KR20070045204A - 일체식 정렬 특징부를 가진 광도파관 조립체를 제조하기위한 방법 - Google Patents

일체식 정렬 특징부를 가진 광도파관 조립체를 제조하기위한 방법 Download PDF

Info

Publication number
KR20070045204A
KR20070045204A KR1020077002014A KR20077002014A KR20070045204A KR 20070045204 A KR20070045204 A KR 20070045204A KR 1020077002014 A KR1020077002014 A KR 1020077002014A KR 20077002014 A KR20077002014 A KR 20077002014A KR 20070045204 A KR20070045204 A KR 20070045204A
Authority
KR
South Korea
Prior art keywords
waveguide
substrate
cladding layer
layer
alignment feature
Prior art date
Application number
KR1020077002014A
Other languages
English (en)
Inventor
테리 엘. 스미쓰
준-윙 항
루테쉬 디. 패릭
제레미 케이. 라센
Original Assignee
쓰리엠 이노베이티브 프로퍼티즈 컴파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쓰리엠 이노베이티브 프로퍼티즈 컴파니 filed Critical 쓰리엠 이노베이티브 프로퍼티즈 컴파니
Publication of KR20070045204A publication Critical patent/KR20070045204A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12176Etching

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

광섬유 도파관 조립체(20)는 일체식 정렬 특징부(22)를 구비한다. 도파관 조립체는 정렬 특징부를 형성하기 이전에 기판(26) 상에 도파관을 제작하고, 기판을 노출시키도록 도파관의 일부를 제거하고, 기판에 정렬 특징부를 형성함으로써 형성된다. 일체식 정렬 특징부(22)를 구비한 편평한 도파관 조립체(20)는 에칭 정지층(28)으로 기판(26)을 코팅함으로써 형성된다. 정렬 특징부 패턴(30)은 에칭 정지층(28)에 형성된다. 정렬 특징부 패턴(30)은 포토리소그래피 및 에칭 공정을 이용하여 제작된다. 정렬 특징부 패턴(30)이 에칭 정지층(28)에 제작된 후에, 도파관(32)은 정렬 특징부 패턴(30)을 구비한 에칭 정지층(28)과 기판(26)의 상부 상에 성장된다. 도파관(32)은 그 후 정렬 특징부 패턴(30)이 패턴(30)을 노출시키도록 미리 제작된 영역에 에칭된다. 다른 에칭은 미리 제작된 정렬 특징부 패턴(30)을 이용하여 정확한 정렬 특징부(22)를 생성하도록 수행된다. 정렬 특징부(22)는 V자 홈, U자 홈, 사다리꼴 또는 직사각형 홈이다.
정렬 특징부, 정렬 특징부 패턴, 에칭 정지층, 포토레지스트, 포토리소그래피, 광섬유

