이 대 직경 "L:D" 비를 갖는다. 더더욱 바람직하게는, 반응 대역(28)은 약 8:1 내지 약 20:1의 L:D 비를 갖는다. 가장 바람직하게는, 반응 대역(28)은 9:1 내지 15:1의 L:D 비를 갖는다.
상기 개시된 바와 같이, 기포탑 반응기(20)의 반응 대역(28)은 다상 반응 매질(36)을 수용한다. 반응 매질(36)은 반응 대역(28)의 하부 말단(52)과 일치되는 저부 말단 및 상부 표면(44)에 위치하는 상부 말단을 갖는다. 반응 매질(36)의 상부 표면(44)은 반응 대역(28)의 내용물이 기상-연속 상태에서 액상-연속 상태로 전이되는 수직 위치에서 반응 대역(28)을 통해 절단되는 수평 평면을 따라 한정된다. 상부 표면(44)은 바람직하게는 반응 대역(28)의 내용물의 얇은 수평 분층의 국부적인 시간-평균 기체 보유율(hold-up)이 0.9인 수직 위치에 위치한다.
반응 매질(36)은 그의 상부 말단과 하부 말단 사이에서 측정된 최대 높이 "H"를 갖는다. 반응 매질(36)의 최대 폭 "W"는 전형적으로 원통형 주몸체부(46)의 최대 직경 "D"와 동일하다. 기포탑 반응기(20)에서의 액상 산화 동안, H가 L의 약 60 내지 약 120%, 더욱 바람직하게는 약 80 내지 약 110%, 가장 바람직하게는 85 내지 100%로 유지되는 것이 바람직하다. 본 발명의 바람직한 실시양태에서, 반응 매질(36)은 약 3:1보다 큰 높이-대-폭 "H:W" 비를 갖는다. 더욱 바람직하게는, 반응 매질(36)은 약 7:1 내지 약 25:1의 H:W 비를 갖는다. 더더욱 바람직하게는, 반응 매질(36)은 약 8:1 내지 약 20:1의 H:W 비를 갖는다. 가장 바람직하게는, 반응 매질(36)은 9:1 내지 15:1의 H:W 비를 갖는다. 본 발명의 한 실시양태에서는, 본원에서 L 및 D에 대해 제공되는 다양한 치수 또는 비가 H 및 W에도 적용되도록, 또한 그 반대로 되도록, L=H이고 D=W이다.
본 발명의 실시양태에 따라 제공된 비교적 높은 L:D 및 H:W 비는 본 발명의 시스템의 몇몇 중요한 이점에 기여할 수 있다. 아래에 더욱 상세하게 논의되는 바와 같이, 더 높은 L:D 및 H:W 비, 및 아래 논의되는 특정한 다른 특징은 반응 매질(36)중 분자 산소 및/또는 산화가능한 화합물(예컨대, 파라-자일렌)의 농도 면에서 유리한 수직 구배를 촉진시킬 수 있는 것으로 밝혀졌다. 전체적으로 비교적 균일한 농도를 갖는 잘-혼합된 반응 매질을 선호하는 종래의 지식과는 대조적으로, 산소 및/또는 산화가능한 화합물 농도의 수직 단계화는 더욱 효과적이고 경제적인 산화 반응을 촉진시키는 것으로 밝혀졌다. 반응 매질(36)의 상부 근처에서 산소 및 산화가능한 화합물 농도를 최소화시킴으로써, 상부 기체 출구(40)를 통한 미반응 산소 및 반응되지 않은 산화가능한 화합물의 손실을 피하는데 도움을 줄 수 있다. 그러나, 산화가능한 화합물 및 미반응 산소의 농도가 반응 매질(36) 전체에서 낮은 경우에는, 산화의 속도 및/또는 선택성이 감소된다. 그러므로, 분자 산소 및/또는 산화가능한 화합물의 농도가 반응 매질(36)의 상부 근처보다 반응 매질(36)의 저부 근처에서 상당히 더 높은 것이 바람직하다.
또한, 높은 L:D 및 H:W 비는 반응 매질(36)의 저부에서의 압력이 반응 매질(36)의 상부에서의 압력보다 상당히 더 크도록 한다. 이 수직 압력 구배는 반응 매질(36)의 높이 및 밀도의 결과이다. 이 수직 압력 구배의 한 이점은, 용기의 저부에서의 높아진 압력 때문에, 얕은 반응기에서 필적할만한 온도 및 오버헤드 압력에서 달리 달성될 수 있는 것보다 더 높은 산소 용해도 및 더 많은 물질 전달이 이루어질 수 있다는 것이다. 그러므로, 더 얕은 용기에서 필요한 것보다 더 낮은 온도에서 산화 반응을 수행할 수 있다. 파라-자일렌을 부분 산화시켜 조질 테레프탈산(CTA)을 생성시키는데 기포탑 반응기(20)를 이용하는 경우, 동일하거나 더 우수한 산소 물질 전달 속도와 함께 더 낮은 반응 온도에서 작동될 수 있는 능력은 다수의 이점을 갖는다. 예를 들어, 파라-자일렌의 저온 산화는 반응 동안 연소되는 용매의 양을 감소시킨다. 이후 더욱 상세하게 논의되는 바와 같이, 저온 산화는 또한 작고 표면적이 높으며 느슨하게 결합되고 용이하게 용해되는 CTA 입자의 생성을 촉진시키는데, 이러한 CTA 입자는 종래의 고온 산화 공정에 의해 생성되는 크고 표면적이 낮으며 조밀한 CTA 입자보다 더욱 경제적으로 정제될 수 있다.
반응기(20)에서의 산화 동안, 반응 매질(36)의 시간-평균 및 부피-평균 온도를 약 125 내지 약 200℃, 더욱 바람직하게는 약 140 내지 약 180℃, 가장 바람직하게는 150 내지 170℃로 유지시키는 것이 바람직하다. 반응 매질(36) 위의 오버헤드 압력은 바람직하게는 약 1 내지 약 20바게이지(barg), 더욱 바람직하게는 약 2 내지 약 12barg, 가장 바람직하게는 4 내지 8barg로 유지된다. 바람직하게는, 반응 매질(36)의 상부와 반응 매질(36)의 저부 사이의 압력 차이는 약 0.4 내지 약 5바이고, 더욱 바람직하게는 압력 차이는 약 0.7 내지 약 3바이며, 가장 바람직하게는 압력 차이는 1 내지 2바이다. 반응 매질(36) 위의 오버헤드 압력이 비교적 일정한 값으로 유지되는 것이 일반적으로 바람직하지만, 본 발명의 한 실시양태는 반응 매질(36)에서의 개선된 혼합 및/또는 물질 전달을 촉진시키기 위하여 오버헤드 압력을 펄스식으로 변동시킴을 고려한다. 오버헤드 압력이 펄스식으로 변동되는 경우, 펄스식으로 변동되는 압력이 본원에 인용된 정상상태 오버헤드 압력의 약 60 내지 약 140%, 더욱 바람직하게는 본원에 인용된 정상상태 오버헤드 압력의 약 85 내지 약 115%, 가장 바람직하게는 본원에 인용된 정상상태 오버헤드 압력의 95 내지 105%인 것이 바람직하다.
반응 대역(28)의 높은 L:D 비의 추가적인 이점은 이것이 반응 매질(36)의 평균 표면 속도의 증가에 기여할 수 있다는 것이다. 반응 매질(36)과 관련하여 본원에 사용되는 용어 "표면 속도" 및 "표면 기체 속도"는 특정 높이에서 반응기의 수평 단면적으로 나눈, 반응기의 상기 높이에서의 반응 매질(36)의 기상의 부피 유속을 일컫는다. 반응 대역(28)의 높은 L:D 비에 의해 제공되는 표면 속도 증가는 반응 매질(36)의 국부적인 혼합을 촉진시키고 기체 보유율을 증가시킨다. 반응 매질(36)의 높이의 1/4, 1/2 및/또는 3/4에서의 반응 매질(36)의 시간-평균 표면 속도는 바람직하게는 약 0.3m/초보다 크고, 더욱 바람직하게는 약 0.8 내지 약 5m/초이며, 더더욱 바람직하게는 약 0.9 내지 약 4m/초이고, 가장 바람직하게는 1 내지 3m/초이다.
다시 도 1을 참조하면, 기포탑 반응기(20)의 분리 구역(26)은 단순히 반응 구역(24) 바로 위에 위치한 용기 쉘(22)의 확장된 부분이다. 분리 구역(26)은 기상이 반응 매질(36)의 상부 표면(44) 위로 올라가서 기체 출구(40)에 접근할 때 기포탑 반응기(20) 내의 상향-이동 기상의 속도를 감소시킨다. 기상의 상향 속도의 이러한 감소는 상향 유동 기상중에 연행된 액체 및/또는 고체의 용이한 제거를 돕고, 이에 따라 반응 매질(36)의 액상중에 존재하는 특정 성분의 바람직하지 못한 손실을 감소시킨다.
분리 구역(26)은 바람직하게는 대략 절두 원추형(frustoconical)인 전이 벽(54), 대략 원통형인 넓은 측벽(56) 및 상부 헤드(58)를 포함한다. 전이 벽(54)의 좁은 하부 말단은 반응 구역(24)의 원통형 주몸체부(46)의 상부에 연결된다. 전이 벽(54)의 넓은 상부 말단은 넓은 측벽(56)의 저부에 연결된다. 전이 벽(54)이 수직에서 약 10 내지 약 70°, 더욱 바람직하게는 수직에서 약 15 내지 약 50°, 가장 바람직하게는 수직에서 15 내지 45°의 각도로 그의 좁은 하부 말단으로부터 상향 및 외향 연장되는 것이 바람직하다. 반응 구역(24)의 상부가 반응 구역(24)의 전체적인 최대 직경보다 더 작은 직경을 갖는 경우, X가 실제로 D보다 더 작을 수 있기는 하지만, 넓은 측벽(56)은 일반적으로 반응 구역(24)의 최대 직경 "D"보다 더 큰 최대 직경 "X"를 갖는다. 본 발명의 바람직한 실시양태에서, 넓은 측벽(56)의 직경 대 반응 구역(24)의 최대 직경의 비 "X:D"는 약 0.8:1 내지 약 4:1, 가장 바람직하게는 1.1:1 내지 2:1이다. 상부 헤드(58)는 넓은 측벽(56)의 상부에 연결된다. 상부 헤드(58)는 바람직하게는 기체가 기체 출구(40)를 통해 분리 대역(30)에서 나갈 수 있도록 하는 중심 개구를 한정하는 대략 타원형의 헤드 부재이다. 다르게는, 상부 헤드(58)는 원추형을 비롯한 임의의 형상일 수 있다. 분리 대역(30)은 반응 대역(28)의 상부(50)로부터 분리 대역(30)의 최상부까지 측정된 최대 높이 "Y"를 갖는다. 반응 대역(28)의 길이 대 분리 대역(30)의 높이의 비 "L:Y"는 바람직하게는 약 2:1 내지 약 24:1, 더욱 바람직하게는 약 3:1 내지 약 20:1, 가장 바람직하게는 4:1 내지 16:1이다.
이제 도 1 내지 도 5를 참조하여, 산화제 스파저(34)의 위치 및 구성을 더욱 상세하게 논의한다. 도 2 및 도 3은 산화제 스파저(34)가 고리 부재(60), 횡단 부재(62) 및 한 쌍의 산화제 유입 도관(64a, 64b)을 포함할 수 있음을 보여준다. 편의를 위해, 이들 산화제 유입 도관(64a, 64b)은 고리 부재(60)보다 높은 위치에서 용기에 들어간 다음 도 2 및 도 3에 도시된 바와 같이 아래쪽으로 구부러질 수 있다. 다르게는, 산화제 유입 도관(64a, 64b)은 고리 부재(60) 아래에서 또는 고리 부재(60)와 거의 동일한 수평 평면 상에서 용기에 들어갈 수 있다. 각 산화제 유입 도관(64a, 64b)은 용기 쉘(22)에 형성된 개별적인 산화제 입구(66a, 66b)에 연결된 제 1 말단 및 고리 부재(60)에 가변적으로(fluidly) 연결된 제 2 말단을 포함한다. 고리 부재(60)는 바람직하게는 도관으로, 더욱 바람직하게는 복수개의 직선 도관 구획으로, 가장 바람직하게는 서로 강하게 연결되어 관상 다각형 고리를 형성하는 복수개의 직선 파이프 구획으로 이루어진다. 바람직하게는, 고리 부재(60)는 3개 이상의 직선 파이프 구획, 더욱 바람직하게는 6 내지 10개의 파이프 구획, 가장 바람직하게는 8개의 파이프 구획으로 이루어진다. 따라서, 고리 부재(60)가 8개의 파이프 구획으로 이루어지는 경우, 이는 개략적으로 팔각형 구조를 갖는다. 횡단 부재(62)는 바람직하게는 고리 부재(60)의 대향하는 파이프 구획 사이에 가변적으로 연결되고 상기 파이프 구획 사이에 대각선으로 연장되는 실질적인 직선 파이프 구획으로 이루어진다. 횡단 부재(62)에 사용되는 파이프 구획은 바람직하게는 고리 부재(60)를 형성하는데 사용되는 파이프 구획과 실질적으로 동일한 직경을 갖는다. 산화제 유입 도관(64a, 64b), 고리 부재(60) 및 횡단 부재(62)를 구성하는 파이프 구획이 약 0.1m보다 크고, 더욱 바람직하게는 약 0.2 내지 약 2m이고, 가장 바람직하게는 0.25 내지 1m인 공칭 직경을 갖는 것이 바람직하다. 도 3에 가장 잘 도시된 바와 같이, 고리 부재(60) 및 횡단 부재(62)는 각각 산화제 스트림을 반응 대역(28) 내로 상향 방출시키기 위한 복수개의 상부 산화제 개구(68)를 제공한다. 도 4에 가장 잘 도시된 바와 같이, 고리 부재(60) 및/또는 횡단 부재(62)는 산화제 스트림을 반응 대역(28) 내로 하향 방출시키기 위한 하나 이상의 하부 산화제 개구(70)를 제공할 수 있다. 하부 산화제 개구(70)를 이용하여 또한 고리 부재(60) 및/또는 횡단 부재(62) 내에 들어간 액체 및/또는 고체를 방출시킬 수도 있다. 산화제 스파저(34) 내부에 고체가 축적되는 것을 방지하기 위하여, 스파저(34)를 통해 액체 스트림을 연속적으로 또는 주기적으로 통과시켜, 임의의 축적된 고체를 플러쉬시킬 수 있다.
다시 도 1 내지 도 4를 참조하면, 기포탑 반응기(20)에서의 산화 동안, 산화제 스트림은 각각 산화제 입구(66a, 66b)를 통해 산화제 유입 도관(64a, 64b) 내로 밀려들어간다. 이어, 산화제 스트림은 산화제 유입 도관(64a, 64b)을 통해 고리 부재(60)로 운송된다. 산화제 스트림이 고리 부재(60)에 들어간 후에는, 고리 부재(60) 및 횡단 부재(62)의 내부 부피 전체에 산화제 스트림이 분배된다. 이어, 산화제 스트림은 고리 부재(60) 및 횡단 부재(62)의 상부 및 하부 산화제 개구(68, 70)를 통해 산화제 스파저(34) 밖으로 및 반응 대역(28) 내로 밀려나온다.
상부 산화제 개구(68)의 출구는 서로 측방향으로 이격되어 있고 반응 대역(28)에서 실질적으로 동일한 높이에 위치한다. 그러므로, 상부 산화제 개구(68)의 출구는 일반적으로 산화제 스파저(34)의 상부에 의해 한정되는 실질적인 수평 평면을 따라 위치된다. 하부 산화제 개구(70)의 출구는 서로 측방향으로 이격되어 있고 반응 대역(28)에서 실질적으로 동일한 높이에 위치한다. 따라서, 하부 산화제 개구(70)의 출구는 일반적으로 산화제 스파저(34)의 저부에 의해 한정되는 실질적인 수평 평면을 따라 위치된다.
본 발명의 한 실시양태에서, 산화제 스파저(34)는 그 안에 형성된 약 20개 이상의 상부 산화제 개구(68)를 갖는다. 더욱 바람직하게는, 산화제 스파저(34)는 그 안에 형성된 상부 산화제 개구를 약 40 내지 약 800개 갖는다. 가장 바람직하게는, 산화제 스파저(34)는 그 안에 형성된 상부 산화제 개구(68)를 60 내지 400개 갖는다. 산화제 스파저(34)는 바람직하게는 그 안에 형성된 하부 산화제 개구(70)를 대략 하나 이상 갖는다. 더욱 바람직하게는, 산화제 스파저(34)는 그 안에 형성된 하부 산화제 개구(70)를 약 2 내지 약 40개 갖는다. 가장 바람직하게는, 산화제 스파저(34)는 그 안에 형성된 하부 산화제 개구(70)를 8 내지 20개 갖는다. 산화제 스파저(34)의 상부 산화제 개구(68) 대 하부 산화제 개구(70)의 수의 비는 바람직하게는 약 2:1 내지 약 100:1, 더욱 바람직하게는 약 5:1 내지 약 25:1, 가장 바람직하게는 8:1 내지 15:1이다. 실질적으로 모든 상부 및 하부 산화제 개구(68, 70)의 직경은 바람직하게는 실질적으로 동일하여, 상부 개구(68) 및 하부 개구(70) 밖으로 나오는 산화제 스트림의 부피 유속의 비가 상부 산화제 개구(68) 및 하부 산화제 개구(70)의 상대적인 수에 대해 상기 기재된 비와 실질적으로 동일하다.
도 5는 상부 및 하부 산화제 개구(68, 70)로부터의 산화제 방출 방향을 도시한다. 상부 산화제 개구(68)와 관련하여, 상부 산화제 개구(68)의 적어도 일부가 산화제 스트림을 수직으로부터 기울어진 각도 "A"로 방출시키는 것이 바람직하다. 수직으로부터 각도 "A"만큼 기울어진 상부 산화제 개구(68)의 백분율이 약 30 내지 약 90%, 더욱 바람직하게는 약 50 내지 약 80%, 더더욱 바람직하게는 60 내지 75%, 가장 바람직하게는 약 67%인 것이 바람직하다. 각도 "A"는 바람직하게는 약 5 내지 약 60°, 더욱 바람직하게는 약 10 내지 약 45°, 가장 바람직하게는 15 내지 30°이다. 하부 산화제 개구(70)에 대해서는, 실질적으로 모든 하부 산화제 개구(70)가 고리 부재(60) 및/또는 횡단 부재(62)의 가장 저부 근처에 위치되는 것이 바람직하다. 따라서, 의도치 않게 산화제 스파저(34)에 들어갈 수 있는 임의의 액체 및/또는 고체를 하부 산화제 개구(70)를 통해 산화제 스파저(34)로부터 용이하게 방출시킬 수 있다. 바람직하게는, 하부 산화제 개구(70)는 실질적으로 수직인 각도로 산화제 스트림을 하향 방출시킨다. 본원에서, 상부 상화제 개구는 산화제 스트림을 개략적으로 위쪽 방향으로(즉, 수평보다 큰 각도로) 방출시키는 임의의 개구일 수 있고, 하부 산화제 개구는 산화제 스트림을 개략적으로 아래쪽 방향으로(즉, 수평 미만의 각도로) 방출시키는 임의의 개구일 수 있다.
다상 반응 매질을 함유하는 다수의 종래의 기포탑 반응기에서는, 산화제 스파저(또는 산화제 스트림을 반응 대역 내로 도입하기 위한 다른 기계장치) 아래에 위치되는 실질적으로 모든 반응 매질이 매우 낮은 기체 보유율 값을 갖는다. 당해 분야에 공지되어 있는 바와 같이, "기체 보유율"은 단순히 기상 상태인 다상 매질의 부피 분율이다. 매질중 낮은 기체 보유율의 대역을 "탈기된 대역"이라고도 할 수 있다. 다수의 종래의 슬러리 기포탑 반응기에서는, 반응 매질의 총 부피의 상당 부분이 산화제 스파저(또는 산화제 스트림을 반응 대역 내로 도입하기 위한 다른 기계장치) 아래에 위치한다. 따라서, 종래의 기포탑 반응기의 저부에 존재하는 반응 매질의 상당 부분이 탈기된다.
기포탑 반응기에서 산화되는 반응 매질중 탈기된 대역의 양을 최소화시키면 특정 유형의 바람직한 못한 불순물의 발생을 최소화시킬 수 있는 것으로 밝혀졌다. 반응 매질의 탈기된 대역은 비교적 소량의 산화제 기포를 함유한다. 산화제 기포가 이렇게 적은 부피로 존재함으로써 반응 매질의 액상 내로 용해되는데 이용될 수 있는 분자 산소의 양이 감소된다. 따라서, 반응 매질의 탈기된 대역중 액상은 비교적 낮은 분자 산소 농도를 갖는다. 반응 매질의 이러한 산소-결핍된 탈기된 대역은 목적하는 산화 반응보다는 바람직하지 못한 부반응을 촉진시키는 경향을 갖는다. 예를 들어, 파라-자일렌을 부분 산화시켜 테레프탈산을 생성시키는 경우, 반응 매질의 액상에서의 불충분한 산소 이용효율 때문에 바람직하지 못한 다량의 벤조산 및 커플링된 방향족 고리(플루오렌온 및 안트라퀴논으로 알려져 있는 매우 바람직하지 못한 착색된 분자 포함)를 생성시킬 수 있다.
본 발명의 한 실시양태에 따라, 낮은 기체 보유율 값을 갖는 반응 매질의 부피 분율이 최소화되도록 하는 방식으로 구성 및 작동되는 기포탑 반응기에서 액상 산화를 수행한다. 반응 매질의 전체 부피를 균일한 부피의 별개의 수평 분층 2,000개로 이론적으로 분할함으로써 이러한 탈기된 대역의 최소화를 정량할 수 있다. 최고 수평 분층 및 최저 수평 분층을 제외하고, 각각의 수평 분층은 반응기의 측벽에 의해 측부의 경계가 세워지고 가상의 수평 평면에 의해 그의 상부 및 저부의 경계가 세워지는 별개의 부피이다. 최고 수평 분층은 가상의 수평 평면에 의해 그의 저부의 경계가 세워지고 반응 매질의 상부 표면에 의해 그의 상부의 경계가 세워진다. 최저 수평 분층은 가상의 수평 평면에 의해 그의 상부의 경계가 세워지고 용기의 하부 말단에 의해 저부의 경계가 세워진다. 반응 매질을 동일한 부피의 별개의 수평 분층 2,000개로 이론적으로 분할시킨 후에는, 각 수평 분층의 시간-평균 및 부피-평균 기체 보유율을 결정할 수 있다. 탈기된 대역의 양을 정량하는 이 방법을 이용하는 경우, 0.1 미만의 시간-평균 및 부피-평균 기체 보유율을 갖는 수평 분층의 수가 30개 미만, 더욱 바람직하게는 15개 미만, 더욱더 바람직하게는 6개 미만, 더더욱 바람직하게는 4개 미만, 가장 바람직하게는 2개 미만인 것이 바람직하다. 0.2 미만의 기체 보유율을 갖는 수평 분층의 수가 80개 미만, 더욱 바람직하게는 40개 미만, 더욱더 바람직하게는 20개 미만, 더더욱 바람직하게는 12개 미만, 가장 바람직하게는 5개 미만인 것이 바람직하다. 0.3 미만의 기체 보유율을 갖는 수평 분층의 수가 120개 미만, 더욱 바람직하게는 80개 미만, 더욱더 바람직하게는 40개 미만, 더더욱 바람직하게는 20개 미만, 가장 바람직하게는 15개 미만인 것이 바람직하다.
다시 도 1 및 도 2에서, 산화제 스파저(34)를 반응 대역(28)의 하부에 위치시키면, 반응 매질(36)중 탈기된 대역의 양의 감소를 비롯한 몇 가지 이점을 제공하는 것으로 밝혀졌다. 반응 매질(36)의 높이 "H", 반응 대역(28)의 길이 "L" 및 반응 대역(28)의 최대 직경 "D"가 주어질 때, 산화제 스트림의 대부분(즉, 50중량%보다 많음)이 반응 대역(28)의 하부 말단(52)의 약 0.025H, 0.022L 및/또는 0.25D 내에서 반응 대역(28) 내로 도입되는 것이 바람직하다. 더욱 바람직하게는, 산화제 스트림의 대부분은 반응 대역(28)의 하부 말단(52)의 약 0.02H, 0.018L 및/또는 0.2D 내에서 반응 대역(28) 내로 도입된다. 가장 바람직하게는, 산화제 스트림의 대부분은 반응 대역(28)의 하부 말단(52)의 0.015H, 0.013L 및/또는 0.15D 내에서 반응 대역(28) 내로 도입된다.
도 2에 도시된 실시양태에서, 반응 대역(28)의 하부 말단(52)과 산화제 스파저(34)의 상부 산화제 개구(68)의 출구 사이의 수직 거리 "Y1"은 약 0.25H, 0.022L 및/또는 0.25D 미만이어서, 실질적으로 모든 산화제 스트림이 반응 대역(28)의 하부 말단(52)의 약 0.25H, 0.022L 및/또는 0.25D 내에서 반응 대역(28)에 들어간다. 더욱 바람직하게는, Y1은 약 0.02H, 0.018L 및/또는 0.2D 미만이다. 가장 바람직하게는, Y1은 0.015H, 0.013L 및/또는 0.15D 미만이고 0.005H, 0.004L 및/또는 0.06D보다 크다. 도 2는 용기 쉘(22)의 원통형 주몸체부(46)의 저부 가장자리가 용기 쉘(22)의 타원형 하부 헤드(48)의 상부 가장자리와 연결되는 위치에 접선을 도시한다. 다르게는, 하부 헤드(48)는 원추형을 비롯한 임의의 형상일 수 있고, 접선은 여전히 원통형 주몸체부(46)의 저부 가장자리로서 정의된다. 접선(72)과 산화제 스파저(34)의 상부 사이의 수직 거리 "Y2"는 바람직하게는 약 0.0012H, 0.001L 및/또는 0.01D 이상; 더욱 바람직하게는 약 0.005H, 0.004L 및/또는 0.05D 이상; 가장 바람직하게는 0.01H, 0.008L 및/또는 0.1D 이상이다. 반응 대역(28)의 하부 말단(52)과 산화제 스파저(34)의 하부 산화제 개구(70)의 출구 사이의 수직 거리 "Y3"는 바람직하게는 약 0.015H, 0.013L 및/또는 0.15D 미만; 더욱 바람직하게는 약 0.012H, 0.01L 및/또는 0.1D 미만; 가장 바람직하게는 0.01H, 0.008L 및/또는 0.075D 미만이고 0.003H, 0.002L 및/또는 0.025D보다 크다.
본 발명의 바람직한 실시양태에서, 산화제 스트림 및 공급물 스트림을 반응 대역 내로 방출시키는 개구는, 개구로부터 방출되는 산화제 또는 공급물 스트림의 양(중량 기준)이 개구의 개방 면적에 직접적으로 비례하도록 구성된다. 따라서, 예를 들어 모든 산화제 개구에 의해 한정되는 누적 개방 면적의 50%가 반응 대역의 저부의 0.15D 내에 위치하면, 산화제 스트림의 50중량%가 반응 대역의 저부의 0.15D 내에서 반응 대역에 들어가고, 그 역도 성립한다.
반응 매질(36)중 탈기된 대역(즉, 낮은 기체 보유율을 갖는 대역)을 최소화시킴으로써 제공되는 이점에 덧붙여, 전체 반응 매질(36)의 기체 보유율을 최대화시킴으로써 산화를 향상시킬 수 있음을 발견하였다. 반응 매질(36)은 바람직하게는 약 0.4 이상, 더욱 바람직하게는 약 0.6 내지 약 0.9, 가장 바람직하게는 0.65 내지 0.85의 시간-평균 및 부피-평균 기체 보유율을 갖는다. 기포탑 반응기(20)의 몇몇 물리적 속성 및 작동 속성은 상기 논의된 높은 기체 보유율에 기여한다. 예를 들어, 소정의 반응기 크기 및 산화제 스트림의 유동에 있어서, 반응 대역(28)의 높은 L:D 비는 직경을 더 작게 만들고, 이는 반응 매질(36)에서의 표면 속도를 증가시키며, 이는 다시 기체 보유율을 증가시킨다. 또한, 기포탑의 실제 직경 및 L:D 비는 소정의 일정한 표면 속도에서 평균 기체 보유율에 영향을 끼치는 것으로 알려져 있다. 또한, 특히 반응 대역(28)의 저부에서의 탈기된 대역의 최소화는 증가된 기체 보유율 값에 기여한다. 또한, 기포탑 반응기의 오버헤드 압력 및 기계적 구성은 높은 표면 속도 및 본원에 개시된 기체 보유율 값에서 작동 안정성에 영향을 끼칠 수 있다.
뿐만 아니라, 본 발명자들은 증가된 기체 보유율 및 증가된 물질 전달을 수득하기 위하여 최적화된 오버헤드 압력에서의 작동의 중요성을 발견하였다. 헨리의 법칙(Henry's Law) 효과에 따라 분자 산소의 용해도를 감소시키는 보다 낮은 오버헤드 압력에서의 작동은 기체로부터 액체로의 분자 산소의 물질 전달 속도를 감소시키는 것으로 보인다. 기계 진탕식 용기에서는, 폭기 수준 및 물질 전달 속도가 진탕기 디자인 및 오버헤드 압력에 의해 좌우되기 때문에, 이는 전형적으로 상기의 경우에 해당된다. 그러나, 본 발명의 바람직한 실시양태에 따른 기포탑 반응기에서는, 보다 낮은 오버헤드 압력을 이용하여 기상 산화제 스트림의 소정 질량이 더 많은 부피를 점유하도록 함으로써 반응 매질(36)에서의 표면 속도를 증가시키고 다시 기체 보유율 및 분자 산소의 전달 속도를 증가시키는 방법을 발견하였다.
기포 응집과 붕괴 사이의 평형은, 한편으로는 액상의 내부 순환 속도를 감소시키고 매우 큰 분리 대역을 필요로 할 수 있는 발포 경향, 및 다른 한편으로는 보다 낮은 기체 보유율 및 산화제 스트림으로부터 액상으로의 더 낮은 물질 전달 속도를 나타내는 매우 큰 기포가 더 적은 경향을 야기하는 매우 복잡한 현상이다. 액상과 관련하여, 다른 인자 중에서도 그의 조성, 밀도, 점도 및 표면 장력은 매우 복잡한 방식으로 상호 작용하여, 고상의 부재시에도 매우 복잡한 결과를 생성시키는 것으로 알려져 있다. 예를 들어, 실험실 연구자들은 매우 간단한 물-기포탑의 경우에도 보고 및 평가를 위한 관찰시에는 "물"이 수돗물, 증류수 또는 탈이온수인지의 여부를 한정하는 것이 유용함을 발견하였다. 액상에서의 복잡한 혼합물 및 고상의 첨가의 경우에는, 복잡함의 정도가 더 높아진다. 다른 것들 중에서도, 고체의 개별적인 입자의 표면 불균일, 고체의 평균 크기, 입자 크기 분포, 액상에 대한 고체의 양, 및 고체의 표면을 습윤시키는 액체의 능력은 모두 어떤 발포 거동 및 천연 환류 유동 패턴이 야기되는지를 결정하는데 있어서 액상 및 산화제 스트림과의 상호작용에 중요하다.
그러므로, 기포탑 반응기가 본원에 개시된 바와 같이 높은 표면 속도 및 높은 기체 보유율을 나타내면서 유용하게 기능하는 능력은 예를 들어 (1) 반응 매질의 액상의 조성; (2) 침전되는 고체의 양 및 유형(이 둘은 모두 반응 조건에 의해 조정될 수 있음); (3) 반응기로 공급되는 산화제 스트림의 양; (4) 산화제 스트림의 부피 유동, 기포의 안정성 및 에너지 평형을 통해 반응 온도에 영향을 끼치는 오버헤드 압력; (5) 유체 특성, 침전되는 고체의 특성 및 산화제 스트림의 특정 부피에 영향을 끼치는 반응 온도 자체; 및 (6) L:D 비를 비롯한 반응 용기의 기하학적 구조 및 기계적 세부사항의 적절한 선택에 따라 달라진다.
다시 도 1을 보면, 다수개의 수직으로 이격된 위치에서 액상 공급물 스트림을 반응 대역(28) 내로 도입함으로써 산화가능한 화합물(예컨대, 파라-자일렌)을 반응 매질(36) 중에 개선되게 분배할 수 있는 것으로 밝혀졌다. 바람직하게는, 3개 이상의 공급물 개구, 더욱 바람직하게는 4개 이상의 공급물 개구를 통해 액상 공급물 스트림을 반응 대역(28) 내로 도입한다. 본원에 사용되는 용어 "공급물 개구"는 반응 매질(36)과 혼합시키기 위하여 액상 공급물 스트림을 반응 대역(28) 내로 방출시키는 개구를 일컫는다. 공급물 개구중 2개 이상이 약 0.5D 이상, 더욱 바람직하게는 약 1.5D 이상, 가장 바람직하게는 3D 이상 서로 수직으로 이격되는 것이 바람직하다. 그러나, 최고 공급물 개구가 최저 산화제 개구로부터 약 0.75H, 0.65L 및/또는 8D 이하, 더욱 바람직하게는 0.5H, 0.4L 및/또는 5D 이하, 가장 바람직하게는 0.4H, 0.35L 및/또는 4D 이하만큼 수직으로 이격되는 것이 바람직하다.
다수개의 수직 위치에서 액상 공급물 스트림을 도입하는 것이 바람직하기는 하지만, 액상 공급물 스트림의 대다수가 반응 매질(36) 및/또는 반응 대역(28)의 저부 절반 내로 도입된다면 반응 매질(36) 중에 산화가능한 화합물을 개선되게 분배시키는 것으로 밝혀졌다. 바람직하게는, 액상 공급물 스트림의 약 75중량% 이상을 반응 매질(36) 및/또는 반응 대역(28)의 저부 절반 내로 도입한다. 가장 바람직하게는, 액상 공급물 스트림의 90중량% 이상을 반응 매질(36) 및/또는 반응 대역(28)의 저부 절반 내로 도입한다. 또한, 액상 공급물 스트림의 약 30중량% 이상을, 산화제 스트림을 반응 대역(28) 내로 도입하는 최저 수직 위치의 약 1.5D 이내에서 반응 대역(28) 내로 도입하는 것이 바람직하다. 산화제 스트림을 반응 대역(28) 내로 도입하는 이 최저 수직 위치는 전형적으로 산화제 스파저의 저부이다. 그러나, 산화제 스트림을 반응 대역(28) 내로 도입하는 다양한 다른 구성도 본 발명의 바람직한 실시양태에 의해 고려된다. 바람직하게는, 액상 공급물의 약 50중량% 이상을, 산화제 스트림을 반응 대역(28) 내로 도입하는 최저 수직 위치의 약 2.5D 이내에서 도입한다. 바람직하게는, 액상 공급물 스트림의 약 75중량% 이상을, 산화제 스트림을 반응 대역(28) 내로 도입하는 최저 수직 위치의 약 5D 이내에서 도입한다.
각각의 공급물 개구는 공급물을 방출하는 개방 면적을 한정한다. 모든 공급물 입구의 누적 개방 면적의 약 30% 이상을, 산화제 스트림을 반응 대역(28) 내로 도입하는 최저 수직 위치의 약 1.5D 이내에 위치시키는 것이 바람직하다. 바람직하게는, 모든 공급물 입구의 누적 개방 면적의 약 50% 이상을, 산화제 스트림을 반응 대역(28) 내로 도입하는 최저 수직 위치의 약 2.5D 이내에 위치시킨다. 바람직하게는, 모든 공급물 입구의 누적 개방 면적의 약 75% 이상을, 산화제 스트림을 반응 대역(28) 내로 도입하는 최저 수직 위치의 약 5D 이내에 위치시킨다.
다시 도 1을 보면, 본 발명의 한 실시양태에서, 공급물 입구(32a, 32b, 32c, 32d)는 단순히 용기 쉘(22)의 한쪽 측부를 따라 존재하는 일련의 수직 정렬된 개구이다. 이들 공급물 개구는 바람직하게는 약 7cm 미만, 더욱 바람직하게는 약 0.25 내지 약 5cm, 가장 바람직하게는 0.4 내지 2cm의 실질적으로 유사한 직경을 갖는다. 기포탑 반응기(20)에는 각각의 공급물 개구로부터 나오는 액상 공급물 스트림의 유속을 조절하기 위한 시스템이 바람직하게 설치된다. 이러한 유동 조절 시스템은 바람직하게는 각각의 개별적인 공급물 입구(32a, 32b, 32c, 32d)에 대한 개별적인 유동 조절 밸브(74a, 74b, 74c, 74d)를 포함한다. 뿐만 아니라, 액상 공급물 스트림의 적어도 일부를 약 2m/초 이상, 더욱 바람직하게는 약 5m/초 이상, 더더욱 바람직하게는 약 6m/초 이상, 가장 바람직하게는 8 내지 20m/초의 높은 입구 표면 속도로 반응 대역(28) 내로 도입할 수 있는 유동 조절 시스템을 기포탑 반응기(20)에 설치하는 것이 바람직하다. 본원에 사용되는 용어 "입구 표면 속도"는 공급물 개구의 면적으로 나눈, 공급물 개구로부터 나오는 공급물 스트림의 시간-평균 부피 유속을 말한다. 바람직하게는, 공급물 스트림의 약 50중량% 이상을 높은 입구 표면 속도로 반응 대역(28) 내로 도입한다. 가장 바람직하게는, 실질적으로 모든 공급물 스트림을 높은 입구 표면 속도로 반응 대역(28) 내로 도입한다.
이제 도 6 및 도 7을 참조하면, 액상 공급물 스트림을 반응 대역(28) 내로 도입하기 위한 다른 시스템이 도시되어 있다. 이 실시양태에서는, 공급물 스트림을 4개의 상이한 높이에서 반응 대역(28) 내로 도입한다. 각각의 높이에는 개별적인 공급물 분배 시스템(76a, 76b, 76c, 76d)이 설치되어 있다. 각각의 공급물 분배 시스템(76)은 주 공급물 도관(78) 및 매니폴드(80)를 포함한다. 각각의 매니폴드(80)에는 용기 쉘(22)의 반응 대역(28) 내로 연장되는 개별적인 삽입 도관(86, 88)과 연결된 둘 이상의 출구(82, 84)가 있다. 각각의 삽입 도관(86, 88)은 공급물 스트림을 반응 대역(28) 내로 방출시키기 위한 개별적인 공급물 개구(87, 89)를 제공한다. 공급물 개구(87, 89)는 바람직하게는 약 7cm 미만, 더욱 바람직하게는 약 0.25 내지 약 5cm, 가장 바람직하게는 0.4 내지 2cm의 실질적으로 유사한 직경을 갖는다. 공급물 스트림을 대향하는 방향에서 반응 대역(28) 내로 도입하기 위하여 각각의 공급물 분배 시스템(76a, 76b, 76c, 76d)의 공급물 개구(87, 89)를 직경 기준으로 대향하게 위치시키는 것이 바람직하다. 또한, 인접한 공급물 분배 시스템(76)의 직경 기준으로 대향하게 위치된 공급물 개구(86, 88)를 서로에 대해 90° 회전시켜 배향시키는 것이 바람직하다. 작동시, 액상 공급물 스트림은 주 공급물 도관(78)으로 방출된 후 매니폴드(80)에 들어간다. 매니폴드(80)는 공급물 개구(87, 89)를 통해 반응기(20)의 대향하는 쪽에서 동시에 도입하기 위하여 공급물 스트림을 균일하게 분배한다.
도 8은 각각의 공급물 분배 시스템(76)에 삽입 도관(86, 88)(도 7에 도시됨)보다는 바요넷 관(90, 92)이 설치된 다른 구성을 도시한다. 바요넷 관(90, 92)은 반응 대역(28) 내로 돌출되고, 액상 공급물을 반응 대역(28) 내로 방출시키기 위한 복수개의 작은 공급물 개구(94, 96)를 포함한다. 바요넷 관(90, 92)의 작은 공급물 개구(94, 96)가 약 50mm 미만, 더욱 바람직하게는 약 2 내지 약 25mm, 가장 바람직하게는 4 내지 15mm의 실질적으로 동일한 직경을 갖는 것이 바람직하다.
도 9 내지 도 11은 다른 공급물 분배 시스템(100)을 도시한다. 공급물 분배 시스템(100)은 기포탑 반응기(20)의 측벽의 다수개의 관통구를 필요로 하지 않으면서 복수개의 수직으로 이격된 위치 및 측방향으로 이격된 위치에서 액상 공급물 스트림을 도입한다. 공급물 도입 시스템(100)은 일반적으로 단일 유입 도관(102), 헤더(104), 복수개의 직립형 분배 관(106), 측방향 지지 기계장치(108) 및 수직 지지 기계장치(110)를 포함한다. 유입 도관(102)은 용기 쉘(22)의 주몸체부(46)의 측벽을 관통한다. 유입 도관(102)은 헤더(104)에 가변적으로 연결된다. 헤더(104)는 유입 도관(102)으로부터 수령한 공급물 스트림을 직립형 분배 관(106) 각각에 균일하게 분배한다. 각각의 분배 관(106)은 공급물 스트림을 반응 대역(28) 내로 방출시키기 위한 복수개의 수직으로 이격된 공급물 개구(112a, 112b, 112c, 112d)를 갖는다. 측방향 지지 기계장치(108)는 각 분배 관(106)에 연결되고, 분배 관(106)의 상대적인 측방향 이동을 억제한다. 수직 지지 기계장치(110)는 바람직하게는 측방향 지지 기계장치(108)에 또한 산화제 스파저(34)의 상부에 연결된다. 수직 지지 기계장치(110)는 반응 대역(28)에서 분배 관(106)의 수직 이동을 실질적으로 억제한다. 공급물 개구(112)가 약 50mm 미만, 더욱 바람직하게는 약 2 내지 약 25mm, 가장 바람직하게는 4 내지 15mm의 실질적으로 동일한 직경을 갖는 것이 바람직하다. 도 9 내지 도 11에 도시된 공급물 분배 시스템(100)의 공급물 개구(112)의 수직 간격은 도 1의 공급물 분배 시스템과 관련하여 상기 기재된 것과 실질적으로 동일할 수 있다.
다수의 기포탑 반응기에서 반응 매질의 유동 패턴은 특히 산화가능한 화합물이 반응 매질의 한쪽 측부를 따라서 주로 도입되는 경우에 반응 매질중 산화가능한 화합물의 불균일한 방위각 분포를 허용할 수 있는 것으로 밝혀졌다. 본원에 사용되는 용어 "방위각"이란 반응 대역의 직립 연장축 주변의 각도 또는 간격을 일컫는다. 본원에 사용되는 "직립"이란 수직에서 45° 이내를 의미한다. 본 발명의 한 실시양태에서는, 산화가능한 화합물(예컨대, 파라-자일렌)을 함유하는 공급물 스트림을 복수개의 방위각 면에서 이격된 공급물 개구를 통해 반응 대역 내로 도입한다. 이들 방위각 면에서 이격된 공급물 개구는 반응 매질중 지나치게 높은 산화가능한 화합물 농도 및 지나치게 낮은 산화가능한 화합물 농도를 방지하는데 도움을 줄 수 있다. 도 6 내지 도 11에 도시된 다양한 공급물 도입 시스템은 공급물 개구의 적절한 방위각 간격을 제공하는 시스템의 예이다.
다시 도 7을 참조하면, 액상 공급물 스트림의 반응 매질 중으로의 방위각 면에서 이격된 도입을 정량하기 위하여, 반응 매질을 대략 동일한 부피의 직립형의 사분된 방위각 "Q1, Q2, Q3, Q4"로 이론적으로 분할시킬 수 있다. 이들 사분된 방위각 "Q1, Q2, Q3, Q4"는 반응 매질의 최대 수직 치수 및 최대 방사상 치수를 지나 연장되는 가상의 교차하는 직교 수직 평면 "P1, P2" 쌍에 의해 한정된다. 반응 매질이 원통형 용기에 함유되는 경우, 가상 교차 수직 평면 P1, P2의 교선은 원통의 수직 중심선과 대략 일치되고, 각각의 사분된 방위각 "Q1, Q2, Q3, Q4"는 일반적으로 반응 매질의 높이와 동일한 높이를 갖는 웨지-형상의 수직 부피이다. 산화가능한 화합물의 상당량을, 둘 이상의 상이한 사분된 방위각에 위치하는 공급물 개구를 통해 반응 매질 중으로 방출시키는 것이 바람직하다.
본 발명의 바람직한 실시양태에서는, 산화가능한 화합물의 약 80중량% 이하를 사분된 방위각중 하나에 위치할 수 있는 공급물 개구를 통해 반응 매질 중으로 방출시킨다. 더욱 바람직하게는, 산화가능한 화합물의 약 60중량% 이하를 사분된 방위각중 하나에 위치할 수 있는 공급물 개구를 통해 반응 매질 중으로 방출시킨다. 가장 바람직하게는, 산화가능한 화합물의 40중량% 이하를 사분된 방위각중 하나에 위치할 수 있는 공급물 개구를 통해 반응 매질 중으로 방출시킨다. 산화가능한 화합물의 가능한 최대량이 사분된 방위각중 하나 내로 방출되도록 사분된 방위각이 방위각-배향될 때, 산화가능한 화합물의 방위각 분포의 이들 매개변수를 측정한다. 예를 들어, 4개의 사분된 방위각에서의 방위각 분포를 결정하기 위하여, 서로 89°로 방위각 면에서 이격된 두 개구를 통해 전체 공급물 스트림을 반응 매질 중으로 방출시키는 경우, 사분된 방위각이 두 공급물 개구가 모두 사분된 방위각중 하나에 위치하도록 하는 방식으로 방위각-배향될 수 있기 때문에 공급물 스트림의 100중량%를 사분된 방위각중 하나에서 반응 매질 중으로 방출시킨다.
공급물 개구의 적절한 방위각 간격과 관련된 이점에 덧붙여, 기포탑 반응기에서의 공급물 개구의 적절한 방사상 간격도 중요할 수 있음을 발견하였다. 반응 매질 중으로 도입되는 산화가능한 화합물의 상당량을 용기 측벽으로부터 방사상 안쪽으로 이격된 공급물 개구를 통해 방출시키는 것이 바람직하다. 그러므로, 본 발명의 한 실시양태에서는, 산화가능한 화합물의 상당량이 반응 대역을 한정하는 직립형 측벽으로부터 안쪽으로 이격된 "바람직한 방사상 공급 대역"에 위치하는 공급물 개구를 통해 반응 대역에 들어간다.
다시 도 7을 참조하면, 바람직한 방사상 공급 대역 "FZ"는 반응 대역(28)에 중심을 두고 0.9D(여기에서 "D"는 반응 대역(28)의 직경임)의 외경 "Do"를 갖는 이론적인 직립형 원통의 형상을 취할 수 있다. 그러므로, 0.05D의 두께를 갖는 외부 환 "OA"는 바람직한 방사상 공급 대역(FZ)과 반응 대역(28)을 한정하는 측벽 내부 사이인 것으로 정의된다. 산화가능한 화합물이 이 외부 환(OA)에 위치하는 공급물 개구를 통해 반응 대역(28) 내로 거의 또는 전혀 도입되지 않는 것이 바람직하다.
다른 실시양태에서는, 산화가능한 화합물이 반응 대역(28)의 중심 내로 거의 또는 전혀 도입되지 않는 것이 바람직하다. 그러므로, 도 8에 도시된 바와 같이, 바람직한 방사상 공급 대역(FZ)은 반응 대역(28)에 중심을 두고 0.9D의 외경 DO 및 0.2D의 내경 DI를 갖는 이론적인 직립형 환의 형상을 취할 수 있다. 따라서, 이 실시양태에서, 0.2D의 직경을 갖는 내부 원통(IC)은 바람직한 방사상 공급 대역(FZ)의 중심의 "삭제부"이다. 산화가능한 화합물이 이 내부 원통(IC)에 위치하는 공급물 개구를 통해 반응 대역(28) 내로 거의 또는 전혀 도입되지 않는 것이 바람직하다.
본 발명의 바람직한 실시양태에서는, 바람직한 방사상 공급 대역이 상기 기재된 원통형 또는 환형인지의 여부에 관계없이, 바람직한 방사상 공급 대역에 위치하는 공급물 개구를 통해 산화가능한 화합물의 상당량을 반응 매질(36) 중으로 도입한다. 더욱 바람직하게는, 산화가능한 화합물의 약 25중량% 이상을 바람직한 방사상 공급 대역에 위치하는 공급물 개구를 통해 반응 매질(36) 중으로 방출시킨다. 더더욱 바람직하게는, 산화가능한 화합물의 약 50중량% 이상을 바람직한 방사상 공급 대역에 위치하는 공급물 개구를 통해 반응 매질(36) 중으로 방출시킨다. 가장 바람직하게는, 산화가능한 화합물의 75중량% 이상을 바람직한 방사상 공급 대역에 위치하는 공급물 개구를 통해 반응 매질(36) 중으로 방출시킨다.
