KR20070023651A - 세라믹 허니컴 구조체 - Google Patents

세라믹 허니컴 구조체 Download PDF

Info

Publication number
KR20070023651A
KR20070023651A KR1020067017599A KR20067017599A KR20070023651A KR 20070023651 A KR20070023651 A KR 20070023651A KR 1020067017599 A KR1020067017599 A KR 1020067017599A KR 20067017599 A KR20067017599 A KR 20067017599A KR 20070023651 A KR20070023651 A KR 20070023651A
Authority
KR
South Korea
Prior art keywords
pore
honeycomb structure
ceramic
pore diameter
ceramic honeycomb
Prior art date
Application number
KR1020067017599A
Other languages
English (en)
Other versions
KR100883946B1 (ko
Inventor
마사후미 구니에다
Original Assignee
이비덴 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이비덴 가부시키가이샤 filed Critical 이비덴 가부시키가이샤
Priority to KR1020067017599A priority Critical patent/KR100883946B1/ko
Publication of KR20070023651A publication Critical patent/KR20070023651A/ko
Application granted granted Critical
Publication of KR100883946B1 publication Critical patent/KR100883946B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/14Sintered material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/28Methods or apparatus for fitting, inserting or repairing different elements by using adhesive material, e.g. cement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

내연기관으로부터 방출되는 HC 이나 NOx 등의 유해 가스의 제거 특성과 촉매 반응성이 우수한 세라믹 허니컴 구조체를 제안한다. 다수의 관통공이 격벽을 사이에 두고 병렬하여 배치되어 이루어지는 주상 허니컴 구조의 다공질 세라믹 부재의 하나 또는 복수개의 조합으로 이루어지는 세라믹 허니컴 구조체이며, 상기 격벽은 세공 직경 분포 곡선에 있어서, 세공 직경이 0.05 ∼ 150㎛ 인 세공을 제 1 세공군으로 하고 세공 직경이 0.006 ∼ 0.01㎛ 인 세공을 제 2 세공군으로 했을 때, 상기 제 1 세공군의 영역과 상기 제 2 세공군의 영역에 각각, 세공 분포의 피크 (극대치) 가 1개 이상 존재하는 세공 구조를 갖는 소결체로 이루어지는 세라믹 허니컴 구조체.

Description

세라믹 허니컴 구조체{CERAMIC HONEYCOMB STRUCTURE}
본 출원은, 2004년 12월 27일에 출원된 일본특허출원 2004-375815호를 기초 출원으로 하여 우선권 주장하는 출원이다.
본 발명은 세라믹 허니컴 구조체에 관한 것으로서, 특히 자동차나 보일러 등의 내연기관으로부터 배출되는 배기 가스 정화용 촉매를 담지하기 위해서 이용되는 세라믹 허니컴 구조체를 제안한다.
자동차의 배기 가스 정화용 촉매를 담지하기 위해서 이용되는 세라믹 허니컴 구조체는 주로 저열팽창성 코디어라이트 등의 일체 구조품이 이용되고 있다. 이러한 세라믹 허니컴 구조체는 그 표면에 활성 알루미나 등의 고비표면적 (high specific surface area) 의 재료나 백금 등의 촉매 금속을 담지하여 이루어지는 것이 일반적이다. 또한, 린번 엔진 및 디젤 엔진과 같은 산소 과잉 분위기 하에서 사용되는 엔진에 대해서는, 상기 구조체의 표면에 NOx 처리를 위한 Ba 등의 알칼리 토금속과 같은 NOx 흡장제가 담지되어 있다.
그런데, 이들 세라믹 허니컴 구조체는, 이것의 정화 성능을 보다 향상시키기 위해, 배기 가스와 귀금속 촉매나 NOx 흡장제와의 접촉 효율을 높이는 것이 유효하다. 그 때문에, 이 세라믹 허니컴 구조체의 격벽 표면에 촉매를 충분히 분산한 상태에서 담지시키는 것이 중요하다 (일본 공개특허공보 평10-263416호 참조) .