Description

일체식 정렬 특징부를 가진 광도파관 조립체를 제조하기 위한 방법 {METHOD FOR MAKING AN OPTICAL WAVEGUIDE ASSEMBLY WITH INTEGRAL ALIGNMENT FEATURES}
본 발명은 일반적으로 광도파관 조립체(optical waveguide assembly)를 제조하기 위한 방법에 관한 것이다.
광도파관 칩은 통신 네트워크와 같은 매우 광범위한 광통신 시스템에 이용된다. 광도파관 칩은 실리콘 또는 실리콘 이산화물 칩 또는 웨이퍼 위에 제작된 하나 이상의 광도파관으로 구성된 사실상 편평한 광학 회로이다. 일반적인 구성에서, 광도파관 코어는 보호식 하부 및 상부의 클래딩층 사이에 개재된다.
사용을 위해, 도파관 칩의 도파관은 도파관의 단부를 광섬유에 결합시킴으로써 외부 회로 또는 다른 장치에 연결된다. 섬유와 도파관 정렬의 정확성과 정밀성은 섬유와 도파관의 경계부에서 발생되는 광결합 손실에 크게 영향을 준다.
일체식 광섬유 정렬 특징부를 가진 광도파관이 알려져 있다. 일체식 정렬 특징부를 구비한 공지된 도파관에서, 정렬 특징부는 (에스.제이.파크 등의 미국 특허 제4,474,425호에 예시된 바와 같이) 제조 공정의 초기에 또는 (미국 특허 제5,600,745호에 예시된 바와 같이) 도파관 코어 패턴이 형성됨과 동시에 형성된다. 양쪽의 경우에, 도파관 구조물의 하나 이상의 층은 정렬 특징부의 최초 형성 이후 에 정렬 특징부 상에 후속으로 증착된다. 후속 증착된 층은 사용을 위해 정렬 특징부를 개방하기 위해 후속 처리 단계에서 제거되어야 한다. 후속 증착된 층의 제거는 종종 최초 형성된 정렬 특징부의 정확성의 손실을 초래한다. 최초 형성된 정렬 특징부의 정확성의 손실에 더하여, 다른 결점이 존재한다. 예를 들어, 정렬 특징부가 제작 공정의 초기에 형성되는 경우, 정렬 특징부는 후속 처리 단계의 균일성 및 도파관 코어 패턴 공정에 악영향을 미칠 수 있는 비평편한 표면을 생성한다. 정렬 특징부가 도파관 코어 패턴이 형성되는 동시에 형성되는 경우, 정렬 특징부의 형성은 코어 표면을 오염시키거나 또는 이와 달리 악영향을 미칠 수 있다. 처리 공정의 추가 단계 또는 복잡성을 추가하지 않고 패시브 정렬 특징부의 정확성을 유지하는 일체식 정렬 특징부를 구비한 광도파관을 제작하는 방법에 대한 필요가 있다.
본 명세서에 설명된 본 발명은 일체식 정렬 특징부를 구비한 광도파관 조립체 및 도파관 조립체를 형성하기 위한 방법을 제공한다. 본 발명에 따른 일 실시예에서, 도파관을 형성하는 방법은 정렬 특징부를 형성하기 이전에 기판 상에 도파관을 제작하는 단계, 기판을 노출시키도록 도파관의 일부를 제거하는 단계 및 기판에 정렬 특징부를 형성하는 단계를 포함한다.
본 발명에 따른 또 다른 실시예에서, 상기 방법은 기판 상에 에칭 정지층을 증착하는 단계, 정렬 특징부 패턴으로 에칭 정지층을 패턴화시키는 단계, 패턴화된 에칭 정지층 위로 도파관을 제공하는 단계, 패턴화된 에칭 정지층을 노출시키도록 도파관의 일부를 제거하는 단계 및 최종적으로 기판에 정렬 특징부를 형성하도록 기판을 에칭하는 단계를 포함한다.
본 발명의 또 다른 실시예에서, 상기 방법은 기판 상에 도파관을 제공하는 단계, 정렬 특징부 패턴으로 도파관을 패턴화시키는 단계, 정렬 특징부 마스크를 제공하도록 기판으로부터 도파관의 일부를 제거하는 단계 및 최종적으로 기판에 정렬 특징부를 형성하도록 정렬 특징부 마스크를 사용하여 기판을 에칭하는 단계를 포함한다.
일 실시예에서, 일체식 정렬 특징부를 구비한 도파관은 그 위에 도파관을 구비한 기판과, 기판과 도파관 사이에 위치된 패턴화된 에칭 정지층을 포함한다.
도1은 본 발명에 따른 일체식 정렬 특징부를 구비한 광도파관 조립체의 실시예를 도시한다.
도2는 정렬 특징부 패턴을 가진 에칭 정지층을 구비한 기판을 도시한다.
도3a 및 도3b는 도2의 에칭 정지층과 기판 상의 분리 도파관의 형성의 단면도이다.
도4는 일체식 정렬 특징부의 형성 이전에 도1의 광도파관 조립체를 도시한다.
도5는 본 발명에 따른 일체식 정렬 특징부를 구비한 광도파관 조립체의 다른 실시예를 도시한다.
도6은 도5의 광도파관 조립체의 분리 도파관의 단면도이다.
도7은 일체식 정렬 특징부의 형성 이전에 도5의 광도파관 조립체를 도시한다.
다음의 상세한 설명에서, 그 일부를 구성하는 참조 도면에 참조번호가 형성되고 본 발명이 실시될 수 있는 특정 실시예가 도면에 의해 도시된다. 이와 관련하여, "상부", "바닥부", "전방", "후방", "선단" 및 "후단"과 같은 방향 용어는 설명된 도면의 방향을 참조하여 사용된다. 본 발명의 실시예의 부품이 다수의 상이한 방향으로 위치될 수 있기 때문에, 방향 용어는 설명하기 위한 것으로 제한하려는 것은 아니다. 다른 실시예가 이용될 수 있고 구조적 또는 논리적 변경이 본 발명의 범위 내에서 형성될 수 있다는 것을 이해해야 한다. 따라서, 다음의 상세한 설명은 제한되어서는 않되고 본 발명의 범위는 첨부된 청구범위에 의해 한정된다.