도 7 및 도 8에 도시된 이론적인 사분된 방위각 및 이론적인 바람직한 방사상 공급 대역이 액상 공급물 스트림의 분배와 관련하여 기재되기는 하였으나, 기상 산화제 스트림의 적절한 방위각 분배 및 방사상 분배도 특정 이점을 제공할 수 있음을 발견하였다. 그러므로, 본 발명의 한 실시양태에서는, 상기 기재된 액상 공급물 스트림의 방위각 분배 및 방사상 분배에 대한 기재를, 기상 산화제 스트림을 반응 매질(36) 중으로 도입하는 방식에도 적용시킨다.
이제 도 12 내지 도 15를 보면, 다른 산화제 스파저(200)가 일반적으로 고리 부재(202) 및 한쌍의 산화제 유입 도관(204, 206)을 포함하는 것으로 도시되어 있다. 도 12 내지 도 15의 산화제 스파저(200)는 도 1 내지 도 11의 산화제 스파저(34)와 유사하지만, 하기 세 가지 주요한 차이점을 갖는다: (1) 산화제 스파저(200)가 대각선 횡단 부재를 포함하지 않고; (2) 고리 부재(202)의 상부가 상향으로 산화제를 방출시키기 위한 개구를 갖지 않으며; (3) 산화제 스파저(200)가 고리 부재(202)의 하부에 다수의 더 많은 개구를 갖는다.
도 14 및 도 15에 가장 잘 도시된 바와 같이, 산화제 스파저 고리(202)의 저부는 복수개의 산화제 개구(208)를 제공한다. 산화제 개구(208)는 산화제 개구(208)에 의해 한정되는 총 개방 면적의 약 1% 이상이 고리 부재(202)의 중심선(210)(도 15) 미만에 위치하도록(중심선(210)이 고리 부재(202)의 부피 중심의 높이에 위치하는 경우) 바람직하게 구성된다. 더욱 바람직하게는, 모든 산화제 개구(208)에 의해 한정되는 총 개방 면적의 약 5% 이상이 중심선(210) 미만에 위치하고, 총 개방 면적의 약 2% 이상이 산화제 스트림을 수직에서 약 30° 이내로 통상 하향 방출시키는 개구(208)에 의해 한정된다. 더더욱 바람직하게는, 모든 산화제 개구(208)에 의해 한정되는 총 개방 면적의 약 20% 이상이 중심선(210) 미만에 위치하고, 총 개방 면적의 약 10% 이상이 산화제 스트림을 수직에서 30° 이내로 통상 하향 방출시키는 개구(208)에 의해 한정된다. 가장 바람직하게는, 모든 산화제 개구(208)에 의해 한정되는 총 개방 면적의 약 75% 이상이 중심선(210) 미만에 위치하고, 총 개방 면적의 약 40% 이상이 산화제 스트림을 수직에서 30° 이내로 통상 하향 방출시키는 개구(208)에 의해 한정된다. 중심선(210)보다 높이 위치하는 모든 산화제 개구(208)에 의해 한정되는 총 개방 면적의 분율은 바람직하게는 약 75% 미만, 더욱 바람직하게는 약 50% 미만, 더욱더 바람직하게는 약 25% 미만, 가장 바람직하게는 5% 미만이다.
도 14 및 도 15에 도시되어 있는 바와 같이, 산화제 개구(208)는 하향 개구(208a) 및 비스듬한 개구(208b)를 포함한다. 하향 개구(208a)는 산화제 스트림을 수직에서 약 30° 이내, 더욱 바람직하게는 수직에서 약 15° 이내, 가장 바람직하게는 수직에서 5° 이내로 통상 하향 방출시키도록 구성된다. 기울어진 개구(208b)는 산화제 스트림을 수직으로부터 약 15 내지 약 75°인 각도 "A"에서 통상 외향 및 하향으로 방출시키며, 더욱 바람직하게는 각도 A는 수직으로부터 약 30 내지 약 60°이고, 가장 바람직하게는 각도 A는 수직으로부터 40 내지 50°이다.
실질적으로 모든 산화제 개구(208)가 대략 동일한 직경을 갖는 것이 바람직하다. 산화제 개구(208)의 직경은 바람직하게는 약 2 내지 약 300mm, 더욱 바람직하게는 약 4 내지 약 120mm, 가장 바람직하게는 8 내지 60mm이다. 고리 부재(202)중 산화제 개구(208)의 총수는 아래 상세하게 기재되는 낮은 압력 강하 기준을 충족시키도록 선택된다. 바람직하게는, 고리 부재(202)에 생성된 산화제 개구(208)의 총수는 약 10개 이상이고, 더욱 바람직하게는 산화제 개구(208)의 총수는 약 20 내지 약 200개이며, 가장 바람직하게는 산화제 개구(208)의 총수는 40 내지 100개이다.
도 12 내지 도 15가 산화제 스파저(200)의 매우 특이적인 구성을 도시하지만, 본원에 기재된 이점을 달성하기 위하여 다양한 산화제 스파저 구성을 이용할 수 있음에 주의한다. 예를 들어, 산화제 스파저는 반드시 도 12 및 도 13에 도시된 팔각형 고리 부재 구조를 가질 필요는 없다. 그보다는, 산화제 스트림을 방출시키기 위한 복수개의 이격된 개구를 사용하는 유동 도관(들)의 임의의 구조로 산화제 스파저를 구성할 수 있다. 유동 도관중 산화제 개구의 크기, 수 및 방출 방향은 바람직하게는 상기 언급된 범위 내에 있다. 또한, 산화제 스파저는 상기 기재된 분자 산소의 방위각 분포 및 방사상 분포를 제공하도록 바람직하게 구성된다.
산화제 스파저의 구체적인 구성에 관계없이, 유동 도관(들)으로부터 산화제 개구를 통해 반응 대역 내로의 산화제 스트림의 방출에 수반되는 압력 강하를 최소화시키는 방식으로 산화제 스파저를 구성 및 작동시키는 것이 바람직하다. 산화제 스파저의 산화제 개구(66a, 66b)에서 유동 도관 내부의 산화제 스트림의 시간-평균 정적 압력으로부터, 산화제 스트림의 절반이 특정 수직 위치보다 위에서 도입되고 산화제 스트림의 절반이 상기 수직 위치 미만에서 도입되는 높이에서 반응 대역의 시간-평균 정적 압력을 뺌으로써, 이러한 압력 강하를 계산한다. 본 발명의 바람직한 실시양태에서, 산화제 스파저로부터의 산화제 스트림의 방출에 수반되는 시간-평균 압력 강하는 약 0.3MPa 미만, 더욱 바람직하게는 약 0.2MPa 미만, 더더욱 바람직하게는 약 0.1MPa 미만, 가장 바람직하게는 0.05MPa 미만이다. 본원에 기재된 기포탑 반응기의 바람직한 작동 조건하에서, 산화제 스파저의 유동 도관(들) 내부에서 산화제 스트림의 압력은 바람직하게는 약 0.35 내지 약 1MPa, 더욱 바람직하게는 약 0.45 내지 약 0.85MPa, 가장 바람직하게는 0.5 내지 0.7MPa이다.
도 2 내지 도 5에 도시된 산화제 스파저 구성과 관련하여 앞서 언급한 바와 같이, 산화제 스파저를 액체(예를 들어, 아세트산, 물 및/또는 파라-자일렌)로 연속적으로 또는 주기적으로 플러쉬시켜 산화제 스파저가 고체로 오염되는 것을 방지하는 것이 바람직할 수 있다. 이러한 액체 플러쉬를 이용하는 경우, 매일 1분보다 긴 시간동안 1회 이상 액체 효과량(즉, 산화제 스트림에 자연적으로 존재하는 미량의 액체 소적이 아님)을 산화제 스파저를 통해 산화제 개구 밖으로 통과시키는 것이 바람직하다. 액체를 산화제 스파저로부터 연속적으로 또는 주기적으로 방출시키는 경우, 산화제 스파저를 통한 액체의 질량 유속 대 산화제 스파저를 통한 분자 산소의 질량 유속의 시간-평균 비가 약 0.05:1 내지 약 30:1, 또는 약 0.1:1 내지 약 2:1, 또는 0.2:1 내지 1:1인 것이 바람직하다.
본 발명의 한 실시양태에서는, 산화가능한 화합물(예컨대, 파라-자일렌)중 상당량을 산화제 스파저를 통해 반응 대역 내로 도입할 수 있다. 이러한 구성에서는, 산화가능한 화합물 및 분자 산소를 산화제 스파저의 동일한 개구를 통해 산화제 스파저로부터 방출시키는 것이 바람직하다. 상기 나타낸 바와 같이, 산화가능한 화합물은 STP에서 전형적으로 액체이다. 따라서, 이 실시양태에서는, 2상 스트림을 산화제 스파저로부터 방출시킬 수 있으며, 이 때 액상은 산화가능한 화합물을 포함하고 기상은 분자 산소를 포함한다. 그러나, 산화가능한 화합물의 적어도 일부가 산화제 스파저로부터 방출될 때 기체 상태일 수 있음을 알아야 한다. 한 실시양태에서, 산화제 스파저로부터 방출되는 액상은 우세하게 산화가능한 화합물로 구성된다. 다른 실시양태에서, 산화제 스파저로부터 방출되는 액상은 상기 기재된 공급물 스트림과 실질적으로 동일한 조성을 갖는다. 산화제 스파저로부터 방출되는 액상이 공급물 스트림과 실질적으로 동일한 조성을 갖는 경우, 이러한 액상은 공급물 스트림의 조성과 관련하여 상기 기재된 양 및 비로 용매 및/또는 촉매 시스템을 포함할 수 있다.
본 발명의 한 실시양태에서는, 반응 대역으로 도입되는 모든 산화가능한 화합물의 약 10중량% 이상이 산화제 스파저를 통해 반응 대역 내로 도입되는 것이 바람직하고, 더욱 바람직하게는 산화가능한 화합물의 약 40중량% 이상이 산화제 스파저를 통해 반응 대역 내로 도입되며, 가장 바람직하게는 산화가능한 화합물의 80중량% 이상이 산화제 스파저를 통해 반응 대역 내로 도입된다. 산화가능한 화합물중 모두 또는 일부가 산화제 스파저를 통해 반응 대역 내로 도입되는 경우, 반응 대역 내로 도입되는 모든 분자 산소중 약 10중량% 이상이 동일한 산화제 스파저를 통해 도입되는 것이 바람직하고, 더욱 바람직하게는 분자 산소의 약 40중량% 이상이 동일한 산화제 스파저를 통해 반응 대역 내로 도입되며, 가장 바람직하게는 분자 산소의 80중량% 이상이 동일한 산화제 스파저를 통해 반응 대역 내로 도입된다. 산화가능한 화합물 상당량이 산화제 스파저를 통해 반응 대역 내로 도입되는 경우에는, 하나 이상의 온도 감지 장치(예컨대, 열전쌍)를 산화제 스파저에 배치시키는 것이 바람직하다. 이들 온도 센서를 이용하여 산화제 스파저 내의 온도가 위험할 정도로 높아지지 않도록 보장하는데 도움을 줄 수 있다.
이제 도 16 내지 도 18을 참조하면, 기포탑 반응기(20)가 슬러리 출구(38) 부근에서 반응 대역(28)의 저부에 배치된 내부 탈기 장치(300)를 포함하는 것으로 도시되어 있다. 반응 매질(36)의 탈기 동안 비교적 높은 속도로 불순물-생성 부반응이 일어나는 것으로 밝혀졌다. 본원에 사용되는 "탈기"는 다상 반응 매질로부터 기상을 분리시킴을 말한다. 반응 매질(36)이 고도로 폭기되는 경우에는(>0.3 기체 보유율), 불순물 생성이 최소한이다. 반응 매질(36)이 고도로 탈기되는 경우에도(<0.01 기체 보유율), 불순물 생성이 최소한이다. 그러나, 반응 매질이 부분적으로 폭기되면(0.01 내지 0.3의 기체 보유율), 바람직하지 못한 부반응이 촉진되고 불순물이 더 많이 생성된다. 탈기 용기(300)는 부분적으로 탈기된 상태인 반응 매질(36)의 부피를 최소화시키고 반응 매질(36)을 탈기시키는데 걸리는 시간을 최소화함으로써 이 문제 및 다른 문제를 해결한다. 실질적으로 탈기된 슬러리는 탈기 용기(300)의 저부로부터 생성되고 슬러리 출구(38)를 통해 반응기(20)에서 나간다. 실질적으로 탈기된 슬러리는 바람직하게는 약 5부피% 미만, 더욱 바람직하게는 약 2부피% 미만, 가장 바람직하게는 1부피% 미만의 기상을 함유한다.
도 16에는, 기포탑 반응기(20)가 수준 조절기(302) 및 유동 조절 밸브(304)를 포함하는 것으로 도시되어 있다. 수준 조절기(302) 및 유동 조절 밸브(304)는 협력하여 반응 매질(36)을 반응 대역(28)에서 실질적으로 일정한 높이로 유지시킨다. 수준 조절기(302)는 반응 매질(36)의 상부 표면(44)의 높이를 감지하고(예를 들어, 시차 압력 수준 감지에 의해 또는 핵 수준 감지에 의해), 반응 매질(36)의 높이에 응답하여 조절 신호(306)를 발생시키도록 작동될 수 있다. 유동 조절 밸브(304)는 조절 신호(306)를 받아서, 슬러리 유출 도관(308)을 통한 슬러리의 유속을 조정한다. 그러므로, 슬러리 출구(38)에서 나가는 슬러리의 유속은 반응 매질(36)의 높이가 너무 높은 경우의 최대 슬러리 부피 유속(Fmax)과 반응 매질(36)의 높이가 너무 낮은 경우의 최소 슬러리 부피 유속(Fmin) 사이에서 변할 수 있다.
고상 산화 생성물을 반응 대역(28)으로부터 제거하기 위하여, 일부를 먼저 탈기 용기(300)를 통해 통과시켜야 한다. 탈기 용기(300)는 액체와 고체가 슬러리 출구(38)를 향해 하향 유동할 때 반응 매질(36)의 기상을 반응 매질(36)의 액상 및 고상으로부터 자연적으로 상승시킬 수 있는 저-난류(low-turbulence) 내부 부피를 제공한다. 액상 및 고상 중에서 기상의 자연적인 상향 부력에 의해 기상이 액상 및 고상으로부터 상승한다. 탈기 용기(300)를 사용하는 경우, 반응 매질(36)이 완전-폭기된 3상 매질로부터 완전-탈기된 2상 슬러리로 전이되는 과정은 신속하고 효율적이다.
이제 도 17 및 도 18을 참조하면, 탈기 용기(300)는 일반적으로 그 사이에 탈기 대역(312)을 한정하는 직립형 측벽(308)을 포함한다. 바람직하게는, 측벽(308)은 수직에서 약 30° 이내로, 더욱 바람직하게는 수직에서 약 10° 이내로 상향 연장된다. 가장 바람직하게는, 측벽(308)은 실질적으로 수직이다. 탈기 대역(312)은 반응 대역(28)으로부터 분리되고, 높이 "h" 및 직경 "d"를 갖는다. 측벽(308)의 상부 말단(310)은 반응 대역(28)으로부터 내부 부피(312) 내로 반응 매질을 수용하기 위하여 개방된다. 측벽(308)의 하부 말단은 전이 구역(314)를 통해 슬러리 출구(38)에 가변적으로 연결된다. 슬러리 출구(38)의 개구가 크거나 또는 측벽(308)의 직경 "d"가 작은 경우와 같은 특정한 경우에는, 전이 구역(314)을 없앨 수 있다. 도 18에 가장 잘 도시된 바와 같이, 탈기 용기(300)는 또한 탈기 대역(312)에 배치된 소용돌이 방지 장치(316)도 포함할 수 있다. 소용돌이 방지 장치(316)는 고상 및 액상이 슬러리 출구(38)를 향해 하향 유동할 때 소용돌이가 생성되는 것을 억제하도록 작동될 수 있는 임의의 구조체일 수 있다.
탈기 용기(300)에서 고상 및 액상으로부터 기상을 적절하게 분리시키기 위하여, 내부 탈기 대역(312)의 높이 "h" 및 수평 단면적을 조심스럽게 선택한다. 내부 탈기 대역(312)의 높이 "h" 및 수평 단면적은 최대량의 슬러리가 회수될 때에도(즉, 슬러리가 Fmzx로 회수될 때에도) 기포가 탈기 용기(300)의 저부 출구에 도달하기 전에 실질적으로 모든 기포 부피가 고상 및 액상으로부터 상승될 수 있도록 하기에 충분한 거리 및 시간을 제공해야 한다. 그러므로, 탈기 대역(312)의 단면적이, 탈기 대역(312)을 통한 액상 및 고상의 최대 하향 속도(Vdmax)가 액상 및 고상을 통한 기상 기포의 자연적인 상승 속도(Vu)보다 실질적으로 더 낮도록 하는 단면적인 것이 바람직하다. 탈기 대역(312)을 통한 액상 및 고상의 최대 하향 속도(Vdmax)는 상기 논의된 최대 슬러리 부피 유속(Fmax)에서 일어난다. 액상 및 고상을 통한 기포의 자연적인 상승 속도(Vu)는 기포의 크기에 따라 달라지지만; 원래 반응 매질(36) 중에 존재하는 기포 부피중 실질적으로 전체가 0.5cm보다 크기 때문에, 액상 및 고상을 통한 0.5cm 직경의 기포의 자연적인 상승 속도(Vu0.5)를 컷오프(cut-off) 값으로서 사용할 수 있다. 바람직하게는, 탈기 대역(312)의 단면적은 Vdmax가 Vu0.5의 약 75% 미만이도록 하는 단면적이고, 더욱 바람직하게는 Vdmax는 Vu0.5의 약 40% 미만이며, 가장 바람직하게는 Vdmax는 Vu0.5의 약 20% 미만이다.
탈기 용기(300)의 탈기 대역(312)에서의 액상 및 고상의 하향 속도는 탈기 대역(312)의 최소 단면적으로 나눈, 슬러리 출구(38)를 통한 탈기된 슬러리의 부피 유속으로서 정의된다. 탈기 용기(300)의 탈기 대역(312)에서의 액상 및 고상의 하향 속도는 바람직하게는 약 50cm/초 미만, 더욱 바람직하게는 약 30cm/초 미만, 가장 바람직하게는 10cm/초 미만이다.
이제, 탈기 용기(300)의 직립형 측벽(308)이 원통형 구조를 갖는 것으로 도시되어 있음에도 불구하고, 벽이 적절한 부피, 단면적, 폭 "d" 및 높이 "h"를 갖는 내부 부피를 한정하는 한, 측벽(308)이 다양한 구조(예컨대, 삼각형, 사각형 또는 타원형)를 형성하는 복수개의 측벽을 포함할 수 있음에 주의한다. 본 발명의 바람직한 실시양태에서, "d"는 약 0.2 내지 약 2m, 더욱 바람직하게는 약 0.3 내지 약 1.5m, 가장 바람직하게는 0.4 내지 1.2m이다. 본 발명의 바람직한 실시양태에서, "h"는 약 0.3 내지 약 5m, 더욱 바람직하게는 약 0.5 내지 약 3m, 가장 바람직하게는 0.75 내지 2m이다.
본 발명의 바람직한 실시양태에서, 측벽(308)은 탈기 대역(312)의 수평 단면적이 탈기 대역(312)의 전체 높이 "h"를 따라 실질적으로 일정하도록 실질적으로 수직이다. 바람직하게는, 탈기 대역(312)의 최대 수평 단면적은 반응 대역(28)의 최대 수평 단면적의 약 25% 미만이다. 더욱 바람직하게는, 탈기 대역(312)의 최대 수평 단면적은 반응 대역(28)의 최대 수평 단면적의 약 0.1 내지 약 10%이다. 가장 바람직하게는, 탈기 대역(312)의 최대 수평 단면적은 반응 대역(28)의 최대 수평 단면적의 0.25 내지 4%이다. 바람직하게는, 탈기 대역(312)의 최대 수평 단면적은 약 0.02 내지 약 3m2, 더욱 바람직하게는 약 0.05 내지 약 2m2, 가장 바람직하게는 0.1 내지 1.2m2이다. 탈기 대역(312)의 부피는 바람직하게는 반응 매질(36) 또는 반응 대역(28)의 총 부피의 약 5% 미만이다. 더욱 바람직하게는, 탈기 대역(312)의 부피는 반응 매질(36) 또는 반응 대역(28)의 총 부피의 약 0.01 내지 약 2%이다. 가장 바람직하게는, 탈기 대역(312)의 부피는 반응 매질(36) 또는 반응 대역(28)의 총 부피의 0.05 내지 약 1%이다. 탈기 대역(312)의 부피는 바람직하게는 약 2m3 미만, 더욱 바람직하게는 약 0.01 내지 약 1m3, 가장 바람직하게는 0.05 내지 0.5m3이다.
이제 도 19를 참조하면, 기포탑 반응기(20)가 외부 탈기 용기(400)를 포함하는 것으로 도시되어 있다. 이 구성에서는, 폭기된 반응 매질(36)을 용기 쉘(22) 측부의 높은 개구를 통해 반응 대역(28)으로부터 회수한다. 회수된 폭기된 매질을, 고상 및 액상으로부터 기상을 분리시키기 위하여 유출 도관(402)을 통해 탈기 용기(400)로 수송한다. 분리된 기상은 도관(404)을 통해 탈기 용기(400)에서 나가는 한편, 실질적으로 탈기된 슬러리는 도관(406)을 통해 탈기 용기(400)에서 나간다.
도 19에서, 유출 도관(402)은 대략 곧고 수평이며 용기 쉘(22)에 수직인 것으로 도시되어 있다. 이는 단지 하나의 편리한 구성이며; 유출 도관(402)은 임의의 면에서 다를 수 있으나, 단 이는 기포탑 반응기(20)를 외부 탈기 용기(400)에 유용하게 연결시킨다. 도관(404)으로 돌아가서, 산화가능한 화합물 및 산화제를 함유하는 정체된 기체 포켓과 관련된 안전성 문제를 조절하기 위하여, 이 도관을 상부 탈기 용기(400)에서 또는 그 부근에서 연결시키는 것이 유용하다. 뿐만 아니라, 도관(402, 404)은 밸브 같은 유동 단절 수단을 유용하게 포함할 수 있다.
도 19에 도시된 바와 같이 반응 매질(36)을 높은 출구를 통해 반응기(20)로부터 회수하는 경우, 반응 대역(28)의 저부(52) 근처에서 기포탑 반응기(20)에 하부 출구(408)가 설치되는 것이 바람직하다. 하부 출구(408) 및 이에 연결된 하부 도관(410)을 사용하여 작동 중지 동안 반응기(20)의 재고량을 없앨 수 있다(즉, 비울 수 있다). 바람직하게는, 하나 이상의 하부 출구(408)를 반응 매질(36)의 높이의 저부 1/3에, 더욱 바람직하게는 반응 매질(36)의 저부 1/4에, 가장 바람직하게는 반응 대역(28)의 최저 지점에 제공한다.
도 19에 도시된 높은 슬러리 회수 및 탈기 시스템과 관련하여, 산화시키는 동안 반응 대역(28)으로부터 슬러리를 회수하는데 하부 도관(410) 및 출구(408)를 사용하지 않는다. 당해 분야에는 고체가 정체된 유동 도관을 비롯하여 슬러리의 폭기되지 않고 달리 진탕되지 않는 부분에서 비중에 의해 침강되는 경향이 있는 것으로 알려져 있다. 뿐만 아니라, 침강된 고체(예컨대, 테레프탈산)는 연속적인 침전 및/또는 결정질 재편성에 의해 큰 응집체로 응고되는 경향이 있을 수 있다. 그러므로, 하부 유동 도관(410)이 막히는 것을 방지하기 위하여, 탈기 용기(400)의 저부로부터 탈기된 슬러리의 일부를 사용하여 정상적인 반응기(20) 작동 동안 하부 도관(410)을 연속적으로 또는 간헐적으로 플러쉬시킬 수 있다. 도관(410)에 이러한 슬러리 플러쉬를 제공하는 바람직한 수단은 도관(410)에서 밸브(412)를 주기적으로 개방하고 탈기된 슬러리의 일부를 도관(410)을 통해 또한 하부 개구(408)를 거쳐 반응 대역(28) 내로 유동시키는 것이다. 밸브(412)가 완전히 또는 부분적으로 개방된 경우에도, 탈기된 슬러리의 일부만이 하부 도관(410)을 통해 다시 반응 대역(28) 내로 유동한다. 하부 도관(410)을 플러쉬하는데 사용되지 않은 탈기된 슬러리의 나머지 일부는 후속 가공(예를 들어, 정제)을 위해 도관(414)을 통해 반응기(20)로부터 멀리 운송한다.
상당한 시간(예컨대, >100시간)에 걸친 기포탑 반응기(20)의 정상적인 작동 동안, 하부 도관(410)을 플러쉬시키는데 사용되는 탈기된 슬러리의 양이 탈기 용기(400)의 저부로부터 생성되는 전체 탈기된 슬러리의 50중량% 미만, 더욱 바람직하게는 약 20중량% 미만, 가장 바람직하게는 5중량% 미만인 것이 바람직하다. 또한, 상당한 시간에 걸쳐 하부 도관(410)을 플러쉬시키는데 사용되는 탈기된 슬러리의 평균 질량 유속이 반응 대역(28) 내로의 산화가능한 화합물의 평균 질량 유속의 약 4배 미만, 더욱 바람직하게는 반응 대역(28) 내로의 산화가능한 화합물의 평균 질량 유속의 약 2배 미만, 더더욱 바람직하게는 반응 대역(28) 내로의 산화가능한 화합물의 평균 질량 유속 미만, 가장 바람직하게는 반응 대역(28) 내로의 산화가능한 화합물의 평균 질량 유속의 0.5배 미만인 것이 바람직하다.
다시 도 19를 참조하면, 탈기 용기(400)는 탈기 대역(418)을 한정하는 실질적인 직립형의 바람직하게는 원통형인 측벽(416)을 포함한다. 탈기 대역(418)은 직경 "d" 및 높이 "h"를 갖는다. 높이 "h"는 폭기된 반응 매질이 탈기 용기(400)에 들어가는 위치와 측벽(416)의 저부 사이의 수직 거리로서 측정된다. 탈기 대역(418)의 높이 "h", 직경 "d", 면적 및 부피는 바람직하게는 도 16 내지 도 18에 도시된 탈기 용기(300)의 탈기 대역(312)과 관련하여 상기 기재된 것과 실질적으로 동일하다. 또한, 탈기 용기(400)는 상기 탈기 대역(418) 위로 측벽(416)을 연장시킴으로써 생성시킨 상부 구역(420)을 포함한다. 탈기 용기(400)의 상부 구역(420)은 임의의 높이일 수 있으나, 이는 바람직하게는 반응 대역(28)에서의 반응 매질(36)의 수준까지 또는 그보다 높게 상향 연장된다. 상부 구역(420)은 기상이 도관(404)을 통해 탈기 용기(400)에서 나가기 전에 액상 및 고상으로부터 적절하게 분리되도록 하는 공간을 보장한다. 이제, 도관(404)이 분리된 기상을 반응기(20)의 분리 구역으로 되돌리는 것으로 도시되어 있으나, 도관(404)은 유출 도관(402) 위의 임의의 높이에서 용기 쉘(22)에 달리 연결될 수도 있다. 임의적으로, 도관(404)은 기체 유출 도관(40)에 연결되어, 탈기 용기(400)로부터의 분리된 기상이 도관(40)에서 제거된 오버헤드 증기 스트림과 합쳐져서 추가 가공을 위해 아래로 보내지도록 할 수 있다.
이제 도 20을 살펴보면, 기포탑 반응기(20)가 하이브리드 내부-외부 탈기 용기(500)를 포함하는 것으로 도시되어 있다. 이 구성에서는, 반응 매질(36)의 일부가 용기 쉘(22)의 측벽에 있는 비교적 큰 높은 개구(502)를 통해 반응 대역(28)으로부터 회수된다. 회수된 반응 매질(36)은 비교적 직경이 큰 L자형 관(504)을 통해 수송되어 탈기 용기(500)의 상부에 들어간다. 도 20에서, L자형 도관(504)은 용기 쉘(22)의 측벽에 수직으로 연결되고, 약 90°의 각도로 자연스러운 변환부를 포함하는 것으로 도시되어 있다. 이는 단지 하나의 편리한 구성일 뿐이며; L자형 도관(504)은 임의의 면에서 다를 수 있으나, 단 이는 기재된 바와 같이 외부 탈기 용기(500)와 기포탑 반응기(20)를 유용하게 연결한다. 뿐만 아니라, L자형 도관(504)은 밸브 같은 유동 단절 수단을 유용하게 포함할 수 있다.
탈기 용기(500)에서, 기상은 상향 이동하는 반면, 고상 및 액상은 하향 이동한다. 상향 이동하는 기상은 L자형 도관(504)에 다시 들어가서 개구(502)를 통해 다시 반응 대역(28)으로 나간다. 따라서, 개구(502)에서는 들어가는 반응 매질(36)과 나가는 분리된 기체의 상반되는 유동이 일어날 수 있다. 탈기된 슬러리는 도관(506)을 통해 탈기 용기(500)에서 나간다. 탈기 용기(500)는 탈기 대역(510)을 한정하는 실질적인 직립형의 바람직하게는 원통형인 측벽(508)을 포함한다. 탈기 대역(510)은 높이 "h" 및 직경 "d"를 갖는다. 높은 개구(502) 및 L자형 도관(504)이 탈기 대역(510)의 직경 "d"와 동일하거나 그보다 더 큰 직경을 갖는 것이 바람직하다. 탈기 대역(510)의 높이 "h", 직경 "d", 면적 및 부피는 바람직하게는 도 16 내지 도 18에 도시된 탈기 용기(300)의 탈기 대역(312)과 관련하여 상기 기재된 것과 실질적으로 동일하다.
도 19 및 도 20은 반응 대역(28)에서 생성된 고체 생성물(예를 들어, 조질 테레프탈산)을 높은 출구를 통해 반응 대역(28)으로부터 회수하는 기포탑 반응기(20)의 실시양태를 도시한다. 기포탑 반응기(20)의 저부보다 높은 위치에서 폭기된 반응 매질(36)을 회수하는 것은 반응 대역(28)의 저부(52)에 불량하게 폭기된 반응 매질(36)이 축적 및 정체되는 것을 피하는데 도움이 될 수 있다. 본 발명의 다른 요지에 따라, 반응 매질(36)의 상부 근처에서 반응 매질(36)중 산소 및 산화가능한 화합물(예컨대, 파라-자일렌)의 농도는 바람직하게는 저부 근처에서보다 낮다. 그러므로, 높은 위치에서 반응 매질(36)을 회수하면 반응기(20)로부터 회수되는 미반응 반응물의 양을 낮춤으로써 수율을 증가시킬 수 있다. 또한, 기포탑 반응기(20)가 높은 STR 및 본원에 개시된 화학적 조성의 구배로 작동될 때 반응 매질(36)의 온도는 수직 방향에서 크게 변화된다. 이러한 상황에서, 반응 매질(36)의 온도는 전형적으로 반응 대역(28)의 하부 말단 및 상부 말단 근처에서 국부적인 최소치를 갖는다. 하부 말단 부근에서, 최소치는 산화제의 전부 또는 일부가 수용되는 지점 부근에서의 용매의 증발에 관련된다. 상부 말단 부근에서, 최소치는 또 다시 용매의 증발에 기인하지만, 이 경우 용매의 증발은 반응 매질 내에서의 압력 감소에 따른 것이다. 또한, 추가적인 공급물 또는 산화제가 반응 매질 내로 수용되는 곳이면 어디든지 상부 말단과 하부 말단 사이에서 다른 국부적인 최소치가 발생될 수 있다. 따라서, 반응 대역(28)의 하부 말단과 상부 말단 사이에서 산화 반응의 발열에 의해 야기되는 하나 이상의 온도 최대치가 존재한다. 보다 높은 온도의 높은 위치에서 반응 매질(36)을 회수하면, 후속 가공이 보다 높은 온도에서 이루어지는 경우 특히 유리할 수 있는데, 후속 가공을 위해 회수된 매질을 가열하는데 수반되는 에너지 비용이 감소되기 때문이다.
그러므로, 본 발명의 바람직한 실시양태에서, 특히 후속 가송이 보다 높은 온도에서 이루어지는 경우, 반응 매질(36)은 액상 공급물 스트림 및/또는 기상 산화제 스트림의 50중량% 이상이 반응 대역(28)에 들어가는 위치(들)보다 높이 위치되는 높은 출구(들)를 통해 기포탑 반응기(20)로부터 회수된다. 더욱 바람직하게는, 반응 매질(36)은 실질적으로 모든 액상 공급물 스트림 및/또는 기상 산화제 스트림이 반응 대역(28)에 들어가는 위치(들)보다 높이 위치하는 높은 출구(들)를 통해 기포탑 반응기(20)로부터 회수된다. 바람직하게는, 기포탑 반응기(20)로부터 회수되는 고상 및 액상 성분의 50중량% 이상은 높은 출구(들)를 통해 회수된다. 더욱 바람직하게는, 기포탑 반응기(20)로부터 회수되는 실질적으로 모든 고상 및 액상 성분은 높은 출구(들)를 통해 회수된다. 바람직하게는, 높은 출구(들)는 반응 대역(28)의 하부 말단(52)보다 약 1D 이상 더 높이 위치한다. 더욱 바람직하게는, 높은 출구(들)는 반응 대역(28)의 하부 말단(52)보다 약 2D 이상 더 높게 위치한다. 가장 바람직하게는, 높은 출구(들)는 반응 대역(28)의 하부 말단(52)보다 3D 이상 더 높게 위치한다. 반응 매질(36)의 높이 "H"가 주어지면, 높은 출구(들)가 약 0.2H와 약 0.8H 사이, 더욱 바람직하게는 약 0.3H와 약 0.7H 사이, 가장 바람직하게는 0.4H와 0.6H 사이에서 수직으로 위치되는 것이 바람직하다. 뿐만 아니라, 반응 대역(28)으로부터의 높은 출구에서 반응 매질(36)의 온도가 반응 대역(28)의 하부 말단(52)에서의 반응 매질(36)의 온도보다 1℃ 이상 더 높은 것이 바람직하다. 더욱 바람직하게는, 반응 대역(28)의 높은 출구에서 반응 매질(36)의 온도는 반응 대역(28)의 하부 말단(52)에서의 반응 매질(36)의 온도보다 약 1.5 내지 약 16℃ 더 높다. 가장 바람직하게는, 반응 대역(28)의 높은 출구에서 반응 매질(36)의 온도는 반응 대역(28)의 하부 말단(52)에서의 반응 매질(36)의 온도보다 2 내지 12℃ 더 높다.
이제 도 21을 참조하면, 기포탑 반응기(20)가 반응기(20)의 저부에 위치하는 다른 하이브리드 탈기 용기(600)를 포함하는 것으로 도시되어 있다. 이 구성에서는, 탈기된 반응 매질(36)이 용기 쉘(22)의 하부 말단(52)에서 비교적 큰 개구(602)를 통해 반응 대역(28)으로부터 회수된다. 개구(602)는 탈기 용기(600)의 개방된 상부 말단을 한정한다. 탈기 용기(600)에서, 기상은 상향 이동하는 반면 고상 및 액상은 하향 이동한다. 상향 이동하는 기상은 개구(602)를 통해 반응 대역(28)에 다시 들어갈 수 있다. 그러므로, 개구(602)에서는 들어가는 반응 매질(36)과 나가는 분리된 기체의 상반되는 유동이 일어날 수 있다. 탈기된 슬러리는 도관(604)을 통해 탈기 용기(600)에서 나간다. 탈기 용기(600)는 탈기 대역(608)을 한정하는 실질적인 직립형의 바람직하게는 원통형인 측벽(606)을 포함한다. 탈기 대역(608)은 높이 "h" 및 직경 "d"를 갖는다. 개구(602)가 탈기 대역(608)의 직경 "d"와 동일하거나 그보다 더 큰 직경을 갖는 것이 바람직하다. 탈기 대역(608)의 높이 "h", 직경 "d", 면적 및 부피는 바람직하게는 도 16 내지 도 18에 도시된 탈기 용기(300)의 탈기 대역(312)과 관련하여 상기 기재된 것과 실질적으로 동일하다.
이제 도 22를 참조하면, 도 21의 기포탑 반응기(20)가 다른 산화제 스파저(620)를 포함하는 것으로 도시되어 있다. 산화제 스파저(620)는 고리 부재(622) 및 한 쌍의 유입 도관(624, 626)을 포함한다. 고리 부재(622)는 바람직하게는 도 12 내지 도 15와 관련하여 상기 기재된 고리 부재(202)와 실질적으로 동일한 구성을 갖는다. 유입 도관(624, 626)은 용기 쉘(22)의 하부 헤드(48)에 있는 개구를 통해 상향 연장되고, 고리 부재(622)에 산화제 스트림을 제공한다.
이제 도 23을 참조하면, 도 21의 기포탑 반응기(20)가 산화제 스트림을 반응 대역(28)에 도입하기 위한 무-스파저(spargerless) 수단을 포함하는 것으로 도시되어 있다. 도 23의 구성에서는, 산화제 도관(630, 632)을 통해 산화제 스트림이 반응기(20)에 제공된다. 산화제 도관(630, 632)은 용기 쉘(22)의 하부 헤드(48)에서 개별적인 산화제 개구(634, 636)에 연결된다. 산화제 개구(634, 636)를 통해 산화제 스트림을 반응 대역(28) 내로 직접 도입한다. 임의적인 충돌판(638, 640)을 제공하여, 산화제 스트림이 반응 대역(28)에 들어간 후 산화제 스트림의 유동을 편향시킬 수 있다.
상기 언급된 바와 같이, 반응 매질중 산화제 화합물의 농도가 높은 대역을 피하는 방식으로(이러한 대역으로 인해 불순물이 생성될 수 있기 때문에) 산화 반응기가 구성 및 작동되는 것이 바람직하다. 반응 매질중 산화가능한 화합물(예를 들어, 파라-자일렌)의 초기 분산을 개선시키는 한 가지 방법은 액체로 산화가능한 화합물을 희석시키는 것이다. 산화가능한 화합물을 희석시키는데 사용되는 액체는 산화가능한 화합물이 반응 대역에 공급되는 위치(들)로부터 상당히 먼 거리에 위치하는 반응 매질 부분으로부터 유래될 수 있다. 반응 매질의 먼 부분으로부터의 이 액체는 주 반응 용기 내부 및/또는 외부에 배치되는 유동 도관을 통해 산화가능한 화합물의 유입 위치에 근접한 위치까지 순환될 수 있다.
도 24 및 도 25는 내부 도관(도 24) 또는 외부 도관(도 25)을 사용하여 액체를 반응 매질의 먼 부분으로부터 산화가능한 화합물의 입구에 가까운 위치까지 순환시키는 두 가지 바람직한 방법을 도시한다. 바람직하게는, 입구(즉, 액체가 도관에 들어가는 개구(들))로부터 출구(즉, 액체가 도관으로부터 방출되는 개구(들))까지의 유동 도관의 길이는 약 1m보다 길고, 더욱 바람직하게는 약 3m보다 길며, 더더욱 바람직하게는 약 6m보다 길고, 가장 바람직하게는 9m보다 길다. 그러나, 산화가능한 화합물 공급물이 처음에 방출되는 용기 바로 위 또는 바로 옆에 위치하는 별도의 용기로부터 액체를 수득하는 경우에 도관의 실제 길이는 별로 관련이 없어진다. 반응 매질중 적어도 일부를 함유하는 임의의 별도의 용기로부터의 액체는 산화가능한 화합물의 초기 희석에 바람직한 공급원이다.
공급원이 무엇이든지 간에 도관을 통해 유동하는 액체가 도관의 하나 이상의 출구에 바로 인접한 반응 매질보다 더 낮은 산화가능한 화합물의 변하지 않는 농도를 갖는 것이 바람직하다. 뿐만 아니라, 도관을 통해 유동하는 액체가 약 100,000ppmw 미만, 더욱 바람직하게는 약 10,000ppmw 미만, 더더욱 바람직하게는 약 1,000ppmw 미만, 가장 바람직하게는 100ppmw 미만의 액상중 산화가능한 화합물의 농도를 갖는 것이 바람직하며, 이 때 농도는 산화가능한 화합물 공급물의 증가분 및 임의적인 별도의 용매 공급물을 도관에 첨가하기 전에 측정된다. 산화가능한 화합물 공급물의 증가분 및 임의적인 용매 공급물을 첨가한 후에 측정되는 경우, 반응 매질에 들어가는 합쳐진 액체 스트림이 약 300,000ppmw 미만, 더욱 바람직하게는 약 50,000ppmw 미만, 가장 바람직하게는 10,000ppmw 미만의 액상중 산화가능한 화합물의 농도를 갖는 것이 바람직하다.
순환되는 액체가 반응 매질 내에서의 산화가능한 화합물의 바람직한 전체 구배를 억압하지 않도록 충분히 낮은 속도로 도관을 통한 유동을 유지시키는 것이 바람직하다. 이와 관련하여, 산화가능한 화합물의 증가분이 처음으로 방출되는 반응 대역중 액상의 질량 유속 대 도관을 통해 유동하는 액체의 질량 유속의 비가 약 0.3분보다 크고, 더욱 바람직하게는 약 1분보다 크며, 더욱더 바람직하게는 약 2분 내지 약 120분이고, 가장 바람직하게는 3분 내지 60분인 것이 바람직하다.
도관을 통해 액체를 강제로 유동시키는 다수의 수단이 있다. 바람직한 수단은 비중, 모티브(motive) 유체로서 기체 또는 액체 또는 둘 다를 이용하는 모든 유형의 추출기, 및 모든 유형의 기계적 펌프를 포함한다. 추출기를 사용하는 경우, 본 발명의 한 실시양태는 산화가능한 화합물의 공급물(액체 또는 기체), 산화제의 공급물(기체), 용매의 공급물(액체) 및 반응 매질의 펌핑되는 공급원(슬러리)으로 이루어진 군으로부터 선택되는 하나 이상의 유체를 모티브 유체로서 사용한다. 다른 실시양태에서는 산화가능한 화합물의 공급물, 산화제의 공급물 및 용매의 공급물로 이루어진 군으로부터 선택되는 둘 이상의 유체를 모티브 유체로서 사용한다. 또 다른 실시양태는 산화가능한 화합물의 공급물, 산화제의 공급물 및 용매의 공급물의 조합을 모티브 유체로서 사용한다.
순환 도관의 적절한 직경 또는 직경들은 운송되는 물질의 양 및 특성, 강제로 유동 이동시키는데 이용될 수 있는 에너지 및 자본 비용의 고려에 따라 달라질 수 있다. 이들 도관의 최소 직경이 약 0.02m보다 크고, 더욱 바람직하게는 약 0.06 내지 약 2m, 가장 바람직하게는 0.12 내지 0.8m인 것이 바람직하다.
상기 나타낸 바와 같이, 도관을 통한 유동을 특정의 바람직한 범위로 조절하는 것이 바람직하다. 유동 도관을 제작하는 동안 적절한 고정된 기하학적 구조를 설정함으로써 이러한 조절에 영향을 끼치는, 당해 분야에 공지되어 있는 다수의 수단이 존재한다. 다른 바람직한 실시양태는 모든 종류 및 설명의 밸브(수동 조작, 및 감지 소자로부터의 피드백 조절 루프를 포함하거나 갖지 않는 임의의 수단에 의한 동력화된 조작 포함)를 비롯한, 작동되는 동안 변할 수 있는 기하학적 구조를 사용하는 것이다. 희석 액체의 유동을 조절하는 다른 바람직한 수단은 도관의 입구와 출구 사이의 에너지 투입량을 변화시키는 것이다. 바람직한 수단은 추출기로의 하나 이상의 모티브 유체의 유속을 변화시키는 것, 펌프 구동기로의 에너지 투입량을 변화시키는 것, 및 밀도 차이 또는 비중에 의한 힘을 이용하는 경우 높이 차이를 변화시키는 것을 포함한다. 이들 바람직한 수단을 모든 함께 조합하여 사용할 수 있다.
반응 매질로부터의 액체의 순환에 사용되는 도관은 당해 분야에 공지되어 있는 임의의 유형일 수 있다. 한 실시양태는 종래의 파이핑 재료를 사용하여 완전히 또는 부분적으로 제작된 도관을 이용한다. 다른 실시양태는 도관의 일부로서 반응 용기 벽을 이용하여 완전히 또는 부분적으로 제작된 도관을 이용한다. 도관을 반응 용기의 경계 내에 완전히 포함시켜 제작할 수 있거나(도 24), 또는 도관을 반응 용기의 외부에서 완전히 제작할 수 있거나(도 25), 또는 도관은 반응 용기 내의 구역 및 반응 용기 외부의 구역을 포함할 수도 있다.
본 발명자들은 특히 큰 반응기에서, 도관을 통해 액체를 이동시키기 위하여 여러 개의 도관 및 다양한 디자인의 도관을 갖는 것이 바람직할 수 있음을 고려한다. 또한, 도관중 하나 또는 모두 상의 다수개의 위치에 다수개의 출구를 제공하는 것이 바람직할 수 있다. 디자인의 특정 사항은 본 발명의 다른 요지에 따라 산화가능한 화합물의 변하지 않는 농도의 바람직한 전체 구배와 산화가능한 화합물 공급물의 목적하는 초기 희석의 균형을 맞춘다.
도 24 및 도 25는 둘 다 도관에 연결된 탈기 용기를 이용하는 디자인을 도시한다. 이 탈기 용기는 들어가는 산화가능한 화합물을 희석시키는데 사용되는 반응 매질 부분이 실질적으로 탈기된 슬러리이도록 보장한다. 그러나, 들어가는 산화가능한 화합물을 희석시키는데 사용되는 액체 또는 슬러리가 폭기된 형태 및 탈기된 형태일 수 있음에 주의한다.
도관을 통해 유동하는 액체를 사용하여 산화가능한 화합물 공급물을 희석시키는 것은 기포탑 반응기에서 특히 유용하다. 뿐만 아니라, 기포탑 반응기에서는, 산화가능한 화합물 공급물을 도관 내로 직접 첨가하지 않고도 산화가능한 화합물 공급물의 초기 희석의 우수한 이점을 달성할 수 있으나, 단 도관의 출구는 산화가능한 화합물의 첨가 위치에 충분히 가깝게 위치한다. 이러한 실시양태에서는, 도관의 출구가 산화가능한 화합물의 가장 가까운 첨가 위치의 약 27개의 도관 출구 직경 내에, 더욱 바람직하게는 약 9개의 도관 출구 직경 내에, 더더욱 바람직하게는 약 3개의 도관 출구 직경 내에, 가장 바람직하게는 1개의 도관 출구 직경 내에 위치하는 것이 바람직하다.
반응 매질의 먼 부분으로부터 희석 액체를 수득하기 위한 도관을 사용하지 않고서도, 유동 추출기가 본 발명의 한 실시양태에 따른 산화 기포탑 반응기에서 산화가능한 화합물 공급물의 초기 희석에 유용할 수 있음을 발견하였다. 이러한 경우, 추출기는 반응 매질 내에 위치하고, 반응 매질로부터 추출기의 경부(throat)(여기에서는 인접 반응 매질에서 낮은 압력이 초래됨)로의 개방 경로를 갖는다. 두 가지 가능한 추출기 구성의 예가 도 26 및 도 27에 도시되어 있다. 이들 추출기의 바람직한 실시양태에서, 산화가능한 화합물을 공급하는 가장 가까운 위치는 추출기의 경부의 약 4m 이내, 더욱 바람직하게는 약 1m 이내, 가장 바람직하게는 0.3m 이내이다. 다른 실시양태에서, 산화가능한 화합물을 모티브 유체로서 가압하에 공급한다. 또 다른 실시양태에서는, 용매 또는 산화제를 산화가능한 화합물과 함께 추가의 모티브 유체로서 가압하에 공급한다. 또 다른 실시양태에서는, 용매 및 산화제를 산화가능한 화합물과 함께 추가적인 모티브 유체로서 가압하에 공급한다.
본 발명자들은, 특히 보다 큰 반응기에서, 반응 매질 내의 다양한 위치에 위치하는 다양한 디자인의 복수개의 추출기를 갖는 것이 바람직할 수 있는 것으로 생각한다. 디자인의 세부사항은 본 발명의 다른 요지에 따라 산화가능한 화합물의 변하지 않는 농도의 전체적인 바람직한 구배와 산화가능한 화합물 공급물의 목적하는 초기 희석의 균형을 맞춘다. 또한, 본 발명자들은 추출기로부터의 유출 유동 플럼(plume)이 임의의 방향으로 배향될 수 있는 것으로 생각한다. 복수개의 추출기를 사용하는 경우, 각각의 추출기는 임의의 방향으로 별도로 배향될 수 있다.