또한, 이 세라믹 허니컴 구조체로서는, 세공 직경 분포를 조정함으로써, 반응성을 향상시킨 기술이 제안되어 있다 (일본 공개특허공보 평3-68456호, 일본 공개특허공보 평8-229412호, 일본 공개특허공보 2001-187318호, 일본 공개특허공보 2001-187320호, 일본 공개특허공보 평10-43588호 참조) .
그러나, 종래의 세라믹 허니컴 구조체는, 그 격벽 표면에 고비표면적 재료 (촉매 코트층) 를 부여하거나, 이 격벽의 세공 직경을 조정한 것이지만, 촉매 반응이 충분하지 않은 것이 많아, 개량할 필요가 있다. 즉, 이 세라믹 허니컴 구조체에 알루미나 등의 고비표면적 재료를 사용하면, 열에이징에 의해 소결이 진행되고, 비표면적이 저하하는 우려가 있었다. 또한, 담지되어 있는 백금 등의 촉매 금속은, 응집되어 입경이 커져 비표면적이 작아지는 경향이 있다. 즉, 종래의 세라믹 허니컴 구조체는 열에이징 (촉매 담체로서 사용하기 위해) 후에, 고비표면적인 것으로 하기 위해서는, 초기 단계의 비표면적을 크게 할 필요가 있다.
또한, 이러한 세라믹 허니컴 구조체는 그것의 가스 정화 성능을 향상시키기 위해서는, 배기 가스와 귀금속 촉매 및 NOx 흡장제와의 접촉 효율을 높이는 것이 유효하다. 즉, 담체가 되는 이 세라믹 허니컴 구조체의 비표면적을 크게 하는 반면, 촉매의 입자 직경은 작게 하여 분산도를 높이는 것이 유효하다. 이 점, 종래의 코디어라이트(cordierite)질 허니컴 구조체는 배기 가스 촉매와의 접촉 효율을 높이기 위해, 관통공의 형상, 관통공의 밀도 또는 벽 두께 등을 연구하여, 촉매 담체를 고비표면적화한 것이었다. 그러나, 이 종래의 세라믹 허니컴 구조체는, 담체에 대하여 이 촉매를 충분히 분산시킬 수 없어, 열에이징 후의 배기 가스의 정화 성능이 악화되는 문제가 있었다.
그 밖에, 종래의 허니컴 구조체에는 촉매를 다량으로 담지시킨 것이나, 촉매 담체 자체를 대형화시킨 것이 있었다. 그러나, 다량으로 담지된 것은 백금 등의 귀금속이 매우 비싼 점에서 바람직하지 못하고, 한편, 대형화 구조체는 자동차에 설치하는 경우, 그 설치 스페이스가 대단히 한정되기 때문에 적당하지 않다.
본 발명의 목적은, 내연기관으로부터 방출되는 HC 이나 NOx 등의 유해 가스의 제거 특성과 촉매 반응성이 우수한 세라믹 허니컴 구조체를 제안하는 것에 있다.
본 발명은 가스 유로로 이루어지는 다수의 관통공이 격벽을 사이에 두고 병렬되어 이루어지는 주상 (pillar-shaped) 허니컴 구조의 다공질 세라믹 부재의 1개 또는 복수개의 조합으로 이루어지는 세라믹 허니컴 구조체로서, 상기 격벽은 가로축을 세공 직경 (㎛) 으로 하고 세로축을 log 미분 세공 용적 (㎤/g) 으로 한 세공 직경 분포 곡선에 있어서, 세공 직경이 0.05 ∼ 150㎛ 인 세공을 제 1 세공군으로 하고, 세공 직경이 0.006 ∼ 0.01㎛ 인 세공을 제 2 세공군으로 했을 때, 상기 제 1 세공군의 영역과, 상기 제 2 세공군의 영역에 각각, 세공 분포의 피크 (극대치) 가 1개 이상 존재하는 세공 구조를 갖는 소결체로 이루어지는 것을 특징으로 하는 세라믹 허니컴 구조체이다.