설명의 간략화 및 용이성을 위해, 도면의 몇몇 요소의 치수는 크게 과장된다. 또한, 본 출원의 도면은 본 발명에 따른 광도파관 조립체를 구비한 단일 칩을 도시한다. 그러나, 본 명세서에 설명된 공정은 처리된 웨이퍼가 도면에 도시되고 이하 설명되는 개별 칩으로 이어서 다이싱되는 복수의 유사한 광도파관 조립체를 포함하여 전형적으로 웨이퍼 레벨로 수행된다.
일체식 정렬 특징부를 구비한 광도파관 조립체를 형성하기 위해 본 명세서에서 설명된 방법은 도파관이 완전히 형성된 후까지 정렬 특징부를 제작하지 않아서 정렬 특징부의 정확성을 증가시키고 도파관 칩 제작 공정을 단순화시킨다. 정렬 특징부는 몇몇을 지정하면 광섬유, 볼 렌즈, 그린 렌즈(grin lense) 또는 중심체 공명기와 같은 다양한 광학 장치를 정렬시키는데 사용될 수 있다. 예시적인 실시예는 방법 및 결과적인 제품을 도시하려고 제공된다.
제1 예시적 실시예
본 발명에 따른 광섬유(24)를 위치시키도록 일체식 정렬 특징부(22)를 구비한 편평한 도파관 조립체(20)의 일 실시예가 도1 내지 도4에 도시된다. 도1 내지 도4의 예시적 실시예에서, 일체식 정렬 특징부(22)를 구비한 편평한 도파관 조립체(20)는 기판(26)을 에칭 정지층(28)으로 코팅하여 만들어진다. 정렬 특징부 패턴(30)은 기판(26) 상에 각각의 도파관 조립체(20)에 대해 에칭 정지층(28)에 형성된다. 정렬 특징부 패턴(30)은 포토리소그래피 및 에칭 처리를 사용하여 제작된다. 정렬 특징부 패턴(30)이 에칭 정지층(28)에 제작된 후, 도파관(32)은 정렬 특징부 패턴(30)을 가진 에칭 정지층(28)과 기판(26)의 상부 상에서 성장된다. 도파관(32)은 그 다음에 정렬 특징부 패턴(30)이 패턴(30)을 노출시키도록 미리 제작되는 영역에서 에칭된다. 또 다른 에칭이 미리 제작된 정렬 특징부 패턴(30)을 사용하여 정렬 특징부(22)를 정확하게 형성하도록 수행된다. 정렬 특징부(22)는 V자 홈으로 도시되지만, U자 형상, 사다리꼴 또는 직사각형 홈을 포함하여 다른 단면 형상도 가질 수 있다. 제1 예시적 실시예를 형성하도록 사용되는 상세한 방법은 이하에서 상세히 설명된다.
정렬 특징부 패터닝
기판(26), 예를 들어 (도핑되거나 도핑되지 않은) 실리콘 웨이퍼는 종래의 세척 공정을 이용하여 세척되고 공지된 증착 기술을 이용하여 한 측면 또는 양쪽 측면 상에 에칭 정지층(28)으로 코팅된다. 에칭 정지층(28)은 후술되는 바와 같이 정렬 특징부를 형성하는데 사용되는 최종 에칭 공정을 견디고 필요한 공정 온도에 견딜수 있는 능력을 기초로 선택된 재료로 형성된다. 예를 들어, 최종 에칭 처리가 KOH 에칭인 경우, 에칭 정지층(28)에 대한 적절한 재료는 실리콘 질소화물, 금, 크롬-금, 니크롬, 하프늄, 하프늄 산화물, 홀뮴, 홀뮴 산화물, 마그네슘 플루오르화물, 마그네슘 산화물, 탄탈 산화물, 바나듐, 텅스텐, 지르코늄 및 지르코늄 산화물을 포함한다. 에칭 정지층(28)은 공지된 공정에 의해 기판(26) 상에 증착된다. 예를 들어, 적절한 기술은 열증착, 저압 화학 증착(LPCVD) 및 플라즈마-향상된 화학 증착(PECVD)을 포함하며, 이에 제한되지는 않는다.
예시적 실시예에서, 에칭 정지층(28)을 형성하는데 사용되는 재료는 다음의 조건을 따라 저압 화학 증착(LPCVD)을 이용하여 300 내지 6000Å의 범위의 두께로 도포된 실리콘 질화물(Si3N4)이다.
NH3:100-500sccm
디클로실란(DCS):50-500sccm
압력:200-400mTorr
N2:500-300sccm
온도:700-1130℃
헥사메틸디실라제인(hexamethyldisilazane)과 같은 코팅 접착 촉진제가 에칭 정지층(28)의 상부에 증착되고, 포지티브 포토레지스트(예로써, Shipley PR1813)가 다음에 접착 촉진제 위에 코팅된다. 접착 촉진제 및 포토레지스트는 예를 들어 스핀 코팅 또는 다른 적절한 공지된 기술에 의해 도포될 수 있다. 그 후 이 구성은 약 30분동안 약 96℃에서 베이크된다. 포토레지스트는 다음에 웨이퍼에 정렬된 정렬 특징부 패턴 마스크를 사용하여 노출되고, 그 후 종래 기술을 이용하여 현상된다. 에칭 정지층(28)은 정렬 특징부 패턴(30)을 형성하도록 에칭된다. 임의 적절한 공지된 에칭 기술이 사용될 수 있다. 예시적 실시예에서, 건식 에칭 기술이 사용된다. 예를 들어, 반응성 이온 에칭(RIE) 공정 및 특히 유도성 커플링식 플라즈마(ICP) 공정이 다음의 조건에 따라 수행될 수 있다.
C4F8:10-50sccm
O2:0.5-5sccm
RF 전력:50-100W
ICP 전력:1000-1800W
압력:4-10mTorr
에칭 후에, 포토레지스트가 벗겨지고, 도2에 도시된 바와 같이 기판(26) 상에 정렬 특징부 패턴(30)을 구비한 에칭 정지층(28)을 남긴다. 상술된 바와 같이, 간략화를 위해 도2는 정렬 특징부 패턴(30)을 구비한 단일 칩만을 도시한다. 실제로, 복수의 도파관 칩이 단일 웨이퍼로부터 형성되고, 정렬 특징부 패터닝 공정동안 복수의 정렬 특징부 패턴(30)이 웨이퍼 상에 형성된다. 웨이퍼는 그 후 광도파 관(32)의 제작을 위해 준비된다.
도파관 제작