상기 언급된 바와 같이, 도 1 내지 도 27을 참조하여 상기 기재된 기포탑 반응기(20)의 특정한 물리적 특징 및 작동 특징은 반응 매질(36)의 압력, 온도 및 반응물(즉, 산소 및 산화가능한 화합물)의 수직 구배를 제공한다. 상기 논의된 바와 같이, 이들 수직 구배는 전체에 걸쳐 비교적 균일한 압력, 온도 및 반응물 농도의 잘-혼합된 반응 매질을 선호하는 종래의 산화 공정에 비해 더욱 효과적이고 경제적인 산화 방법을 제공할 수 있다. 본 발명의 실시양태에 따른 산화 시스템을 이용함으로써 가능해지는 산소, 산화가능한 화합물(예컨대, 파라-자일렌) 및 온도의 수직 구배를 이제 더욱 상세하게 논의한다.
이제 도 28을 참조하면, 기포탑 반응기(20)에서의 산화 동안 반응 매질(36)에 존재하는 반응물 농도 구배를 정량하기 위하여, 반응 매질(36)의 전체 부피를 동일 부피의 30개의 개별 수평 분층으로 이론적으로 분할할 수 있다. 도 28은 반응 매질(36)을 동일한 부피의 30개의 개별 수평 분층으로 분할하는 개념을 도시한다. 최고 및 최저 수평 분층을 제외하고, 각각의 수평 분층은 가상 수평 평면에 의해 상부 및 저부에서 경계를 이루고 반응기(20)의 벽에 의해 측부 경계를 갖는 개별 부피이다. 최고 수평 분층은 가상 수평 평면에 의해 저부 경계가 지어지고 반응 매질(36)의 상부 표면에 의해 상부 경계가 지어진다. 최저 수평 분층은 가상 수평 평면에 의해 상부에서 또한 용기 쉘의 저부에 의해 저부에서 경계가 지어진다. 반응 매질(36)을 동일한 부피의 30개의 개별적인 수평 분층으로 이론적으로 분할한 후에는, 각 수평 분층의 시간-평균 및 부피-평균 농도를 결정할 수 있다. 모두 30개의 수평 분층의 최대 농도를 갖는 개별 수평 분층을 "C-최대 수평 분층"이라고 할 수 있다. C-최대 수평 분층보다 높게 위치하고 C-최대 수평 분층보다 높게 위치된 모든 수평 분층의 최소 농도를 갖는 개별 수평 분층을 "C-최소 수평 분층"이라고 할 수 있다. 이어, C-최대 수평 분층에서의 농도 대 C-최소 수평 분층에서의 농도의 비로서 수직 농도 구배를 계산할 수 있다.
산소 농도 구배의 정량과 관련하여, 반응 매질(36)이 동일한 부피의 30개의 별도의 수평 분층으로 이론적으로 분할되는 경우, O2-최대 수평 분층은 모두 30개의 수평 분층의 최대 산소 농도를 갖는 것으로 확인되고, O2-최소 수평 분층은 O2-최대 수평 분층보다 높게 위치하는 수평 분층의 최소 산소 농도를 갖는 것으로 확인된다. 시간-평균 및 부피-평균 몰(습식) 기준으로 반응 매질(36)의 기상에서 수평 분층의 산소 농도를 측정한다. O2-최대 수평 분층의 산소 농도 대 O2-최소 수평 분층의 산소 농도의 비가 약 2:1 내지 약 25:1, 더욱 바람직하게는 약 3:1 내지 약 15:1, 가장 바람직하게는 4:1 내지 10:1인 것이 바람직하다.
전형적으로, O2-최대 수평 분층은 반응 매질(36)의 저부 부근에 위치하는 반면, O2-최소 수평 분층은 반응 매질(36)의 상부 근처에 위치한다. 바람직하게는, O2-최소 수평 분층은 30개의 개별적인 수평 분층의 5개 최고 수평 분층중 하나이다. 가장 바람직하게는, O2-최소 수평 분층은 도 28에 도시된 바와 같이 30개의 개별적인 수평 분층중 최고 분층이다. 바람직하게는, O2-최대 수평 분층은 30개의 개별적인 수평 분층의 10개 최저 수평 분층중 하나이다. 가장 바람직하게는, O2-최대 수평 분층은 30개의 별도의 수평 분층의 5개 최저 수평 분층중 하나이다. 예를 들어, 도 28은 반응기(20)의 저부로부터 세번째 수평 분층으로서 O2-최대 수평 분층을 도시한다. O2-최소 및 O2-최대 수평 분층 사이의 수직 간격이 약 2W 이상, 더욱 바람직하게는 약 4W 이상, 가장 바람직하게는 6W 이상인 것이 바람직하다. O2-최소 및 O2-최대 수평 분층 사이의 수직 간격이 약 0.2H 이상, 더욱 바람직하게는 약 0.4H 이상, 가장 바람직하게는 0.6H 이상인 것이 바람직하다.
O2-최소 수평 분층의 시간-평균 및 부피-평균 산소 농도(습식 기준)는 약 0.1 내지 약 3몰%, 더욱 바람직하게는 약 0.3 내지 약 2몰%, 가장 바람직하게는 0.5 내지 1.5몰%이다. O2-최대 수평 분층의 시간-평균 및 부피-평균 산소 농도는 바람직하게는 약 4 내지 약 20몰%, 더욱 바람직하게는 약 5 내지 약 15몰%, 가장 바람직하게는 6 내지 12몰%이다. 기체 출구(40)를 통해 반응기(20)로부터 방출되는 기상 유출물중 시간-평균 산소 농도(건식 기준)는 바람직하게는 약 0.5 내지 약 9몰%, 더욱 바람직하게는 약 1 내지 약 7몰%, 가장 바람직하게는 1.5 내지 5몰%이다.
산소 농도가 반응 매질(36)의 상부 쪽으로 현저히 감소하기 때문에, 반응 매질(36)의 상부에서는 산소 요구량을 감소시키는 것이 바람직하다. 산화가능한 화합물(예컨대, 파라-자일렌)의 농도에 대해 수직 구배(산화가능한 화합물의 최소 농도가 반응 매질(36)의 상부 근처에 위치함)를 생성시킴으로써 반응 매질(36)의 상부 근처에서 이렇게 감소된 산소 요구량을 달성할 수 있다.
산화가능한 화합물(예를 들어, 파라-자일렌) 농도 구배를 정량함과 관련하여, 반응 매질(36)이 동일한 부피의 30개의 개별적인 수평 분층으로 이론적으로 분할되는 경우, OC-최대 수평 분층은 30개 수평 분층 모두의 최대 산화가능한 화합물 농도를 갖는 것으로 확인되며, OC-최소 수평 분층은 OC-최대 수평 분층 위에 위치하는 수평 분층의 최소 산화가능한 화합물 농도를 갖는 것으로 확인된다. 수평 분층의 산화가능한 화합물 농도는 시간-평균 및 부피-평균 물질 분율 기준으로 액상에서 측정된다. OC-최대 수평 분층의 산화가능한 화합물 농도 대 OC-최소 수평 분층의 산화가능한 화합물 농도의 비가 약 5:1보다 크고, 더욱 바람직하게는 약 10:1보다 크며, 더더욱 바람직하게는 약 20:1보다 크고, 가장 바람직하게는 40:1 내지 1000:1인 것이 바람직하다.
전형적으로, OC-최대 수평 분층은 반응 매질(36)의 저부 근처에 위치하는 반면, OC-최소 수평 분층은 반응 매질(36)의 상부 근처에 위치한다. 바람직하게는, OC-최소 수평 분층은 30개의 별도의 수평 분층의 5개 최고 수평 분층중 하나이다. 가장 바람직하게는, OC-최소 수평 분층은 도 28에 도시되어 있는 바와 같이 30개의 별도의 수평 분층중 최고 분층이다. 바람직하게는, OC-최대 수평 분층은 30개의 별도의 수평 분층의 10개 최고 수평 분층중 하나이다. 가장 바람직하게는, OC-최대 수평 분층은 30개의 별도의 수평 분층의 5개 최하 수평 분층중 하나이다. 예를 들어, 도 28은 반응기(20)의 저부로부터 다섯번째 수평 분층으로서 OC-최대 수평 분층을 도시한다. OC-최소 수평 분층과 OC-최대 수평 분층 사이의 수직 간격이 약 2W 이상(여기에서, "W"는 반응 매질(36)의 최대 폭임)인 것이 바람직하다. 더욱 바람직하게는, OC-최소 수평 분층과 OC-최대 수평 분층 사이의 수직 간격은 약 4W 이상, 가장 바람직하게는 6W 이상이다. 반응 매질(36)의 높이 "H"가 주어지는 경우, OC-최소 수평 분층과 OC-최대 수평 분층 사이의 수직 간격이 약 0.2H 이상, 더욱 바람직하게는 약 0.4H 이상, 가장 바람직하게는 0.6H 이상인 것이 바람직하다.
OC-최소 수평 분층의 액상중 시간-평균 및 부피-평균 산화가능한 화합물(예컨대, 파라-자일렌) 농도는 바람직하게는 약 5,000ppmw 미만, 더욱 바람직하게는 약 2,000ppmw 미만, 더더욱 바람직하게는 약 400ppmw 미만, 가장 바람직하게는 1 내지 100ppmw이다. OC-최대 수평 분층의 액상중 시간-평균 및 부피-평균 산화가능한 화합물 농도는 바람직하게는 약 100 내지 약 10,000ppmw, 더욱 바람직하게는 약 200 내지 약 5,000ppmw, 가장 바람직하게는 500 내지 3,000ppmw이다.
기포탑 반응기(20)가 산화가능한 화합물 농도의 수직 수배를 제공하는 것이 바람직하기는 하지만, 1,000ppmw보다 높은 액상중 산화가능한 화합물 농도를 갖는 반응 매질(36)의 부피%를 최소화시키는 것도 또한 바람직하다. 바람직하게는, 1,000ppmw보다 높은 액상중 산화가능한 화합물 농도를 갖는 반응 매질(36)의 시간-평균 부피%는 약 9% 미만, 더욱 바람직하게는 약 6% 미만, 가장 바람직하게는 3% 미만이다. 바람직하게는, 2,500ppmw보다 높은 액상중 산화가능한 화합물 농도를 갖는 반응 매질(36)의 시간-평균 부피%는 약 1.5% 미만, 더욱 바람직하게는 약 1% 미만, 가장 바람직하게는 0.5% 미만이다. 바람직하게는, 10,000ppmw보다 높은 액상중 산화가능한 화합물 농도를 갖는 반응 매질(36)의 시간-평균 부피%는 약 0.3% 미만, 더욱 바람직하게는 약 0.1% 미만, 가장 바람직하게는 0.03% 미만이다. 바람직하게는, 25,000ppmw보다 높은 액상중 산화가능한 화합물 농도를 갖는 반응 매질(36)의 시간-평균 부피%는 약 0.03% 미만, 더욱 바람직하게는 약 0.015% 미만, 가장 바람직하게는 0.007% 미만이다. 본 발명자들은 산화가능한 화합물의 높은 수준을 갖는 반응 매질(36)의 부피가 하나의 동일 한계내의(contiguous) 부피에 속할 필요는 없음을 알아내었다. 여러 시간에서, 기포탑 반응 용기에서의 혼란한 유동 패턴이 높은 수준의 산화가능한 화합물을 갖는 반응 매질(36)의 둘 이상의 연속적이지만 분리된 부분을 동시에 생성시킨다. 시간 평균화에 이용되는 각각의 시간에서, 전체 반응 매질의 0.0001부피%보다 큰 이러한 연속적이지만 분리된 부피 모두를 함께 부가하여 액상중 높은 수준의 산화가능한 화합물 농도를 갖는 전체 부피를 결정한다.
상기 논의된 산소 및 산화가능한 화합물의 농도 구배에 덧붙여, 반응 매질(36)에 온도 구배가 존재하는 것이 바람직하다. 다시 도 28을 보면, 이 온도 구배는, 반응 매질(36)을 동일한 부피의 30개의 개별적인 수평 분층으로 이론적으로 분할하고 각 분층의 시간-평균 및 부피-평균 온도를 측정함으로써, 농도 구배와 유사한 방식으로 정량될 수 있다. 최저 15개의 수평 분층중 최저온을 갖는 수평 분층을 T-최소 수평 분층이라 할 수 있고, T-최소 수평 분층 위에 위치하고 T-최소 수평 분층 위의 모든 분층의 최대 온도를 갖는 수평 분층을 "T-최대 수평 분층"이라 할 수 있다. T-최대 수평 분층의 온도가 T-최소 수평 분층의 온도보다 약 1℃ 이상 더 높은 것이 바람직하다. 더욱 바람직하게는, T-최대 수평 분층의 온도는 T-최소 수평 분층의 온도보다 약 1.25 내지 약 12℃ 더 높다. 가장 바람직하게는, T-최대 수평 분층의 온도는 T-최소 수평 분층의 온도보다 2 내지 8℃ 더 높다. T-최대 수평 분층의 온도는 바람직하게는 약 125 내지 약 200℃, 더욱 바람직하게는 약 140 내지 약 180℃, 가장 바람직하게는 150 내지 170℃이다.
전형적으로, T-최대 수평 분층은 반응 매질(36)의 중심 부근에 위치하는 반면, T-최소 수평 분층은 반응 매질(36)의 저부 근처에 위치한다. 바람직하게는, T-최소 수평 분층은 15개의 최저 수평 분층의 10개 최저 수평 분층중 하나이다. 가장 바람직하게는, T-최소 수평 분층은 15개의 최저 수평 분층의 5개 최저 수평 분층중 하나이다. 예를 들어, 도 28은 반응기(20)의 저부로부터 두번째 수평 분층으로서 T-최소 수평 분층을 도시한다. 바람직하게는, T-최대 수평 분층은 30개의 별도의 수평 분층의 20개 중간 수평 분층중 하나이다. 가장 바람직하게는, T-최대 수평 분층은 30개의 별도의 수평 분층의 14개 중간 수평 분층중 하나이다. 예를 들면, 도 28은 반응기(20)의 저부로부터 12번째 수평 분층(즉, 중간 10개의 수평 분층중 하나)으로서 T-최대 수평 분층을 도시한다. T-최소 수평 분층과 T-최대 수평 분층 사이의 수직 간격이 약 2W 이상, 더욱 바람직하게는 약 4W 이상, 가장 바람직하게는 6W 이상인 것이 바람직하다. T-최소 수평 분층과 T-최대 수평 분층 사이의 수직 간격이 약 0.2H 이상, 더욱 바람직하게는 약 0.4H 이상, 가장 바람직하게는 0.6H 이상인 것이 바람직하다.
상기 논의된 바와 같이, 반응 매질(36)에 수직 온도 구배가 존재하는 경우, 특히 회수된 생성물을 더 높은 온도에서 추가적으로 후속 가공시킬 때, 반응 매질(36)을 반응 매질의 온도가 최고인 높은 위치에서 회수하는 것이 바람직할 수 있다. 그러므로, 도 19 및 도 20에 도시되어 있는 바와 같이 하나 이상의 높은 출구를 통해 반응 매질(36)을 반응 대역(28)으로부터 회수하는 경우, 높은 출구(들)가 T-최대 수평 분층 근처에 위치하는 것이 바람직하다. 바람직하게는, 높은 출구는 T-최대 수평 분층의 10개의 수평 분층 내에, 더욱 바람직하게는 T-최대 수평 분층의 5개의 수평 분층 내에, 가장 바람직하게는 T-최대 수평 분층의 2개의 수평 분층 내에 위치한다.
이제, 본원에 기재된 본 발명의 특징 중 다수를, 단일 산화 반응기만을 사용하는 시스템이 아닌 다중 산화 반응기 시스템에 이용할 수 있음에 주의한다. 또한, 본원에 기재된 본 발명의 특정한 특징을 기포-진탕식 반응기(즉, 기포탑 반응기)가 아닌 기계-진탕식 및/또는 유동-진탕식 산화 반응기에 이용할 수 있다. 예를 들어, 본 발명자들은 반응 매질 전체에 걸쳐 산소 농도 및/또는 산소 소비 속도를 단계화/변화시키는데 수반되는 특정한 이점을 발견하였다. 반응 매질에서의 산소 농도/소비의 단계화에 의해 달성되는 이점은 반응 매질의 전체 부피가 단일 용기에 함유되는지 또는 다수개의 용기에 함유되는지에 관계없이 달성될 수 있다. 뿐만 아니라, 반응 매질의 산소 농도/소비의 단계화에 의해 달성되는 이점은 반응 용기(들)가 기계-진탕식, 유동-진탕식 및/또는 기포-진탕식인지에 관계없이 달성될 수 있다.
반응 매질의 산소 농도 및/또는 소비의 단계화 정도를 정량하는 한 방법은 반응 매질의 둘 이상의 별도의 20% 연속 부피를 비교하는 것이다. 이들 20% 연속 부피는 임의의 특정 형상으로 한정될 필요가 없다. 그러나, 각각의 20% 연속 부피는 반응 매질의 동일 한계내의 부피를 형성해야 하고(즉, 각각의 부피는 "연속적임"), 20% 연속 부피는 서로 중첩되지 않아야 한다(즉, 부피는 "별개임"). 도 29 내지 도 31은 이들 별개의 20% 연속 부피가 동일한 반응기(도 29) 또는 다중 반응기(도 30 및 도 31)에 위치될 수 있음을 도시한다. 도 29 내지 도 31에 도시된 반응기가 기계-진탕식, 유동-진탕식 및/또는 기포-진탕식 반응기일 수 있음에 주의한다. 한 실시양태에서는, 도 29 내지 도 31에 도시된 반응기가 기포-진탕식 반응기(즉, 기포탑 반응기)인 것이 바람직하다.
이제 도 29을 살펴보면, 반응기(20)는 반응 매질(36)을 함유하는 것으로 도시되어 있다. 반응 매질(36)은 제 1의 별도의 20% 연속 부피(37) 및 제 2의 별도의 20% 연속 부피(39)를 포함한다.
이제 도 30을 참조하면, 다중 반응기 시스템이 제 1 반응기(720a) 및 제 2 반응기(720b)를 포함하는 것으로 도시되어 있다. 반응기(720a, 720b)는 협력하여 반응 매질(736)의 전체 부피를 함유한다. 제 1 반응기(720a)는 제 1 반응 매질 부분(736a)을 함유하는데 반해, 제 2 반응기(720b)는 제 2 반응 매질 부분(736b)을 함유한다. 반응 매질(736)의 제 1의 별도의 20% 연속 부피(737)는 제 1 반응기(720a) 내에 한정되어 있는 것으로 도시되어 있고, 한편 반응 매질(736)의 제 2 의 별개의 20% 연속 부피(739)는 제 2 반응기(720b) 내에 한정되어 있는 것으로 도시되어 있다.
이제 도 31을 보면, 다중 반응기 시스템이 제 1 반응기(820a), 제 2 반응기(820b) 및 제 3 반응기(820c)를 포함하는 것으로 도시되어 있다. 반응기(820a, 820b, 820c)는 협력하여 반응 매질(836)의 전체 부피를 함유한다. 제 1 반응기(820a)는 제 1 반응 매질 부분(836a)을 함유하고; 제 2 반응기(820b)는 제 2 반응 매질 부분(836b)을 함유하며; 제 3 반응기(820c)는 제 3 반응 매질 부분(836c)을 함유한다. 반응 매질(836)의 제 1의 별개의 20% 연속 부피(837)는 제 1 반응기(820a) 내에 한정되어 있는 것으로 도시되고; 반응 매질(836)의 제 2의 별개의 20% 연속 부피(839)는 제 2 반응기(820b) 내에 한정되어 있는 것으로 도시되며; 반응 매질(836)의 제 3의 별개의 20% 연속 부피(841)는 제 3 반응기(820c) 내에 한정되어 있는 것으로 도시된다.
기상중 산소의 몰분율이 가장 풍부한 반응 매질의 20% 연속 부피를 언급하고 기상중 산소의 몰 분율이 가장 결핍된 반응 매질의 20% 연속 부피를 언급함으로써, 반응 매질중 산소 이용효율의 단계화를 정량할 수 있다. 기상중 최고 농도의 산소를 함유하는 반응 매질의 별개의 20% 연속 부피의 기상에서, 시간-평균 및 부피-평균 산소 농도(습식 기준)는 바람직하게는 약 3 내지 약 18몰%, 더욱 바람직하게는 약 3.5 내지 약 14몰%, 가장 바람직하게는 4 내지 10몰%이다. 기상중 최저 농도의 산소를 함유하는 반응 매질중 별도의 20% 연속 부피의 기상에서, 시간-평균 및 부피-평균 산소 농도(습식 기준)는 바람직하게는 약 0.3 내지 약 5몰%, 더욱 바람직하게는 약 0.6 내지 약 4몰%, 가장 바람직하게는 0.9 내지 3몰%이다. 뿐만 아니라, 반응 매질중 가장 결핍된 20% 연속 부피와 비교한, 반응 매질의 가장 풍부한 20% 연속 부피의 시간-평균 및 부피-평균 산소 농도(습식 기준)의 비는 바람직하게는 약 1.5:1 내지 약 20:1, 더욱 바람직하게는 약 2:1 내지 약 12:1, 가장 바람직하게는 3:1 내지 9:1이다.
반응 매질중 산소 소비의 단계화는 상기 처음에 기재된 산소-STR로 정량화될 수 있다. 산소-STR은 앞서 넓은 의미로(즉, 전체 반응 매질의 평균 산소-STR의 견지에서) 기재되었으나, 산소-STR은 또한 반응 매질 전체에서의 산소 소비 속도의 단계화를 정량하기 위하여 국부적인 의미로(즉, 반응 매질의 일부) 생각될 수도 있다.
본 발명자들은 반응 매질의 압력 및 반응 매질의 기상중 분자 산소의 몰 분율과 관련하여 본원에 개시된 바람직한 구배와 대체적으로 조화를 이루어 산소-STR을 반응 매질 전체에서 변화시키는 것이 매우 유용함을 발견하였다. 따라서, 반응 매질의 제 2의 별개의 20% 연속 부피의 산소-STR과 비교한, 반응 매질의 제 1의 별개의 20% 연속 부피의 산소-STR의 비가 약 1.5:1 내지 약 20:1, 더욱 바람직하게는 약 2:1 내지 약 12:1, 가장 바람직하게는 3:1 내지 9:1인 것이 바람직하다. 한 실시양태에서, "제 1의 별개의 20% 연속 부피"는 분자 산소가 반응 매질 내로 처음으로 도입되는 위치에 "제 2의 별개의 20% 연속 부피"보다 더 가깝게 위치한다. 산소-STR의 이러한 큰 구배는 부분 산화 반응 매질이 기포탑 산화 반응기에 함유되는지 또는 반응 매질의 기상의 압력 및/또는 분자 산소의 몰 분율에서 구배가 생성되는 임의의 다른 유형의 반응 용기에[예를 들어, 대체로 수평인 배플 어셈블리에 의해 보강될 수 있는, 강한 방사상 유동을 갖는 다수개의 임펠러를 사용함으로써 달성되는 다수개의 수직 배치 교반 대역을 갖는 기계 진탕식 용기에(여기에서는, 산화제 유동의 상당한 재혼합이 각각의 수직 배치된 교반 대역 내에서 일어날 수 있고 산화제 유동의 일부 재혼합이 인접한 수직 배치 교반 대역 사이에서 일어날 수 있음에도 불구하고, 산화제 유동은 반응 용기의 하부 근처에서 공급물로부터 대체로 위로 상승함)] 함유되는지에 관계없이 바람직하다. 즉, 반응 매질의 기상중 압력 및/또는 분자 산소의 몰 분율에 구배가 존재하는 경우, 본 발명자들은 본원에 개시된 수단에 의해 용해된 산소에 대한 화학적 요구량에도 유사한 구배를 생성시키는 것이 바람직함을 발견하였다.
국부적인 산소-STR이 변화하도록 하는 바람직한 수단은 산화가능한 화합물의 공급 위치를 조절하고 반응 매질의 액상의 혼합을 조절함으로써 본 발명의 다른 개시내용에 따라 산화가능한 화합물의 농도 구배를 조절하는 것이다. 국부적인 산소-STR이 변하도록 하는 다른 유용한 수단은 국부적인 온도 변화를 야기함으로써 또한 촉매와 용매 성분의 국부적인 혼합을 변화시킴으로써(예를 들어, 추가의 기체를 도입하여 반응 매질의 특정 부분에서 증발에 의한 냉각을 야기함으로써, 또한 다량의 물을 함유하는 용매 스트림을 첨가하여 반응 매질의 특정 부분에서의 활성을 감소시킴으로써) 반응 활성의 변화를 야기함을 포함한다.
도 30 및 도 31과 관련하여 상기 논의된 바와 같이, 제 1 반응 용기로부터 나오는 분자 산소의 적어도 일부, 바람직하게는 25% 이상, 더욱 바람직하게는 50% 이상, 가장 바람직하게는 75% 이상이 추가적인 증가분, 바람직하게는 제 1/상류 반응 용기에서 나오는 분자 산소의 10% 이상, 더욱 바람직하게는 20% 이상, 가장 바람직하게는 40% 이상을 소비하기 위하여 하나 이상의 후속 반응 용기에 전달되는 다중 반응 용기에서 부분 산화 반응을 유용하게 수행할 수 있다. 하나의 반응기에서 다른 반응기로의 분자 산소의 이러한 직렬 유동을 이용하는 경우, 제 1 반응 용기를 후속 반응 용기중 하나 이상보다 더 높은 반응 강도로, 바람직하게는 약 1.5:1 내지 약 20:1, 더욱 바람직하게는 약 2:1 내지 약 12:1, 가장 바람직하게는 3:1 내지 9:1의 제 1 반응 용기 내에서의 용기-평균-산소-STYR 대 후속 반응 용기 내에서의 용기-평균-산소-STR의 비로 작동시키는 것이 바람직하다.
상기 논의된 바와 같이, 모든 유형의 제 1 반응 용기(예컨대, 기포탑, 기계-진탕식, 재혼합식, 내부 다단계, 플러그 유동 등) 및 제 1 반응 용기와 상이한 유형일 수 있거나 상이한 유형이 아닐 수 있는 모든 유형의 후속 반응 용기는, 본 발명에 따른 후속 반응 용기로의 분자 산소의 직렬 유동에 유용하다. 후속 반응 용기 내에서 용기-평균-산소-STR을 감소시키는 수단은 유용하게는 감소된 온도, 산화가능한 화합물의 감소된 농도 및 촉매 성분과 용매의 특정 혼합물의 감소된 반응 활성(예컨대, 감소된 코발트 농도, 증가된 물 농도 및 소량의 구리 이온 같은 축매적 지연제의 첨가)을 포함한다.
제 1 반응 용기로부터 후속 반응 용기로의 유동시, 압축 또는 압력 감소, 냉각 또는 가열 및 임의의 양 또는 임의의 유형의 물질 제거 또는 첨가 같은 당해 분야에 공지되어 있는 임의의 수단에 의해 산화제 스트림을 처리할 수 있다. 그러나, 후속 반응 용기에서 감소되는 용기-평균-산소-STR을 사용하는 것은, 제 1 반응 용기의 상부의 절대 압력이 약 2.0MPa 미만, 더욱 바람직하게는 약 1.6MPa 미만, 가장 바람직하게는 1.2MPa 미만일 때 특히 유용하다. 뿐만 아니라, 후속 반응 용기에서 감소되는 용기-평균-산소-STR을 사용하는 것은, 하나 이상의 후속 반응 용기의 상부의 절대 압력과 비교한 제 1 반응 용기의 상부의 절대 압력의 비가 약 0.5:1 내지 6:1, 더욱 바람직하게는 약 0.6:1 내지 약 4:1, 가장 바람직하게는 0.7:1 내지 2:1일 때 특히 유용하다. 후속 용기에서 이들 하한 미만으로 압력을 감소시키면 분자 산소의 이용 효율을 과도하게 감소시키게 되고, 이들 상한보다 높게 압력을 증가시키면 산화제를 새로 공급하는 것과 비교할 때 비용이 더 증가한다.
감소되는 용기-평균-산소-STR을 갖는 후속 반응 용기로의 분자 산소의 직렬 유동을 이용하는 경우, 산화가능한 화합물, 용매 및 산화제의 새로운 공급물 스트림은 후속 반응 용기 및/또는 제 1 반응 용기 내로 유동될 수 있다. 존재하는 경우 반응 매질의 액상 및 고상의 유동은 반응 용기 사이에서 어느 방향으로나 유동할 수 있다. 제 1 반응 용기에서 나가고 후속 반응 용기에 들어가는 기상의 전부 또는 일부는 존재하는 경우 제 1 반응 용기로부터의 반응 매질의 액상 또는 고상의 일부와 별도로 또는 혼합되어 유동할 수 있다. 존재하는 경우 액상 및 고상을 포함하는 생성물 스트림의 유동은 시스템의 임의의 반응 용기에서 반응 매질로부터 회수될 수 있다.
도 1 내지 도 29를 참조하면, 본원에 개시된 바람직한 실시양태에 따라, 종래의 산화 반응기와는 현저하게 상이한 조건하에서 기포탑 반응기(20)에서 산화를 바람직하게 수행한다. 기포탑 반응기(20)가 본원에 개시된 바람직한 실시양태에 따라 파라-자일렌을 조질의 테레프탈산(CTA)으로 액상 부분 산화시키는데 사용되는 경우, 반응 매질 내에서의 액체 유동 패턴과 조합된 국부적인 반응 강도, 국부적인 증발 강도 및 국부적인 온도의 공간 프로파일 및 바람직한 비교적 낮은 산화 온도는 독특하고 이로운 특성을 갖는 CTA 입자의 형성에 기여한다.
본 발명의 하나의 실시양태에 따라 제조된 기본 CTA 입자가 도 32A 및 도 32B에 도시되어 있다. 도 32A는 기본 CTA 입자를 500배 배율로 확대한 것이며, 도 32B는 기본 CTA 입자 중 하나 상에서 주밍(zooming)하여 상기 입자를 2,000배 배율로 확대한 것이다. 도 32B에 가장 잘 도시된 바와 같이, 각각의 기본 CTA 입자는 전형적으로 다수개의 작고 응집된 CTA 부속입자로 구성되고, 이에 의해 기본 CTA 입자는 비교적 높은 표면적, 높은 다공성, 낮은 밀도 및 우수한 용해성을 갖게 된다. 기본 CTA 입자는 전형적으로 약 20 내지 약 150마이크론, 더욱 바람직하게는 약 30 내지 약 120마이크론, 가장 바람직하게는 40 내지 90마이크론의 평균 입자 크기를 갖는다. CTA 부속입자는 전형적으로 약 0.5 내지 약 30마이크론, 더욱 바람직하게는 약 1 내지 약 15마이크론, 가장 바람직하게는 2 내지 5마이크론의 평균 입자 크기를 갖는다. 도 32A 및 도 32B에 도시된 기본 CTA 입자의 비교적 높은 표면적은 브라우나우어-엠메트-텔러(Braunauer-Emmett-Teller; BET) 표면적 측정 방법을 사용하여 정량할 수 있다. 바람직하게는, 기본 CTA 입자는 약 0.6m2/g 이상의 평균 BET 표면적을 갖는다. 더욱 바람직하게는, 기본 CTA 입자는 약 0.8 내지 약 4m2/g의 평균 BET 표면적을 갖는다. 가장 바람직하게는, 기본 CTA 입자는 0.9 내지 2m2/g의 평균 BET 표면적을 갖는다. 본 발명의 바람직한 실시양태의 최적화된 산화 방법에 의해 제조된 기본 CTA 입자의 물리적 특성(예컨대, 입자 크기, BET 표면적, 다공성 및 용해성)으로 인해, 도 35와 관련하여 아래에 더욱 상세하게 기재되는 바와 같이, 더욱 효과적이고/이거나 경제적인 방법에 의해 CTA 입자를 정제할 수 있다.
상기에서 제공된 평균 입자 크기는 편광 현미경법 및 상 분석을 이용하여 결정하였다. 입자 크기 분석에 사용된 장치는 4x 플랜 플로우르(Plan Flour) N.A. 0.13 대물렌즈를 구비한 니콘(Nikon) E800 광학 현미경, 스폿 알티(Spot RT™) 디지털 카메라 및 개인용 컴퓨터에서 작동되는 이미지 프로 플러스(Image Pro Plus™) V4.5.0.19 상 분석 소프트웨어를 포함하였다. 입자 크기 분석 방법은 하기 주 단계를 포함하였다: (1) 광유에 CTA 분말을 분산시키는 단계; (2) 분산액의 현미경 슬라이드/커버 슬립을 마련하는 단계; (3) 편광 현미경법(직교 편광 조건-입자는 흑색 배경 상에 밝은 물체로서 나타남)을 이용하여 상기 슬라이드를 조사하는 단계; (4) 각 샘플 제제(필드 크기 = 3 x 2.25mm, 화소 크기 = 1.84마이크론/화소)에 대해 상이한 상을 수집하는 단계; (5) 이미지 프로 플러스 소프트웨어로 상 분석을 실시하는 단계; (6) 입자 측정치를 스프레드시트로 보내는 단계; 및 (7) 스프레드시트에서 통계적 특성화를 실시하는 단계. 단계 (5)의 "이미지 프로 플러스 소프트웨어를 사용한 상 분석 실시"는 하기 부속 단계를 포함한다: (a) 어두운 배경 상에서 백색 입자를 검출하기 위해 상 임계치를 설정하는 단계; (b) 이성분계 상을 생성하는 단계; (c) 화소 노이즈를 여과하기 위해 1회-통과 오픈 필터를 작동시키는 단계; (d) 상에서 모든 입자를 계측하는 단계; 및 (e) 각 입자에서 계측된 평균 직경을 기록하는 단계. 이미지 프로 플러스 소프트웨어는 개별적인 입자의 평균 직경을 2° 간격으로 입자 중심을 통과하도록 측정된 입자의 수평균 직경 길이로서 규정한다. 단계 7의 "스프레드시트에서의 통계적 특성화 실시"는 다음과 같이 부피-가중 평균 입자 크기를 계산함을 포함한다. 입자가 구형인 경우, pi/6 * di 3를 사용하고; 각 입자의 부피를 직경과 곱하여 pi/6 * di 4를 구하고; 샘플중 모든 입자에 대해 pi/6 * di 4 값을 합하고; 샘플중의 모든 입자의 부피를 총합하고; (pi/6 * di 4)의 샘플 중의 n개 입자 모두에 대한 총합을 (pi/6 * di 3)의 샘플 중의 n개 입자 모두에 대한 총합으로 나누어 부피-가중 입자 직경을 계산함으로써, 샘플중 n개 입자 각각의 부피를 산출한다. 본원에 사용되는 "평균 입자 크기"는 상기 기재된 시험 방법에 따라 측정된 부피-가중 평균 입자 크기를 지칭하며, 또한 하기 수학식 1의 D(4,3)로서 언급된다:
Figure 112007024444267-PCT00001
또한, 단계 7은 총 샘플 부피의 다양한 분율이 그보다 더 작은 입자 크기를 찾는 것을 포함한다. 예를 들면, D(v,0.1)는 총 샘플 부피의 10%는 그보다 더 작고 90%는 더 큰 입자 크기이며; D(v,0.5)는 샘플 부피의 반은 그보다 더 크고 반은 더 작은 입자 크기이며; D(v,0.9)는 총 샘플 부피의 90%가 그보다 더 작은 입자 크기이다. 또한, 단계 7은 본원에서 "입자 크기 스프레드(spread)"로 정의되는 D(v,0.9) - D(v,0.1) 값을 계산함을 포함하며; 단계 7은 본원에서 "입자 크기 상대 스프레드"로서 정의되는, 입자 크기 스프레드를 D(4,3)로 나눈 값을 계산함을 포함한다.
또한, 상기에서 측정된 CTA 입자의 D(v,0.1)가 약 5 내지 약 65마이크론, 더욱 바람직하게는 약 15 내지 약 55마이크론, 가장 바람직하게는 25 내지 45마이크론인 것이 바람직하다. 상기에서 측정된 CTA 입자의 D(v,0.5)가 약 10 내지 90마이크론, 더욱 바람직하게는 약 20 내지 약 80마이크론, 가장 바람직하게는 30 내지 70마이크론인 것이 바람직하다. 상기에서 측정된 CTA 입자의 D(v,0.9)가 약 30 내지 약 150마이크론, 더욱 바람직하게는 약 40 내지 약 130마이크론, 가장 바람직하게는 50 내지 110마이크론인 것이 바람직하다. 입자 크기 상대 스프레드가 약 0.5 내지 약 2.0마이크론, 더욱 바람직하게는 약 0.6 내지 약 1.5마이크론, 가장 바람직하게는 0.7 내지 1.3마이크론인 것이 바람직하다.
상기에서 제공된 BET 표면적 값은 마이크로메리틱스(Micromeritics) ASAP2000[조지아주 노크로스 소재의 마이크로메리틱스 인스트루먼트 코포레이션(Micromeritics Instrument Corporation)에서 구입가능]에 의해 측정하였다. 상기 측정 과정의 제 1 단계에서는, 입자의 샘플 2 내지 4g을 계량하여 50℃에서 진공하에 건조시켰다. 이어, 상기 샘플을 분석 기체 매니폴드(manifold) 상에 위치시켜 77°K로 냉각시켰다. 상기 샘플을 공지 부피의 질소 기체에 노출시키고 압력의 감소를 측정함으로써, 최소 5개의 평형 압력에서 질소 흡수 등온선을 측정하였다. 상기 평형 압력은 적절하게도 P/Po가 0.01 내지 0.20이며, 이 때 P는 평형 압력이고 Po는 77°K에서의 액체 질소의 증기압이다. 이어서, 이렇게 얻어진 등온선을 하기 BET 수학식 2에 따라 플롯팅하였다:
Figure 112007024444267-PCT00002
상기 식에서,
Va는 P에서 샘플에 의해 흡착되는 기체의 부피이고,
Vm은 샘플의 전체 표면을 단일층의 기체로 덮는데 필요한 기체의 부피이며,
C는 상수이다.
상기 플롯으로부터, Vm 및 C를 결정하였다. 그 후, 하기 수학식 3에 의해, 77°K에서의 질소의 단면적을 이용하여 Vm을 표면적으로 전환시켰다:
Figure 112007024444267-PCT00003
상기 식에서,
σ는 77°K에서의 질소의 단면적이고,
T는 77°K이며,
R은 기체 상수이다.
상기에서 시사되는 바와 같이, 본 발명의 한 실시양태에 따라 형성된 CTA는 다른 공정에 의해 제조된 종래의 CTA와 비교하여 우수한 용해 특성을 나타낸다. 이러한 향상된 용해 속도에 의해 본 발명의 CTA는 더 효율적이고/이거나 더 효과적인 정제 공정에 의해 정제될 수 있다. 하기 설명은 CTA의 용해 속도를 정량할 수 있는 방법에 관한 것이다.
진탕되는 혼합물 중에서 공지된 양의 고체가 공지된 양의 용매 중으로 용해되는 속도는 여러 가지 프로토콜에 의해 측정될 수 있다. 본원에서 사용되는 "시한 용해 시험(timed dissolution test)"이라고 지칭되는 측정 방법은 다음과 같이 정의된다. 약 0.1MPa의 주위 압력이 시한 용해 시험 전체에서 사용된다. 시한 용해 시험 전체에서 사용되는 주위 온도는 약 22℃이다. 또한, 고체, 용매 및 모든 용해 장치는 시험이 시작되기 전에 상기 온도에서 완전히 열평형되며, 용해가 진행되는 동안 비커 또는 그의 내용물에 대한 감지할만한 가열 또는 냉각은 존재하지 않는다. HPLC 분석용 등급의 새로운 테트라하이드로퓨란(99.9% 이상의 순도를 가짐, 이하에서 THF로 지칭함)의 용매 부분 250g을, 단열되지 않고 매끈한 면을 가지며 일반적으로 원통형인 세정된 키맥스(KIMAX) 장형(tall form) 400㎖들이 유리 비커[킴블(Kimble; 등록상표) 부품 번호 14020, 뉴저지주 바인랜드 소재의 킴블/콩테(Kimble/Kontes)] 내에 위치시킨다. 테플론이 코팅된 자기 교반 막대[VWR 부품 번호 58948-230, 길이 약 1인치 및 직경 3/8인치, 8각형 단면, 펜실베이니아주 19380 웨스트 체스터 소재의 VWR 인터내셔널(VWR International)]를 상기 비커 내에 위치시켜서, 자연적으로 저부에 침강하도록 한다. 바리오마그(Variomag; 등록상표) 멀티포인트(multipoint) 15 자기 교반기[독일 오베르쉴라이스하임 소재의 H&P 라보르테크니크 아게(H&P Labortechnik AG)]를 이용하여 1분당 800회전 설정치에서 샘플을 교반시킨다. 상기 교반은 고체를 첨가하기 전 5분 이내에 시작되며 고체를 첨가한 후 30분 이상동안 꾸준히 계속한다. 250mg에 달하는 조질의 또는 정제된 TPA 미립자의 고체 샘플을 비점착 샘플 계량 팬으로 계량한다. t=0으로 표시되는 개시 시간에, 상기 계량된 고체를 모두 한꺼번에 교반된 THF에 부어넣음과 동시에 타이머를 작동시킨다. 정상적으로 수행된다면, THF는 신속하게 상기 고체를 습윤시켜 5분 내에 잘 교반된 묽은 슬러리를 형성한다. 그 후에, 이 혼합물의 샘플을 t=0으로부터 분 단위로 측정된 다음의 시간에 수득한다: 0.08, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 2.50, 3.00, 4.00, 5.00, 6.00, 8.00, 10.00, 15.00, 및 30.00. 새로운 일회용 주사기[뉴저지주 07417 프랭클린 레이크 소재의 벡톤 디킨슨 앤드 컴패니(Becton, Dickinson and Co)가 제조한 5㎖, REF 30163]를 사용하여 잘 교반된 묽은 혼합물로부터 각각의 샘플 소량을 수득한다. 비커로부터 회수한 직후, 약 2㎖의 투명 액체 샘플을 사용되지 않은 새로운 주사기 필터[25mm 직경 및 0.45마이크론의 겔만 GHP 아크로디스크 GF(Gelman GHP Acrodisc GF; 등록상표), 뉴욕주 11548 이스트 힐스 소재의 팔 코포레이션(Pall Corporation)]를 통하여 라벨을 붙인 새로운 유리 샘플 바이알로 신속하게 방출시킨다. 주사기에 채우고, 필터에 위치시키고, 샘플 바이알로 방출시키는 작업 각각의 지속 시간은 정확하게 약 5초 미만이며, 이 시간 간격은 각각의 목표 샘플링 시간 전후 약 3초 이내에 적절하게 개시되고 종료된다. 샘플 바이알을 채우는 매 작업 후 약 5분 이내에, 샘플 바이알을 마개로 막고 다음의 화학 분석을 실시할 때까지 대체로 항온에서 유지시킨다. t=0인 시점으로부터 30분이 경과한 때에 최종 샘플을 수득한 후, 본원의 다른 곳에서 개괄적으로 기술되는 HPLC-DAD 방법을 사용하여 용해된 TPA의 함량을 구하기 위해 16개의 모든 샘플을 분석한다. 그러나, 본 시험에서, 교정 기준 및 보고 된 결과는 둘 다 THF 용매 1g당 용해된 TPA의 mg(이하에서 "THF중에서의 ppm"으로 지칭함)에 기초한다. 예를 들어, 250mg의 고체 전체가 매우 순수한 TPA이고 특정 샘플을 수득하기 전에 그 전량을 250g의 THF 용매 중에서 완전히 용해시켰다면, 그 정확하게 측정된 농도는 THF중의 약 1,000ppm이 될 것이다.
본 발명에 따른 CTA가 상기 기재된 시한 용해 시험에서 처리되는 경우, t=0인 시점으로부터 1분이 경과한 때에 수득한 샘플이 THF중의 약 500ppm 이상의 농도, 더욱 바람직하게는 THF중의 600ppm 이상의 농도로 용해되는 것이 바람직하다. t=0인 시점으로부터 2분이 경과한 때에 수득한 샘플에 있어서는, 본 발명에 따른 CTA가 THF중의 약 700ppm 이상의 농도, 더욱 바람직하게는 THF중의 750ppm 이상의 농도로 용해되는 것이 바람직하다. t=0인 시점으로부터 4분이 경과한 때에 수득한 샘플에 있어서는, 본 발명에 따른 CTA가 THF중의 약 840ppm 이상의 농도, 더욱 바람직하게는 THF중의 880ppm 이상의 농도로 용해되는 것이 바람직하다.
비교적 간단한 음 지수 증가 모델(negative exponential growth model)이, 미립자 샘플 및 용해 공정의 복잡성에도 불구하고, 완전한 시한 용해 시험으로부터의 전체 데이터 세트의 시간 의존성을 설명하는데 유용하다는 것을 본 발명자들은 알게 되었다. 이하에서 "시한 용해 모델"이라고 지칭되는 수학식은 다음과 같다:
Figure 112007024444267-PCT00004
상기 식에서,
t는 시간(분 단위)이고;
S는 시간 t에서의 용해도(THF중의 ppm 단위)이고;
exp는 자연 로그의 밑을 2로 하는 지수 함수이며;
A, B는 회귀 상수(THF중의 ppm 단위)(여기에서, A는 주로 매우 짧은 시간에 보다 작은 입자를 신속하게 용해시키는 것에 관련되며, A + B는 주로 지정된 시험 시간이 종료될 무렵의 총 용해량에 관련됨)이고;
C는 회귀 시간 상수[분-1(reciprocal minute) 단위]이다.
회귀 상수는 실제의 데이터 포인트와 그에 대응하는 모델 값 사이의 오차의 제곱의 합을 최소화하기 위해 조정되며, 이 방법은 일반적으로 "최소 제곱" 피트(fit)로 지칭된다. 이 데이터 회귀를 실행하기 위한 바람직한 소프트웨어 패키지는 JMP 릴리즈(Realease) 5.1.2[노스캐롤라이나주 27513 캐리 SAS 캠퍼스 드라이브 소재의 SAS 인스티튜트 인코포레이티드(SAS Institute Inc.)의 JMP 소프트웨어]이다.
본 발명에 따른 CTA를 시한 용해 시험으로 시험하고 상술한 시한 용해 모델에 적용할 때, CTA가 약 0.5분-1보다 크고, 더욱 바람직하게는 약 0.6분-1보다 크며, 가장 바람직하게는 0.7분-1보다 큰 시간 상수 "C"를 갖는 것이 바람직하다.
도 33A 및 도 33B는 연속 교반식 탱크 반응기(CSTR)에서 종래의 고온 산화 공정에 의해 제조한 종래의 CTA 입자를 도시한 것이다. 도 33A는 500배 확대된 종래의 CTA 입자를 도시하며, 도 33B는 주밍하여 2,000배 확대된 CTA 입자를 도시한 것이다. 도 32A 및 32B에 도시된 본 발명의 CTA 입자와 도 33A 및 도 33B에 도시 된 종래의 CTA 입자를 시각적으로 비교하면, 종래의 CTA 입자가 본 발명의 CTA 입자보다 더 높은 밀도, 더 작은 표면적, 더 낮은 다공성, 및 더 큰 입자 크기를 갖는다는 것을 보여준다. 실제로, 도 33A 및 도 33B에서 나타난 종래의 CTA는 약 205마이크론의 평균 입자 크기 및 약 0.57m2/g의 BET 표면적을 갖는다.