이하는, 본 발명의 보다 바람직한 구성의 일례를 나타내는데, 이 구성에만 한정되는 것은 아니다. ① 제 1 세공군의 영역에 있는 세공의 세공 직경 분포의 피크는, 세공 직경이 0.05 ∼ 1.0㎛ 의 범위에 존재하는 것, ② 상기 세공 직경 분포 곡선은, 세공 직경이 0.01 ∼ 1.0㎛ 의 범위가 log 미분 세공 용적의 값이 정수를 나타내어 연속하고 있는 것, ③ 상기 세공 직경 분포 곡선은 제 1 세공군 및 제 2 세공군의 각 영역에 나타내는 피크 (극대치) 사이의 세공 직경이 log 미분 세공 용적의 값이 정수를 나타내어 연속하고 있는 것, ④ 상기 격벽은, 두께가 0.05 ∼ 0.35mm 인 것, ⑤ 상기 세라믹 부재는, 주성분으로서 알루미나를 함유하는 것, ⑥ 복수개의 세라믹 부재를 조합할 경우, 각 부재 사이는 시일재층을 개재시키는 것, ⑦상기 세라믹 부재는, 이 격벽 표면 또는 이 격벽을 구성하고 있는 각각의 세라믹 입자 표면에 촉매가 부여된 것, ⑧ 이 허니컴 구조체는 차량의 배기 가스 정화용 장치로서 사용할 수 있는 것이다.
도 1 은, 본 발명에 관련된 세라믹 허니컴 구조체의 세공 직경 분포 곡선의 일례를 나타낸 그래프이다.
도 2a 는, 본 발명의 세라믹 허니컴 구조체에 형성된 세공의 일례를 모식적으로 나타낸 단면도이다.
도 2b, 2c 는, 종래인 세공의 형상을 모식적으로 나타낸 선단면도이다.
도 3a 는, 본 발명의 세라믹 허니컴 구조체의 일례를 나타낸 사시도이다.
도 3b 는 집합형 허니컴 필터의 일례를 나타낸 사시도이다.
도 4 는, 다공질 세라믹 부재를 사용한 일체형 허니컴 필터의 사시도이다.
도 5 는, 촉매 반응 장치의 개략선도이다.
도 6a 는, 본 발명에 따른 허니컴 유닛에 관한 세공 직경과 세공 용적의 관계를 나타내는 그래프 (실시예 1) 이다.
도 6b 는, 본 발명에 따른 허니컴 유닛에 관한 세공 직경과 세공 용적의 관계를 나타내는 그래프 (실시예 2) 이다.
도 6c 는, 본 발명에 따른 허니컴 유닛에 관한 세공 직경과 세공 용적의 관계를 나타내는 그래프 (실시예 3) 이다.
도 6d 는, 본 발명에 따른 허니컴 유닛에 관한 세공 직경과 세공 용적의 관계를 나타내는 그래프 (실시예 4 ∼ 7) 이다.
도 7a 는, 비교예에 따른 허니컴 유닛에 관한 세공 직경과 세공 용적의 관계를 나타내는 그래프 (비교예 1) 이다.
도 7b 는, 비교예에 따른 허니컴 유닛에 관한 세공 직경과 세공 용적의 관계를 나타내는 그래프 (비교예 2) 이다.
도 7c 는, 비교예에 따른 허니컴 유닛에 관한 세공 직경과 세공 용적의 관계를 나타내는 그래프 (비교예 3) 이다.
발명을 실시하기 위한 최선의 형태
발명자는 배기 가스 정화 장치 등에 이용되는 다공질 세라믹제의 허니컴 구조체에 대해서, 이 구조체 (소결체) 의 세공 구조에 대해서 검토했다. 그 검토에 있어서, 발명자는 원료의 종류나 입도, 배합량, 배합 비율, 소성 온도 등을 조 정함으로써, 상기 구조체의 세공 직경 분포의 상태를 변화시킨 예에 대해서 조사했다. 그 결과, 발명자는 예를 들어 촉매 담체로서 이용되는 세라믹 허니컴 구조체의 경우, 기공률은 동일한 정도이어도, 세공 직경 분포의 차이에 의해, 정화 효율에 큰 차가 생기는 것을 알 수 있다.