도파관의 제작 이전에, 웨이퍼 및 정렬 특징부 패턴은 예를 들어, 예비 플라즈마 세척으로 바람직하게 세척된다. 도파관은 그 후 종래 기술을 사용하여 제작된다. 도1 내지 도4에 도시된 제1 예시적 실시예에서, 도파관(32)은 저굴절률 하부 클래딩층(42)과 저굴절률 상부 클래딩층(44) 사이에 개재된 고굴절률 코어(40)를 포함한다. 본 명세서에 사용된 도파관(32)의 구성은 단지 예시적인 것이고, 본 명세서에 설명되고 청구된 발명은 임의의 도파관 구성으로 동일하게 사용된다. 다른 실시예에서, 도파관(32)은 다른 공지된 구성을 갖고 다른 공지된 공정을 사용하여 제작된다. 예로써, 도파관(32)은 이온 교환 공정을 사용하여 제작될 수 있고, 스트립라인 페데스탈 반-공명 반사식 광도파관 구성일 수 있다.
제1 예시적 실시예에서, 도3a에 도시된 바와 같이, 10 내지 50㎛ 범위의 두께를 가진 저굴절률 하부 클래딩층(42)(예시적 실시예에서 도핑되지 않은 SiO2)은 다음의 조건에 따라 플라즈마 향상된 화학 증착(PECVD)을 사용하여 패턴화된 에칭 정지층(28) 위에 증착된다.
SiH4:10-30sccm
N2O:500-2000sccm
N2:100-1000sccm
RF 전력:50-200W
압력:1000-2000mTorr
온도:300-400℃
증착 후에, 하부 클래딩층(42)은 2 내지 8시간동안 700℃ 내지 1400℃에서 어닐링된다.
다른 실시예에서, 마그네슘 플루오르화물과 같은 다른 저인덱스 재료가 정렬 홈을 형성하는데 사용되는 후속 공정과 양립가능하다면 사용될 수 있다. 예를 들어, 후술되는 바와 같이, 일 예시적 실시예에서 정렬 특징부(22)는 이방성 KOH 에칭과 같은 이방성 에칭을 사용하여 실리콘 웨이퍼에 에칭될 수 있다. 다이아몬드형 유리(DLG) 및 많은 폴리머와 같은 몇몇 저인덱스 재료는 KOH 에칭과 사용하기에 양립되지 않는다. 그러나, 만약 예시적 KOH 에칭에 대해 대체물이 사용되면, 이러한 재료는 사용하기에 적절할 수 있다.
0.1㎛ 내지 63㎛ 범위의 두께를 가진 고굴절률 도파관 코어층(40')(예시적 실시예에서 Ge-도핑된 SiO2)은 다음에 하부 클래딩층(42) 위에 증착된다. 도파관 코어층(40')의 두께는 특정 적용예에 따라 변한다. 예를 들어, 다중 모드 도파관은 약 63㎛까지 코어층(40')을 갖지만, 단일 모드 도파관은 약 8㎛까지 코어층(40')을 갖는다. 예시적 실시예에서, 도파관 코어층(40')은 다음의 조건에 따라 PECVD 기술을 사용하여 제작될 수 있다.
SiH4:10-50sccm
GeH4:0.5-10sccm
N2O:500-2000sccm
N2:100-1000sccm
RF 전력:50-200W
압력:1000-2000mTorr
온도:300-400℃
증착 후에, 도파관 코어층(40')은 2 내지 8시간동안 700℃ 내지 1400℃에서 어닐링된다.
다른 실시예에서, 인, 티타늄, 지르코늄, 탄탈륨 또는 하프늄과 같은 다른 도핑제는 고굴절률 코어를 생성하도록 실리카에 사용될 수 있다. 이와 달리, 코어층(40')은 실리콘, 티타니아, 지르코니아, 실리콘 옥시니트라이드(SiON) 또는 실리콘 질화물(Si3N4)과 같은 고인덱스 재료로 제작될 수 있다.
다른 실시예에서, 하부 클래딩층(42) 및 도파관 코어층(40')은 상술된 양호한 PECVD 공정 이외의 공정에 의해 증착될 수 있다. 예를 들어, 다른 적절한 재료는 플레임 가수분해 증착(FHD), 대기압 화학 증착(APCVD)과 저압 화학 증착(LPCVD)을 포함하는 화학 증착(CVD) 공정, 이온 교환 공정, 스퍼터링, 증착(evaporation), 전자빔 증착, 분자빔 에피택시 및 펄스식 레이저 증착과 같은 물리적 증기 증착(PVD) 또는 졸-겔 공정을 포함한다.
어닐링 후에, 도파관 코어층(40')은 스퍼터링, 증착 및 전자빔 증착을 포함하는 종래 기술에 의해 0.2 내지 1㎛ 범위의 두께를 가진 알루미늄으로 코팅된다. 포지티브 포토레지스트는 알루미늄층 위에 코팅되고, 알루미늄층은 코어 패턴 마스크 및 표준 포토리소그래피 기술을 사용하여 패터닝된다. 코어 패턴 마스크는 표준 마스크 정렬 기술을 사용하여 정렬 특징부 패턴에 정렬된다. 그 후 도파관 코어층(40')를 에칭하고 도파관 코어(40)(도3b)를 형성하도록 에칭 공정이 수행된다. 예시적 실시예에서, 건식 에칭이 수행된다. 예를 들어, RIE 에칭은 다음의 조건에 따라 수행될 수 있다.
C4F8:10-50sccm
O2:0.5-5sccm
RF 전력:50-100W
ICP 전력:1000-2000W
압력:3-10mTorr
도파관 코어(40)가 형성된 후, 상부 클래딩층(44)은 도파관 릿지 위에 제공된다. 상부 클래딩층(44)은 도파관 코어층(40')과 하부 클래딩층(42)의 형성에 대해 언급된 바와 같은 증착 공정 및 공지된 적절한 저굴절률 재료를 사용하여 제공된다. 예시적 실시예에서, 보로포스포실리케이트 유리(BPSG) 상부 클래딩층(44)은 다음의 조건에 따라 PECVD를 사용하여 도파관 코어(40)에 대해 5 내지 20㎛ 범위의 두께로 성장된다.
SiH4:10-50sccm
B2H6:0.1-10sccm