도 34는 정제된 테레프탈산(PTA)을 제조하는 종래의 공정을 도시한다. 종래의 PTA 공정에서는, 파라-자일렌을 기계 교반식 고온 산화 반응기(700)에서 부분적으로 산화시킨다. CTA를 포함하는 슬러리를 반응기(700)로부터 회수한 후, 정제 시스템(702)에서 정제한다. 정제 시스템(702)의 PTA 생성물을 분리 시스템(706)에 도입하여 PTA 입자를 분리하고 건조시킨다. 정제 시스템(702)은 종래의 방법에 의해 PTA 입자를 제조하는데 수반되는 비용의 큰 부분을 차지한다. 정제 시스템(702)은 일반적으로 물 첨가/교환 시스템(708), 용해 시스템(710), 수소화 시스템(712), 및 3개의 개별적인 결정화 용기(704a, 704b, 704c)를 포함한다. 물 첨가/교환 시스템(708)에서는, 모액(mother liquor)의 상당량을 물로 대체한다. 물을 첨가한 후, 물/CTA 슬러리를 용해 시스템(710)에 도입하고, 여기서 물/CTA 혼합물을 CTA 입자가 물에 완전히 용해될 때까지 가열시킨다. CTA 용해 후, 물중의 CTA 용액을 수소화 시스템(712)에서 수소화시킨다. 그 후, 수소화 시스템(712)으로부터 수소화된 유출물을 결정화 용기(704a, 704b, 704c)에서 3단계로 결정화시킨 다음, 분리 시스템(706)에서 PTA를 분리시킨다.
도 35는 본 발명의 한 실시양태에 따라 구성된 기포탑 산화 반응기(800)를 사용하여 PTA를 제조하는 개선된 공정을 도시한다. 고체 CTA 입자 및 액체 모액을 포함하는 초기 슬러리를 반응기(800)로부터 회수한다. 전형적으로, 상기 초기 슬러리는 약 10 내지 약 50중량%의 고체 CTA 입자를 함유할 수 있으며 그 나머지는 액체 모액이다. 상기 초기 슬러리에 존재하는 고체 CTA 입자는 전형적으로 약 400ppmw 이상의 4-카복시벤즈알데하이드(4-CBA), 더욱 전형적으로는 약 800ppmw 이상의 4-CBA, 가장 전형적으로는 1,000 내지 15,000ppmw의 4-CBA를 함유한다. 반응기(800)로부터 회수된 상기 초기 슬러리를 정제 시스템(802)에 도입하여 CTA에 존재하는 4-CBA 및 다른 불순물의 농도를 감소시킨다. 정제 시스템(802)에서 더 순수한/정제된 슬러리를 제조하고 분리 시스템(804)에서 분리 및 건조시켜 약 400ppmw 미만의 4-CBA, 더욱 바람직하게는 약 250ppmw 미만의 4-CBA, 가장 바람직하게는 10 내지 200ppmw의 4-CBA를 포함하는 더 순수한 고체 테레프탈산 입자를 생성시킨다.
도 35에 도시된 PTA 제조 시스템의 정제 시스템(802)은 도 34에 도시된 종래 기술 시스템의 정제 시스템(802)에 비해 다수의 이점을 제공한다. 바람직하게는, 정제 시스템(802)는 일반적으로 액체 교환 시스템(806), 분해기(808) 및 단일 결정화기(810)를 포함한다. 액체 교환 시스템(806)에서는, 상기 초기 슬러리에 존재하는 모액의 약 50중량% 이상을 새로운 대체 용매로 대체시켜 CTA 입자 및 대체 용매를 포함하는 용매-교환된 슬러리를 제공한다. 액체 교환 시스템(806)에서 나가는 용매-교환된 슬러리를 분해기(또는 제 2 산화 반응기)(808) 내로 도입한다. 분해기(808)에서는, 기포탑 반응기(800)에서 실시된 최초/제 1 산화 반응에서 사용된 것보다 약간 더 높은 온도에서 제 2 산화 반응을 실시한다. 상술한 바와 같이, 반응기(800)에서 제조된 CTA 입자의 큰 표면적, 작은 입자 크기 및 낮은 밀도로 인해, CTA 입자에 포획된 특정 불순물을 분해기(808)에서 CTA 입자를 완전히 용해시킬 필요 없이 분해기(808)에서 산화에 사용할 수 있게 된다. 따라서, 분해기(808) 내의 온도는 다수의 유사한 종래 기술의 공정보다 더 낮을 수 있다. 분해기(808)에서 실시되는 상기 제 2 산화는 바람직하게는 CTA 중의 4-CBA의 농도를 200ppmw 이상, 더욱 바람직하게는 약 400ppmw 이상, 가장 바람직하게는 600 내지 6,000ppmw로 감소시킨다. 바람직하게는, 분해기(808)에서의 제 2 산화 온도는 기포탑 반응기(800)에서의 제 1 산화 온도보다 약 10℃ 이상, 더욱 바람직하게는 반응기(800)에서의 제 1 산화 온도보다 약 20 내지 약 80℃ 이상, 가장 바람직하게는 반응기(800)에서의 제 1 산화 온도보다 30 내지 50℃ 이상 더 높다. 상기 제 2 산화 온도는 바람직하게는 약 160 내지 약 240℃, 더욱 바람직하게는 약 180 내지 약 220℃, 가장 바람직하게는 190 내지 약 210℃이다. 분해기(808)로부터 정제된 생성물은 분리 시스템(804)에서 분리하기 전에 결정화기(810)에서의 단일 결정화 단계만을 필요로 한다. 적합한 제 2 산화/분해 기법은 미국 특허 공개 제 2005/0065373 호에 더욱 상세하게 기술되어 있으며, 그 전체 개시 내용이 본원에 참고로 인용된다.
도 35에 도시된 시스템에 의해 제조된 테레프탈산(예컨대, PTA)은 바람직하게는 약 40마이크론 이상, 더욱 바람직하게는 약 50 내지 약 2,000마이크론, 가장 바람직하게는 60 내지 200마이크론의 평균 입자 크기를 갖는 PTA 입자로 형성된다. 상기 PTA 입자는 바람직하게는 약 0.25m2/g 미만, 더욱 바람직하게는 약 0.005 내지 약 0.2m2/g, 가장 바람직하게는 0.01 내지 0.18m2/g의 평균 BET 표면적을 갖는다. 도 35에 도시된 시스템에 의해 제조된 PTA는 PET 제조시 공급원료로 사용하기에 적합하다. 전형적으로, PET는 테레프탈산을 에틸렌 글라이콜로 에스터화시킨 후 중축합함으로써 제조된다. 바람직하게는, 본 발명의 한 실시양태에 의해 제조된 테레프탈산을, 2001년 12월 7일자로 출원된 미국 특허 출원 제 10/013,318 호에 기재된 파이프 반응기 PET 공정에 공급물로서 사용하며, 상기 특허 출원의 전체 개시 내용은 본원에서 참고로 인용된다.
본원에서 개시된 바람직한 형태를 갖는 CTA 입자는 4-CBA 함량의 감소를 위한 상기 기재된 산화적 분해 공정에 특히 유용하다. 또한, 이들 바람직한 CTA 입자는 그 입자의 용해 및/또는 화학 반응을 포함하는 광범위한 다른 후-공정에서 이점을 제공한다. 이들 추가적 후-공정은, 하나 이상의 하이드록실-함유 화합물과 반응시켜 에스터 화합물을 생성시키는 반응, 특히 CTA를 메탄올과 반응시켜 다이메틸 테레프탈레이트 및 불순물 에스터를 생성시키는 반응; 하나 이상의 다이올과 반응시켜 에스터 단량체 및/또는 중합체 화합물을 제조하는 반응, 특히 CTA를 에틸렌 글라이콜과 반응시켜 폴리에틸렌 테레프탈레이트(PET)를 생성시키는 반응; 및 물, 아세트산, 및 N-메틸-2-피롤리돈을 포함하지만 이들로 한정되지는 않는 용매 중에서 완전히 또는 부분적으로 용해시키는 반응(더 많은 순수한 테레프탈산의 재침전 및/또는 카복실산기를 제외한 카본일기의 선택적인 화학적 환원을 포함하지만 이들 로 한정되지는 않는 추가적 처리를 포함할 수 있음)을 포함하지만, 이들로 국한되지는 않는다. 눈에 띄게 포함되는 것은, 알데하이드, 특히 4-CBA, 플루오렌온, 페논 및/또는 안트라퀴논의 양을 감소시키는 부분적인 수소화와 결합된, 물을 포함하는 용매 중에서의 CTA의 실질적 용해이다.
본 발명자들은, 본원에서 개시된 바람직한 특성에 부합되지 않는 CTA 입자(비합치 CTA 입자)로부터, 비합치 CTA 입자의 기계적 분쇄 및 비합치 CTA 입자의 완전한 또는 부분적인 용해 후 완전한 또는 부분적인 재침전을 포함하지만 이들로 한정되지는 않는 수단에 의해, 본원에 개시된 바람직한 특성을 갖는 CTA 입자를 제조할 수 있다고 생각한다.
본 발명의 한 실시양태에 따라, 산화가능한 방향족 화합물을 하나 이상의 방향족 카복실산 유형으로 부분적으로 산화시키는 공정이 제공되며, 이때 공급물의 용매 부분(즉, "용매 공급물")의 순도 및 공급물의 산화가능한 화합물 부분(즉, "산화가능한 화합물 공급물")의 순도는 하기에서 지정되는 특정 범위 내에서 조절된다. 본 발명의 다른 실시양태와 함께, 이로 인해 반응 매질의 액상 및 존재하는 경우 고상 및 조합된 슬러리(즉, 고체 및 액체)상의 순도가 하기에서 개괄적으로 기재되는 특정의 바람직한 범위 내에서 조절될 수 있다.
용매 공급물와 관련하여, 산화가능한 방향족 화합물(들)을 산화시켜 방향족 카복실산을 생성시키는 것은 공지되어 있으며, 이때 상기 반응 매질 내로 도입되는 용매 공급물은, 실험실 규모 및 파일럿 규모로 종종 사용되는 바와 같이, 분석용 순도를 갖는 아세트산 및 물의 혼합물이다. 또한, 산화가능한 방향족 화합물을 산 화시켜 방향족 카복실산을 생성시키는 것은 공지되어 있으며, 이때 상기 반응 매질에서 나가는 용매는 생성된 방향족 카복실산으로부터 분리된 후, 주로 생산 비용의 이유로 용매 공급물로서 상기 반응 매질로 재순환된다. 이러한 용매의 재순환으로 특정 공급물 불순물 및 공정 부산물이 시간이 경과함에 따라 재순환되는 용매 중에 축적되게 한다. 상기 반응 매질에 재도입되기 전에 재순환되는 용매를 정제하기 위한 여러 가지 수단이 당해 기술 분야에서 공지되어 있다. 일반적으로, 재순환되는 용매를 더욱 고도로 정제하는 것은 유사한 수단에 의해 보다 낮은 정도로 정제하는 것보다 상당히 더 높은 제조 비용을 발생시킨다. 본 발명의 한 실시양태는, 전체적인 제조 비용과 전체적인 생성물 순도 사이의 최적의 균형을 찾기 위해, 용매 공급물 중에 존재하는 다수의 불순물(이들 중 다수는 지금까지 대체로 무해한 것으로 생각되었음)의 바람직한 범위를 이해하고 정의하는데 관한 것이다.
본원에서 "재순환되는 용매 공급물"은 부분적으로 산화되는 하나 이상의 산화가능한 방향족 화합물을 함유하는 반응 매질을 이미 통과한 약 5중량% 이상의 물질을 포함하는 용매 공급물로서 정의된다. 제조 단위장치에서의 용매 재고 및 조업시간상의 이유로, 재순환되는 용매의 일부를 작동일 1일당 1회 이상, 더욱 바람직하게는 7일 이상의 연속 작동 동안 1일당 1회 이상, 가장 바람직하게는 30일 이상 연속 작동 동안 1일당 1회 이상 반응 매질을 통과시키는 것이 바람직하다. 경제적인 이유로, 본 발명의 반응 매질로의 용매 공급물중 약 20중량% 이상, 더욱 바람직하게는 약 40중량% 이상, 더더욱 바람직하게는 약 80중량% 이상, 가장 바람직하게는 90중량% 이상이 재순환되는 용매인 것이 바람직하다.
본 발명자들은, 반응 활성 때문에 또한 산화 생성물에 잔류하는 금속 불순물을 고려하여, 재순환되는 용매 공급물 중의 선택된 다가 금속의 농도는 바로 아래에서 지정하는 범위 내에 있는 것이 바람직함을 발견하였다. 재순환되는 용매중 철의 농도는 바람직하게는 약 150ppmw 미만, 더욱 바람직하게는 약 40ppmw 미만, 가장 바람직하게는 0 내지 8ppmw이다. 재순환되는 용매중 니켈의 농도는 바람직하게는 약 150ppmw 미만, 더욱 바람직하게는 약 40ppmw 미만, 가장 바람직하게는 0 내지 8ppmw이다. 재순환되는 용매중 크롬의 농도는 바람직하게는 약 150ppmw 미만, 더욱 바람직하게는 약 40ppmw 미만, 가장 바람직하게는 0 내지 8ppmw이다. 재순환되는 용매중 몰리브덴의 농도는 바람직하게는 약 75ppmw 미만, 더욱 바람직하게는 약 20ppmw 미만, 가장 바람직하게는 0 내지 4ppmw이다. 재순환되는 용매중 티탄의 농도는 바람직하게는 약 75ppmw 미만, 더욱 바람직하게는 약 20ppmw 미만, 가장 바람직하게는 0 내지 4ppmw이다. 재순환되는 용매중 구리의 농도는 바람직하게는 약 20ppmw 미만, 더욱 바람직하게는 약 4ppmw 미만, 가장 바람직하게는 0 내지 1ppmw이다. 전형적으로, 다른 금속 불순물도 또한 재순환되는 용매에 존재하는데, 이것들은 일반적으로 상기 열거된 하나 이상의 금속에 비해 더 낮은 수준을 갖는다. 상기 열거된 금속을 바람직한 범위 내로 조절함으로써 다른 금속 불순물을 적합한 수준으로 유지시킨다.
이러한 금속은 임의의 들어가는 공정 공급물(예를 들어, 들어가는 산화가능한 화합물, 용매, 산화제 및 촉매 화합물)에서 불순물로서 발생할 수 있다. 다르게는, 상기 금속은 반응 매질 및/또는 재순환되는 용매와 접촉하는 임의의 공정 단 위장치로부터 부식 생성물로서 발생할 수 있다. 개시된 농도 범위로 금속을 조절하기 위한 수단은 다양한 공급물 순도의 적절한 사양 및 모니터링, 및 듀플렉스 스테인레스 강 및 고 몰리브덴 스테인레스 강으로 공지되어 있는 등급을 비롯한 다수의 상업적 등급의 티탄 및 스테인레스 강을 포함하지만 이들로 한정되지는 않는 제조 재료의 적절한 사용을 포함한다.
본 발명자들은 또한 재순환되는 용매중 선택된 방향족 화합물에 대한 바람직한 범위를 발견하였다. 이들은 재순환되는 용매 내에서의 침전 및 용해된 방향족 화합물을 포함한다.
놀랍게도, 심지어 파라-자일렌의 부분 산화로부터 침전된 생성물(예컨대, TPA)이 재순환되는 용매에서 관리되어야 하는 오염물이다. 반응 매질에서의 고체 수준의 놀랍게도 바람직한 범위가 존재하기 때문에, 용매 공급물중의 임의의 침전된 생성물을 한꺼번에 공급될 수 있는 산화가능한 화합물의 양으로부터 바로 뺀다. 또한, 재순환되는 용매에 침전된 TPA 고체가 높은 수준으로 공급되면, 침전 산화 매질 내에 형성된 입자의 특성에 악영향을 끼쳐서, 하류 작업(예컨대, 생성물 여과, 용매 세척, 조질 생성물의 산화적 분해, 추가의 처리를 위한 조질 생성물의 용해 등)에서 바람직하지 못한 특성을 초래한다는 것을 알게 되었다. 재순환 용매 공급물중 침전된 고체의 다른 바람직하지 못한 특징은, 이들이 많은 재순환되는 용매가 수득되는 TPA 슬러리 내의 벌크 고체중 불순물 농도에 비해 침전된 불순물을 매우 높은 수준으로 종종 함유한다는 것이다. 아마도, 재순환되는 여액에 현탁된 고체에서 관찰되는 상승된 수준의 불순물은, 의도적이든 또는 주위 손실이든지 간 에, 재순환되는 용매로부터의 특정 불순물의 침전을 위한 핵형성 시간 및/또는 재순환되는 용매의 냉각에 관련될 수 있다. 예를 들어, 고도로 착색된 바람직하지 못한 2,6-다이카복시플루오렌온의 농도는 160℃의 재순환되는 용매로부터 분리된 TPA 고체에서 관측된 것보다, 80℃의 재순환되는 용매에 존재하는 고체에서 훨씬 더 높은 수준으로 관측되었다. 유사하게, 아이소프탈산의 농도는 반응 매질로부터의 TPA 고체에서 관측된 수준에 비해, 재순환되는 용매에 존재하는 고체에서 훨씬 더 높은 수준으로 관측되었다. 반응 매질에 재도입할 때, 재순환되는 용매 중에 포획된 침전된 특정 불순물이 거동하는 정확한 방식은 변하는 것으로 보인다. 이것은 아마도 반응 매질의 액상내 불순물의 상대적인 용해도, 침전된 고체 내에서 불순물이 축적되는 방식, 및 고체가 처음으로 반응 매질에 재유입되는 경우 TPA 침전의 국부적인 비율에 좌우된다. 따라서, 본 발명자들은, 상기 불순물들이 용해된 형태로 재순환되는 용매 중에 존재하든지 또는 그 안에 연행된 미립자인지에 무관하게, 하기 기술되는 바와 같이 재순환되는 용매중 특정 불순물들의 수준을 조절하는 것이 유용함을 알게 되었다.
재순환되는 여액에 존재하는 침전된 고체의 양은 하기와 같은 비중 방법에 의해 측정된다. 용매를 도관 내에서 반응 매질로 유동시키면서 반응 매질에 공급되는 용매 공급물로부터 대표적인 샘플을 회수한다. 유용한 샘플 크기는 약 250㎖의 내부 부피를 갖는 유리 용기에 함유된 약 100g이다. 대기압이 되기 전에, 샘플 용기 쪽으로 계속 유동시키는 동안, 재순환되는 여액을 100℃ 미만으로 냉각시키는데, 이러한 냉각은 유리 용기에 밀봉시키기 전의 짧은 시간 간격동안 용매 증발을 제한하기 위해서이다. 샘플을 대기압 하에 놓은 후, 유리 용기를 즉시 밀봉시킨다. 이어서, 강제 대류없이 약 20℃의 공기를 사용하여 샘플을 약 20℃로 냉각시킨다. 약 20℃에 도달하면, 상기 조건 하에 약 2시간 이상 동안 샘플을 유지시킨다. 이어, 시각적으로 균일한 고체 분포가 수득될 때까지 밀봉된 용기를 강하게 흔든다. 그 직후, 자기 교반 막대를 샘플 용기에 넣고, 고체의 균일한 분포를 효과적으로 유지시키기에 충분한 속도로 회전시킨다. 현탁된 고체를 가진 혼합된 액체의 10㎖ 분취액을 피펫을 사용하여 회수한 후, 무게를 측정한다. 이어서, 이러한 분취액으로부터의 벌크 액상을 진공 여과에 의해 약 20℃에서 고체 손실 없이 효과적으로 분리시킨다. 상기 분취액으로부터 여과된 습윤된 고체를 고체의 승화없이 효율적으로 건조시킨 후, 이들 건조된 고체의 무게를 측정한다. 건조된 고체의 중량 대 슬러리의 원래 분취액의 중량의 비가 백분율로서 전형적으로 표시되는 고체의 분율이고, 본원에서는 20℃에서의 침전된 고체 중의 재순환되는 여액의 함량으로서 일컬어진다.
본 발명자들은, 반응 매질의 액상에 용해되고, 비-방향족 하이드로카빌기가 없는 방향족 카복실산을 포함하는 방향족 화합물(예컨대, 아이스프탈산, 벤조산, 프탈산, 2,5,4'-트라이카복시바이페닐)이 놀랍게도 유해한 성분임을 알게 되었다. 본 발명자들은, 비-방향족 하이드로카빌기를 갖는 산화가능한 화합물에 비해 이들 화합물의 본 발명 매질에서의 화학적 활성이 훨씬 감소됨에도 불구하고, 이러한 화합물들이 다수의 유해한 반응을 거침을 발견하였다. 따라서, 반응 매질의 액상 중에서 상기 화합물의 함량을 바람직한 범위로 조절하는 것이 유리하다. 이에 의해, 재순환되는 용매 공급물중 선택된 화합물의 바람직한 범위 및 산화가능한 방향족 화합물의 공급물중 선택된 전구물질의 바람직한 범위가 유도된다.
예를 들면, 파라-자일렌의 테레프탈산(TPA)으로의 액상 부분 산화에 있어서, 본 발명자들은, 메타-치환된 방향족 화합물이 반응 매질에 매우 낮은 양으로 존재할 때, 고도로 착색된 바람직하지 못한 불순물인 2,7-다이카복시플루오렌온(2,7-DCF)이 반응 매질 및 생성물 유출물(off-take)에서 본질적으로 검출될 수 없음을 알게 되었다. 본 발명자들은, 아이소프탈산 불순물이 용매 공급물에 증가되는 양으로 존재할 때 거의 정비례로 2,7-DCF 생성이 증가됨을 발견하였다. 본 발명자들은, 메타-자일렌 불순물이 파라-자일렌의 공급물에 존재하는 경우 2,7-DCF의 생성이 다시 거의 정비례로 증가됨을 또한 발견하였다. 더욱이, 용매 공급물 및 산화가능한 화합물 공급물에 메타-치환된 방향족 화합물이 없다고 할지라도, 매우 순수한 파라-자일렌의 전형적인 부분 산화 동안, 특히 벤조산이 반응 매질의 액상 중에 존재할 때, 약간의 아이소프탈산이 형성됨을 본 발명자들은 알게 되었다. 자발-생성되는(self-generated) 아이소프탈산은, 아세트산 및 물을 포함하는 용매중에서 TPA보다 더욱 큰 용해도를 갖기 때문에, 재순환되는 용매를 사용하는 상업용 단위장치에서 시간의 경과에 따라 축적될 수 있다. 따라서, 용매 공급물 중의 아이소프탈산의 양, 산화가능한 방향족 화합물 공급물 중의 메타-자일렌의 양 및 반응 매질 내의 아이소프탈산의 자발 생성 속도는 모두 적절하게 서로 균형을 이루고, 또한 아이소프탈산을 소비하는 임의의 반응과 균형을 이루고 있다고 생각된다. 아이소프탈산은 하기에 기술되는 바와 같이 2,7-DCF의 형성 이외에 부가적인 소비 반응 을 수행하는 것으로 밝혀졌다. 또한, 본 발명자들은, 파라-자일렌의 TPA로의 부분 산화에서 메타-치환된 방향족 화합물에 대해 적절한 범위를 설정할 때, 다른 사항을 고려해야 한다는 것을 알게 되었다. 고도로 착색된 바람직하지 못한 다른 불순물, 예컨대 2,6-다이카복시플루오렌온(2,6-DCF)은 액상 산화로의 파라-자일렌 공급물과 함께 항상 존재하는 용해된 파라-치환된 방향족 화합물에 크게 관련되는 것으로 보인다. 따라서, 제조된 다른 착색된 불순물의 수준의 견지에서 2,7-DCF의 억제가 가장 우수하게 고려된다.
예를 들어, 파라-자일렌의 TPA로의 액상 부분 산화에 있어서, 본 발명자들은 반응 매질 내에서 아이소프탈산과 프탈산의 함량이 증가할 때 트라이멜리트산 생성이 증가됨을 알게 되었다. 트라이멜리트산은 3가 카복실산이어서 TPA로부터 PET를 생성시키는 동안 중합체를 분지화시킨다. 많은 PET의 용도에 있어서, 분지도는 낮은 수준으로 조절되어야 하며, 따라서 트라이멜리트산은 정제된 TPA에서 낮은 수준으로 조절되어야 한다. 트라이멜리트산의 생성 이외에, 반응 매질에 메타-치환 및 오르토-치환된 화합물이 존재하면, 다른 트라이카복실산(예컨대, 1,3,5-트라이카복시벤젠)이 또한 형성된다. 더욱이, 반응 매질중 트라이카복실산의 존재가 증가하면 테트라카복실산(예컨대, 1,2,4,5-테트라카복시벤젠)의 생성량도 증가한다. 둘보다 많은 카복실산기를 갖는 모든 방향족 카복실산의 합해진 생성량의 조절은, 본 발명에 따른 재순환되는 용매 공급물, 산화가능한 화합물 공급물 및 반응 매질중 메타-치환된 화합물 및 오르토-치환된 화합물의 바람직한 수준을 설정함에 있어서 하나의 요소가 된다.
예를 들어, 파라-자일렌의 TPA로의 액상 부분 산화에 있어서, 본 발명자들은 비-방향족 하이드로카빌기가 없는 몇몇 용해된 방향족 카복실산의 양이 반응 매질의 액상 중에서 증가하면 일산화탄소 및 이산화탄소의 생성도 직접적으로 증가한다는 것을 알게 되었다. 이러한 증가된 탄소 산화물의 생성은 산화제 및 산화가능한 화합물 둘 다의 수율 손실을 나타내는데, 한편으로 불순물로서 간주될 수 있는 동시-생성된 방향족 카복실산중 다수가 다른 한편으로는 상업적으로 가치가 있기 때문이다. 따라서, 비-방향족 하이드로카빌기가 없는 비교적 가용성인 카복실산을 재순환 용매로부터 적절하게 제거하는 것은, 다양한 플루오렌온 및 트라이멜리트산과 같은 매우 바람직하지 못한 불순물의 생성을 억제함에 덧붙여, 산화가능한 방향족 화합물 및 산화제의 수율 손실을 방지하는데 있어 경제적 가치를 제공한다.
예를 들어, 파라-자일렌의 TPA로의 액상 부분 산화에 있어서, 본 발명자들은 2,5,4'-트라이카복시바이페닐의 생성이 표면적으로는 불가피함을 알게 되었다. 2,5,4'-트라이카복시바이페닐은 두 개의 방향족 고리의 커플링에 의해, 아마도 용해된 파라-치환된 방향족 화합물과 아릴 라디칼(아마도 파라-치환된 방향족 화합물의 탈카복실화 또는 탈카본일화에 의해 형성된 아릴 라디칼)의 커플링에 의해 생성되는 방향족 트라이카복실산이다. 다행스럽게도, 전형적으로 2,5,4'-트라이카복시바이페닐은 트라이멜리트산보다 낮은 수준으로 생성되며, 통상 PET의 제조 동안 중합체 분자의 분지화에 관련된 곤란함을 크게 증가시키지 않는다. 그러나, 본 발명자들은 본 발명의 바람직한 실시양태에 따라 알킬 방향족 화합물의 산화를 포함하는 반응 매질에서 2,5,4'-트라이카복시바이페닐의 수준이 상승되면 고도로 착색된 바람직하지 못한 2,6-DCF의 수준도 증가시킨다는 것을 알게 되었다. 증가된 2,6-DCF는 2,5,4'-트라이카복시바이페닐로부터 폐환에 의해 물 분자의 손실과 함께 야기되는 것 같지만, 정확한 반응 기작은 확실하게 알려지지 않았다. 아세트산 및 물을 포함하는 용매에서 TPA보다 더욱 가용성인 2,5,4'-트라이카복시바이페닐이 재순환되는 용매 내에서 너무 크게 축적되면 2,6-DCF로의 전환 속도가 허용될 수 없을 정도로 높아질 수 있다.
예를 들면, 파라-자일렌의 TPA로의 액상 부분 산화에서, 본 발명자들은 비-방향족 하이드로카빌기가 없는 방향족 카복실산(예컨대, 아이소프탈산)이 충분한 농도로 액상에 존재하는 경우, 반응 매질의 화학 활성을 일반적으로 완만하게 억제한다는 것을 알게 되었다.
예를 들면, 파라-자일렌의 TPA로의 액상 부분 산화에 있어서, 본 발명자들은 고상 및 액상중 상이한 화합물의 상대적 농도와 관련하여 침전이 매우 종종 비이상적(즉, 비-평형상태)이라는 것을 알게 되었다. 아마도, 이것은 본원에서 바람직한 공간-시간 반응 속도에서 침전 속도가 매우 빨라서 불순물의 비이상적인 동시 침전 또는 심지어 폐색을 초래하기 때문이다. 따라서, 하류 단위장치 작업의 구성 때문에 조질 TPA 내에서 특정 불순물(예컨대, 트라이멜리트산 및 2,6-DCF)의 농도를 제한하는 것이 바람직한 경우, 용매 공급물 중의 이들의 농도 뿐만 아니라 반응 매질 내에서의 이들의 생성 속도도 조절하는 것이 바람직하다.
예를 들어, 본 발명자들은 벤조페논 화합물이 플루오렌온 및 안트라퀴논과 같이 TPA 그 자체에서 고도로 착색되지는 않는다고 하더라도, 파라-자일렌의 부분 산화동안 제조된 벤조페논 화합물(예컨대, 4,4'-다이카복시벤조페논 및 2,5,4'-트라이카복시벤조페논)은 PET 반응 매질에서 바람직하지 못한 효과를 갖는다는 것을 알게 되었다. 따라서, 재순환되는 용매 및 산화가능한 화합물 공급물중 벤조페논의 존재를 제한하고, 전구체를 선택하는 것이 바람직하다. 또한, 본 발명자들은 벤조산이 재순환되는 용매 중에 도입되던가 또는 반응 매질 내에서 형성된다고 할지라도 상승된 수준의 벤조산의 존재가 4,4'-다이카복시벤조페논의 상승된 생성 속도를 초래한다는 것을 알게 되었다.
재검토해보면, 본 발명자들은 파라-자일렌의 TPA로의 액상 부분 산화에 존재하는 비-방향족 하이드로카빌기가 없는 방향족 화합물에 대한 놀랄만한 일련의 반응을 발견하고 충분히 정량하였다. 벤조산의 단일 경우를 요약하자면, 본 발명자들은 본 발명의 특정 실시양태의 반응 매질중 벤조산의 수준 증가가 고도로 착색된 바람직하지 못한 9-플루오렌온-2-카복실산의 생성을 크게 증가시키고, 4,4'-다이카복시바이페닐의 수준을 크게 증가시키고, 4,4'-다이카복시벤조페논의 수준을 증가시키고, 파라-자일렌의 의도하는 산화의 화학적 활성을 완만하게 억제하고, 탄소 산화물의 수준 증가 및 그에 수반되는 수율 손실을 증가시킨다는 것을 알게 되었다. 본 발명자들은, 반응 매질중 벤조산의 수준 증가가 또한 아이소프탈산 및 프탈산의 생성을 증가시키며, 이의 수준은 본 발명의 유사한 요지에 따라 낮은 범위로 바람직하게 조절된다는 것을 알게 되었다. 본 발명자들중 몇몇이 용매의 주성분으로서 아세트산 대신 벤조산을 사용하는 것을 고려하였기 때문에, 벤조산과 관련된 반응의 수 및 중요성은 아마도 더욱 놀라운 것이다(예컨대, 미국 특허 제 6,562,997 호 참조). 또한, 본 발명자들은 상업적 순도의 파라-자일렌을 포함하는 산화가능한 화합물 공급물에서 통상적으로 발견되는 톨루엔 및 에틸벤젠과 같은 불순물로부터의 생성에 비해 상당히 중요한 비율로 파라-자일렌의 산화 동안 벤조산이 자발-생성되는다는 것을 알게 되었다.
한편, 본 발명자들은 둘 다 비-방향족 하이드로카빌기를 보유하며 또한 재순환되는 용매 중에서 비교적 가용성인 산화가능한 방향족 화합물의 존재 및 방향족 반응 중간체와 관련하여 재순환되는 용매 조성을 부가적으로 조절하는데 따른 가치를 거의 발견하지 못하였다. 일반적으로, 이들 화합물들은 재순환되는 용매중 이들의 존재보다 실질적으로 더 큰 비율로 반응 매질 내에 도입되거나 또는 반응 매질 내에서 생성되며; 반응 매질 내에서의 이들 화합물의 소비 속도는 하나 이상의 비-방향족 하이드로카빌기와 관련하여 재순환되는 용매 내에서 이들의 축적을 적절하게 억제하기에 충분히 크다. 예를 들어, 다상 반응 매질에서 파라-자일렌의 부분적인 산화 동안, 파라-자일렌은 다량의 용매와 함께 제한된 정도로 증발한다. 이러한 증발된 용매가 배출 기체(off-gas)의 일부분으로서 반응기로부터 나가고 재순환 용매로서 회수하기 위하여 응축되는 경우, 증발된 파라-자일렌의 상당량도 거기에서 응축된다. 재순환되는 용매중 상기 파라-자일렌의 농도를 제한할 필요는 없다. 예를 들어, 슬러리가 파라-자일렌 산화 반응 매질에서 나갈 때 용매가 고체로부터 분리된다면, 이 회수된 용매는 반응 매질로부터 제거되는 시점에 존재하는 것과 유사한 농도의 용해된 파라-톨루산을 함유한다. 반응 매질의 액상 내에서 파라-톨루산의 변하지 않는 농도를 제한하는 것이 중요할 수 있을 지라도(하기 참조 ), 파라-톨루산의 비교적 양호한 용해도 및 반응 매질 내에서 파라-톨루산의 생성에 비해 낮은 질량 유속 때문에, 재순환되는 용매의 상기 부분에서 파라-톨루산을 별도로 조절할 필요는 없다. 유사하게, 본 발명자들은 메틸 치환기를 갖는 방향족 화합물(예컨대, 톨루산), 방향족 알데하이드(예컨대, 테레프트알데하이드), 하이드록시-메틸 치환기를 갖는 방향족 화합물(예를 들어, 4-하이드록시메틸벤조산) 및 하나 이상의 비-방향족 하이드로카빌기를 보유한 브롬화 방향족 화합물(예컨대, 알파-브로모-파라-톨루산)의 재순환되는 용매중 농도를, 본 발명의 바람직한 실시양태에 따른 자일렌의 부분적인 산화에서 발생되는 반응 매질로부터 나가는 액상에서 고유하게 관찰되는 농도 미만의 농도로 한정해야 하는 이유를 거의 발견하지 못했다. 놀랍게도, 본 발명자들은 또한 자일렌의 부분 산화 동안 고유하게 생성된 선택된 페놀의 농도를 재순환되는 용매에서 조절할 필요가 없다는 것을 알게 되었는데, 이것은 이들 화합물이 재순환되는 용매에서의 존재보다 훨씬 큰 비율로 반응 매질 내에서 생성 및 파괴되기 때문이다. 예를 들면, 본 발명자들은 4-하이드록시벤조산이 유사한 반응 매질에서 상당한 독소로서 작용한다고 다른 사람에 의해 보고되어 있음에도 불구하고, 재순환되는 용매에서의 자연적인 존재보다 훨씬 더 높은 양인 파라-자일렌 1kg당 4-하이드록시벤조산 2g을 초과하는 비율로 동시 공급하는 경우, 4-하이드록시벤조산이 본 발명의 바람직한 실시양태에서 화학적 활성에 비교적 작은 효과만을 갖는다는 것을 알게 되었다[파텐하이머(W. Partenheimer), Catalysis Today 23 (1995) p. 81 참조].
따라서, 지금 개시하는 바와 같이, 용매 공급물 중의 여러 방향족 불순물의 바람직한 범위를 정하는데 있어서는 다수의 반응 및 다수의 고려사항이 있다. 이러한 발견은, 일정한 정해진 기간, 바람직하게는 1일, 더욱 바람직하게는 1시간, 가장 바람직하게는 1분 동안, 반응 매질에 공급되는 모든 용매 스트림의 총 중량 평균 조성 면에서 기재된다. 예를 들면, 하나의 용매 공급물이 1분당 7kg의 유속으로 실질적으로 계속 아이소프탈산 40ppmw의 조성으로 유동하고, 제 2 용매 공급물이 1분당 10kg의 유속으로 실질적으로 계속 아이소프탈산 2,000ppmw의 조성으로 유동하며, 반응 매질로 들어가는 다른 용매 공급물 스트림이 없다면, 용매 공급물의 총 중량 평균 조성은 하기 수학식 5로 계산된다:
Figure 112007024444267-PCT00005
반응 매질에 들어가기 전에 아마도 용매 공급물과 혼합되는 임의의 산화가능한 화합물 공급물 또는 임의의 산화제 공급물의 중량이 용매 공급물의 총 중량 평균 조성을 계산하는데 고려되지 않음에 주목할만하다.
하기 표 1은, 반응 매질 내로 도입된 용매 공급물중의 특정 성분들에 대한 바람직한 값을 명시하고 있다. 표 1에 열거된 용매 공급물 성분들은 다음과 같다: 4-카복시벤즈알데하이드(4-CBA), 4,4'-다이카복시스틸벤(4,4'-DCS), 2,6-다이카복시안트라퀴논(2,6-DCA), 2,6-다이카복시플루오렌온(2,6-DCF), 2,7-다이카복시플루오렌온(2,7-DCF), 3,5-다이카복시플루오렌온(3,5-DCF), 9-플루오렌온-2-카복실산(9F-2CA), 9-플루오렌온-4-카복실산(9F-4CA), 개별적으로 열거되지 않은 다른 플루오렌온을 비롯한 전체 플루오렌온류, 4,4'-다이카복시바이페닐(4,4'-DCB), 2,5,4'-트라이카복시바이페닐(2,5,4'-TCB), 프탈산(PA), 아이소프탈산(IPA), 벤조산(BA), 트라이멜리트산(TMA), 2,6-다이카복시벤조쿠마린(2,6-DCBC), 4,4'-다이카복시벤질(4,4'-DCBZ), 4,4'-다이카복시벤조페논(4,4'-DCBP), 2,5,4'-트라이카복시벤조페논(2,5,4'-TCBP), 테레프탈산(TPA), 20℃에서 침전된 고체 및 비-방향족 하이드로카빌기가 없는 전체 방향족 카복실산. 하기 표 1에는 본 발명의 실시양태에 따라 제조된 CTA 중 상기 불순물의 바람직한 양이 제공된다.
Figure 112007024444267-PCT00006
다른 많은 방향족 불순물이 또한 개시된 방향족 화합물중 하나 이상보다 훨씬 낮은 수준으로 및/또는 이에 비례하는 양으로 재순환되는 용매 중에 전형적으로 존재한다. 전형적으로, 개시된 방향족 화합물을 바람직한 범위로 조절하는 방법으로 인해 다른 방향족 불순물이 적절한 수준으로 유지될 것이다.
반응 매질 내에 브롬이 사용되는 경우, 다량의 이온 형태 및 유기 형태의 브롬이 동적 평형으로 존재하는 것으로 알려져 있다. 이들 다양한 형태의 브롬은, 반응 매질에서 나가서 재순환되는 용매와 관련된 여러 단위장치 작업을 통해 이동된 후에는 상이한 안정성을 갖는다. 예를 들어, 알파-브로모-파라-톨루산은 몇몇 조건에서는 그대로 지속될 수 있거나, 또는 다른 조건에서는 빠르게 가수분해되어 4-하이드록시메틸벤조산 및 브롬화수소를 생성시킬 수 있다. 본 발명에서, 반응 매질로의 총 용매 공급물 중에 존재하는 총 브롬의 약 40중량% 이상, 더욱 바람직하게는 약 60중량% 이상, 가장 바람직하게는 약 80중량% 이상이 이온성 브롬, 알파-브로모-파라-톨루산 및 브로모아세트산 중 하나 이상의 화학적 형태인 것이 바람직하다.
용매 공급물의 총 중량 평균 순도를 본 발명의 개시된 목적하는 범위로 조절하는 중요성 및 가치가 지금까지는 발견되지 않고/않거나 개시되지 않았으나, 용매 공급물 순도를 조절하기 위한 적합한 수단은 당해 분야에 이미 공지되어 있는 방법으로부터 조합될 수 있다. 먼저, 반응 매질로부터의 액체 또는 고체가 증발된 용매 내에 연행되지 않는다는 조건 하에서, 반응 매질로부터 증발되는 임의의 용매는 전형적으로 적당한 순도를 갖는다. 본원에 개시된 바와 같이, 반응 매질 위의 배출 기체 분리 공간 내로 환류 용매 소적을 공급하면, 이러한 연행이 적절하게 제한되며; 방향족 화합물과 관련하여 적합한 순도의 재순환되는 용매는 상기 배출 기체로부터 응축될 수 있다. 두 번째로, 재순환되는 용매 공급물의 더욱 어렵고 값비싼 정제는 전형적으로 반응 매질로부터 액체 형태로 취해진 용매, 및 반응 용기로부터 회수된 반응 매질의 액상 및/또는 고상과 후속 접촉하는 용매(예컨대, 고체가 농축 및/또는 세척된 필터로부터 수득된 재순환되는 용매, 고체가 농축 및/또는 세척된 원심분리기로부터 수득된 재순환되는 용매, 결정화 공정으로부터 수득된 재순환되는 용매 등)에 관련된다. 그러나, 하나 이상의 종래의 개시내용을 사용하여 이러한 재순환되는 용매 스트림의 필요한 정제를 실시하기 위한 수단들이 또한 당해 분야에 공지되어 있다. 재순환되는 용매 중의 침전된 고체를 명시된 범위 내로 조절하는 것과 관련하여, 적당한 조절 수단은 중력 침강, 회전 벨트 필터 및 회전 드럼 필터 상의 필터지를 사용하는 기계적 여과, 가압 용기 내에 고정 필터 매체를 사용하는 기계적 여과, 하이드로-사이클론 및 원심분리를 포함하지만, 이들로 한정되는 것은 아니다. 재순환되는 용매 중의 용해된 방향족 화합물을 규정된 범위 내로 조절하는 것과 관련하여, 조절 수단은 본원에 참고로 인용된 미국 특허 제 4,939,297 호 및 미국 특허 공개 제 2005-0038288 호에 기재된 수단들을 포함하지만, 이들로 한정되는 것은 아니다. 그러나, 이들 종래 발명중 그 어느 것도 본원에 개시된 바와 같은 총 용매 공급물 중의 바람직한 순도 수준을 발견하지도 개시하지도 않았다. 오히려, 상기 종래 발명들은 본 발명에 따른 반응 매질로의 총 중량 평균 용매 공급물 조성의 최적 수치를 이끌어내지 않은 채 재순환되는 용매의 선택된 부분적인 스트림을 정제하는 수단만을 제공하고 있다.
이제, 산화가능한 화합물의 공급물의 순도에 대해 설명하자면, 아이소프탈산, 프탈산, 및 벤조산의 특정 수준이 중합체 생성에 사용되는 정제된 TPA에 존재하고, 이것은 낮은 수준으로는 허용된다는 것이 알려져 있다. 더욱이, 이러한 화합물들은 많은 용매에서 비교적 더욱 가용성이고, 결정화 공정에 의해 정제된 TPA로부터 유리하게 제거될 수 있다는 것이 알려져 있다. 그러나, 본원에 개시된 발명의 실시양태로부터, 반응 매질의 액상에서 주로 아이소프탈산, 프탈산 및 벤조산을 비롯한 비교적 가용성인 수개의 방향족 화합물의 수준을 조절하는 것이, 반응 매질에서 생성되는 다환상 및 착색된 방향족 화합물의 수준을 조절하고, 분자당 둘보다 많은 카복실산 작용기를 갖는 화합물을 조절하고, 부분적 산화 반응 매질 내에서의 반응 활성을 조절하고, 산화제 및 방향족 화합물의 수율 손실을 조절하는데 매우 중요하다는 것을 이제 알게 되었다.
반응 매질에서 아이소프탈산, 프탈산 및 벤조산이 다음과 같이 형성된다는 것은 당해 분야에 공지되어 있다. 메타-자일렌 공급물 불순물은 우수한 전환율로 산화되어 IPA를 생성시킨다. 오르토-자일렌 공급물 불순물은 우수한 전환율로 산화되어 프탈산을 생성시킨다. 에틸벤젠 및 톨루엔 공급물 불순물은 우수한 전환율로 산화되어 벤조산을 생성시킨다. 그러나, 본 발명자들은, 아이소프탈산, 프탈산 및 벤조산의 상당량이, 파라-자일렌을 포함하는 반응 매질 내에서 메타-자일렌, 오르토-자일렌, 에틸벤젠 및 톨루엔의 산화 이외의 수단에 의해서도 생성됨을 알게 되었다. 이러한 다른 고유한 화학적 경로는 탈카본일화, 탈카복실화, 전이 상태의 재구성, 및 메틸 및 카본일 라디칼의 방향족 고리에의 부가를 포함할 수 있다.
산화가능한 화합물 공급물중 불순물의 바람직한 범위를 결정하는 데에는 많은 인자가 관련된다. 공급물 중의 임의의 불순물은 직접적인 수율 손실 및 산화된 생성물의 순도 조건이 매우 엄격한 경우 생성물의 정제 비용을 초래할 것이다(예를 들어, 파라-자일렌의 부분 산화를 위한 반응 매질에서, 시판 순도의 파라-자일렌 중에서 전형적으로 발견되는 톨루엔 및 에틸벤젠은 벤조산을 형성하고, 이러한 벤조산은 대부분의 시판중인 TPA로부터 거의 제거된다). 공급물 불순물의 부분 산화 생성물이 부가적인 반응에 참여하는 경우, 공급물 정제에 얼마나 많은 비용이 발생하는가를 고려할 때, 단순한 수율 손실 및 제거 이외의 인자를 적절하게 생각하여야 한다(예를 들면, 파라-자일렌의 부분 산화를 위한 반응 매질에서, 에틸 벤젠은 벤조산을 형성하고, 벤조산은 특히 고도로 착색된 9-플루오렌온-2-카복실산, 아이소프탈산, 프탈산, 및 증가된 탄소 산화물을 후속 생성시킨다). 공급물 불순물과 직접적으로 관련되지 않은 화학적 기작에 의해 반응 매질이 부가적인 양의 불순물을 자발적으로 형성하는 경우, 분석은 더욱 복잡해진다(예컨대, 파라-자일렌의 부분 산화를 위한 반응 매질에서, 파라-자일렌 그 자체로부터 벤조산이 또한 자발적으로 생성된다). 또한, 조질의 산화 생성물의 하류 가공은 바람직한 공급물의 순도를 고려하는데 영향을 줄 수 있다. 예를 들어, 직접적인 불순물(벤조산) 및 후속 불순물(아이소프탈산, 프탈산, 9-플루오렌온-2-카복실산 등)을 적절한 수준으로 제거하는데 소요되는 비용은 서로 동일할 수 있고, 서로 상이할 수 있으며, 크게 관련되지 않은 불순물(예컨대, 파라-자일렌의 TPA로의 산화에서 불완전한 산화 생성물인 4-CBA)의 제거 조건과 상이할 수 있다.
TPA를 제조하는 부분 산화를 위한 반응 매질에 용매 및 산화제와 함께 파라-자일렌이 공급되는 경우, 파라-자일렌에 대한 하기 개시되는 공급물의 순도의 범위가 바람직하다. 이러한 범위는, 산화제 및 용매 이외의 반응 매질 불순물(예컨대, 촉매 금속)로부터 제거하는 후-산화 단계를 갖는 TPA 제조 방법에서 더욱 바람직하다. 이러한 범위는, CTA로부터 추가적인 4-CBA를 제거[예를 들어, CTA를 다이메틸 테레프탈레이트 및 불순물 에스터로 전환한 후 증류에 의해 4-CBA의 메틸 에스터를 분리시킴으로써, 4-CBA를 TPA로 전환하기 위한 산화적 분해 방법에 의해, 4-CBA를 파라-톨루산(이는 부분 결정화 방법에 의해 분리됨)으로 전환하기 위한 수소화 방법에 의해]하는 TPA 제조 방법에 더욱더 바람직하다. 이러한 범위는, 4-CBA를 TPA로 전환하기 위한 산화적 분해 방법에 의해 부가적인 4-CBA를 CTA로부터 제거하는 TPA 제조 방법에서 가장 바람직하다.
다른 고유의 화학적 경로와 비교하여, 공급물 불순물의 산화로부터 직접적으로 형성된 방향족 화합물의 상대적인 양 및 재순환 방향족 화합물의 바람직한 범위에 대한 새로운 지식을 이용하여, TPA를 제조하기 위한 부분 산화 공정에 공급된 불순한 파라-자일렌의 경우에 불순물의 개선된 범위를 발견하였다. 하기 표 2에는 파라-자일렌 공급물 중의 메타-자일렌, 오르토-자일렌, 및 에틸벤젠 + 톨루엔의 양에 대한 바람직한 값이 제공되어 있다.
Figure 112007024444267-PCT00007
이제, 당해 분야의 숙련자는, 불순한 파라-자일렌 내에서 상기 불순물들이 재순환되는 용매에 이들의 부분 산화 생성물이 축적된 후 반응 매질에 가장 큰 영향을 줄 수 있음을 알 것이다. 예를 들면, 메타-자일렌의 가장 바람직한 범위의 상한값인 400ppmw를 공급하면, 반응 매질에서 약 33중량%의 고체와 함께 작동될 때 반응 매질의 액상 내에서 약 200ppmw의 아이소프탈산이 즉시 생성될 것이다. 이는 반응 매질을 냉각시키기 위한 전형적인 용매 증발 후에 반응 매질의 액상 내에서 약 1,200ppmw의 아이소프탈산에 달하는 재순환되는 용매 중의 아이소프탈산의 가장 바람직한 범위의 상한값인 400ppmw의 유입과 비교된다. 그러므로, 불순한 파라-자일렌 공급물중 메타-자일렌, 오르토-자일렌, 에틸벤젠 및 톨루엔 불순물의 영향이 가장 클 수 있는 것은, 재순환되는 용매 내에서의 시간 경과에 따른 부분적인 산화 생성물의 축적이다. 따라서, 특정 제조 단위장치에서 임의의 부분 산화 반응 매질의 작동일 1일당 절반 이상동안, 더욱 바람직하게는 계속되는 7일 이상의 작동일 1일당 3/4 이상동안, 가장 바람직하게는 불순한 파라-자일렌 공급물 조성의 질량-가중 평균이 30일 이상의 계속되는 작동일에 대한 바람직한 범위 내에 있을 때, 불순한 파라-자일렌 공급물중 불순물에 대한 상기 범위가 유지되는 것이 바람직하다.