PH3:0.1-10sccm
N2O:500-2000sccm
N2:100-1000sccm
RF 전력:50-200W
압력:1000-2000mTorr
온도:300-400℃
BPSG층이 형성된 후, 조립체는 가열되어 2 내지 10시간동안 800 내지 1200℃에서 재유동되게 된다.
정렬 특징부 패턴 노출
도파관(32)이 기판(26) 및 미리 제작된 정렬 특징부 패턴(30) 상부에 형성된 후, 상부 클래딩층(44)은 스퍼터링, 증착 및 전자빔 증착을 포함하는 종래 기술을 사용하여 1 내지 3㎛ 알루미늄으로 코팅된다. 미리 제작된 정렬 특징부 패턴(30)을 노출시키기 위해, 포지티브 포토레지스트는 알루미늄층 위에 코팅되고 표준 포토리소그래피 기술을 사용하여 마스크로 패터닝된다. 마스크는 도4에 도시된 바와 같이 도파관 구조물(32)을 에칭함으로써 미리 제작된 정렬 특징부 패턴(30)이 노출되도록 구성된다. 예시적 실시예에서, 건식 에칭은 정렬 특징부 패턴(30) 위에 도파관(32)의 일부를 제거하기 위해 사용된다. 예를 들어, RIE 에칭은 다음의 조건에 따라 수행될 수 있다.
C4F8:10-50sccm
O2:0.5-5sccm
RF 전력:50-100W
ICP 전력:1000-2000W
압력:3-10mTorr
양호한 실시예에서, RIE 에칭은 대부분의 도파관(32)층을 제거하고, 임의의 잔류 도파관층 재료는 플루오르화 수소산(HF)과 같은 습식 화학 도핑제에 의해 제거된다.
잔류 알루미늄은 에칭에 의해 벗겨진다. 예시적 실시예에서, H4PO3/HNO3/글래이셜 아세트산을 사용한 습식 에칭은 알루미늄을 제거하기 위해 수행된다. 조립체는 기판(26)의 에칭에 의해 정렬 특징부(22)의 형성용으로 준비된다.
정렬 특징부의 제작
다시 도1을 참조하여, 정렬 특징부(22)는 정렬 특징부(22)의 위치 및 크기를 한정하도록 미리 제작된 정렬 특징부 패턴(30)을 사용하여 에칭함으로써 기판(26)에 형성된다. 정렬 특징부(22)는 종래 기술을 사용하여 에칭되고 특정 에칭 기술은 기판(26)으로 사용되는 재료 및 에칭 정지층(28)을 형성하는데 사용되는 재료에 의존한다. 예시적 실시예에서, 기판(26)이 실리콘 웨이퍼이고 실리콘 질화물이 에칭 정지층(28)을 형성하는데 사용되는 경우, 정렬 특징부(22)는 이방성 KOH 에칭과 같은 이방성 에칭을 사용하여 실리콘 웨이퍼에 에칭될 수 있다.
적절한 이방성 에칭제는 25 내지 100℃, 바람직하게 85℃의 온도에서 KOH와 물의 혼합물(물의 10-50wt% KOH, 바람직하게 35%)이다. 에칭제는 바람직하게 기판(26)의 비교적 큰 영역에 대해 에칭 속도의 균일성을 향상시키도록 교반된다. 에칭 시간은 정렬 특징부 패턴(30)에 의해 한정된 정렬 특징부(22)의 폭에 의존한다.
실리콘 웨이퍼는 물의 격자 구조로 인해 상이한 방향으로 상이한 화학 특징부를 갖는다. 즉, (100), (110) 및 (111) 방향으로, 웨이퍼는 증가된 원자 밀도를 갖는다. 방향 의존성 에칭제(예로써, 물의 10-50wt% KOH)의 경우, (111) 방향에서의 에칭 속도는 (100) 및 (110) 방향에서의 에칭 속도보다 훨씬 작고, 따라서 방향 의존성 에칭제를 갖고 (100) 방향에서 실리콘 웨이퍼를 에칭하는 것은 V자 형상의 정렬 특징부(22)를 가져온다. 에칭이 완전히 행해지지 않는 경우, 정렬 특징부(22)는 사다리꼴 형상을 갖는다. 이방성 에칭에 의해 형성된 정렬 특징부(22)의 기하학적 구조는 에칭 정지층(28)의 정렬 특징부 패턴(30)에 의해 제공된 에칭 윈도우에 직접 관련된다.
에칭 정지층(28)의 잔류 노출된 부분은 적절한 에칭 공정에 의해 선택적으로 제거될 수 있다. 정렬 특징부(22)를 따라 어떤 "돌출(overhang)"도 존재하지 않는 것을 보장하도록 에칭 정지층(28)의 노출된 영역을 제거하는 것이 바람직할 수 있다. 만약 제거되지 않으면, 에칭 정지층(28)의 돌출된 부분은 부서져서 정렬 특징부(22)로 낙하할 수 있고, 여기서 파편은 정렬 특징부에 위치된 광학 장치의 오정렬을 야기할 수 있다. 에칭 정지층(28)의 노출되지 않은 부분은 도파관(32) 아래에 유지된다.
조립체
정렬 특징부(22)의 에칭 후에, 기판은 도1에 도시된 바와 같이 일체식 정렬 특징부를 가진 개별 도파관 칩을 형성하는 추가 공정을 위해 준비된다. 기판(예시적 실시예에서 웨이퍼)을 다이싱하기 이전에, 쏘우 컷(50)은 광섬유 또는 다른 광학 장치에 정합하기에 적절한 도파관 코어(40)의 단부에 편평한 표면을 제공하고 그 접합부에 임의 잔여 반경을 제거하도록 정렬 특징부(22)와 도파관 코어(40)의 접합부에 형성된다. 이러한 편평한 표면은 웨이퍼 표면에 수직일 수 있거나 광반사의 감소를 위해 각질 수 있다. (도시되지 않은) 도파관 칩의 스트립은 그 후 기판(26)으로부터 다이싱되고, 도파관 코어(40)의 단부는 추가 광폴리싱 처리될 수 있다. 도파관 칩의 스트립은 그 후 개별적인 편평한 도파관 조립체(20)를 분리시키도록 더 다이싱될 수 있다. 단일화된 조립체는 그 후 광섬유(24)로 제작 및 세척을 위해 준비된다.
따라서, 도1에 도시된 바와 같이 단일화된 도파관 조립체는 내부에 형성된 정렬 특징부(22)를 가진 기판(26)을 포함한다. 에칭 정지층(28)은 기판(26)을 덮는다. 에칭 정지층(28)은 정렬 특징부(22)의 패턴에 상응하는 패턴화된 부분(30)을 포함한다. 도파관 구조물(32)은 에칭 정지층(28)의 패턴화된 부분(30)만이 도파관 구조물(32)에 의해 덮이지 않거나 또는 노출된 채로 에칭 정지층(28) 상에 위치된다. 에칭 정지층(28)의 덮이지 않거나 또는 노출된 패턴화된 부분(30)은 정렬 특징부(22)의 형성 이후에 선택적으로 제거될 수 있다. 에칭 정지층(28)의 일부는 패턴화된 부분(30)이 제거되어도 기판(26)과 도파관 구조물(32) 사이에 위치되어 유지된다.
양호한 실시예에서, 도파관 조립체는 내부에 형성된 복수의 V자 형상의 정렬 특징부(22)를 가진 실리콘 기판(26)을 포함한다. 실리콘 질화물 에칭 정지층(28)은 기판(26)과 도파관 구조물(32) 사이의 기판(26)을 덮는다. 도파관 구조물(32)은 하부 클래딩층(42)과 상부 클래딩층(44) 사이에 개재된 (각각이 정렬 특징부(22)에 상응하는) 복수의 도파관 코어(40)를 포함한다.
제2 예시적 실시예
본 발명에 따른 일체식 정렬 특징부를 가진 편평한 도파관 조립체(20a)의 다른 실시예가 도5 내지 도7에 도시된다. 제2 예시적 실시예에서, 일체식 정렬 특징부(22)는 정렬 특징부(22)를 위한 패턴으로 도파관 재료 구조물(32) 그자체를 이용하여 형성된다. 도1 내지 도4의 제1 예시적 실시예와 비교할 때, 제2 예시적 실시예는 상술된 정렬 특징부 패턴(30)의 제작공정을 제거하여, 제작 단계가 감소된다. 도파관(32)은 기판(26)(예시적 실시예에서 실리콘 웨이퍼) 상에 직접 증착되고 그 후 나중 에칭 단계에 형성되는 정렬 특징부(22)를 위해 패턴(30a)을 형성하도록 에칭된다. 정렬 특징부(22)는 V자 홈으로 도시되지만, U자 형상 또는 직사각형 홈을 포함하여 다른 단면 형상도 가질 수 있다. 제2 예시적 실시예를 형성하는데 사용되는 상세한 방법은 이하에서 상세히 설명된다.
도파관 제작
도파관의 제작 이전에, 기판(26)은 바람직하게 예비 플라즈마 세척과 같이 종래 기술을 이용하여 세척된다. 도파관(32)은 그 후 종래 기술을 이용하여 제작 된다. 제2 예시적 실시예에서, 도6에 도시된 바와 같이, 도파관(32)은 저굴절률 하부 클래딩층(42)과 저굴절률 상부 클래딩층(44) 사이에 개재된 고굴절률 코어(40)를 포함한다. 도파관(32)은 제1 예시적 실시예에 대해 상술된 바와 동일한 공정 및 조건을 이용하여 제작될 수 있다.
정렬 특징부 패터닝
도파관(32)이 기판(26) 상에 형성된 후에, 상부 클래딩층(44)은 스퍼터링, 증착 및 전자빔 증착을 포함하는 종래 기술을 이용하여 1 내지 3㎛의 알루미늄으로 코팅된다. 알루미늄은 그 후 표준 포토리소그래피 기술을 사용하여 정렬 특징부 패턴 마스크로 패턴화된다. 도7에 도시된 바와 같이, 도파관층(40, 42, 44)은 다음에 기판(26)의 하부에 에칭되고, 따라서 잔류 도파관 재료는 정렬 특징부(22)에 대한 패턴(30a)을 형성한다. 예시적 실시예에서, 도파관층의 RIE 에칭은 다음의 조건에 따라 수행될 수 있다.
C4F8:10-50sccm
O2:0.5-5sccm
RF 전력:50-100W
ICP 전력:1000-2000W
압력:3-10mTorr
잔류 알루미늄은 에칭에 의해 벗겨진다. 예시적 실시예에서, H4PO3/HNO3/글래이셜 아세트산을 사용한 습식 에칭은 알루미늄을 제거하기 위해 수행된다. 조립 체는 기판(26)의 에칭에 의해 정렬 특징부(22)의 형성용으로 준비된다.
정렬 특징부의 제작
정렬 특징부(22)는 정렬 특징부(22)의 위치 및 크기를 한정하기 위해 정렬 특징부 패턴(30a)으로서 미리 에칭된 도파관층(40, 42, 44)을 사용하여 에칭함으로써 기판(26)에 형성된다. 정렬 특징부(22)는 종래 기술을 사용하여 에칭된다. 예시적 실시예에서, 정렬 특징부(22)는 이방성 KOH 에칭과 같은 이방성 에칭을 사용하여 실리콘 웨이퍼 기판(26)에 에칭된다. 적절한 이방성 에칭제는 제1 예시적 실시예에 대해서 위에서 설명되었다.
조립체
정렬 특징부(22)의 에칭 이후에, 기판(26)은 제1 예시적 실시예에 대해 상술된 바와 같이 일체식 정렬 특징부를 가진 개별적 도파관 칩을 형성하고 도파관(32)의 편평한 단부 각면(facet)을 생성하는 추가 공정을 위해 준비된다.
특정 실시예가 양호한 실시예의 설명을 위해 본 명세서에 설명되고 도시되었지만, 본 기술분야의 당업자는 동일한 목적을 달성하기 위해 수행되는 다양한 대체 및/또는 등가의 실시가 본 발명의 범위 내에서 설명되고 도시된 특정 실시예에 대해서 대체될 수 있다는 것을 이해한다. 기계, 전기, 화학 및 광학 기술분야의 당업자는 본 발명이 매우 다양한 실시예로 구현될 수 있다는 것을 용이하게 이해한다. 본 출원은 본 명세서에 설명된 양호한 실시예의 임의의 채용 또는 변경을 포함하려는 것이다. 따라서, 본 발명은 명확하게 청구범위 및 그 등가물에 의해서만 제한되려는 것이다.