바람직한 순도를 갖는 불순한 파라-자일렌을 수득하기 위한 수단은 이미 당해 분야에 공지되어 있으며, 증류, 주위 온도 미만에서의 부분 결정화 방법 및 선택적인 기공-크기 흡착을 이용하는 분자체 방법을 포함하지만, 이들로 한정되는 것은 아니다. 그러나, 본원에 명시된 바람직한 순도 범위는 이의 상한에서 파라-자일렌의 상업적인 공급처에 의해 특징적으로 실시되는 것보다 더욱 어렵고 고가이지만; 바람직한 범위의 하한에서는 반응 매질 내에서 파라-자일렌 자체로부터의 불순물의 자발적인 생성과 불순물 소비 반응의 합쳐진 효과가 불순한 파라-자일렌 내의 불순물의 공급 속도보다 더욱 중요해지는 시점을 발견하고 기술함으로써 부분 산화 반응 매질에 공급하기 위한 파라-자일렌의 지나치게 비싼 정제를 피할 수 있다.
자일렌-함유 공급물 스트림이 에틸-벤젠 및/또는 톨루엔 같은 선택된 불순물을 함유하고 있을 때, 이러한 불순물의 산화로 인해 벤조산이 생성될 수 있다. 본원에서 사용된 용어 "불순물-생성되는 벤조산"은 자일렌의 산화 동안 자일렌 이외의 다른 공급원으로부터 유도되는 벤조산을 의미한다.
본원에서 기재된 바와 같이, 자일렌의 산화 동안 생성되는 벤조산의 일부는 자일렌 자체로부터 유도된다. 불순물-생성되는 벤조산일 수 있는 임의의 벤조산 생성량에 덧붙여, 자일렌으로부터 벤조산의 생성은 명백하다. 특정 이론에 얽매이지 않으면서, 자일렌의 다양한 중간 산화 생성물이 자발적으로 탈카본일화(일산화탄소 손실)되거나, 탈카복실화(이산화탄소 손실)되어 아릴 라디칼을 형성할 때 벤조산은 반응 매질 내의 자일렌으로부터 유도된다고 생각된다. 이어, 상기 아릴 라디칼은 반응 매질 중의 많은 이용가능한 공급원중 하나로부터 수소 원자를 빼앗아서 자발 생성 벤조산을 생성시킬 수 있다. 화학적 기작이 무엇이든지 간에, 본원에서 사용되는 용어 "자발-생성되는 벤조산"은 자일렌 산화 동안 자일렌으로부터 유도되는 벤조산을 의미한다.
본원에 개시된 바와 같이, 파라-자일렌이 산화되어 테레프탈산(TPA)을 제조하는 경우, 자발-생성되는 벤조산의 생성은 파라-자일렌의 수율 손실 및 산화제 수율 손실을 유발한다. 또한, 반응 매질의 액상중 자발-생성되는 벤조산의 존재는 주로 모노-카복시-플루오렌온이라 불리우는 고도로 착색된 화합물의 생성을 비롯하여 많은 바람직하지 못한 부반응의 증가와 관련된다. 자발-생성되는 벤조산은 또한 재순환되는 여액에서 벤조산의 바람직하지 못한 축적에 기여하고, 이는 반응 매질의 액상중 벤조산의 농도를 추가로 상승시킨다. 따라서, 자발-생성되는 벤조산의 형성은 최소화시키는 것이 바람직하지만, 이는 또한 불순물-생성되는 벤조산, 벤조산의 소비에 영향을 주는 인자, 다른 반응 선택성 문제와 관련된 인자 및 전체적인 경제성과 동시에 고려하는 것이 적절하다.
본 발명자들은, 산화 동안 반응 매질 내에서의 온도, 자일렌 분포 및 산소 이용 효율을 적절하게 선택함으로써 벤조산의 자발-생성을 낮은 수준으로 조절할 수 있다는 것을 알게 되었다. 특정 이론에 얽매이고자 하지 않으면서, 더욱 낮은 온도 및 향상된 산소 이용 효율은 탈카본일화 및/또는 탈카복실화 속도를 억제하여 자발-생성되는 벤조산의 수율 손실을 피하는 것으로 보인다. 충분한 산소 이용 효율은 아릴 라디칼을 더욱 허용적인 생성물(특히, 하이드록시벤조산)로 만드는 것으로 보인다. 반응 매질에서의 자일렌의 분포는 또한 벤조산으로의 아릴 라디칼의 전환 또는 하이드록시벤조산으로의 아릴 라디칼의 전환 사이의 균형에 영향을 준다. 무슨 화학적 기작이던지 간에, 본 발명가들은, 벤조산의 생성을 감소시키기에는 가볍게 충분하지만 상당량의 하이드록시벤조산을 산화시켜 산화 생성물로부터 용이하게 제거되는 일산화탄소 및/또는 이산화탄소를 생성시키기에는 매우 충분한 반응 조건을 발견하였다.
본 발명의 바람직한 실시양태에서, 산화 반응기는 자발-생성되는 벤조산의 형성을 최소로 하고, 하이드록시벤조산의 일산화탄소 및/또는 이산화탄소로의 산화는 최대로 하는 방식으로 구성 및 작동된다. 파라-자일렌을 테레프탈산으로 산화시키기 위해 산화 반응기를 이용되는 경우, 파라-자일렌이 반응기에 도입된 공급물 스트림중 총 자일렌의 약 50중량% 이상을 구성하는 것이 바람직하다. 더욱 바람직하게는, 파라-자일렌은 공급물 스트림중 총 자일렌의 약 75중량% 이상을 구성한다. 더더욱 바람직하게는, 파라-자일렌은 공급물 스트림중 총 자일렌의 95중량% 이상을 구성한다. 가장 바람직하게는, 파라-자일렌은 공급물 스트림중 총 자일렌의 거의 모두를 구성한다.
파라-자일렌을 테레프탈산으로 산화시키기 위해 반응기를 사용되는 경우, 자발-생성되는 벤조산의 생성 속도를 최소로 하면서 테레프탈산의 생성 속도를 최대로 하는 것이 바람직하다. 바람직하게는, 테레프탈산의 생성 속도(중량 기준) 대 자발-생성되는 벤조산의 생성 속도(중량 기준)의 비는 약 500:1 이상, 더욱 바람직하게는 약 1,000:1 이상, 가장 바람직하게는 1,500:1 이상이다. 하기에서 보는 바와 같이, 반응 매질의 액상중 벤조산의 농도가 2,000ppmw 미만, 더욱 바람직하게는 1,000ppmw 미만, 가장 바람직하게는 500ppmw 미만일 때, 자발-생성되는 벤조산의 생성 속도를 측정하는 것이 바람직한데, 이는 이러한 낮은 농도로 인해 벤조산이 다른 화합물로 전환되는 반응의 속도가 적절하게 낮게 억제되기 때문이다.
자발-생성되는 벤조산과 불순물-생성되는 벤조산을 합하는 경우, 테레프탈산의 생성 속도(중량 기준) 대 총 벤조산의 생성 속도(중량 기준)의 비는 바람직하게는 약 400:1 이상, 더욱 바람직하게는 약 700:1 이상, 가장 바람직하게는 1,100:1 이상이다. 하기에서 볼 수 있는 바와 같이, 반응 매질의 액상중 벤조산의 농도가 2,000ppmw 미만, 더욱 바람직하게는 1,000ppmw 미만, 가장 바람직하게는 500ppmw 미만일 때, 자발-생성되는 벤조산과 불순물-생성되는 벤조산의 합쳐진 생성 속도를 측정하는 것이 바람직한데, 이는 이러한 낮은 농도로 인해 벤조산이 다른 화합물로 전환되는 반응의 속도가 적절하게 낮게 억제되기 때문이다.
본원에 기재된 바와 같이, 반응 매질의 액상중 벤조산의 상승된 농도는 많은 다른 방향족 화합물의 형성을 증가시키는데, 상기 방향족 화합물중 몇 가지는 TPA에 유해한 불순물이고; 본원에 기재된 바와 같이, 반응 매질의 액상중 벤조산의 상승된 농도는 탄소 산화물 기체의 형성을 증가시키며, 이러한 기체의 형성은 산화제 및 방향족 화합물 및/또는 용매의 수율 손실을 나타낸다. 더욱이, 본 발명자들은, 그 자체가 소비되지 않고 다른 반응을 촉매화시키는 벤조산과는 대조적으로, 벤조산 분자 자체의 일부를 전환시키는 반응으로부터, 다른 방향족 화합물 및 일산화탄소의 이러한 증가된 생성의 상당 부분이 유도됨을 발견하였다. 따라서, "벤조산의 순 생성"은 본원에서 동일한 기간 동안 반응 매질로부터 나가는 모든 벤조산의 시간-평균 중량으로부터 반응 매질로 들어가는 모든 벤조산의 시간-평균 중량을 뺀 값으로서 정의된다. 이러한 벤조산의 순 생성은 불순물-생성되는 벤조산의 생성 속도 및 자발-생성되는 벤조산의 생성 속도에 의해 종종 양의 값을 갖는다. 그러나, 본 발명자들은, 온도, 산소 이용 효율, STR, 및 반응 활성을 포함하는 다른 반응 조건들이 적절히 일정하게 유지되는 경우 측정될 때, 벤조산의 농도가 반응 매질의 액상에서 증가함에 따라 벤조산의 탄소 산화물 및 수개의 다른 화합물로의 전환 비율이 거의 비례적으로 증가하는 것을 알게 되었다. 따라서, 재순환되는 용매중 벤조산의 높아진 농도에 의해 반응 매질의 액상중 벤조산의 농도가 충분히 큰 경우, 벤조산 분자의 다른 화합물(탄소 산화물 포함)로의 전환도 새로운 벤조산 분자의 화학적 생성과 동일해지거나 더욱 커질 수 있다. 이러한 경우, 벤조산의 순 생성은 거의 제로이거나 심지어 음의 값으로 균형이 맞춰질 수 있다. 본 발명자들은, 벤조산의 순 생성이 양의 값을 가질 때, 반응 매질중 테레프탈산의 생성 속도(중량 기준) 대 반응 매질중 벤조산의 순 생성 속도의 비는 바람직하게는 약 700:1보다 높고, 더욱 바람직하게는 약 1,100:1보다 높으며, 가장 바람직하게는 4,000:1보다 높음을 발견하였다. 본 발명자들은, 벤조산의 순 생성이 음의 값을 가질 때, 반응 매질중 테레프탈산의 생성 속도(중량 기준) 대 반응 매질중 벤조산의 순 생성 속도의 비가 바람직하게는 약 200:(-1)보다 높고, 더욱 바람직하게는 약 1,000:(-1)보다 높으며, 가장 바람직하게는 5,000:(-1)보다 높음을 발견하였다.
본 발명자들은 또한 반응 매질로부터 회수된 슬러리(액체 + 고체)의 조성 및 슬러리의 고체 CTA 부분에 대한 바람직한 범위를 발견하였다. 바람직한 슬러리 및 바람직한 CTA의 조성은 놀랍게도 우수하고 유용하다. 예를 들어, 산화 분해에 의해 상기 바람직한 CTA로부터 생성된 정제된 TPA는 충분히 낮은 총 불순물 수준 및 착색된 불순물 수준을 가져서, 이 정제된 TPA는 부가적인 4-CBA 및/또는 착색된 불순물의 수소화 없이도 PET 섬유의 광범위한 용도 및 PET 포장 용도에 적합하다. 예를 들면, 바람직한 슬러리 조성물은 중요한 불순물의 농도가 비교적 낮은 반응 매질의 액상을 제공하고, 이는 중요하게는 본원에 개시된 더욱 바람직하지 못한 다른 불순물의 생성을 억제한다. 또한, 바람직한 슬러리 조성물은 중요하게는 슬러리로부터의 액체의 후속 가공을 도와, 본 발명의 다른 실시양태에 따라 적합하게 순수한 재순환되는 용매가 되게 한다.
본 발명의 한 실시양태에 따라 제조된 CTA는 종래의 방법 및 장치(주로, 재순환되는 용매를 사용하는 것들)에 의해 제조된 CTA보다 더 적은 선택된 유형의 불순물을 함유한다. CTA에 존재할 수 있는 불순물들은 다음과 같다: 4-카복시벤즈알데하이드(4-CBA), 4,4'-다이카복시스틸벤(4,4'-DCS), 2,6-다이카복시안트라퀴논(2,6-DCA), 2,6-다이카복시플루오렌온(2,6-DCF), 2,7-다이카복시플루오렌온(2,7-DCF), 3,5-다이카복시플루오렌온(3,5-DCF), 9-플루오렌온-2-카복실산(9F-2CA), 9-플루오렌온-4-카복실산(9F-4CA), 4,4'-다이카복시바이페닐(4,4'-DCB), 2,5,4'-트라이카복시바이페닐(2,5,4'-TCB), 프탈산(PA), 아이소프탈산(IPA), 벤조산(BA), 트라이멜리트산(TMA), 파라-톨루산(PTAC), 2,6-다이카복시벤조쿠마린(2,6-DCBC), 4,4'-다이카복시벤질(4,4'-DCBZ), 4,4'-다이카복시벤조페논(4,4'-DCBP), 2,5,4'-트라이카복시벤조페논(2,5,4'-TCBP). 하기 표 3에는 본 발명의 실시양태에 따라 제조된 CTA중 이들 불순물의 바람직한 양이 제시되어 있다.
Figure 112007024444267-PCT00008
또한, 본 발명의 실시양태에 따라 제조된 CTA가, 종래의 공정 및 장치(주로 재순환되는 용매를 사용하는 것들)에 의해 제조된 CTA에 비해 감소된 색상 함량을 갖는 것이 바람직하다. 따라서, 본 발명의 하나의 실시양태에 따라 제조된 CTA는 약 25% 이상, 더욱 바람직하게는 약 50% 이상, 가장 바람직하게는 60% 이상의 340nm에서의 투과율을 갖는 것이 바람직하다. 또한, 본 발명의 하나의 실시양태에 따라 제조된 CTA가 약 88% 이상, 더욱 바람직하게는 약 90% 이상, 가장 바람직하게는 92% 이상의 400nm에서의 투과율을 갖는 것이 바람직하다.
투과율 시험은 TPA 또는 CTA 내에 존재하는 착색된 광-흡수 불순물을 측정하는 것이다. 본원에서, 이 시험은 2.00g의 무수 고체 TPA 또는 CTA를 분석용 등급 이상의 다이메틸 설폭사이드(DMSO) 20.0㎖에 용해시켜 제조된 용액의 일부 상에서 실시된 측정과 관련된다. 상기 용액의 일부를, 수정으로 제작되고 1.0cm의 광 경로 및 0.39㎖의 부피를 갖는 헬마 세미-마이크로 플로우 셀(Hellma semi-micro flow cell), PN 176.700[헬마 유에스에이(Hellma USA); 뉴욕주 11803 플레인뷰 스카이라인 드라이브 80 소재]에 위치시킨다. 어질런트 8453 다이오드 어레이 분광광도계(Agilent 8453 Diode Array Spectrophotometer)를 사용하여 상기 충전된 플로우 셀을 통과하는 빛의 상이한 파장의 투과율을 측정한다[어질런트 테크놀로지스(Agilent Technologies); 캘리포니아주 94303 팔로 알토 페이지 밀 로드 395 소재]. 사용된 셀 및 용매를 포함하지만 이들로 한정되지 않는 배경으로부터 흡광도를 적절하게 보정한 후, 용액을 통해 투과되는 입사광의 분율을 특징적으로 나타내는 투과율의 결과를 기계에 의해 바로 기록한다. 340nm 및 400nm의 광 파장에서의 투과율 값(%)은 TPA 중에서 전형적으로 발견되는 많은 불순물로부터 순수한 TPA를 구별하는데 특히 유용하다.
반응 매질의 슬러리(고체 + 액체)상 중의 여러 방향족 불순물의 바람직한 범위가 하기 표 4에 제시되어 있다.
Figure 112007024444267-PCT00009
이러한 슬러리의 바람직한 조성은, 반응 매질로부터의 샘플링 동안 반응 매질로부터의 부가적인 액상 성분의 고상 성분으로의 침전, 액체와 고체의 분리 및 분석 조건의 변동과 관련된 실험적인 난제들을 유용하게 피하면서 반응 매질의 액상의 바람직한 조성을 구현한다.
많은 다른 방향족 불순물은, 통상 개시된 방향족 화합물중 하나 이상에 대해 더욱 낮은 수준에서 및/또는 이에 비례하여 변화되는 양으로 반응 매질의 슬러리 상 및 반응 매질의 CTA에 존재한다. 개시된 방향족 화합물을 바람직한 범위로 조절하면 다른 방향족 불순물이 적절한 수준으로 유지될 것이다. 반응 매질에서의 슬러리상 및 슬러리로부터 직접 취해진 고체 CTA에 대한 이러한 유리한 조성은, 파라-자일렌의 TPA로의 부분 산화에 대해 본원에 기재된 발명의 실시양태에 따라 작동시킴으로써 가능해진다.
용매, 재순환되는 용매, CTA, 반응 매질로부터의 슬러리 및 PTA에서의 낮은 수준의 성분의 농도 측정은 액체 크로마토그래피 방법을 사용하여 실시된다. 상호교환가능한 두 개의 실시양태가 하기에 기재된다.
본원에서 HPLC-DAD로서 지칭되는 방법은, 주어진 샘플 내의 다양한 종류의 분자의 분리 및 정량화를 제공하기 위해 다이오드 어레이 검출기(DAD)와 결합된 고압 액체 크로마토그래피(HPLC)를 포함한다. 이러한 측정에 사용되는 기구는 어질런트 테크놀로지스(캘리포니아주 팔토 알토 소재)에 의해 제공되는 DAD가 구비된 모델 1100 HPLC이나, 다른 적합한 기구가 또한 시판되고 있으며 다른 공급처로부터 제공된다. 당해 분야에 공지된 바와 같이, 용리 시간 및 검출기 응답 둘 다는 공지 함량으로 존재하는 공지 화합물, 실제 미지의 샘플에서 나타나는 것들에 부합되는 화합물 및 함량을 사용하여 보정된다.
본원에서 HPLC-MS로서 지칭되는 방법은 주어진 샘플 내에서 다양한 종류의 분자의 분리, 동정 및 정량화를 제공하기 위해 질량 분석기(MS)와 결합된 고압 액체 크로마토그래피(HPLC)를 포함한다. 이러한 측정에 사용되는 기구는 워터스 코포레이션(Waters Corp.; 매사추세츠주 밀포드 소재)에 의해 제공되는 얼라이언스(Alliance) HPLC 및 ZQ MS이지만, 다른 적당한 기구가 또한 시판되고 있으며 다른 공급처로부터 제공된다. 당해 분야에 공지된 바와 같이, 용리 시간 및 질량 분석기의 응답 둘 다는 공지 함량으로 존재하는 공지 화합물, 실제 미지의 샘플에서 나타나는 것들에 부합되는 화합물 및 함량을 사용하여 보정된다.
본 발명의 또 다른 실시양태는, 한편으로는 이산화탄소 및 일산화탄소(총괄적으로 탄소 산화물; COx)의 생성에 대해, 다른 한편으로는 유해한 방향족 불순물의 억제를 적절하게 균형적으로 유지하면서, 방향족 산화 화합물을 부분 산화시키는 것과 관련된다. 전형적으로, 상기 탄소 산화물은 배출 기체 중에서 반응 용기로부터 배출되며, 이들은 궁극적으로 바람직한 산화된 유도체(예컨대, 아세트산, 파라-자일렌 및 TPA)를 포함하는 산화가능한 화합물 및 용매의 해로운 손실에 상응한다. 본 발명자들은 탄소 산화물의 생성에 대한 하부 경계를 발견하였으며, 하기에서 기술되는 바와 같이, 상기 경계 아래에서는 유해한 방향족 불순물이 많이 생성되는 것으로 보이며, 따라서 총 전환 수준이 너무 불량하여 경제적인 유용성이 없다. 본 발명자들은 또한 탄소 산화물의 상부 경계를 발견하였으며, 이 경계 위에서는 탄소 산화물의 생성이 계속 증가되어 유해한 방향족 불순물 생성의 감소에 의해 제공되는 추가적인 가치가 거의 없다.
본 발명자들은, 방향족 산화가능한 화합물의 부분 산화 동안 반응 매질 내에서 방향족 산화가능한 화합물 공급물과 방향족 중간체 화합물의 액상 농도를 감소시키면 유해한 불순물의 생성 속도가 낮아진다는 것을 알게 되었다. 이러한 유해한 불순물은 목적하는 수보다 많은 카복실산기를 함유하는 커플링된 방향족 고리 및/또는 방향족 분자를 포함한다(예를 들면, 파라-자일렌의 산화에서 유해한 불순물은 2,6-다이카복시안트라퀴논, 2,6-다이카복시플루오렌온, 트라이멜리트산, 2,5,4'-트라이카복시바이페닐, 및 2,5,4'-벤조페논을 포함한다). 방향족 중간체 화합물은 산화가능한 방향족 화합물의 공급물로부터 유래되고, 여전히 비-방향족 하이드로카빌 기를 함유한 방향족 화합물을 포함한다(예를 들면, 파라-자일렌의 산화에서 방향족 중간체 화합물은 파라-톨루알데하이드, 테레프트알데하이드, 파라-톨루산, 4-CBA, 4-하이드록시메틸벤조산 및 알파-브로모-파라-톨루산을 포함한다). 방향족 산화가능한 화합물 공급물 및 비-방향족 하이드로카빌기를 함유하는 방향족 중간체 화합물은, 반응 매질의 액상에 존재하는 경우, 비-방향족 하이드로카빌기가 없는 용해된 방향족 화합물(예컨대, 아이소프탈산)의 경우에 대해 이미 본원에서 기재된 것과 유사한 방식으로 유해한 불순물을 생성시키는 것으로 보인다.
산화가능한 방향족 화합물의 부분 산화 동안 유해한 방향족 불순물의 생성을 억제하기 위한 더욱 높은 반응 활성에 대한 이러한 요구와 관련하여, 본 발명자들은 바람직하지 못한 수반되는 결과가 탄소 산화물의 생성을 증가시킨다는 것을 알게 되었다. 중요하게도, 이러한 탄소 산화물은 산화가능한 화합물 및 산화제(용매는 아님)의 수율 손실을 나타낸다고 생각된다. 명백하게도, 탄소 산화물의 상당 부분 및 때때로 대다수는 용매로부터라기보다는 산화가능한 화합물 및 이의 유도체로부터 유도되며; 종종 산화가능한 화합물은 용매보다 탄소 단위당 더 많은 비용을 필요로 한다. 또한, 목적 생성물인 카복실산(예를 들어, TPA)이 또한 반응 매질의 액상에 존재할 때 탄소 산화물로 과산화됨을 인식하는 것이 중요하다.
또한, 본 발명이 반응 매질의 액상에서의 반응 및 상기 반응의 반응물 농도와 관련됨을 인식하는 것도 중요하다. 이것은, 비-방향족 하이드로카빌기를 함유하는 방향족 화합물의 침전된 고체 형태의 생성과 직접적으로 관련되는 일부 종래 기술과는 대조적이다. 구체적으로, 파라-자일렌의 TPA로의 부분 산화에 있어서, 특정한 종래 발명은 CTA의 고상에 침전된 4-CBA의 양에 관련된다. 그러나, 본 발명자들은, 온도, 압력, 촉매작용, 용매 조성 및 파라-자일렌의 공간-시간 반응 속도의 동일한 조건을 사용할 때, 부분 산화가 잘-혼합된 오르토클레이브에서 실시되는지 또는 본 발명에 따라 산소 및 파라-자일렌이 단계화된 반응 매질에서 실시되는지에 따라, 고상에서의 4-CBA 대 액상에서의 4-CBA의 비가 2:1 이상으로 변화된다는 것을 발견하였다. 또한, 본 발명자들은, 고상에서의 4-CBA 대 액상에서의 4-CBA의 비가 온도, 압력, 촉매작용, 및 용매 조성의 다른 유사한 사양에서 파라-자일렌의 공간-시간 반응 속도에 따라 잘 혼합된 반응 매질 또는 단계화된 반응 매질에서 2:1 이상으로 변할 수 있다는 것을 알게 되었다. 부가적으로, 고상 CTA에서의 4-CBA는 유해한 불순물의 생성에 기여하지 않는 것으로 보이며, 고상에서의 4-CBA는 회수된 후 간단하게 고수율로 TPA로 산화될 수 있는(예를 들어, 본원에 기재된 바와 같이, CTA 슬러리의 산화 분해에 의해) 반면에; 유해한 불순물의 제거는 고상 4-CBA의 제거보다 더욱 어렵고 고가이며, 탄소 산화물의 생성은 지속적 수율 손실을 나타낸다. 따라서, 본 발명의 이러한 요지가 반응 매질의 액상 조성에 관련된다는 것을 인식하는 것이 중요하다.
본 발명자들은, 용매로부터 유래되던지 또는 산화가능한 화합물로부터 유래되던지에 상관없이, 상업적 용도의 전환에서 탄소 산화물의 생성은 온도, 금속, 할로겐, 온도, pH에 의해 측정된 반응 매질의 산도, 및 전체 반응 활성의 수준을 얻기 위해 사용된 물의 농도의 특정 조합에서의 광범위한 변화에도 불구하고, 전체 반응 활성의 수준에 강하게 관련됨을 발견하였다. 본 발명자들은 반응 매질의 중간 높이, 반응 매질의 저부 및 반응 매질의 상부에서 톨루산의 액상 농도를 사용하여 전체 반응 활성 수준을 평가하는 것이 자일렌의 부분 산화에서 유용하다는 것을 알게 되었다.
따라서, 반응 활성을 증가시켜 유해한 불순물의 생성을 최소로 하고, 반응 활성을 낮추어 탄소 산화물의 생성을 최소로 하는 것이 균형을 이루면서 동시에 일어난다. 즉, 탄소 산화물의 전체 생성이 너무 낮다면, 유해한 불순물이 과도한 수준으로 형성되며, 이것의 반대도 성립한다.
또한, 본 발명자들은, 목적하는 카복실산(예컨대, TPA)의 용해도와 상대적인 반응성 및 비-방향족 하이드로카빌기가 없는 다른 용해된 방향족 화합물의 존재가, 탄소 산화물 대 유해한 불순물의 이러한 균형에 있어 매우 중요한 지주 기능을 초래한다는 것을 알게 되었다. 전형적으로, 목적하는 생성물인 카복실산은 고체 형태로 존재할 때에도 반응 매질의 액상에 용해된다. 예를 들면, 바람직한 범위의 온도에서, TPA는 약 1,000ppmw 내지 1중량%를 초과하는 범위의 수준으로 아세트산 및 물을 포함하는 반응 매질에 가용성이고, 이때 온도가 증가함에 따라 용해도도 증가한다. 산화가능한 방향족 화합물 공급물(예컨대, 파라-자일렌), 방향족 반응 중간체(예컨대, 파라-톨루산), 목적하는 생성물인 방향족 카복실산(예를 들어, TPA), 및 비-방향족 하이드로카빌기가 없는 방향족 화합물(예를 들어, 아이소프탈산)로부터 다양한 유해 불순물을 생성시킴에 있어서 반응 속도에 차이가 있음에도 불구하고, 마지막 두 군의 존재 및 반응성에 따라, 앞의 두 군, 즉 산화가능한 방향족 화합물 공급물 및 방향족 반응 중간체의 추가적인 억제와 관련하여 회복 감소 영역이 정해진다. 예를 들면, 파라-자일렌의 TPA로의 부분 산화에 있어서, 주어진 조건에서 반응 매질의 액상에 용해된 TPA가 7,000ppmw이고, 용해된 벤조산이 8,000ppmw이고, 용해된 아이소프탈산이 6,000ppmw이고, 용해된 프탈산이 2,000ppmw라면, 유해한 총 화합물의 추가적 감소 값은 반응 활성이 증가하여 파라-톨루산 및 4-CBA의 액상 농도를 유사한 수준 미만으로 억제함에 따라 감소하기 시작한다. 즉, 비-방향족 하이드로카빌기가 없는 방향족 화합물의 반응 매질의 액상 중의 존재 및 농도는 반응 활성의 증가에 의해 거의 변경되지 않으며, 이들의 존재는 유해한 불순물의 형성을 억제하기 위해 반응 중간체의 농도를 감소시키기 위한 회복 감소 영역을 위로 확장시키는 작용을 한다.
따라서, 본 발명의 하나의 실시양태에서는, 낮은 반응 활성 및 유해한 불순물의 과도한 형성에 의한 하한과 과도한 탄소의 손실에 의한 상한으로 경계가 지어지지만, 상업적으로 유용한 것으로 이미 발견되고 개시된 것보다 더욱 낮은 수준의 탄소 산화물의 바람직한 범위를 제공한다. 따라서, 탄소 산화물의 형성은 바람직하게는 하기와 같이 조절된다. 제조된 총 탄소 산화물(몰) 대 공급된 산화가능한 방향족 화합물(몰)의 비는 바람직하게는 약 0.02:1보다 크고, 더욱 바람직하게는 약 0.04:1보다 크고, 더욱더 바람직하게는 약 0.05:1보다 크며, 가장 바람직하게는 0.06:1보다 크다. 동시에, 제조된 총 탄소 산화물(몰) 대 공급된 산화가능한 방향족 화합물(몰)의 비는 바람직하게는 약 0.24:1 미만, 더욱 바람직하게는 약 0.22:1 미만, 더욱더 바람직하게는 약 0.19:1 미만, 가장 바람직하게는 0.15:1 미만이다. 제조된 총 이산화탄소(몰) 대 공급된 산화가능한 방향족 화합물(몰)의 비는 바람직하게는 약 0.01:1보다 크고, 더욱 바람직하게는 약 0.03:1보다 크고, 더욱더 바람직하게는 약 0.04:1보다 크며, 가장 바람직하게는 0.05:1보다 크다. 동시에, 제조된 총 이산화탄소(몰) 대 공급된 산화가능한 방향족 화합물(몰)의 비는 바람직하게는 약 0.21:1 미만, 더욱 바람직하게는 약 0.19:1 미만, 더욱 더 바람직하게는 약 0.16:1 미만, 가장 바람직하게는 0.11:1 미만이다. 제조된 일산화탄소(몰) 대 공급된 산화가능한 방향족 화합물(몰)의 비는 바람직하게는 약 0.005:1보다 크고, 더욱 바람직하게는 약 0.010:1보다 크며, 더욱더 바람직하게는 약 0.015:1보다 크고, 가장 바람직하게는 0.020:1보다 크다. 동시에, 제조된 일산화탄소(몰) 대 공급된 산화가능한 방향족 화합물(몰)의 비는 바람직하게는 약 0.09:1 미만, 더욱 바람직하게는 약 0.07:1 미만, 더욱더 바람직하게는 약 0.05:1 미만, 가장 바람직하게는 0.04:1 미만이다.
산화 반응기로부터의 무수 배출 기체 중의 이산화탄소의 함량은 바람직하게는 약 0.10몰%보다 크고, 더욱 바람직하게는 약 0.20몰%보다 크고, 더욱더 바람직하게는 약 0.25몰%보다 크며, 가장 바람직하게는 0.30몰%보다 크다. 동시에, 산화 반응기로부터 무수 배출 기체 중의 이산화탄소의 함량은 바람직하게는 약 1.5몰% 미만, 더욱 바람직하게는 약 1.2몰% 미만, 더욱더 바람직하게는 약 0.9몰% 미만, 가장 바람직하게는 0.8몰% 미만이다. 산화 반응기로부터의 무수 배출 기체 중의 일산화탄소의 함량은 바람직하게는 약 0.05몰%보다 크고, 더욱 바람직하게는 약 0.10몰%보다 크며, 더욱더 바람직하게는 0.15몰%보다 크며, 가장 바람직하게는 0.18몰%보다 크다. 동시에, 산화 반응기로부터의 무수 배출 기체 중의 일산화탄소의 함량은 바람직하게는 약 0.60몰% 미만, 더욱 바람직하게는 약 0.50몰% 미만, 더욱더 바람직하게는 약 0.35몰% 미만, 가장 바람직하게는 0.28몰% 미만이다.
본 발명자들은, 탄소 산화물의 생성을 이러한 바람직한 범위로 감소시키기 위한 중요한 인자가, 재순환되는 여액 및 산화가능한 화합물의 공급물의 순도를 향상시켜 본 발명의 개시에 따라 비-방향족 하이드로카빌기가 없는 방향족 화합물의 농도를 감소시키는 것임을 알게 되었으며, 이때 방향족 화합물의 농도 감소는 동시에 탄소 산화물 및 유해한 불순물의 형성을 감소시킨다. 또 다른 인자는, 본 발명의 개시에 따라 반응 용기 내에서의 파라-자일렌 및 산화제의 분포를 개선시키는 것이다. 탄소 산화물의 상기 바람직한 수준을 가능하게 하는 다른 인자는, 압력, 온도, 액상 중의 산화가능한 화합물의 농도 및 기상에서의 산화제에 대해 본원에서 개시된 바와 같이 반응 매질 내에서 구배시켜 작동시키는 것이다. 탄소 산화물의 상기 바람직한 수준을 가능하게 하는 다른 인자는, 공간-시간 반응 속도, 압력, 온도, 용매 조성, 촉매 조성, 및 반응 용기의 기계적 형태에 대해 바람직한 본원의 기술 내용 범위 내에서 작동시키는 것이다.
탄소 산화물 형성의 바람직한 범위 내에서 작동시킬 때의 중요한 이점은, 화학량론적 값은 아니라고 할지라도 분자 산소의 사용량이 감소될 수 있다는 점이다. 본 발명에 따른 산화제 및 산화가능한 화합물의 우수한 단계화에도 불구하고, 산화가능한 화합물 단독의 공급물에 대해 계산될 때, 탄소 산화물을 일부 손실시키고 과량의 분자 산소를 제공하여 유해한 불순물의 형성을 억제하기 위하여, 과량의 산소가 화학량론적 값보다 많이 보유되어야 한다. 특히, 자일렌이 산화가능한 화합물의 공급물인 경우, 분자 산소(중량) 대 자일렌(중량)의 공급 비는 바람직하게는 약 0.91:1.00보다 크고, 더욱 바람직하게는 약 0.95:1.00보다 크며, 가장 바람직하게는 0.99:1.00보다 크다. 동시에, 분자 산소(중량) 대 자일렌(중량)의 공급 비는 바람직하게는 약 1.20:1.00 미만, 더욱 바람직하게는 약 1.12:1.00 미만, 가장 바람직하게는 약 1.06:1.00 미만이다. 특히, 자일렌 공급물의 경우, 산화 반응기로부터의 무수 배출 기체 중의 분자 산소의 시간-평균 함량은 바람직하게는 약 0.1몰%보다 크고, 더욱 바람직하게는 약 1몰%보다 크며, 가장 바람직하게는 1.5몰%보다 크다. 동시에, 산화 반응기로부터의 무수 배출 기체 중의 분자 산소의 시간-평균 함량은 바람직하게는 약 6몰% 미만, 더욱 바람직하게는 약 4몰% 미만, 가장 바람직하게는 3몰% 미만이다.
탄소 산화물 형성의 바람직한 범위 내에서 작동시킴으로 인한 또 다른 중요한 이점은, 더 적은 방향족 화합물이 탄소 산화물 및 다른 가치가 적은 형태로 전환된다는 것이다. 이러한 이점은 연속 기간(바람직하게는 1시간, 더욱 바람직하게는 1일, 가장 바람직하게는 30일간의 연속 기간)에 걸쳐 반응 매질에서 나가는 모든 방향족 화합물의 몰수의 합을 반응 매질에 유입되는 모든 방향족 화합물의 몰수의 합으로 나눈 값을 사용하여 평가된다. 이 비는 이후 반응 매질을 통한 방향족 화합물의 "몰 생존 비"로서 지칭되며, 백분율 수치로서 표시된다. 유입되는 방향족 화합물이 모두 방향족 화합물(대부분 유입되는 방향족 화합물의 산화된 형태임)로서 반응 매질에서 나온다면, 몰 생존 비는 100%의 최대값을 갖는다. 반응 매질을 통해 이동하는 동안 유입되는 방향족 화합물 100마다 정확하게 1이 탄소 산화물 및/또는 다른 비-방향족 화합물(예컨대, 아세트산)로 전환된다면, 몰 생존 비는 99%이다. 구체적으로는, 자일렌이 산화가능한 방향족 화합물의 주요 공급물인 경우, 반응 매질을 통한 방향족 화합물의 몰 생존 비는 바람직하게는 약 98%보다 크며, 더욱 바람직하게는 약 98.5%보다 크고, 가장 바람직하게는 99.0% 미만이다. 동시에, 충분한 전체 반응 활성이 존재하기 위해, 자일렌이 산화가능한 방향족 화합물의 주요 공급물인 경우, 반응 매질을 통한 방향족 화합물의 몰 생존 비는 바람직하게는 약 99.9% 미만, 더욱 바람직하게는 약 99.8% 미만, 가장 바람직하게는 99.7% 미만이다.
본 발명의 또 다른 양태는 아세트산 및 하나 이상의 산화가능한 방향족 화합물을 포함하는 반응 매질에서의 메틸 아세테이트의 생성에 관한 것이다. 이 메틸 아세테이트는 물 및 아세트산에 비해 비교적 휘발성이고, 따라서 배출 기체를 다시 주위 환경으로 방출시키기 전에 이를 회수 및/또는 파괴하기 위해 부가적인 냉각 또는 다른 단위장치의 작동이 사용되지 않는 한, 배출 기체로 처리되는 경향이 있다. 따라서, 메틸 아세테이트의 형성에는 작동 비용 및 자본 비용이 소요된다. 메틸 아세테이트는, 먼저 아세트산 분해로부터의 메틸 라디칼을 산소와 조합시켜 메틸 하이드로퍼옥사이드를 형성하고, 후속 분해시켜 메탄올을 형성한 후, 최종적으로 생성된 메탄올을 잔류하는 아세트산과 반응시켜 메틸 아세테이트를 형성함으로써 제조된다. 화학적 경로가 무엇이든지 간에, 본 발명자들은, 메틸 아세테이트의 생성 속도가 너무 낮으면, 탄소 산화물의 생성도 또한 너무 낮고, 유해한 방향족 불순물의 생성은 너무 높다는 것을 알게 되었다. 메틸 아세테이트의 생성 속도가 너무 높으면, 탄소 산화물의 생성이 또한 불필요하게 높아 용매, 산화가능한 화합물 및 산화제의 수율 손실을 초래한다. 본원에 기재된 바람직한 실시양태를 사용하는 경우, 생성된 메틸 아세테이트(몰) 대 공급된 산화가능한 방향족 화합물(몰)의 생성 비는 바람직하게는 약 0.005:1보다 크며, 더욱 바람직하게는 약 0.010:1보다 크고, 가장 바람직하게는 0.020:1보다 크다. 동시에, 생성된 메틸 아세테이트(몰) 대 공급된 산화가능한 방향족 화합물(몰)의 생성 비는 바람직하게는 약 0.09:1 미만, 더욱 바람직하게는 약 0.07:1 미만, 더욱더 바람직하게는 약 0.05:1 미만, 가장 바람직하게는 0.04:1 미만이다.
본 발명이 그의 바람직한 실시양태의 하기 실시예들에 의해 추가적으로 설명될 수 있지만, 이러한 실시예들은 단지 본 발명의 예시를 위한 것으로, 특별하게 달리 지시되지 않는 한, 본 발명의 범위를 제한하려는 의도가 아니라는 것이 이해될 것이다.
실시예 1
이는 기포탑 반응기에서의 파라-자일렌의 상업적 산화 작동 실시예이다. 본 실시예는 예를 들어 본 발명의 요지에 따라 적절한 기하학적 조건 및 공정 조건이 사용되는 경우, 파라-자일렌의 농도에서 큰 수직 구배가 존재함을 증명한다.
본 실시예에서는 약 2.44m의 내경을 갖는 거의 수직의 본질적으로 원통형인 몸체부를 갖는 상업적인 기포탑 산화기 용기를 사용하였다. 기포탑 산화기 용기의 높이는 하부 접선(TL)으로부터 상부 TL까지 약 32m였다. 용기에는 원통의 상부 및 저부에 약 2:1 타원형 헤드가 장착되었다. 작동 수준은 하부 TL 위 반응 매질 약 25m였다. 시판 순도의 파라-자일렌의 공급 속도는 약 81kg/분의 속도로 실제로 일정하였으며, 하부 TL 위 약 4.35m의 높이에서 원통형 구역의 벽에 위치한 원형 구멍을 통해 반응 용기로 유입되었다. 상기 벽 구멍의 내경은 약 0.076m였다. 여액 용매를 약 777kg/분의 실제로 일정한 속도로 공급하였다. 도관 크기 및 압력 강하로부터 약 20kg/분인 것으로 추정된 이 여액 용매의 칭량되지 않은 부분을 액체 플러쉬로서 산화제 스파저에 공급하였다. 약 757kg/분의 나머지 여액 용매는 시판 순도의 파라-자일렌과 긴밀하게 혼합되어 공급되었다. 따라서, 여액 용매 및 시판 순도의 파라-자일렌의 합해진 액상 공급 스트림은 약 838kg/분에 달하여, 상기 벽 구멍을 통한 유입 유동의 표면 속도가 약 3m/초가 되었다. 이 여액 용매는 플랜트 재순환 시스템으로부터 유래하였으며, 약 97중량%보다 많은 아세트산 및 물로 구성되었다. 여액 용매 중 촉매 성분의 농도는, 반응 매질의 액상 내에서의 조성이 코발트 약 1,777ppmw, 브롬 약 1,518ppmw 및 망간 약 107ppmw가 되도록 하는 농도였다. 환류 용매의 별도의 스트림을 반응 매질의 작동 수준 위에서 기체-분리 대역에 약 572kg/분의 실제로 일정한 속도로 소적으로서 공급하였다. 이 환류 용매는 약 99중량%보다 많은 아세트산 및 물로 구성되었으며, 환류 용매는 상당한 수준의 촉매 성분이 없는 별도의 플랜트 재순환 시스템으로부터 유래되었다. 여액 용매 공급물 및 환류 용매 공급물의 합쳐진 물 함량은, 반응 매질의 액상 내에서의 물의 농도가 약 6.0중량%가 되도록 하는 양이었다. 산화제는 도 2 내지 도 5에 도시된 것과 유사한 산화제 스파저를 통해 약 384kg/분의 실제로 일정한 속도로 공급된 압축 공기였다. 이 산화제 스파저는 한 변으로부터 대향하는 변까지 연결되고 반응 용기의 수직 대칭축을 통해 움직이는 횡단 부재를 갖는, 변이 대략 동일한 팔각형의 연귀 이음된 유동 도관으로 구성되었다. 연귀 이음된 유동 도관은 공칭 12인치 스케쥴 10S 파이핑 구성성분으로 제작되었다. 유동 도관의 한 변의 중심으로부터 대향하는 변 중심까지의 팔각형의 폭은 약 1.83m였다. 팔각형은 대략 수평으로 놓이고, 팔각형 도관의 중간 높이는 반응 용기의 하부 TL 위 약 0.11m였다. 산화제 스파저는 직경이 약 0.025m인 75개의 원형 구멍을 구비하였다. 구멍들은 팔각형 및 횡단 부재 둘레에 대략 균일하게 위치하며, 상기 12인치 파이핑의 상부 근처에 배치되었다. 팔각형 도관의 단 한 변의 저부 근처에 직경 약 0.012m의 원형 구멍이 하나 있었다. 반응 용기 오버헤드 기체의 작동 압력은 일정하게 약 0.52MPa게이지였다. 반응열이 유입되는 공급물의 온도를 상승시키고 유입되는 용매중 다량을 증발시키도록 실질적인 단열 방식으로 반응을 작동시켰다. 반응 매질의 중간 높이 근처에서 측정시, 작동 온도는 약 160℃였다. 조질의 테레프탈산(CTA)를 포함하는 배출 슬러리를 실제로 일정한 속도로 반응 용기의 하부 타원형 헤드의 저부 근처에서 제거하였다. 배출되는 슬러리의 유속은 약 408kg/분이었다.
후술되는 바와 같이, 반응 매질로부터의 슬러리 샘플을 반응 용기의 3개의 높이로부터 수득하였다. 반응 매질 내의 여러 위치에서의 다양한 화합물에 대한 농도를 측정할 때, 충분한 시간-평균 분석 값을 결정하기에 충분한 샘플을 취함으로써 시스템의 확률론적 성질을 고려할 필요가 있었다.
5개의 샘플로 이루어진 하나의 세트를 반응 용기의 하부 타원형 헤드의 저부 근처로부터 배출되는 슬러리 도관으로부터 수득하였다. 5개의 샘플로 이루어진 또 다른 세트를 반응 용기의 하부 TL 위 약 12.4m의 높이에 위치하는 벽 구멍으로부터 수득하였다. 5개의 샘플로 이루어진 세번째 세트를 반응 용기의 하부 TL 위 약 17.2m의 높이에 위치하는 벽 구멍으로부터 수득하였다.
모든 슬러리 샘플을 보정된 기체 크로마토그래피(GC) 방법에 의해 액상에서의 파라-자일렌 및 파라-톨루알데하이드의 조성에 대해 분석하였다. 하기 표 5에는 3개의 상이한 탑 높이로부터 수득된 5개 결과의 평균이 기재되어 있다. 결과는 액상 백만질량부당 분석물의 질량부(ppmw)로서 기록된다.
Figure 112007024444267-PCT00010
이들 결과는 파라-자일렌 및 파라-톨루알데하이드의 국부 농도에서의 큰 구배가 수직으로 발생하였음을 보여준다. 예를 들어, 표 5의 데이터에서 관측된 파라-자일렌의 농도 구배는 20:1(455:21)보다 컸다. 이러한 결과는, 기포탑 내로 유입되는 파라-자일렌 공급물의 내재적인 유동 혼합이 고유 반응 속도보다 매우 느렸음을 입증한다. 또한, 더욱 적은 정도이기는 하지만, 반응 매질에서의 다른 관련된 방향족 반응성 화합물(예컨대, 파라-톨루산 및 4-카복시 벤즈알데하이드)의 농도에서도 수직 구배가 관측되었다.
후속 실시예에서 증명되는 바와 같이, 본 실시예의 반응 매질의 액상 내에서 파라-자일렌 농도의 실제 범위가 100:1을 크게 초과하였음을 상세한 계획 모델로부터 알 수 있다. 엄격한 계획 모델을 사용하지 않아도, 당해 분야의 숙련자들은 공급물인 파라-자일렌이 용기 벽을 통해 기포탑 반응 용기에 도입되는 위치 근처의 영역에서 파라-자일렌의 실제 최대 농도가 발생하였음을 인식하게 될 것이다. 최대 파라-자일렌 농도의 이 높이는 하부 TL 위 약 4.35m이며, 샘플들은 약 12.4m 및 하부 유동으로부터 수득되었다. 유사하게, 파라-자일렌의 실제 최소 농도는 상기 샘플이 수득된 최고 높이보다 훨씬 더 높은 약 25m의 반응 매질의 상부 또는 그 근처에서 발생하였을 것이다.
반응 매질 내의 임의의 수직 또는 수평 위치에서 샘플링하기 적당한 기계 장치를 사용하여, 반응 매질 내의 다른 위치에서 파라-자일렌 및 다른 산화가능한 화합물의 농도를 측정할 수 있다. 임의적으로는, 매우 복잡한 유체 유동 패턴, 화학 반응 운동학, 에너지 균형, 증기-액체-고체 평형 및 상간 교환 속도를 다루기에 충분히 복잡한 컴퓨터 모델을 사용하여 물리적으로 샘플링되지 않고 화학적 분석되지 않은 위치에 대한 농도를 적당한 정확성으로 계산할 수 있다. 실시예 2 내지 5
실시예 2 내지 5는 실시예 1의 반응기와 동일하거나 또는 규정된 개선점이 있는 대략 유사한 기포탑 반응기의 계획 모델이다. 실시예 2 내지 5를 실시하기 위해 수행된 컴퓨터화 유체 유동학(CFD) 모델화는 본원에 참고로 인용된 동시 계류중인 미국 특허원 제 60/594,774 호(발명의 명칭:"Modeling of Liquid-Phase Oxidation")에 기술된 모델화 방법에 따라 실시되었다.
실시예 2 내지 5에서, CFD 모델화는 CFX 릴리이즈 5.7[안시스, 인코포레이티드(ANSYS, Inc.); 미국 펜실베이니아주 15317 캐논스버그 테크놀로지 드라이브 275]을 사용하여 실시된다. 실시예 2 내지 5 각각에서는 100,000개 이상의 별도의 공간 컴퓨터 셀을 포함한다. 실시예 2 내지 5에 유용한 시간 간격은 0.1초 미만이다. 직경 약 0.005 내지 약 0.20m의 다수개의 기포 크기는, 시차 압력 측정을 통해 평가된 평균 기포 보유율, 감마-스캐닝을 통해 평가된 수직 기포 보유율 프로파일 및 컴퓨터 단층(CT) 스캔을 통해 평가된 기포 보유율의 수평 프로파일에 근사하도록 CFD 모델을 조정하는데 유용한 것으로 입증된다. 실시예 2 내지 5의 CFD 모델에서 적절한 기포 크기 및 개체수를 선택하기 위해, 하기 기술된 바와 같은 관련 조성 및 공정 조건에 가까운 반응 매질을 사용하여 작동되는 약 2.44m 및 약 3.05m의 원통 내경을 갖는 슬러리 기포탑에서 실제 플랜트 작동 데이터를 수득하였다. 전체 기포 보유율에 대한 기준 데이터를, 용기의 기부 근처로부터 오버헤드 배출 기체까지 측정된 압력 차이를 사용하여 수득하였다. 수직 기포 보유율 프로파일에 대한 기준 데이터를, 감마-방출 방사선원 및 약 0.05m 내지 약 0.3m의 간격으로 반응 용기의 외부로 증가되는 검출 방법을 이용하여 수득하였다. 수평 기포 보유율 프로파일에 대한 기준 데이터는 감마-방출 방사선원 및 검출 방법을 이용하여 작동 기포탑의 수평면을 가로지르는 9×9 격자 상에서 실시된 CT 스캔에 의해 수득하였다. 즉, 상기 방사선원은 기포탑 주변부 둘레에서 거의 동일하게 이격된 9개의 상이한 위치의 소정의 높이에 위치하였다. 감마-선원의 각 위치에서, 반응 용기 및 반응 매질을 통과하는 감마-방사선의 양을 기포탑의 주변부 둘레에서 거의 동일하게 이격된 9개의 상이한 위치에서 검출하였다. 이어서, 상기 높이에서 반응 매질 전체에서의 기포 보유율의 변동을 추정하기 위해, 상기 별도의 데이터에 다양한 수학적 모델을 적용하였다. 두 상이한 날에, 상이한 두 높이에서, 파라-자일렌, 압축 공기 등의 서로 상이한 두 공급 속도에서 복수개의 수평 CT 스캔을 얻었다.