Claims (19)

  1. 광학 장치를 위한 일체식 정렬 특징부를 가진 도파관을 형성하기 위한 방법이며, 상기 방법은,
    도파관을 기판 상에 제작하는 단계와,
    상기 기판을 노출시키도록 도파관의 일부를 제거하는 단계와,
    노출된 기판에 광학 장치 정렬 특징부를 형성하는 단계를 포함하는 도파관을 형성하기 위한 방법.
  2. 제1항에 있어서,
    도파관을 기판 상에 제작하기 이전에 기판 상에 정렬 특징부 패턴을 제공하는 단계를 더 포함하고,
    상기 도파관을 기판 상에 제작하는 단계는 정렬 특징부 패턴 위로 도파관을 제작하는 단계를 포함하고, 상기 기판을 노출시키도록 도파관의 일부를 제거하는 단계는 정렬 특징부 패턴을 노출시키는 단계를 포함하는 도파관을 형성하기 위한 방법.
  3. 제2항에 있어서, 상기 기판 상에 정렬 특징부 패턴을 제공하는 단계는,
    기판을 에칭 정지층으로 코팅하는 단계와,
    에칭 정지층을 패턴 마스크로 패턴화시키는 단계와,
    정렬 특징부 패턴을 형성하도록 에칭 정지층을 에칭하는 단계를 포함하는 도파관을 형성하기 위한 방법.
  4. 제3항에 있어서, 상기 기판을 에칭 정지층으로 코팅하는 단계는 300 내지 6000Å 범위의 두께를 가진 실리콘 질화물로 기판을 코팅하는 단계를 포함하는 도파관을 형성하기 위한 방법.
  5. 제3항에 있어서, 상기 에칭 정지층은 반응성 이온 에칭을 포함하는 도파관을 형성하기 위한 방법.
  6. 제1항에 있어서, 상기 도파관을 제작하는 단계는,
    기판 위에 하부 클래딩층을 증착하는 단계와,
    하부 클래딩층 위에 도파관 코어층을 증착하는 단계를 포함하는 도파관을 형성하기 위한 방법.
  7. 제6항에 있어서, 상기 도파관을 제작하는 단계는,
    도파관 코어층 위로 상부 클래딩층을 증착하는 단계를 더 포함하는 도파관을 형성하기 위한 방법.
  8. 제6항에 있어서, 상기 하부 클래딩층은 10 내지 50㎛ 범위의 두께를 갖고, 상기 도파관 코어층은 0.1 내지 63㎛ 범위의 두께를 갖는 도파관을 형성하기 위한 방법.
  9. 제7항에 있어서, 상부 클래딩층을 증착하기 이전에 도파관 코어층에 분리적 도파관을 형성하는 단계를 더 포함하는 도파관을 형성하기 위한 방법.
  10. 제6항에 있어서, 상기 기판을 노출시키도록 도파관의 일부를 제거하는 단계는 도파관 코어층과 하부 클래딩층을 에칭하는 단계를 포함하는 도파관을 형성하기 위한 방법.
  11. 제7항에 있어서, 상기 기판을 노출시키도록 도파관의 일부를 제거하는 단계는 상부 클래딩층, 도파관 코어층 및 하부 클래딩층을 에칭하는 단계를 포함하는 도파관을 형성하기 위한 방법.
  12. 제1항에 있어서, 상기 기판에 정렬 특징부를 형성하는 단계는 정렬 특징부를 습식 에칭하는 단계를 포함하는 도파관을 형성하기 위한 방법.
  13. 제1항에 있어서, 상기 기판을 노출시키도록 도파관의 일부를 제거하는 단계는 도파관에 정렬 특징부 패턴을 형성하는 단계를 포함하는 도파관을 형성하기 위한 방법.
  14. 광섬유와 광도파관을 수동적으로 정렬하기 위한 방법이며, 상기 방법은,
    기판 상에 하부 클래딩층을 증착하는 단계와,
    하부 클래딩층 상에 도파관 코어층을 증착하는 단계와,
    도파관 코어층으로부터 광도파관을 제작하는 단계와,
    기판을 노출시키도록 하부 클래딩층과 도파관 코어층의 일부를 제거하는 단계와,
    광섬유를 광도파관으로 정렬시키도록 구성되는 정렬 홈을 기판에 형성하도록 노출된 기판을 에칭하는 단계와,
    광섬유를 정렬 홈에 위치시키는 단계를 포함하는 광섬유와 광도파관을 수동적으로 정렬하기 위한 방법.
  15. 제14항에 있어서, 상기 방법은,
    도파관 코어층으로부터 광도파판을 제작한 후 광도파관 상에 상부 클래딩층을 증착하는 단계와,
    기판을 노출시키도록 상부 클래딩층, 도파관 코어층 및 하부 클래딩층의 일부를 제거하는 단계를 더 포함하는 광섬유와 광도파관을 수동적으로 정렬하기 위한 방법.
  16. 제14항에 있어서, 상기 기판을 노출시키도록 하부 클래딩층과 도파관 코어층 의 일부를 제거하는 단계는 도파관 코어층과 하부 클래딩층에 정렬 홈 패턴을 형성하는 단계를 포함하는 광섬유와 광도파관을 수동적으로 정렬하기 위한 방법.
  17. 제15항에 있어서, 상기 기판을 노출시키도록 상부 클래딩층, 도파관 코어층 및 하부 클래딩층의 일부를 제거하는 단계는 상부 클래딩층, 도파관 코어층 및 하부 클래딩층에 정렬 홈 패턴을 형성하는 단계를 포함하는 광섬유와 광도파관을 수동적으로 정렬하기 위한 방법.
  18. 제14항에 있어서,
    하부 클래딩층을 증착하기 이전에 기판 상에 정렬 홈 패턴을 형성하는 단계를 더 포함하는 광섬유와 광도파관을 수동적으로 정렬하기 위한 방법.
  19. 제14항에 있어서, 상기 정렬 홈은 V자 형상의 홈으로 형성되는 광섬유와 광도파관을 수동적으로 정렬하기 위한 방법.
KR1020077002014A 2004-06-29 2005-04-28 일체식 정렬 특징부를 가진 광도파관 조립체를 제조하기위한 방법 KR20070045204A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/879,716 US20050284181A1 (en) 2004-06-29 2004-06-29 Method for making an optical waveguide assembly with integral alignment features
US10/879,716 2004-06-29

Publications (1)

Publication Number Publication Date
KR20070045204A true KR20070045204A (ko) 2007-05-02

Family

ID=34971934

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077002014A KR20070045204A (ko) 2004-06-29 2005-04-28 일체식 정렬 특징부를 가진 광도파관 조립체를 제조하기위한 방법

Country Status (6)

Country Link
US (1) US20050284181A1 (ko)
EP (1) EP1761812A1 (ko)
JP (1) JP2008505355A (ko)
KR (1) KR20070045204A (ko)
CN (1) CN1977198A (ko)
WO (1) WO2006007022A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092025A2 (en) * 2004-03-22 2005-10-06 Kla-Tencor Technologies Corp. Methods and systems for measuring a characteristic of a substrate or preparing a substrate for analysis
TWI388892B (zh) * 2004-06-16 2013-03-11 Hitachi Chemical Co Ltd 光導波管結構體、光導波管光模組以及光纖陣列
US7587108B2 (en) * 2005-06-24 2009-09-08 3M Innovative Properties Company Optical device with cantilevered fiber array and planar lightwave circuit
US7491287B2 (en) * 2006-06-09 2009-02-17 3M Innovative Properties Company Bonding method with flowable adhesive composition
JP5156502B2 (ja) * 2007-06-26 2013-03-06 パナソニック株式会社 光モジュール
US7822300B2 (en) * 2007-11-20 2010-10-26 Aptina Imaging Corporation Anti-resonant reflecting optical waveguide for imager light pipe
US8538223B2 (en) * 2007-11-30 2013-09-17 3M Innovative Properties Company Method for making optical waveguides
CH700471B1 (de) * 2009-02-17 2013-07-31 Vario Optics Ag Verfahren zur Herstellung einer elektro-optischen Leiterplatte mit Lichtwellenleiterstrukturen.
US20180019139A1 (en) * 2016-07-12 2018-01-18 Ayar Labs, Inc. Wafer-Level Etching Methods for Planar Photonics Circuits and Devices
CN107655923B (zh) * 2017-10-13 2019-05-03 电子科技大学 一种实现输出方向大角度可调的太赫兹波传输聚束系统
US11101617B2 (en) 2018-07-16 2021-08-24 Ayar Labs, Inc. Wafer-level handle replacement
CN114026479B (zh) * 2019-06-17 2024-04-12 艾尤纳公司 光纤阵列到波导的无源对准配置
US11774689B2 (en) 2021-10-25 2023-10-03 Globalfoundries U.S. Inc. Photonics chips and semiconductor products having angled optical fibers
CN117561464A (zh) * 2021-11-22 2024-02-13 华为技术有限公司 一种芯片、光纤阵列单元及通信系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3765969A (en) * 1970-07-13 1973-10-16 Bell Telephone Labor Inc Precision etching of semiconductors
US3774987A (en) * 1972-06-27 1973-11-27 Bell Electric Research Ltd Coupling of lasers to optical fibres
US3994559A (en) * 1975-12-22 1976-11-30 International Business Machines Corporation Bidirectional guided mode optical film-fiber coupler
US4210923A (en) * 1979-01-02 1980-07-01 Bell Telephone Laboratories, Incorporated Edge illuminated photodetector with optical fiber alignment
JPS5784408A (en) * 1980-11-13 1982-05-26 Nec Corp Optical distributing circuit
US5046763A (en) * 1990-02-01 1991-09-10 Teleflex Incorporated Quick connect hose coupling assembly
JPH04313710A (ja) * 1990-03-14 1992-11-05 Fujitsu Ltd 光導波路部品の製造方法
FR2661516B1 (fr) * 1990-04-27 1992-06-12 Alcatel Fibres Optiques Composant d'optique integree et procede de fabrication.
US5175781A (en) * 1991-10-11 1992-12-29 United Technologies Corporation Attaching optical fibers to integrated optic chips
US5217568A (en) * 1992-02-03 1993-06-08 Motorola, Inc. Silicon etching process using polymeric mask, for example, to form V-groove for an optical fiber coupling
EP0560043B1 (de) * 1992-03-07 1997-06-18 Minnesota Mining And Manufacturing Company Verfahren zum Herstellen von Bauelementen für Lichtwellenleiternetze und nach diesem Verfahren hergestellte Bauelemente
JP3484543B2 (ja) * 1993-03-24 2004-01-06 富士通株式会社 光結合部材の製造方法及び光装置
JP2798583B2 (ja) * 1993-06-08 1998-09-17 日本電気株式会社 光デバイスの製造方法
EP0631159A1 (de) * 1993-06-18 1994-12-28 Siemens Aktiengesellschaft Anordnung zur optischen Kopplung eines planaren optischen Wellenleiters und einer optischen Faser und Verfahren zur Herstellung eines für eine solche Anordnung geeigneten planaren Wellenleiters
US5357593A (en) * 1993-10-12 1994-10-18 Alliedsignal Inc. Method of attaching optical fibers to opto-electronic integrated circuits on silicon substrates
US5432338A (en) * 1993-10-28 1995-07-11 Alliedsignal Inc. Silicon opto-electronic integrated circuit for fiber optic gyros or communication
JPH0829638A (ja) * 1994-05-12 1996-02-02 Fujitsu Ltd 光導波路・光ファイバ接続構造及び光導波路・光ファイバ接続方法並びに光導波路・光ファイバ接続に使用される光導波路基板及び同基板の製造方法並びに光導波路・光ファイバ接続に使用されるファイバ基板付き光ファイバ
US5611014A (en) * 1994-12-07 1997-03-11 Lucent Technologies Inc. Optoelectronic device connecting techniques
JP2964941B2 (ja) * 1996-01-12 1999-10-18 日本電気株式会社 光デバイスの製造方法及び実装構造
US5600745A (en) * 1996-02-08 1997-02-04 Industrial Technology Research Institute Method of automatically coupling between a fiber and an optical waveguide
KR100265789B1 (ko) * 1997-07-03 2000-09-15 윤종용 광섬유수동정렬방법
US6756185B2 (en) * 2000-05-09 2004-06-29 Shipley Company, L.L.C. Method for making integrated optical waveguides and micromachined features
US20030035643A1 (en) * 2001-08-17 2003-02-20 Photon-X, Inc. Structure for attaching an optical fiber to a planar waveguide and method thereof

Also Published As

Publication number Publication date
JP2008505355A (ja) 2008-02-21
WO2006007022A1 (en) 2006-01-19
EP1761812A1 (en) 2007-03-14
US20050284181A1 (en) 2005-12-29
CN1977198A (zh) 2007-06-06

Similar Documents

Publication Publication Date Title
KR20070045204A (ko) 일체식 정렬 특징부를 가진 광도파관 조립체를 제조하기위한 방법
US6946238B2 (en) Process for fabrication of optical waveguides
US5787214A (en) Connection between an integrated optical waveguide and an optical fibre
US6252725B1 (en) Semiconductor micro epi-optical components
US5182787A (en) Optical waveguide structure including reflective asymmetric cavity
US6621961B2 (en) Self-alignment hybridization process and component
EP1847860B1 (en) Optical waveguide device with optical component and its manufacturing method
EP1850157B1 (en) Manufacturing method of an optical waveguide device
US6231771B1 (en) Process for making optical waveguides
EP0784216A2 (en) Method of manufacturing an optical device with a groove accurately formed
EP1258753A2 (en) Silica-based optical wave guide circuit and fabrication method thereof
EP0762162A1 (en) Article comprising fiber-to-planar waveguide coupling and method of making the article
WO2002044774A2 (en) Formation of a surface on an optical component
US6510275B1 (en) Micro-optoelectromechanical system based device with aligned structures and method for fabricating same
WO2007133915A1 (en) Integrated optical waveguide assemblies
US20050211664A1 (en) Method of forming optical waveguides in a semiconductor substrate
WO2002044768A2 (en) Separation of optical components formed on a substrate
EP1363148A2 (en) Optical coupling device and manufacturing method thereof
JP2820202B2 (ja) スポットサイズ変換器の製造方法
WO2003034115A2 (en) Coupling a semiconducter laser to an optical waveguide
KR20040083112A (ko) 광소자 제조방법
KR20030056333A (ko) 광도파로 플랫폼 및 그 제조 방법
JPH0621039A (ja) 薄膜テーパー形状の形成方法
KR20050040140A (ko) 모드크기정합기가 집적된 실리카 평판형 광도파로 제조 방법
WO2004059358A1 (en) Optical device and method for fabricating the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application