상업적 규모 및 파일럿 규모의 시험 둘 다로부터 유사한 온도, 압력, 반응 세기, 촉매 작용, 물 농도에 대한 다른 데이터와 함께 실시예 1에서 관측된 파라-자일렌에 대한 반응물 프로파일을 매치시키기 위해, 상기 환경에서의 파라-자일렌의 소비에 대한 화학 반응 모델을 조정한다. 지수 근사로서, 파라-자일렌 반응성 트레이서의 붕괴에 대한 유사-1차 시간 상수는 실시예 2 내지 4에 사용된 반응 매질의 대략적인 평균 조건과 약 160℃에서 약 0.2초-1이다.
중요하게도, 실시예 2 내지 4에서 얻은 유동계의 CFD 모델은, 작동하는 기포탑 반응 용기에서 관측된 저 주파수 파동과 일반적으로 일치하는 기포 떼 및 액체 파동에서의 대규모 변동을 발생시킨다.
실시예 2
본 실시예는, 실시예 1의 기계 구성에 관련된 계산을 전개하여 실시예 3 및 4에 대한 비교 기준을 정한다. 본 실시예에서, 기포탑 반응기의 기계 구성은 실시예 1과 동일하여 파라-자일렌 및 여액 용매를 포함하는 공급물 스트림에 대한 반응 용기 벽을 통한 0.076m 원형 직경의 유입 구멍을 갖는다. 파라-자일렌의 공급 속도는 실시예 1에서보다 큰, 약 1.84kg/초이다. 파라-자일렌과 긴밀하게 혼합되는 여액 용매의 공급 속도는 약 18.4kg/초이다. 따라서, 벽 구멍을 통해 유입되는 파라-자일렌과 여액 용매의 합쳐진 스트림의 표면 속도는 약 4m/초이다. 기체 분리 헤드 스페이스로의 환류 용매의 공급 속도는 12.8kg/초이다. 산화제 스파저를 통한 압축 공기의 공급 속도는 약 9kg/초이다. 반응 슬러리의 고체 함량은 약 31중량%이다. 반응 매질을 약 25m의 거의 일정한 수준으로 유지하기에 효과적인 일정한 속도를 사용하여 반응 용기의 저부 헤드의 중심으로부터 생성물 슬러리를 회수한다. 반응 매질의 중간 높이에 대한 평균 기체 보유율은 면적-평균 및 시간-평균 기준으로 약 55%이며, 이때 시간-평균 길이는 CFD 모델 시간 약 100초 이상이다. 반응 매질 위 헤드스페이스에서의 압력은 약 0.50MPa게이지이다. 반응 매질의 중간 높이 근처에서 측정시 온도는 약 160℃이다. 반응 매질의 액체 부분 내에서의 물, 코발트, 브롬 및 망간의 함량은 실시예 1에서와 본질적으로 동일하다.
실시예 3
본 실시예에서는, 본 발명의 한 요지에 따라, 반응 매질로의 유입 지점에서 파라-자일렌을 포함하는 액상 공급물의 표면 속도를 증가시킴으로써 파라-자일렌 공급물의 분산을 개선시킴에 관련된 계산을 전개한다. 본 실시예에서 기포탑 반응기의 기계 구성은, 파라-자일렌을 포함하는 액상 공급물이 도입되는 벽 구멍이 0.025m 원형 직경으로 감소된 것을 제외하고는, 실시예 2와 동일하다. 파라-자일렌의 공급 속도 및 다른 공정 조건은, 벽 구멍을 통해 유입되는 파라-자일렌과 여액 용매의 합쳐진 액상 공급물 스트림의 표면 속도가 이제 약 36m/초인 것을 제외하고는 실시예 2에서와 동일하다.
액상 중의 파라-자일렌 반응성 트레이서의 농도가 각종 임계치 이상인 반응 매질의 시간-평균 분율의 CFD 모델 계산치들은 하기 표 6에 기재되어 있다. 액상에서 매우 농축된 파라-자일렌 반응성 트레이서를 지닌 반응 매질의 부피는, 본 발명에 따라 파라-자일렌을 포함하는 액상 공급물 스트림의 더욱 높은 유입 속도로 작동시킴으로써 감소된다. 다수의 가용성 방향족 화합물의 농도가 높아지고, 또한 이러한 농도로 인해 용해된 분자 산소가 국부적으로 다량 소비됨으로써 용해된 분자 산소의 국부적으로 억제된 현재 농도가 유발되기 때문에, 파라-자일렌 농도가 높은 영역의 감소는 바람직하지 않은 커플링 반응을 억제하는데 중요하다.
실시예 4
본 실시예는 산화제 및 파라-자일렌을 기포탑 반응기에 도입하기 위한 개선된 기계 수단에 대한 계산을 전개한다. 본 실시예는 실시예 1 내지 3에 사용된 것과 동일한 기포탑 반응기 내에서 수행된다. 그러나, 산화제 및 파라-자일렌 둘 다가 반응 매질에 유입되는 방식과 관련하여 반응기를 변형시킨다. 실시예 4에 있어서, 먼저 파라-자일렌을 반응 매질에 도입하여 파라-자일렌의 농도가 높은 대역을 감소시키기 위한 변형된 장치에 대하여 주목한다. 둘째, 산화제를 반응 매질에 도입하여 불량하게 폭기되는 대역을 감소시키기 위한 변형된 장치에 대하여 주목한다. 이는 두 변형이 결과 면에서 완전히 무관함을 암시하는 것이 아니라, 단순히 단계적인 설명이다.
일반적으로 도 9 내지 도 11에 도시된 바와 같은 액상 공급물 분배 시스템의 사용에 의해, 매우 높은 파라-자일렌 반응성 트레이서의 액상 농도를 지닌 반응 매질의 양이 실시예 4에서는 감소된다. 편리하게는, 상기 액상 공급물 분배 시스템은 대략 수직으로 서 있는 4개의 유동 도관을 갖는다. 이들 4개의 유동 도관 각각은 기포탑의 수직 대칭축으로부터 약 0.75m 떨어져 있다. 이러한 4개의 유동 도관은 편리하게는 공칭 1.5인치 스케쥴 10S 파이핑 구성성분으로 제작된다. 본 실시예에서의 각 다리의 하부 말단은 편리하게는 원추의 대향 면들 사이에서 측정된 사잇각이 약 24°인 원추형으로 발산하는 구역을 갖지만, 유동 도관의 하류 말단을 막기에 다른 형상도 유용하다(즉, 상이한 사잇각을 갖는 원추형 마개, 평판 마개, 파이프 캡 마개, 웨지형 마개 등). 이들 4개의 유동 도관 각각은 총 9개의 구멍을 갖되, 각각은 약 0.0063m의 원형 직경을 갖는다. 각 도관에서의 9개의 구멍중 가장 낮은 구멍은 하부 원추 구역의 저부에 있다. 각각의 도관에서, 이러한 가장 낮은 구멍은 반응 용기의 하부 TL 위 약 0.4m에 위치한다. 절두된 저부 원추 구역의 저부 말단으로부터 측정하면, 각 도관에서의 다음의 3개의 구멍은 약 0.3m 높이에 위치하고 있고, 다음 3개의 구멍은 약 1.6m 높이에 위치하고 있으며, 가장 높은 두 개의 구멍은 약 2.7m 높이에 위치하고 있다. 따라서, 각 도관에서 가장 낮은 구멍으로부터 가장 높은 구멍까지의 수직 거리는 약 2.7m, 또는 약 1.1D이다. 하나의 수직 도관의 저부 구멍으로부터 비스듬하게 대향하는 수직 도관의 상부 구멍까지 가장 먼 구멍 간격의 직선(수직은 아님) 거리는 약 3.44m, 또는 약 1.4D이다. 각 수준에서, 구멍은 각 유동 도관의 원주 둘레에서 대략 균일하게 이격되어 있다. 산화가능한 화합물 및 용매를 대략 수직인 4개 도관의 상부에 공급하는 공급 도관은 편리하게는 반응 용기의 하부 TL 위 약 3.60m의 높이에서 대략 수평이다. 공급 도관은 편리하게는 공칭 3인치 스케쥴 10S 파이핑 구성성분으로 제작된다. 정상 작동 및 변화된 작동 둘 다 동안 발생하는 정적인 힘 및 동력학적 힘 둘 다에 견디기 위하여, 어셈블리 내의 적절한 기계적 횡단-브레이싱 및 어셈블리로부터 산화제 스파저 및 반응 용기까지의 기계적 브레이싱이 존재한다.
본 실시예에서 계획된 것은 아니지만, 이 액상 공급물 분배 시스템에 대한 많은 다른 디자인이 가능하다. 예를 들어, 액체 유동 도관 크기는 더욱 크거나 또는 더욱 작거나 또는 대략적인 원형 이외의 다른 단면일 수 있거나, 또는 4개가 아닌 갯수를 가질 수 있다. 예를 들어, 4개의 본질적인 수직 도관 각각은 반응 용기의 압력-함유 벽을 별도로 가로지르는 유동 도관을 통해 독립적으로 제공될 수 있다. 예를 들어, 유입되는 파라-자일렌 및 공급물 용매의 공급은 대략 수직 도관의 중간 높이 근처 또는 저부 높이 근처 또는 임의의 높이 또는 다수의 높이에서 연결될 수 있다. 예를 들어, 공급 도관은 대략 수평 도관에 존재하는 분배 구멍과 대략 수직일 수 있거나, 또는 두 유동 방향은 곡선을 그리거나 또는 비선형 또는 비수직일 수 있다. 예를 들어, 구멍은 반응 매질에 대해 방사상으로, 방위각으로, 또는 수직으로 상이하게 위치할 수 있다. 예를 들어, 더 많거나 적은 구멍들 및/또는 상이한 형태의 구멍들 및/또는 혼합된 크기의 구멍들 및/또는 혼합된 형상의 구멍들이 사용될 수 있다. 예를 들어, 배출 노즐이 배출 구멍 대신에 사용될 수 있다. 예를 들어, 반응 매질 중으로 배출될 때, 하나 이상의 유동 편향 장치가 배출 구멍에 근접한 유동 도관 외부에 및 유체의 통로에 위치할 수 있다.
존재하는 경우, 파라-자일렌과 용매의 합쳐진 공급물 또는 반응 매질의 고체 특성 및 함량에 따라, 또한 실제 제조 작동에 사용된 시동, 작동 중지 및 다른 작동 절차에 따라, 액상 공급물 분배 시스템 내부로부터 고체를 퍼지할 필요가 있을 수 있다. 본 실시예에서 계획되지는 않았지만, 퍼지 구멍은 본 실시예에서 보여준 균일한 크기의 구멍보다 큰 것이 유용할 수 있다. 4개의 대략 수직인 다리 각각의 하부 말단에서의 구멍은 특히 고체를 퍼지하는데 유용하지만, 이것이 유일한 가능한 수단은 아니다. 플래퍼(flapper) 어셈블리, 점검 밸브, 과량 유동 밸브, 동력 작동 밸브 등과 같은 더욱 복잡한 기계 장치가 고체의 침입을 막거나 또는 액상 공급물 분배 시스템 내로부터 축적된 고체를 방출하는데 사용될 수 있다.
이제, 도 12 내지 도 15에 일반적으로 도시된 산화제 스파저에 주목한다. 편리하게는, 산화제 스파저 고리 부재는 횡단 부재 없이 대략 변이 동일한 팔각형인 연귀 이음된 유동 도관을 포함하고 있다. 연귀 이음된 유동 도관은 편리하게는 공칭 10인치 스케쥴 10S 파이핑 구성성분으로부터 제작된다. 유동 도관의 한 변의 중심으로부터 대향하는 변의 중심까지의 팔각형의 폭은 약 1.12m이다. 편리하게는, 팔각형 구역은 대략 수평이며, 팔각형 구역의 중간 높이는 반응 용기의 하부 TL 아래 약 0.24m이다. 이것은, 반응 용기의 하부 TL 위에 높이의 중심이 있는 실시예 1 내지 3의 산화제 스파저 고리 부재와 명백하게 대조적이다. 도관의 팔각형 부분에는 도관 둘레에서 대략 동일하게 이격된 각각 약 0.030m의 직경을 갖는 대략 원형의 구멍 64개가 천공된다. 구멍들의 약 절반은, 각 구멍으로부터 유동 도관 단면의 가장 가까운 중심까지 측정시, 수평 아래 약 45°로 도관 둘레에 위치된다. 구멍의 약 절반은 대략 유동 도관의 저부에 존재하는 위치로 도관 둘레에 위치된다(즉, 각 구멍으로부터 유동 도관 단면의 가장 가까운 중심까지 측정시, 수평 아래 약 90°의 각도). 본 발명자들은, 액상 유입 분배기에서의 설명과 유사하게, 본 발명의 몇몇 요지의 범위 내에 속하는 산화제 스파저에 대해 많은 다른 특수한 디자인이 가능하다고 언급한다. 예를 들어, 2개보다 많거나 적은 공급 도관이 압력-함유 벽을 횡단할 수 있다. 예를 들어, 고리 부재 없이 산화제 스파저의 공급 도관이 디자인될 수 있다. 예를 들어, 하나보다 많은 고리 부재가 존재할 수 있으며, 임의의 고리 부재는 8개가 아닌 변을 가질 수 있거나 비대칭 변을 가질 수 있다. 예를 들어, 도관 구멍 또는 배출구의 상이한 수 또는 크기 또는 크기들 또는 배치를 사용하면서, 바람직한 압력 강하 또는 바람직한 폭기 품질 또는 바람직한 방오 특성을 갖도록 디자인할 수 있다. 예를 들어, 바람직한 범위 내에서 상이한 도관 직경을 사용하여 디자인할 수 있다. 예를 들어, 액체 플러쉬를 사용하여 방오 특성의 디자인을 달성할 수 있다.
본 실시예에서는, 약 0.076m의 원형 내경을 갖는 벽 구멍을 통해 약 14m의 높이에서 반응 용기의 측부로부터 실제로 일정한 속도로 반응 매질을 회수한다. 회수된 반응 매질을 외부 탈기 용기를 사용하여 조질 테레프탈산을 포함하는 생성물 슬러리 및 배출 기체로 분리하였으며, 이는 실시예 6에 상세하게 기재된다. 외부 탈기 용기로부터 분리된 배출 기체를 도관에 의해 이동시켜 반응 용기의 상부에서 나가는 배출 기체의 주 유동과 결합시킨다.
본 실시예의 CFD 모델화 방법은 다음의 예외를 제외하고는 실시예 2 및 3과 실질적으로 동일하다. 유입되는 산화제를 분배시키고, 유입되는 산화가능한 화합물을 분배시키고, 하부 TL 위 약 14m의 반응 용기의 측벽으로부터 생성물 슬러리를 제거하기 위해 적절한 바와 같이 또한 당해 분야에 공지되어 있는 바와 같이 공간 조직이 변형된다.
파라-자일렌 반응성 트레이서의 분배와 관련하여 CFD 모델의 결과를 평가하기 위해 실시예 2 및 3과 동일한 방법이 사용된다. 즉, 여러 임계치보다 높은 액상중 파라-자일렌 반응성 트레이서 농도를 갖는 반응 매질의 시간-평균 분율을 결정한다. 용이하게 비교하기 위하여, 본 실시예의 결과가 상기 표 6에 제시되어 있다. 이러한 결과는, 본 실시예의 파라-자일렌 반응성 트레이서의 개선된 분배로 인해, 1,000ppmw보다 높은 반응 매질의 양은 소량 상승하지만, 2,500ppmw, 10,000ppmw 및 25,000ppmw의 더욱 해로운 역치 수준은 감소됨을 보여준다. 이러한 개선은, 예를 들어 반응 매질로의 파라-자일렌 도입의 개선된 수직, 방사상 및 방위각 위치 및 간격과 함께 더 높은 공급물 유입 속도에 의해 제공된다.
이제, 반응 매질을 통한 폭기 품질에 대해 설명하자면, 동일한 작은 부피의 2,000개 수평 분층의 방법을 사용하여 실시예 2 내지 4의 반응 매질 내에서 불량하게 폭기된 부피의 양을 평가한다. 반응 매질의 가장 낮은 부분, 즉 본 실시예에서는 하부 타원형 헤드의 저부에서 시작하여, 이론적인 수평 평면을 사용하여 반응 매질을 2,000개의 동일한 작은 부피로 분할한다. CFD 모델 시간 증가분 각각에 대하여, 상기 2,000개의 동일한 작은 부피 각각에서 슬러리의 양 및 기체의 양을 측정하여 평균-기체 보유율을 계산하는데 사용한다. 공정 및 이의 CFD 모델의 확률론적 특성을 허용하기 위해, CFD 모델로부터의 결과를 약 100초 이상 동안 지속되는 모델 시간에 대해 시간-평균하여 2,000개의 동일한 작은 부피 각각에서의 시간-평균 기체 보유율 값을 얻는다.
2,000개의 동일한 작은 부피 각각에 대해 시간-평균 기체 보유율을 결정한 후, 이들 값을 본원에 기술된 역치와 비교한다. 각각의 역치에 대하여, 벗어나는 작은 부피의 총 수(명시된 역치를 초과하지 않음)를 계산한다. 하기 표 7은, 실시예 2 및 실시예 4에 있어서, 반응 매질의 2,000개의 수평 동일 부피 분층중 시간-평균 기체 보유율이 10부피% 미만, 20부피% 미만, 및 30부피% 미만인 분층의 수를 기재한 것이다. 실시예 4는 실시예 2에 비해 크게 개선된다.
Figure 112007024444267-PCT00012
실시예 2 및 4를 비교하면, 실시예 4의 파라-자일렌 공급물은 실시예 2에서 보다 반응 매질에서 더욱 낮게, 그리고 유입되는 산화제 스트림에 더욱 가깝게 방출됨을 알 수 있다.
실시예 5 및 6
실시예 5 및 6은, 본 발명의 개시내용에 따라, 상업적인 기포탑 산화기에서 열등한 폭기 영역을 최소화시키고, 수직, 방위각 및 방사상으로 더욱 분산되도록 시판 순도의 파라-자일렌 공급물을 도입하는 방식을 개선시키며, 시판 순도의 파라-자일렌 공급물의 유입을 분자 산소의 최고 이용 효율 지점에 더욱 가까운 지점으로 낮추는 중요성을 증명하는 작동 실시예이다. 또한, 본 실시예에서는 높은 슬러리 배출구로 인한 수율 이점을 증명한다.
파라-자일렌의 부분 산화 동안, 방향족 고리의 커플링에 의해 전형적으로 많은 상이한 불순한 화합물이 생성된다. 이러한 불순물중 하나가 4,4'-다이카복시스틸벤이다. 이 화합물은 테레프탈산보다 훨씬 높은 흡광도를 가지며, 의도된 생성물의 광투과율을 강하게 감소시킨다. 또한, 4,4'-다이카복시스틸벤은, 반응 매질의 고상에 선택적으로 분배되고, 따라서 실시예 5 및 6에 기술된 상업적인 기포탑 반응 용기의 재순환 용매 스트림에는 4,4'-다이카복시스틸벤이 전형적으로 거의 존재하지 않기 때문에, 연속 산화의 품질을 모니터링하는데 사용되는 편리한 불순물이다. 실시예 5 및 6에서, 4,4'-다이카복시스틸벤의 농도는 공지된 양의 4,4'-다이카복시스틸렌을 특별하게 포함하는 공지된 양의 몇몇 분석물 및 용매를 포함하는 적당한 기준 혼합물로 보정된 HPLC-MS를 사용하는 분석 방법으로 측정되었다. HPLC-MS 분석 방법은 상기 발명의 상세한 설명 부분에 기술되어 있다.
실시예 5
본 실시예에 사용된 기포탑 반응기는 실시예 1 및 2의 반응기와 실질적으로 동일한 기계 구성을 갖는다. 반응기는 실시예 6에 필적할만한 공정 조건을 가지며, 비교 기준을 제시한다. 작동 수준은 반응 매질 약 25m였다. 시판 순도의 파라-자일렌의 공급물은 약 81kg/분의 속도로 실제로 일정하였다. 여액 용매를 약 793kg/분의 실제로 일정한 속도로 공급하였다. 도관 크기 및 압력 강하로부터 약 20kg/분인 것으로 평가된 여액 용매의 칭량되지 않은 부분을 액체 플러쉬로서 산화제 스파저에 공급하였다. 약 773kg/분으로 나머지 여액 용매를 시판 순도의 파라-자일렌과 긴밀하게 혼합하여 공급하였다. 따라서, 여액 용매와 시판 순도의 파라-자일렌의 합해진 액상 스트림은 약 854kg/분에 달하였다. 이 여액 용매는 플랜트 재순환 시스템으로부터 유래하였으며, 약 97중량%보다 많은 아세트산 및 물로 구성되었다. 여액 용매중 촉매 성분의 농도는, 반응 매질의 액상 내에서의 조성이 코발트 약 2,158ppmw, 브롬 약 1,911ppmw 및 망간 약 118ppmw가 되도록 하는 농도였다. 환류 용매의 별도의 스트림을 약 546kg/분의 실제로 일정한 속도로 반응 매질의 작동 수준 위에서 기체-분리 대역에 소적으로서 공급하였다. 이 환류 용매는 약 99중량%보다 많은 아세트산 및 물로 구성되며, 환류 용매는 상당한 수준의 촉매 성분이 없는 별도의 플랜트 재순환 시스템으로부터 유래되었다. 여액 용매 공급물과 환류 용매 공급물의 합해진 물 함량은, 반응 매질의 액상 내에서 물의 농도가 약 5.8중량%가 되게 하는 양이었다. 산화제는 실제로 일정한 약 352kg/분의 속도로 공급된 압축 공기였다. 반응 용기 오버헤드 기체에서의 작동 압력은 일정하게 약 0.4MPa게이지였다. 반응열이 유입되는 공급물의 온도를 상승시키고 유입되는 용매중 다량을 증발시키도록 실질적인 단열 방식으로 반응 용기를 작동시켰다. 반응 매질의 중간 높이 근처에서 측정시, 작동 온도는 약 154.6℃였다. 조질의 테레프탈산(CTA)을 포함하는 배출 슬러리를 약 428kg/분의 실제로 일정한 속도로 반응 용기의 하부 타원형 헤드의 저부 근처에서 제거하였다.
본 실시예에서, 바람직하지 않은 4,4'-다이카복시스틸벤의 생성 속도 대 목적하는 테레프탈산의 생성 속도의 비는 슬러리 생성물의 3개의 별도의 샘플 상에서 HPLC-MS에 의해 약 8.6, 9.1 및 9.2ppmw(평균 약 9.0ppmw임)로서 측정되었다. 배출 슬러리의 액상중 파라-자일렌의 농도는 슬러리 생성물의 3개의 별도의 샘플 상에서 보정된 GC에 의해 약 777, 539 및 618ppmw(평균 약 645ppmw임)로서 측정되었다. 배출되는 슬러리의 액상중 파라-톨루알데하이드의 농도는 슬러리 생성물의 상기 별도의 샘플 상에서 보정된 GC에 의해 약 1,055, 961 및 977ppmw(평균 약 998ppmw임)으로서 측정되었다.
실시예 6
본 실시예의 기포탑 반응기는 계획 실시예 4에서 사용된 기계 구성에 상응한다. 본 실시예의 반응기는 파라-자일렌 공급물 유입의 높이, 속도, 수 및 간격 면에서 향상되어 파라-자일렌 공급물의 분배를 향상시키고 분자 산소에 대한 단계화를 개선시켰다. 또한, 개선된 산화제 스파저를 사용하여 반응 매질 내의 폭기의 품질을 개선시키고, 반응 매질에서 나가는 슬러리를 제거 및 탈기하는 높이 및 방법을 개선시켰다. 실시예 5와 비교하여, 파라-자일렌 수율이 크게 개선되며, 불순물 생성이 크게 감소된다.
본 실시예의 반응기는 실시예 4의 CFD 모델에서 기술된 바와 같은 개선된 기계 구성을 가졌다. 작동 수준은 반응 매질 약 25m였다. 시판 순도의 파라-자일렌의 공급물은 약 81kg/분의 속도로 실제로 일정하였다. 여액 용매를 약 744kg/분의 실제로 일정한 속도로 시판 순도의 파라-자일렌과 긴밀하게 혼합하여 공급하였다. 따라서, 여액 용매 및 시판 순도의 파라-자일렌 공급물의 합해진 스트림은 약 825kg/분이었다. 이 여액 용매는 실시예 5와 동일한 플랜트 재순환 시스템으로부터 유래하였으며, 실질적으로 동일한 조성을 가졌다. 여액 용매중 촉매 성분의 농도는, 반응 매질의 액상 내에서의 조성이 코발트 약 1,996ppmw, 브롬 약 1,693ppmw 및 망간 약 108ppmw가 되도록 하는 농도였다. 환류 용매의 별도의 스트림을 반응 매질의 작동 수준 위의 기체-분리 대역에 약 573kg/분의 실제로 일정한 속도로 소적으로서 공급하였다. 이 환류 용매는 약 99중량%보다 많은 아세트산 및 물로 구성되며, 환류 용매는 상당한 수준의 촉매 성분이 없는 별도의 플랜트 재순환 시스템으로부터 유래되었다. 여액 용매 공급물과 환류 용매 공급물의 합해진 물 함량은, 반응 매질의 액상 내에서 물의 농도가 약 5.7중량%가 되게 하는 양이었다. 산화제는 실제로 일정한 약 329kg/분의 속도로 공급된 압축 공기였다. 반응 용기 오버헤드 기체에서의 작동 압력은 일정하게 약 0.41MPa게이지였다. 반응열이 유입되는 공급물의 온도를 상승시키고, 유입되는 용매중 다량을 증발시키도록 실질적인 단열 방식으로 반응 용기를 작동시켰다. 반응 매질의 중간 높이 근처에서 측정시, 작동 온도는 약 153.3℃였다.
약 0.076m의 원형 내경을 갖는 벽 구멍을 통해 약 14m의 높이에서 반응 용기의 측부로부터 반응 매질을 회수하였다. 회수된 반응 매질을 공칭 3인치 스케쥴 10S 파이핑 구성성분으로 제작된 실질적으로 수평인 도관을 통해 실질적으로 수직인 외부 탈기 용기의 측부로 운송하였다. 외부 탈기 용기는 약 0.315m의 원형 내경을 가졌으며, 공칭 12인치 스케쥴 10S 파이프로 주로 구성되었다. 따라서, 외부 탈기 용기 내부의 수평 단면적은 약 0.0779m2였다. 이는, 반응 매질이 수거되는 높이에서 약 4.67m2의 반응 용기 내부의 수평 단면적과 비교된다. 따라서, 더 작은 수평 단면적 대 더 큰 수평 단면적의 비는 약 0.017이었다.
외부 탈기 용기는 저부 배출 유동 도관에 매치되도록 직경이 감소되면서 전이되기 전에 반응 매질이 유입되는 높이로부터 약 1.52m만큼 아래로 연장되었다. 조질의 테레프탈산을 포함하는 실질적으로 탈기된 슬러리가 실제로 일정한 약 433kg/분의 유속으로 외부 탈기 용기의 저부로부터 배출되었다. 따라서, 공칭 12인치의 탈기 용기의 더 낮은 높이에서 실질적으로 탈기된 슬러리는 약 0.093m/초의 하향 표면 속도를 가지며, 이러한 배출 슬러리에서는 유해한 산화제의 연행이 없었다. 배출되는 슬러리를 공칭 3인치 스케쥴 10S 파이핑 구성성분으로 만들어진 유동 도관에 의해 앞으로 진행시켜, 하류 가공 설비와 연결시켰다. 본 실시예에서, 수거된 반응 매질의 유속을 조절하기 위한 수단은 탈기 용기의 저부로부터 배출되는 유동에 위치하나, 다른 조절 위치도 가능하고 유용하다.
외부 탈기 용기는, 공칭 2인치 스케쥴 10S 파이핑 구성성분으로 제조된 상부 배출 유동 도관에 매치되도록 공칭 12인치 파이핑 크기로부터 직경이 감소되면서 전이되기 전에, 반응 매질이 유입되는 높이 위로 약 14m만큼 연장되었다. 외부 탈기 용기로부터 분리된 배출 기체를 상기 공칭 2인치 도관을 통해 이송하여 반응 용기의 상부에서 나가는 배출 기체의 주 유동과 결합시켰다.
본 실시예에서, 바람직하지 않은 4,4'-다이카복시스틸벤의 생성 속도 대 목적하는 테레프탈산의 생성 속도의 비는 슬러리 생성물의 3개의 별도의 샘플 상에서 HPLC-MS에 의해 약 2.3, 2.7 및 3.2ppmw(평균 약 2.7ppmw임)로서 측정되었다. 이는 실시예 5에 비해 크게 감소된 것이다. 높은 측부 배출구로부터 배출되는 슬러리의 액상중 파라-자일렌의 농도는 슬러리 생성물의 3개의 별도의 샘플 상에서 보정된 GC에 의해 약 86, 87 및 91ppmw(평균 약 88ppmw임)로서 측정되었다. 배출되는 슬러리의 액상중 파라-톨루알데하이드의 농도는 슬러리 생성물의 상기 별도의 샘플 상에서 보정된 GC에 의해 약 467, 442 및 423ppmw(평균 약 444ppmw임)로서 측정되었다. 이는 실시예 5에 비해 회수된 슬러리 유동의 전환율 및 수율이 개선된 것이다.
실시예 7 내지 10
실시예 7 내지 10은 특히 반응 매질 중으로의 파라-자일렌의 초기 분산과 관련된 계획 실시예로서, 본 발명의 다른 요지를 또한 증명한다.
실시예 7
본 실시예는 기화된 파라-자일렌의 공급에 관련된다. 계획된 본 실시예에서, 파라-자일렌 공급물은 반응 매질에 도입되기 전에 가열 및 기화된다. 이것은 파라-자일렌의 초기 분산을 돕는다. 이것은 확대된 유입 부피를 제공하고 속도를 용이하게 증가시킨다. 또한, 이는 유입되는 파라-자일렌의 액상 물질로의 전달을 지연시키고, 파라-자일렌 공급물을 분자 산소의 기상 공급과 우수하게 조화시키면서 반응성 액상 쪽으로 이동시킨다.
본 실시예에서, 기포탑 산화기 용기는 약 2.44m의 내경을 갖는 수직의 원통형 몸체부를 갖는다. 기포탑 산화기 용기의 높이는 하부 접선(TL)으로부터 상부 TL까지 32m이다. 용기에는 원통의 상부 및 저부에 2:1 타원형 헤드가 장착된다. 작동 수준은 하부 TL 위 반응 매질 25m이다. 파라-자일렌으로부터 분리된 여액 용매의 공급물을 하부 TL 위 4.35m의 높이에서 반응 용기 벽을 통한 0.076m 원형 직경의 유입 구멍을 통해 18.4kg/초의 속도로 유입시킨다. 반응 매질의 작동 수준 위 기체-분리 대역으로 도입되는 환류 용매의 공급 속도는 약 14.3kg/초이다. 실시예 4 및 6에서와 본질적으로 동일한 산화제 스파저를 통한 압축 공기의 공급 속도는 약 9kg/초이다. 약 31중량%의 고체를 함유하는 슬러리를 실시예 4 및 6에서와 본질적으로 동일한 측부 인장 다리를 통해 반응 매질로부터 회수한다. 반응 매질 위의 헤드스페이스에서의 압력은 약 0.50MPa게이지이다. 반응 매질의 액체 부분 내의 물, 코발트, 브롬 및 망간의 함량은 본질적으로 실시예 4에서와 동일하다.
파라-자일렌의 공급 속도는 1.84kg/초이다. 반응 매질로 방출하기 전에, 액상 파라-자일렌의 공급물 스트림을 가압시킨 후, 약 40℃의 저장 온도에서 약 233℃의 온도까지 가열시킴으로써 약 0.69MPa게이지의 압력에서 기화시킨다. 이것은 파라-자일렌의 공급물 스트림으로의 약 1.3MJ(메가주울)/초의 열 투입을 필요로 한다. 상기의 작업을 위해서 4MPa에서 수증기를 사용하는 열 교환기를 사용하지만, 가공 유체로부터의 폐열을 비롯한 충분한 온도의 임의의 다른 열원도 동등하게 사용할 수 있다. 이러한 열 투입은 파라-자일렌을 테레프탈산으로 전환시키기 위한 반응열의 약 5%이다. 부가되는 열 부하량을 제거하면, 파라-자일렌 액체의 공급에 비해 일정한 압력에서 반응 매질 온도가 다소 상승한다(실시예 8 참조). 반응 매질의 중간 높이 근처에서 측정시 온도는 약 162℃이다. 임의적으로는, 압력을 감소시킴으로써 반응 매질의 중간 높이 근처에서 측정시 반응 온도를 160℃로 감소시킬 수 있다.
기화된 파라-자일렌의 유동 부피는 약 0.084m3/초이다. 이러한 유동을 병렬 연결된 3개의 도관을 통해 용기의 하부 TL 위 0.1m의 높이에서 반응 용기에 유입시킨다. 반응 용기에 인접하여, 도관 각각은 공칭 1.5인치 파이핑 구성성분으로 제작되고, 용기 벽의 동일 직경의 원형 구멍에 연결된다. 3개의 벽 구멍은 서로 120°의 수평 방위각 간격으로 위치한다. 파라-자일렌의 각각의 유입 스트림의 표면 속도는 약 21m/초이며, 유입되는 파라-자일렌은 반응성 액상(여기에 촉매 화합물이 주로 존재함)중에 용해됨과 동시에 반응 매질 내에서 분산된다.
실시예 8
본 실시예는 부분적으로 기화된 파라-자일렌의 공급에 관한 것이다. 계획된 본 실시예에서는, 파라-자일렌 공급물을 산화제 공급물과 혼합하여 부분적으로 기화시킨 후 반응 매질에 유입시킨다. 이것은 파라-자일렌의 초기 분산을 돕는다. 이것은 유입 부피를 확대하고 속도를 용이하게 증가시키며, 파라-자일렌의 농도를 희석시킨다. 또한, 유입되는 파라-자일렌의 액상 물질로의 전달을 지연시키고, 분자 산소의 기상 공급과 우수하게 조화를 이루면서 파라-자일렌의 공급물을 반응성 액상 쪽으로 이동시킨다.
본 실시예에서, 기포탑 산화기 용기는 2.44m의 내경을 갖는 수직의 원통형 몸체부를 갖는다. 기포탑 산화기 용기의 높이는 하부 접선(TL)으로부터 상부 TL까지 32m이다. 용기에는 원통의 상부 및 저부에 2:1 타원형 헤드가 장착된다. 작동 수준은 하부 TL 위 반응 매질 약 25m이다. 파라-자일렌으로부터 분리된 여액 용매의 공급물을 하부 TL 위 4.35m의 높이에서 반응 용기 벽을 통한 0.076m 원형 직경의 유입 구멍을 통해 18.4kg/초의 속도로 유입시킨다. 반응 매질의 작동 수준 위 기체-분리 대역으로 도입되는 환류 용매의 공급 속도는 약 12.8kg/초이다. 실시예 4 및 6중 하나와 유사하지만 하기에 기술된 바와 같이 변형된 산화제 스파저를 통한 압축 공기의 공급 속도는 약 9kg/초이다. 약 31중량%의 고체를 함유하는 슬러리를 실시예 4 및 6에서와 본질적으로 동일한 측부 인장 다리를 통해 반응 매질로부터 회수한다. 반응 매질 위의 헤드스페이스에서의 압력은 약 0.50MPa게이지이다. 반응 매질의 액체 부분 내의 물, 코발트, 브롬 및 망간의 함량은 본질적으로 실시예 4에서와 동일하다.
파라-자일렌의 공급 속도는 다시 1.84kg/초이다. 이는 도관을 통해 액체로서, 당해 분야에 공지되어 있는 바와 같이 액체 스프레이 노즐의 사용에 의해 4개의 위치에서 압축 공기 중으로 액체를 방출시키는 산화제 스파저의 내부로 유동한다. 임의적으로는, 액체가 산화제 스파저로 유입되는 지점에서 말단이 개방된 액체 도관 또는 기체-액체 스프레이 노즐을 사용할 수 있다. 확실한 예방 조치를 위해, 4개의 온도 센서를 산화제 스파저 내에 위치시킨다. 이러한 온도 센서는 알람(alarm)에 연결되고, 높은 온도가 감지되는 경우 산화제 및 파라-자일렌의 공급을 중단시키도록 연동된다. 약 80℃(최종 압축 단계에서의 후냉각기 없는 압축열 때문에)의 압축 공기 공급 및 약 40℃의 공급물 파라-자일렌을 사용하여, 파라-자일렌의 약 17중량%를 산화제 스파저의 내부에 형성된 압력에서 기화시킨다. 나머지 액체 파라-자일렌은 기체를 사용하여 기체 유동의 속도와 유사한 속도로 기체와 혼합된 2상 유동으로 반응 매질 중으로 이동된다. 또한, 본 발명의 요지에 따라, 상기 나머지 액체는, 침입하는 임의의 고체를 산화제 스파저로부터 플러쉬시키는데 도움을 준다.
반응 매질의 중간 높이 근처에서 측정시, 온도는 약 160℃이다. 임의의 공급물 스트림에 부가적인 에너지가 부가되지 않았기 때문에 에너지는 실시예 4 및 6에서와 거의 같다.
임의적으로는, 증기로서 반응 매질에 도입되는 파라-자일렌의 분율을 증가시키기 위해서, 산화제 스파저에서 혼합되기 전에 압축 공기 공급물 또는 파라-자일렌 공급물을 미리 가열시킬 수 있다. 예를 들어, 파라-자일렌에 300KJ(킬로주울)/초의 열을 투입하여 이의 온도를 약 124℃로 상승시키고, 증발된 파라-자일렌의 분율을 약 33%로 증가시킨다. 예를 들어, 압축 공기에 600KJ/초의 열을 투입하면 이의 온도가 약 146℃로 상승되고, 증발된 파라-자일렌의 분율이 약 54%로 증가된다. 상기 두 경우에 있어서는, 실시예 7에서보다 더 낮은 등급의 에너지가 가열에 필요하다. 열원의 전부 또는 일부로서 반응 매질의 배출 기체로부터의 폐열이 사용될 수 있다. 그러나, 일정량의 에너지가 공급물에 첨가되는 경우, 반응 매질의 온도는 중간 높이 근처에서 측정시 명시된 압력, 유동 및 상 조성에서 160 내지 162℃로 약간 상승할 것이다. 임의적으로는, 온도를 조정하기 위해 압력을 조정할 수 있다. 또한, 일정량의 에너지를 공급물에 첨가하는 경우, 고체 분율을 거의 일정하게 유지시키고자 할 때, 반응 용기에 공급되는 용매의 양을 조정한다. 예를 들어, 고체를 31중량%로 거의 일정하게 유지시키기 위하여, 환류 용매의 유동을 첨가되는 에너지의 양에 따라 실시예 7 및 8에서 약 12.8 내지 약 14.3kg/초로 변화시킨다.
실시예 9
본 실시예는 액체 추출기를 사용하여 반응 용기의 벽으로부터 떨어져서 파라-자일렌을 공급함에 관한 것이다. 이 계획 실시예에서는, 추진력으로서 액체 유동을 사용하는 추출기의 사용에 의해 파라-자일렌 액체 공급물의 초기 분산을 개선시킨다. 본 실시예의 반응기는 후술되는 예외를 제외하고는, 실시예 4에서와 동일한 기계 구성 및 공정 경계 조건을 가졌다. 동일한 공칭 3인치 유동 도관을 통해 동일한 높이에서 반응 용기 벽을 통해 파라-자일렌과 여액 용매의 혼합된 액상 스트림을 유입시킨다. 그러나, 실시예 4의 내부 액상 공급물 분배 시스템보다는, 당해 분야에 공지되어 있고 도 26의 도식에서 도시된 바와 같이, 혼합된 액상 공급물을 유동 추출기에서 모티브 유체로서 반응 매질 중으로 방출시킨다. 추출기는 모티브 유체 상의 0.1MPa의 압력 차이를 위해 디자인된다. 추출기는, 하부 TL 위 약 4.5m의 높이에서 반응 용기의 축방향 중심선을 따라 수직 상향으로 배출되는 유동의 사용으로 위치되고 배향된다. 모티브 액체로 추출되고 이와 혼합되는 반응 매질의 부피는 추출 유입구에서 기포탑 중의 확률론적인 기포 떼에 따라 시간과 함께 변한다. 그러나, 시간-평균 추출된 유동은 모티브 유체 유동보다 더 크며, 따라서 유입되는 파라-자일렌을 더욱 빠르게 희석시킨다. 후속 혼합 및 화학 반응은 기포탑에서의 통상의 확률론에 따라 이루어진다.
실시예 10
본 실시예는 기체 및 액체 추출기를 사용하여 반응 용기의 벽으로부터 떨어져서 파라-자일렌을 공급함에 관한 것이다. 계획된 본 실시예에서는, 추진력으로서 기체 유동을 사용하는 추출기의 사용에 의해 파라-자일렌 공급물의 초기 분산을 개선시킨다. 후술되는 예외를 제외하고는, 본 실시예의 반응기는 실시예 4에서와 동일한 기계 구성 및 공정 경계 조건을 갖는다. 팔각형 산화제 스파저 및 액상 공급물 분배 시스템 둘 다를 제거한다. 대신, 유입되는 산화제 스트림 및 파라-자일렌과 여액 용매의 합해진 액상 공급물을 별도의 도관을 통해 반응 용기의 내부로 이동시킨다. 당해 분야에 공지되고 도 27의 도식에 도시된 바와 같이, 유동 추출기의 유입구에서 모티브 유체로서 상기 두 스트림을 조합시킨다. 추출기는 반응 용기의 축방향 중심선을 따라 수직으로 정렬된다. 이 추출기는 배출구가 아래로 향하도록 위치하고, 반응 용기의 하부 접선 아래 0.2m에 위치된다. 추출기는 모티브 유체 상의 0.1MPa의 압력 차이를 위해 디자인된다. 압축 공기와 파라-자일렌 공급물이 먼저 조합되는 위치 가까이에 두 개의 온도 센서를 위치시킨다. 이러한 온도 센서는 알람에 연결되고, 높은 온도가 감지되는 경우 산화제 및 파라-자일렌의 공급을 중단시키도록 연동된다.
추출된 반응 매질의 부피는 실시예 9에 비해 증가하며, 유입되는 파라-자일렌의 초기 희석이 추가로 향상된다. 또한, 파라-자일렌의 가장 높은 국부 농도를 갖는 반응 매질의 액상 부분이 분자 산소의 가장 높은 농도를 갖는 기상 부분에 비해 더욱 많이 직접적으로 단계화된다. 후속 혼합 및 화학 반응은 기포탑에서 통상적인 확률론에 따라 이루어진다.
실시예 11 내지 13
실시예 11 내지 13은 특히 파라-자일렌의 반응 매질로의 초기 분산에 도움을 주기 위해 도관 내에서 반응 매질로부터의 액체의 유동을 이용함에 관한 계획 실시예로서, 본 발명의 다른 요지를 증명한다.
실시예 11
본 실시예는, 유입되는 파라-자일렌의 초기 분산에 도움을 주기 위해 반응 매질 내의 유동 도관을 이용하여 액체를 운반함에 관한 것이다. 본 실시예의 반응기는 하기 기술되는 예외를 제외하고는 실시예 4와 동일한 기계 구성 및 공정 경계 조건을 갖는다. 도 24의 도식을 참조한다. 파라-자일렌과 여액 용매의 합해진 액상 스트림을 실시예 4와 유사한 공칭 3인치 유동 도관을 거쳐 반응 용기 벽을 통해 유입시킨다. 그러나, 실시예 4의 내부 액상 공급물 분배 시스템을 제거하고, 대신 상기 혼합된 액체 유동을 유동 도관 중으로 방출시킨다. 유동 도관은 그의 하부 단부를 포함한 그의 길이 대부분에서 약 0.15m의 원형 내경을 가지며, 이것은 용기의 하부 TL 위 1m에 위치한다. 유동 도관은 용기의 하부 TL 위 21m의 총 높이로 수직으로 상승된다. 용기의 하부 TL 위 20m의 높이에서, 유동 도관은 다시 1m 더 높아지면서 0.5m2의 내부 단면적을 갖도록 확장된다. 상기 유동 도관의 이러한 직경이 더 큰 상부 구역은 내부 탈기 용기로서 수용될 수 있으며, 이는 부분적으로는 반응 용기의 벽을 사용하여 실제로 형성된다. 유동 도관 전체가 반응 용기 내에 위치한다. 유동 도관의 상부 유입구에서, 반응 매질에는 파라-자일렌과 파라-톨루알데하이드가 크게 결핍되지만, 상당한 농도의 파라-톨루산 및 4-카복시벤즈알데하이드는 존재한다. 상기 유동 도관의 상부에 유입되는 반응 매질은 실질적으로 탈기되어, 나머지 반응 용기에서보다 상기 유동 도관의 내부에서 더욱 조밀한 매질을 형성시킨다. 유동 도관 내의 슬러리는 약 150kg/초로 추정되는 속도로 하향 이동하며, 이 지점에서 상기 유동 도관의 전체 길이에 걸쳐 통합된 유동 압력 강하는 상기 유동 도관의 전체 길이에 걸쳐 통합된 내부와 외부 사이의 밀도 차이와 평형을 이룬다. 이러한 슬러리의 하향 유동 중에서, 약 69중량%에 해당하는 약 104kg/초가 액체이다. 긴밀하게 혼합된 파라-자일렌과 여액 용매의 공급물 유동(총 약 20.2kg/초)을 하부 TL 위 약 5m에서 상기 유동 도관에 유입시킨다. 그 후, 이 혼합물은 1초 미만에 유동 도관에서 추가로 4m(약 27개 도관 직경)만큼 하향 이동하여 감지할 정도로 혼합된다. 따라서, 파라-자일렌의 농도는 기포탑에서 반응 매질의 주몸체부 중으로 방출되기 전에 유용하게도 약 15,000ppmw로 감소된다. 후속 혼합 및 화학 반응은 기포탑에서의 통상적인 확률론에 따라 이루어진다.
실시예 12
본 실시예는 파라-자일렌의 유입의 초기 분산에 도움을 주기 위해 반응 용기 외부의 유동 도관을 사용하여 액체를 운반함에 관한 것이다. 본 실시예의 반응기는 도 25의 도식을 참조하여 하기 기술되는 예외를 제외하고는 실시예 11과 동일한 기계 구성 및 공정 경계 조건을 갖는다. 내부 유동 도관을 제거하고, 외부 유동 도관으로 대체시킨다. 외부 탈기 구역에 반응 용기를 연결하는 도관 구역은 0.30m의 원형 내경을 가지며, 하부 TL 위 20m에 위치한다. 외부 탈기 구역의 원형 내경은 1m이며, 이의 높이는 2m이다. 탈기 구역 아래의 유동 도관의 원형 내경은 0.20m이어서, 동일한 이용가능한 높이 헤드를 사용하여 더 큰 유동을 가능하게 한다. 유속을 목적하는 범위로 조절하기 위해, 유동 센서 및 유동 조절 밸브를 유동 도관에 포함시킨다. 예를 들어, 실시예 11의 내부 유동 도관을 통해 발생하는 것으로 추정되는 것과 마찬가지로, 유동 조절은 150kg/초의 슬러리 운송을 허용하도록 설정된다. 파라-자일렌과 여액 용매의 혼합된 액상 스트림을 반응 용기의 하부 TL 위 약 5m에서 외부 유동 도관에 유입시킨다. 반응 용기의 저부 헤드에 외부 유동 도관의 배출구를 연결한다. 따라서, 파라-자일렌의 농도는, 기포탑에서 반응 매질의 주몸체부 중으로 방출되기 전에 약 15,000ppmw로 다시 유용하게 감소된다. 후속 혼합 및 화학 반응은 기포탑에서 통상적인 확률론에 따라 이루어진다. 탈기 구역 아래 및 파라-자일렌과 여액 용매의 액상 스트림의 첨가 지점 위에서, 상기 유동 도관으로부터의 분지를 통해, 후-가공을 위해 생성물 슬러리를 회수하며, 따라서 슬러리의 제거 및 탈기를 위한 별도의 시스템이 필요하지 않다.
실시예 13
본 실시예는 유입되는 파라-자일렌의 초기 분산을 돕기 위해 반응 용기에 대해 외부 및 내부인 두 구역을 모두 포함하는 유동 도관을 사용하여 액체를 운반함에 관한 것이다. 이 계획 실시예는, 외부 유동 도관에서의 제 2 분지가 파라-자일렌과 여액 용매의 혼합된 액상 스트림의 첨가 지점 아래인, 반응 용기의 하부 TL 위 약 3m에 위치하는 것을 제외하고는 실시예 12와 동일하다. 제 2 분지 유동 도관은 또한 0.2m의 원형 내경을 갖는다. 별도의 유동 조절 밸브가 제 2 분지 유동 도관에 위치하여 다시 유동을 조절한다. 분지 유동 도관은 하부 TL 위 3m에서 반응 용기의 측벽을 통해 관통되고, 반응 용기의 벽 내부로 0.4m만큼 연장된다. 따라서, 분지 도관은 반응 용기에 대해 외부 및 내부인 구역 둘 다를 포함한다. 저부 헤드 도관 배출구 또는 측벽 내부 도관 배출구중 어느 하나 또는 둘 다를 통해 임의의 비로 반응 용기에 유동을 유입시킬 수 있다.
본 발명의 바람직한 실시양태를 구체적으로 참조하면서 본 발명을 상세하게 기재하였지만, 본 발명의 취지 및 범위 내에서 여러 변경 및 수정이 실시될 수 있다는 것을 이해할 것이다.

Claims (34)

  1. (a) 분자 산소를 포함하는 산화제 스트림을 기포탑(bubble column) 반응기의 반응 대역 내로 도입하고;
    (b) 상기 반응 대역에 함유된 다상 반응 매질의 액상에서 산화가능한 화합물을 산화시키되, 상기 산화에 의해 상기 산화가능한 화합물의 약 10중량% 이상이 상기 반응 매질에서 고상 생성물을 형성하고, 상기 반응 매질의 1/2 높이에서의 시간-평균 표면 속도가 약 0.3m/초 이상이고;
    (c) 상기 고상 생성물의 적어도 일부를 상기 반응 대역으로부터 하나 이상의 상부 개구를 통해 회수하고, 상기 분자 산소의 적어도 일부가 상기 상부 개구 아래에서 상기 반응 대역에 들어가게 하는 것을 포함하는 방법.
  2. 제 1 항에 있어서,
    상기 반응 대역으로부터 회수된 전체 고상 생성물의 약 50중량% 이상이 상기 상부 개구를 통해 회수되는 방법.
  3. 제 1 항에 있어서,
    상기 분자 산소의 약 50중량% 이상이 상기 상부 개구 아래에서 상기 반응 대역에 들어가는 방법.
  4. 제 1 항에 있어서,
    상기 반응 대역으로부터 회수된 고상 생성물의 거의 모두가 상기 상부 개구를 통해 회수되고, 상기 분자 산소의 거의 모두가 상기 상부 개구 아래에서 상기 반응 대역에 들어가며, 상기 반응 매질이 최대 높이(H)를 가지고, 상기 상부 개구가 상기 반응 대역의 저부로부터 약 1H 이상에 위치하는 방법.
  5. 제 1 항에 있어서,
    상기 방법이 상기 산화가능한 화합물을 포함하는 공급물 스트림을 상기 반응 대역으로 도입하는 것을 추가로 포함하고, 상기 공급물 스트림의 적어도 일부가 상기 상부 개구 아래에서 상기 반응 대역에 들어가는 방법.
  6. 제 5 항에 있어서,
    상기 반응 대역으로부터 회수된 전체 고상 생성물의 약 50중량% 이상이 상기 상부 개구를 통해 회수되는 방법.
  7. 제 5 항에 있어서,
    상기 산화가능한 화합물의 약 50중량% 이상이 상기 상부 개구 아래에서 상기 반응 대역에 들어가는 방법.
  8. 제 5 항에 있어서,
    상기 반응 매질이 최대 폭(W)을 가지고, 상기 상부 개구가 상기 반응 대역의 저부로부터 약 1W 이상에 위치하는 방법.
  9. 제 8 항에 있어서,
    상기 분자 산소의 거의 모두가 상기 상부 개구 아래에서 상기 반응 대역에 들어가는 방법.
  10. 제 5 항에 있어서,
    상기 반응 매질이 최대 높이(H), 최대 폭(W) 및 약 3:1 이상의 H:W 비를 가지는 방법.
  11. 제 10 항에 있어서,
    상기 상부 개구가 상기 반응 대역의 저부로부터 약 2W 이상에 위치하는 방법.
  12. 제 10 항에 있어서,
    상기 H:W 비가 약 8:1 내지 약 20:1의 범위인 방법.
  13. 제 10 항에 있어서,
    상기 분자 산소의 대부분이 상기 반응 대역의 저부의 약 0.25W 및 약 0.025H 이내에서 상기 반응 대역에 들어가는 방법.
  14. 제 10 항에 있어서,
    상기 산화가능한 화합물의 약 30중량% 이상이, 상기 분자 산소가 상기 반응 대역에 들어가는 최저 위치의 약 1.5W 이내에서 상기 반응 대역에 들어가는 방법.
  15. 제 10 항에 있어서,
    상기 공급물 스트림이 복수개의 공급물 개구를 통해 상기 반응 대역 내로 도입되고, 상기 공급물 개구중 둘 이상이 약 0.5W 이상만큼 서로 수직으로 이격되는 방법.
  16. 제 1 항에 있어서,
    상기 방법이 상기 상부 개구를 통해 회수된 반응 매질을 탈기 대역에서 탈기시켜 약 5부피% 미만의 기체를 포함하는 실질적으로 탈기된 슬러리를 제공하는 것을 추가로 포함하고, 상기 탈기가 상기 반응 매질의 고상 및 액상에서 상기 반응 매질의 기상의 자연적인 부력에 의해 주로 야기되는 방법.
  17. 제 16 항에 있어서,
    상기 탈기 대역이 탈기 용기의 하나 이상의 직립형 측벽 사이에서 한정되고, 상기 탈기 대역의 최대 수평 단면적이 상기 반응 대역의 최대 수평 단면적의 약 25% 미만인 방법.
  18. 제 1 항에 있어서,
    상기 산화가능한 화합물이 방향족 화합물인 방법.
  19. 제 1 항에 있어서,
    상기 산화가능한 화합물이 파라-자일렌인 방법.
  20. 제 1 항에 있어서,
    상기 반응 매질이 시간-평균 및 부피-평균 기준으로 약 5 내지 약 40중량%의 고체를 포함하는 방법.
  21. 제 1 항에 있어서,
    코발트를 포함하는 촉매 시스템의 존재하에서 상기 산화를 수행하는 방법.
  22. 제 21 항에 있어서,
    상기 촉매 시스템이 브롬 및 망간을 추가로 포함하는 방법.
  23. 제 1 항에 있어서,
    상기 방법이 상기 기포탑 반응기로부터 회수된 상기 고상 생성물의 적어도 일부를 제 2 산화 반응기에서 산화시킴을 추가로 포함하는 방법.
  24. 제 23 항에 있어서,
    상기 기포탑 반응기에서의 상기 산화보다 약 10℃ 이상 더 높은 평균 온도에서 상기 제 2 산화 반응기에서의 상기 산화를 수행하는 방법.
  25. 제 23 항에 있어서,
    상기 기포탑 반응기의 평균 온도보다 약 20 내지 약 80℃ 더 높은 평균 온도에서 상기 제 2 산화 반응기에서의 상기 산화를 수행하고, 상기 기포탑 반응기에서의 상기 산화를 약 140 내지 약 180℃의 평균 온도에서 수행하며, 상기 제 2 산화 반응기에서의 상기 산화를 약 180 내지 약 220℃의 평균 온도에서 수행하는 방법.
  26. 기다란 반응 대역을 한정하는 용기 쉘(shell)(상기 반응 대역은 축 거리(L)만큼 서로 이격된 통상적인 하부 말단 및 통상적인 상부 말단을 포함하고, 최대 직경(D)을 가지며, 약 6:1 이상의 L:D 비를 가짐); 상기 반응 대역으로 기상 스트림을 도입하기 위한 하나 이상의 기체 개구; 상기 반응 대역으로 액상 스트림을 도입하기 위한 하나 이상의 액체 개구; 및 상기 반응 대역으로부터 고상 생성물을 회수하기 위한 것으로, 상기 기체 개구의 하나 이상 및 상기 액체 개구의 하나 이상보다는 상기 통상적인 하부 말단으로부터 더 멀리 축 방향으로 위치하는 하나 이상의 상부 생성 물 개구를 포함하는 기포탑 반응기;
    상기 기포탑 반응기로부터 분리된 하류 용기; 및
    회수된 고상 생성물의 적어도 일부를 하나 이상의 상기 생성물 개구로부터 상기 하류 용기로 수송하기 위한 도관
    을 포함하는 장치.
  27. 제 26 항에 있어서,
    상기 기체 개구의 하나 이상이 상기 반응 대역의 상기 통상적 하부 말단으로부터 약 0.25D 미만의 축 거리만큼 이격되어 있는 장치.
  28. 제 27 항에 있어서,
    상기 액체 개구 모두에 의해 한정되는 누적 개방 면적의 약 50% 이상이 상기 통상적 하부 말단에 가장 근접하게 위치하는 기체 개구로부터 약 2.5D 미만으로 이격되는 장치.
  29. 제 26 항에 있어서,
    상기 기체 개구 모두에 의해 한정되는 누적 개방 면적의 약 50% 이상이 상기 생성물 개구보다 상기 통상적 하부 말단에 더욱 근접하게 위치하는 기포탑 반응기.
  30. 제 26 항에 있어서,
    상기 액체 개구 모두에 의해 한정되는 누적 개방 면적의 약 50% 이상이 상기 생성물 개구보다 상기 통상적 하부 말단에 더욱 근접하게 위치하는 기포탑 반응기.
  31. 제 26 항에 있어서,
    상기 기체 개구 모두에 의해 한정되는 누적 개방 면적의 거의 모두가 상기 생성물 개구보다 상기 통상적 하부 말단에 더욱 근접하게 위치하고, 상기 액체 개구 모두에 의해 한정되는 누적 개방 면적의 거의 모두가 상기 생성물 개구보다 상기 통상적 하부 말단에 더욱 근접하게 위치하는 기포탑 반응기.
  32. 제 26 항에 있어서,
    상기 생성물 개구가 상기 반응 대역의 상기 통상적 하부 말단으로부터 약 1D 이상에 위치하는 기포탑 반응기.
  33. 제 26 항에 있어서,
    상기 생성물 개구가 상기 반응 대역의 상기 통상적 하부 말단으로부터 약 2D 이상에 위치하는 기포탑 반응기.
  34. 제 26 항에 있어서,
    상기 반응 대역이 약 8:1 내지 약 20:1 범위의 L:D 비를 가지는 기포탑 반응기.
KR1020077007106A 2004-09-02 2005-08-29 최적화된 액상 산화 방법 KR101169490B1 (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US60668904P 2004-09-02 2004-09-02
US60/606,689 2004-09-02
US63132704P 2004-11-29 2004-11-29
US60/631,327 2004-11-29
US11/154,139 US7371894B2 (en) 2004-09-02 2005-06-16 Optimized liquid-phase oxidation
US11/154,139 2005-06-16
PCT/US2005/030660 WO2006028772A2 (en) 2004-09-02 2005-08-29 Optimized liquid-phase oxidation

Publications (2)

Publication Number Publication Date
KR20070057217A true KR20070057217A (ko) 2007-06-04
KR101169490B1 KR101169490B1 (ko) 2012-07-27

Family

ID=35781259

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077007106A KR101169490B1 (ko) 2004-09-02 2005-08-29 최적화된 액상 산화 방법

Country Status (13)

Country Link
US (1) US7371894B2 (ko)
EP (1) EP1786551B1 (ko)
JP (1) JP2008511650A (ko)
KR (1) KR101169490B1 (ko)
CN (1) CN101010132B (ko)
BR (1) BRPI0514759B1 (ko)
CA (2) CA2681849A1 (ko)
ES (1) ES2611152T3 (ko)
LT (1) LT1786551T (ko)
MX (1) MX2007002501A (ko)
PL (1) PL1786551T3 (ko)
PT (1) PT1786551T (ko)
WO (1) WO2006028772A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101390661B1 (ko) * 2013-01-24 2014-04-30 한국에너지기술연구원 동적 기체분배기 및 그를 적용한 기포탑 반응기

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070155987A1 (en) * 2006-01-04 2007-07-05 O'meadhra Ruairi S Oxidative digestion with optimized agitation
US7420082B2 (en) * 2006-03-01 2008-09-02 Eastman Chemical Company Polycarboxylic acid production system employing hot liquor removal downstream of oxidative digestion
US7772424B2 (en) * 2006-03-01 2010-08-10 Eastman Chemical Company Polycarboxylic acid production system employing enhanced evaporative concentration downstream of oxidative digestion
US7326807B2 (en) * 2006-03-01 2008-02-05 Eastman Chemical Company Polycarboxylic acid production system with enhanced heating for oxidative digestion
US7816556B2 (en) * 2006-03-01 2010-10-19 Eastman Chemical Company Polycarboxylic acid production system employing enhanced multistage oxidative digestion
US20070208194A1 (en) 2006-03-01 2007-09-06 Woodruff Thomas E Oxidation system with sidedraw secondary reactor
US7501537B2 (en) * 2006-03-01 2009-03-10 Eastman Chemical Company Polycarboxylic acid production system employing oxidative digestion with reduced or eliminated upstream liquor exchange
US7326808B2 (en) * 2006-03-01 2008-02-05 Eastman Chemical Company Polycarboxylic acid production system employing cooled mother liquor from oxidative digestion as feed to impurity purge system
US7393973B2 (en) * 2006-03-01 2008-07-01 Eastman Chemical Company Polycarboxylic acid production system with enhanced residence time distribution for oxidative digestion
US8501989B2 (en) 2009-06-13 2013-08-06 Rennovia, Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
CN102803194B (zh) 2009-06-13 2016-01-20 莱诺维亚公司 由含碳水化合物的物质生产戊二酸和衍生物
US8669397B2 (en) 2009-06-13 2014-03-11 Rennovia, Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
US8669393B2 (en) 2010-03-05 2014-03-11 Rennovia, Inc. Adipic acid compositions
US9770705B2 (en) 2010-06-11 2017-09-26 Rennovia Inc. Oxidation catalysts
US10537865B2 (en) 2016-09-05 2020-01-21 Sabic Global Technologies B.V. Method for producing dihydroxy compounds
US10000435B1 (en) 2017-02-28 2018-06-19 Grupo Petrotemex, S.A. De C.V. Energy and environmentally integrated method for production of aromatic dicarboxylic acids by oxidation
CN112844283A (zh) * 2020-12-29 2021-05-28 河北英科石化工程有限公司 一种用于氯化聚氯乙烯制备的氯化反应设备

Family Cites Families (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1902550A (en) 1930-01-31 1933-03-21 Nat Synthetic Corp Process of oxidizing cyclic organic compounds
US1936427A (en) 1930-01-31 1933-11-21 Nat Synthetic Corp Process of oxidizing naphthalene and related condensed aromatic ring compounds
US2572710A (en) 1949-09-23 1951-10-23 Monsanto Chemicals Preparation of terephthalic acid
US2572575A (en) 1949-09-23 1951-10-23 Monsanto Chemicals Preparation of terephthalic acid
US3064044A (en) 1957-08-15 1962-11-13 Standard Oil Co Multistage oxidation system for preparing dicarboxylic acid
US3082250A (en) 1958-05-05 1963-03-19 Standard Oil Co Recovery of phthalic acid products
US3071447A (en) 1958-09-09 1963-01-01 Whiting Corp Hydraulic classifier
US3029278A (en) 1958-12-11 1962-04-10 Standard Oil Co Process for separation of phthalic acids
GB1007570A (en) 1961-07-24 1965-10-13 Socaty Process for the catalytic oxidation of xylenes or industrial mixtures of xylenes
BE621323A (ko) 1961-08-14
US3216481A (en) 1962-04-17 1965-11-09 Badger Co Recovery of phthalic and maleic acid from solutions
US3244744A (en) 1963-02-27 1966-04-05 Standard Oil Co Separation process for isophthalic acid and terephthalic acid
DE1276628C2 (de) 1963-05-20 1975-01-16 Rudzki, Henryk Stanislaw, Dr., Los Angeles, Calif. (V.St.A.) Verfahren zur herstellung von isophtalsaeure und/oder terephthalsaeure
US3410897A (en) 1963-10-10 1968-11-12 Maruzen Oil Company Ltd Purification of terephthalic acid
US3388157A (en) 1965-02-10 1968-06-11 Ethyl Corp Process for the production of dicarboxylic acids
NL6606774A (ko) 1965-05-17 1966-11-18
GB1142864A (en) 1965-11-15 1969-02-12 Ici Ltd Crystallisation process
US3497552A (en) 1966-07-18 1970-02-24 Standard Oil Co Continuous crystallization in a plurality of cooling stages using dilutions by cooled solvent of feed to each stage
US3549695A (en) 1966-09-01 1970-12-22 Mobil Oil Corp Method for downflow leaching
US3534090A (en) 1966-11-04 1970-10-13 Mobil Oil Corp Hydrocarbon oxidation
US3584039A (en) 1967-08-30 1971-06-08 Standard Oil Co Fiber-grade terephthalic acid by catalytic hydrogen treatment of dissolved impure terephthalic acid
US3556733A (en) 1968-04-05 1971-01-19 Struthers Scientific Int Corp Fines dissolver for crystallizers
US3626001A (en) 1968-05-09 1971-12-07 Atlantic Richfield Co Method for the production of high-purity isophthalic or terephthalic acid
AT282466B (de) 1968-07-25 1970-06-25 Oemv Ag Bitumenblasverfahren und Einrichtung zur Durchführung desselben
DE1792402A1 (de) 1968-08-29 1971-11-11 Dynamit Nobel Ag Verfahren zur Durchfuehrung exothermer chemischer Reaktionen in heterogenen Gas-Fluessigkeits-Gemischen
CA849014A (en) 1968-10-25 1970-08-11 Ichikawa Yataro Apparatus for continuous gas-liquid contact and process for refining crude terephthalic acid
GB1250222A (ko) * 1968-10-25 1971-10-20
US3660476A (en) 1968-10-30 1972-05-02 Teijin Ltd Method for the preparation of terephthalic acid
US3708532A (en) 1968-11-04 1973-01-02 Teijin Ltd Process for the continuous purification of crude terephthalic acid
US3700731A (en) 1969-02-28 1972-10-24 Du Pont Process for oxidizing xylenes to phthalic acids
US3683018A (en) 1969-05-26 1972-08-08 Standard Oil Co Integrated oxidation of isomeric xylene mixture to isomeric phthalic acid mixture and separation of mixture of isomeric phthalic acids into individual isomer products
US3839436A (en) 1969-05-26 1974-10-01 Standard Oil Co Integration of para-or meta-xylene oxidation to terephthalic acid or isophthalic acid and its purification by hydrogen treatment of aqueous solution
US3629321A (en) 1969-05-26 1971-12-21 Standard Oil Co Integration of para-xylene oxidation to terephthalic acid and its esterification to dimethyl terephthalate
US3873275A (en) 1969-09-29 1975-03-25 Whiting Corp Crystallization apparatus and method
BE759284A (fr) 1969-11-24 1971-05-24 Shell Int Research Procede et appareil pour la mise en contact d'un liquide avec des particules solides
US3686293A (en) 1970-07-13 1972-08-22 Giorgio Gualdi Process for the preparation of aromatic carboxylic acids
JPS5328419B1 (ko) 1971-04-26 1978-08-15
US3785779A (en) 1971-08-02 1974-01-15 Exxon Research Engineering Co Gas liquid inlet distributor
JPS5544644B2 (ko) 1971-09-23 1980-11-13
JPS5234590B2 (ko) 1971-12-28 1977-09-03
NL169993C (nl) * 1972-01-13 1982-09-16 Maruzen Oil Co Ltd Werkwijze ter bereiding van tereftaalzuur.
US3845117A (en) 1972-12-14 1974-10-29 Halcon International Inc Process for preparation of phthalic acids
JPS5328421B2 (ko) 1973-05-15 1978-08-15
US3931305A (en) 1973-08-20 1976-01-06 Standard Oil Company Terephthalic acid recovery by continuous flash crystallization
JPS5328902B2 (ko) 1973-09-14 1978-08-17
US4053506A (en) 1975-05-02 1977-10-11 Standard Oil Company (Indiana) Production of fiber-grade terephthalic acid
US3997620A (en) 1975-10-28 1976-12-14 Uop Inc. Process for separating para-xylene
JPS5912096B2 (ja) * 1975-10-31 1984-03-21 三菱化学株式会社 ホウコウゾクポリカルボンサンノセイゾウホウ
JPS5278846A (en) 1975-12-25 1977-07-02 Matsuyama Sekyu Kagaku Kk Continuous production of high purity telephthalic acid
NL170133C (nl) 1976-02-24 1982-10-01 Matsuyama Petrochemicals Inc Werkwijze voor de bereiding van een aromatisch dicarbonzuur.
SU1126202A3 (ru) 1976-05-28 1984-11-23 Институт Фор Атомэнерги (Фирма) Способ непрерывной многостадийной кристаллизации из раствора
US4185073A (en) 1976-07-26 1980-01-22 Standard Oil Company (Indiana) Apparatus for iso- or terephthalic acid production in and recovery from benzoic acid-water solvent system
US4081464A (en) 1976-07-26 1978-03-28 Standard Oil Company Iso- or terephthalic acid production in and recovery from benzoic acid-water solvent system
GB1542320A (en) 1976-10-26 1979-03-14 Labofina Sa Process for the preparation of aromatic dicarboxylic acids
US4158738A (en) 1977-05-26 1979-06-19 E. I. Du Pont De Nemours And Company Process for the production of fiber-grade terephthalic acid
US4482524A (en) 1978-01-31 1984-11-13 Ari Technologies, Inc. Autocirculation apparatus
DE2805915C3 (de) 1978-02-13 1981-11-05 Dynamit Nobel Ag, 5210 Troisdorf Reaktor zur Oxidation von Gemischen aus p-Xylol und p-Toluylsäuremethylester mit sauerstoffhaltigen Gasen in flüssiger Phase
US4233269A (en) 1978-11-09 1980-11-11 Exxon Research & Engineering Co. Gas liquid distributor
US4263448A (en) 1979-03-30 1981-04-21 Halcon Research And Development Corp. Process for oxidation of hydrocarbons
US4255590A (en) 1979-11-08 1981-03-10 Standard Oil Company (Indiana) Combination of pyrolysis and incineration of solid mixture of oxygen-containing aromatic compounds obtained as residue of manufacture of benzene di- and tricarboxylic acids
IT1129759B (it) 1980-01-23 1986-06-11 Montedison Spa Metodo per ricuperare in forma attiva i componenti del sistema catalitico della sintesi dell'acido tereftalico
GB2072162B (en) 1980-03-21 1984-03-21 Labofina Sa Process for the production and the recovery of terephthalic acid
DE3047101A1 (de) 1980-12-13 1982-07-22 Hoechst Ag, 6000 Frankfurt Verfahren zum verbessern der gasverteilung in mammut-schlaufenreaktoren
US4342876A (en) 1980-12-22 1982-08-03 Bechtel International Corporation Method for oxidation of p-xylene and method for preparing dimethylterephthalate
US4334086A (en) 1981-03-16 1982-06-08 Labofina S.A. Production of terephthalic acid
US4391985A (en) 1981-11-16 1983-07-05 Eastman Kodak Company Process for the separation of isophthalic acid from terephthalic acid
DE3363127D1 (en) 1982-02-09 1986-05-28 Bbc Brown Boveri & Cie Method and apparatus for treating a liquid with a gas
JPS59104345A (ja) 1982-12-03 1984-06-16 Kuraray Yuka Kk 直接重合用に適したテレフタル酸の製造方法
JPS59106435A (ja) 1982-12-10 1984-06-20 Mitsubishi Chem Ind Ltd 高純度テレフタル酸の製法
JPS6036439A (ja) 1983-08-09 1985-02-25 Mitsubishi Chem Ind Ltd テレフタル酸の製法
US4500732A (en) 1983-09-15 1985-02-19 Standard Oil Company (Indiana) Process for removal and recycle of p-toluic acid from terephthalic acid crystallizer solvent
US4769487A (en) 1984-08-20 1988-09-06 Amoco Corporation Multistage oxidation in a single reactor
US4605763A (en) 1984-08-31 1986-08-12 Eastman Kodak Company Process for the purification of terephthalic acid
US4777287A (en) 1984-10-29 1988-10-11 Amoco Corporation Recycle of vaporized solvent in liquid phase oxidation of an alkyl aromatic
US4835307A (en) 1984-12-13 1989-05-30 Amoco Corporation Method and apparatus for controlling the manufacture of terephthalic acid to control the level and variability of the contaminant content and the optical density
US4648999A (en) 1985-07-22 1987-03-10 M. W. Kellogg Company Apparatus for contacting fluid with solid
US5099064A (en) 1985-12-30 1992-03-24 Amoco Corporation Method for increasing conversion efficiency for oxidation of an alkyl aromatic compound to an aromatic carboxylic acid
US4892970A (en) 1985-12-30 1990-01-09 Amoco Corporation Staged aromatics oxidation in aqueous systems
DE3625261A1 (de) 1986-07-25 1988-02-04 Basf Ag Verfahren zur kontinuierlichen hydroformylierung olefinisch ungesaettigter verbindungen
US4769489A (en) 1986-07-28 1988-09-06 Amoco Corporation Catalyst recovery method
US4914230A (en) 1986-07-28 1990-04-03 Amoco Corporation Catalyst recovery method
JPH078821B2 (ja) 1986-09-26 1995-02-01 三井石油化学工業株式会社 芳香族カルボン酸の製造方法
US5166420A (en) 1986-10-20 1992-11-24 Mitsui Petrochemical Industries, Ltd. Process for the production of high purity terephthalic acid
US4900480A (en) 1986-10-21 1990-02-13 Union Carbide Corporation Gas-liquid mixing
DE3704720A1 (de) 1987-02-14 1988-08-25 Huels Troisdorf Verfahren und vorrichtung zur herstellung von benzolcarbonsaeuren bzw. benzoldicarbonsaeureestern
JP2504461B2 (ja) 1987-04-24 1996-06-05 三菱化学株式会社 高品質テレフタル酸の製法
DE3839229A1 (de) 1988-11-19 1990-05-23 Krupp Koppers Gmbh Verfahren zur gewinnung von p-xylol mit einer reinheit von mehr als 99,8 gew.-%
JPH01160476A (ja) * 1987-12-16 1989-06-23 Nippon Sharyo Seizo Kaisha Ltd 気泡塔型反応装置
US5211924A (en) 1988-02-29 1993-05-18 Amoco Corporation Method and apparatus for increasing conversion efficiency and reducing power costs for oxidation of an aromatic alkyl to an aromatic carboxylic acid
US4855491A (en) 1988-04-25 1989-08-08 Amoco Corporation Method for selectively removing process stream impurities utilizing reverse osmosis
US4863888A (en) 1988-04-29 1989-09-05 Amoco Corporation Catalyst containing cobalt boron and oxygen and optionally aluminum of preparation and process
US4855492A (en) 1988-05-27 1989-08-08 Amoco Corporation Process for production of aromatic polycarboxylic acids
US4833269A (en) 1988-08-05 1989-05-23 Amoco Corporation Method for purifying terephthalic acid recycle streams
US5068406A (en) 1989-09-06 1991-11-26 Amoco Corporation Compartmented oxidation method
US5126037A (en) 1990-05-04 1992-06-30 Union Oil Company Of California Geopreater heating method and apparatus
KR920004602B1 (ko) 1990-06-07 1992-06-11 재단법인 한국화학연구소 1-옥소-1, 2, 3, 4-테트라하이드로나프탈렌의 제조방법
DE69104280T2 (de) 1990-06-25 1995-02-16 Mitsubishi Gas Chemical Co Verfahren zur Herstellung von hochreiner Isophthalsäure.
US5356600A (en) 1990-09-24 1994-10-18 Praxair Technology, Inc. Oxygen enrichment method and system
US5095142A (en) 1990-11-29 1992-03-10 Amoco Corporation Solvent recovery during production of aromatic polycarboxylic acids
GB9102393D0 (en) 1991-02-05 1991-03-20 Ici Plc Production of terephthalic acid
GB9104776D0 (en) * 1991-03-07 1991-04-17 Ici Plc Process for the production of terephthalic acid
US5175355A (en) 1991-04-12 1992-12-29 Amoco Corporation Improved process for recovery of purified terephthalic acid
US5227570A (en) 1991-12-02 1993-07-13 Taiwan Styrene Monomer Corporation Process for separation of ethylbenzene or ethylbenzene/p-xylene from a xylene isomers mixture
US5292934A (en) 1992-06-18 1994-03-08 Amoco Corporation Method for preparing aromatic carboxylic acids
KR970000136B1 (ko) 1993-09-28 1997-01-04 브이.피. 유리예프 고순도 벤젠디카르복실산 이성질체의 제조방법
US5523474A (en) * 1994-05-11 1996-06-04 Praxair Technology, Inc. Terephthalic acid production using evaporative cooling
US5712412A (en) * 1994-12-26 1998-01-27 Mitsubishi Gas Chemical Co., Inc. Process for producing highly pure terephthalic acid
SI9500109A (en) * 1995-04-05 1996-10-31 Levec Janez Dipl Ing Prof Dr Apparatus and Process for Thermal Oxidative Treatment of Waste Waters
US5767311A (en) * 1995-06-07 1998-06-16 Glitsch International, Inc. Method and apparatus for preparing purified terephtalic acid
US5929274A (en) * 1995-06-07 1999-07-27 Hfm International, Inc. Method to reduce carboxybenzaldehyde isomers in terephthalic acid or isophthalic acid
US6013835A (en) * 1995-06-07 2000-01-11 Hfm International, Inc. Method and apparatus for preparing purified terephthalic acid
ES2104512B1 (es) * 1995-09-21 1998-07-01 Interquisa Procedimiento industrial para la fabricacion de acidos carboxilicos aromaticos.
FR2739375B1 (fr) * 1995-09-29 1997-12-05 Inst Francais Du Petrole Production de paraxylene a partir d'un effluent de dismutation paraselective du toluene par un procede de cristallisation associe a une adsorption en lit mobile simule
US5693856A (en) * 1996-01-16 1997-12-02 The Boc Group, Inc. Production of terephthalic acid
US6376733B1 (en) * 1996-01-25 2002-04-23 Exxonmobil Chemical Patents Inc. Process for production of paraxylene
US5756833A (en) * 1996-02-01 1998-05-26 Amoco Corporation Catalytic purification and recovery of dicarboxylic aromatic acids
JPH09278709A (ja) * 1996-02-13 1997-10-28 Mitsubishi Chem Corp 芳香族カルボン酸の製造方法
ID15851A (id) * 1996-02-13 1997-08-14 Mitsubishi Chem Corp Proses untuk menghasilkan suatu asam aromatik karboksilik
US6242643B1 (en) * 1996-05-17 2001-06-05 Toray Industries, Inc. Method for preparing aromatic carboxylic acids, aromatic aldehydes, and aromatic alcohols
JP3757995B2 (ja) * 1996-07-12 2006-03-22 三菱瓦斯化学株式会社 高純度イソフタル酸の製造方法
JPH1045667A (ja) * 1996-07-29 1998-02-17 Mitsubishi Gas Chem Co Inc 分散媒置換装置を用いた高純度テレフタル酸の製造方法
ATE343400T1 (de) * 1996-09-24 2006-11-15 Merck & Co Inc Verbindungen zur hemmung der angiogenese durch gentherapie
ID19133A (id) * 1996-12-12 1998-06-18 Praxair Technology Inc Pengisian oksigen langsung kedalam reaktor-reaktor ruang gelembung
GB9701251D0 (en) * 1997-01-22 1997-03-12 Bp Chem Int Ltd Process
US6037491A (en) * 1997-07-25 2000-03-14 Rpc Inc. Methods and devices for controlling hydrocarbon oxidations to respective acids by adjusting the solvent to hydrocarbon ratio
US5939313A (en) * 1997-09-12 1999-08-17 Praxair Technology, Inc. Stationary vortex system for direct injection of supplemental reactor oxygen
KR20010040818A (ko) * 1998-02-09 2001-05-15 알피시 인코포레이티드 탄화수소의 이염기산 산화반응 혼합물내 코발트 촉매 처리방법
DE19837723A1 (de) * 1998-08-20 2000-02-24 Phenolchemie Gmbh & Co Kg Verfahren zur Reinigung von Abwässern aus dem Hock-Verfahren
US6080372A (en) * 1998-09-11 2000-06-27 Air Products And Chemicals, Inc. Two stage reactor for continuous three phase slurry hydrogenation and method of operation
DE19843573A1 (de) * 1998-09-23 2000-03-30 Degussa Blasensäule und deren Verwendung
JP2000128824A (ja) * 1998-10-27 2000-05-09 Mitsui Chemicals Inc 芳香族カルボン酸の製造方法
US6392091B2 (en) * 1998-11-24 2002-05-21 Tsong-Dar Vincent Lin Process of purifying and producing high purity aromatic polycarboxylic acids
IT1311976B1 (it) * 1999-03-25 2002-03-22 Franco Codignola Procedimento per la produzione di acidi aromatici.
US20020091285A1 (en) * 2001-01-10 2002-07-11 Housley Samuel Duncan Method for increasing oxidation reactor production capacity
US20010007910A1 (en) * 2000-01-12 2001-07-12 Housley Samuel D. Process for producing carboxylic acids
CN1227208C (zh) * 2000-01-21 2005-11-16 Bp北美公司 在苯甲酸和水溶剂中氧化生产高纯芳香羧酸的方法
JP2001247511A (ja) * 2000-03-07 2001-09-11 Mitsubishi Chemicals Corp 芳香族カルボン酸の製造方法
US6765113B2 (en) * 2000-07-19 2004-07-20 E.I. Du Pont De Nemours And Company Production of aromatic carboxylic acids
PT1453883E (pt) * 2000-12-07 2013-03-04 Grupo Petrotemex Sa De Cv Processo de preparação de poliéster de baixo custo utilizando um reactor tubular
WO2002055468A1 (en) * 2001-01-10 2002-07-18 E.I. Du Pont De Nemours And Company Improved process for producing carboxylic acids
CN2562866Y (zh) * 2002-02-01 2003-07-30 中国石油天然气股份有限公司 多级环流反应器
US7135596B2 (en) * 2002-04-23 2006-11-14 Bp Corporation North America Inc. Method of removing iron contaminants from liquid streams during the manufacture and/or purification of aromatic acids
JP4464280B2 (ja) 2002-12-06 2010-05-19 興和株式会社 エリスロポエチン産生促進剤
MXPA05006046A (es) * 2002-12-09 2005-08-18 Eastman Chem Co Proceso para la purficiacion de una suspension de acido carboxilico crudo.
US7132566B2 (en) * 2003-09-22 2006-11-07 Eastman Chemical Company Process for the purification of a crude carboxylic acid slurry
US7161027B2 (en) * 2002-12-09 2007-01-09 Eastman Chemical Company Process for the oxidative purification of terephthalic acid
US7074954B2 (en) * 2002-12-09 2006-07-11 Eastman Chemical Company Process for the oxidative purification of terephthalic acid
US20040133057A1 (en) * 2003-01-02 2004-07-08 Conocophillips Company Gaseous hydrocarbon-oxygen bubble tank mixer
US6825278B2 (en) * 2003-01-16 2004-11-30 Resolution Specialty Materials Llc Modified pressure sensitive adhesive
US7494641B2 (en) * 2003-06-05 2009-02-24 Eastman Chemical Company Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid
US7485746B2 (en) * 2003-11-14 2009-02-03 Bp Corporation North America Inc. Staged countercurrent oxidation
US7615663B2 (en) * 2004-09-02 2009-11-10 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7504535B2 (en) * 2004-09-02 2009-03-17 Eastman Chemical Company Optimized liquid-phase oxidation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101390661B1 (ko) * 2013-01-24 2014-04-30 한국에너지기술연구원 동적 기체분배기 및 그를 적용한 기포탑 반응기

Also Published As

Publication number Publication date
BRPI0514759A (pt) 2008-06-24
JP2008511650A (ja) 2008-04-17
PL1786551T3 (pl) 2017-08-31
KR101169490B1 (ko) 2012-07-27
US7371894B2 (en) 2008-05-13
CN101010132A (zh) 2007-08-01
PT1786551T (pt) 2017-01-26
CA2577062A1 (en) 2006-03-16
EP1786551B1 (en) 2016-10-19
ES2611152T3 (es) 2017-05-05
LT1786551T (lt) 2017-04-10
EP1786551A2 (en) 2007-05-23
CA2681849A1 (en) 2006-03-16
BRPI0514759B1 (pt) 2016-03-29
WO2006028772A2 (en) 2006-03-16
WO2006028772A3 (en) 2006-07-27
US20060047144A1 (en) 2006-03-02
MX2007002501A (es) 2007-05-04
CN101010132B (zh) 2012-02-22

Similar Documents

Publication Publication Date Title
KR101363707B1 (ko) 최적화된 액상 산화를 위한 기포탑 반응기
KR101363742B1 (ko) 최적화된 액상 산화를 위한 기포탑 반응기
KR101169490B1 (ko) 최적화된 액상 산화 방법
KR101363734B1 (ko) 최적화된 액상 산화 방법을 위한 기포탑 반응기
KR101281444B1 (ko) 최적화된 액상 산화 방법
KR101281248B1 (ko) 조질의 테레프탈산 조성물 및 이의 제조방법
KR20070057851A (ko) 기포탑 반응기에서의 최적화된 액상 산화 방법
KR101217412B1 (ko) 기포탑 반응기에서의 최적화된 액상 산화 방법
KR101364801B1 (ko) 최적화된 액상 산화
KR101281347B1 (ko) 최적화된 액상 산화 방법
KR20070054695A (ko) 최적화된 액상 산화 방법
KR101281408B1 (ko) 최적화된 액상 산화 방법
KR20070048251A (ko) 최적화된 액상 산화 방법
KR101392547B1 (ko) 파라-자일렌의 최적화된 액상 산화 방법
KR101267704B1 (ko) 최적화된 액체상 산화 방법
KR101392653B1 (ko) 최적화된 액상 산화 방법
KR20070057196A (ko) 최적화된 액상 산화 방법
EP1802562A2 (en) Optimized liquid-phase oxidation of paraxylene
WO2006028817A2 (en) Optimized liquid-phase oxidation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150619

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160616

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170616

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 7