즉, 세라믹 소결체의 격벽의 세공 구조는 도 1 에 나타낸 바와 같이, 가로축을 세공 직경 (㎛) 으로 하고, 세로축을 log 미분 세공 용적 (㎠/g) 으로 한 수은 압입법으로 측정한 세공 직경 분포 곡선에 있어서, 제 1 세공군의 영역인 0.05 ∼ 150㎛ 의 범위에는 세공 직경 분포의 피크 (극대치) 가 1개 존재하고, 그리고 제 2 세공군의 영역인 0.006 ∼ 0.01㎛ 의 범위에는 세공 직경 분포의 피크가 1개 또는 복수, 바람직하게는 0.2㎛ 의 부근과 0.009㎛ 의 부근의 2부분에 존재하는 경우에, 촉매 반응성이 좋고, 배기 가스의 정화에 효과적이다.
이러한 현상이 생기는 메카니즘에 대해서, 발명자는 아래와 같이 추측하고 있다. 도 2a 는, 제 1 세공군의 영역과, 제 2 세공군의 영역에 각각 세공 직경 분포의 피크가 존재하는 세라믹 부재, 특히 격벽 부분에 있어서의 표면 구조의 대표적 모식도이다. 이 표면 구조는 세공 직경의 크기가 0.05 ∼ 150㎛ 의 큰 구멍 직경 D1 의 세공과, 세공 직경이 0.06 ∼ 0.01㎛ 의 제 2 영역에 속하는 작은 구멍 직경 D2 의 세공이 도면에 나타낸 바와 같이 입체적 또는 동일한 평면상에 병렬하여 존재하는 예를 도시하고 있다. 또한, 본 발명은 도시한 표면 구조에만 한정되는 것은 아니고, 동일한 평면에 2종, 3종의 다른 구멍 직경의 것이 개구된 것 등이어도 된다.
한편, 도 2b 및 도 2c 는 종래 구조체의 격벽에 있어서의 표면 구조의 모식도이고, 도 2b 는 작은 구멍 직경의 세공에만 존재하는 예이고, 도 2c 는 큰 구멍 직경의 세공에만 존재하는 예이다.
이들 도면에 나타낸 것 중, 도 2a 에 나타낸 세공 구조는 소위 세공 내에도 구멍 직경이 상이한 복수 종의 세공을 갖는 예이다. 이 경우에 있어서, 큰 구멍 직경 D1 의 세공의 역할은 이 세공을 통해서 격벽 내부까지 배기 가스를 침투시키고, 이 격벽 내부에서도 가스의 반응이 효율적으로 진행되도록 하여, 반응 전후의 가스 교환의 고효율화를 목표로 하는 역할을 갖는 것으로 생각된다. 한편, 제 2 세공군에 속하는 작은 구멍 직경 D2 의 세공의 역할은 격벽 표면과 내부에 분산 담지된 촉매와 배기 가스의 반응을 촉진시키는 역할을 담당하는 것으로 생각된다. 그 결과, 본 발명에 적합한 상기 세공 구조를 갖는 것으로는, 배기 가스의 분자 등이, 촉매 담체의 벽 내부까지 침투되기 쉬워진다.
한편, 도 2b 에 나타낸 세공 구조는, 가스가 격벽 내부까지 침투하지 않고, 벽 내부에서의 촉매의 반응이 약해진다. 또한, 도 2c 에 나타낸 세공 구조는, 벽 내부에까지 침투하지만, 촉매와의 반응을 촉진할 수 없다.
본 발명에 바람직한 실시 형태인 세공 구조는, 예를 들어 촉매 담체를 구성하고 있는 고비표면적 재료인 알루미나 등의 입경이나 조성을 변화시킴으로써 형성할 수 있고, 허니컴 구조체의 촉매 활성을 높이는 수단으로 하여 유효하다. 예 를 들어, 촉매 담체를 구성하고 있는 상기 각 알루미나의 입경을 변화시키고, 도 1 에 나타낸 바와 같은 세공 직경 분포 곡선을 나타내는 바와 같은 세공 구조로 한 세라믹 허니컴 구조체의 경우, 배기 가스의 정화 특성이 특히 양호하다.
즉, 세라믹 허니컴 구조체는 격벽의 세공 직경 분포 곡선이 도 1 에 나타낸 바와 같은 분포를 나타낼 때, 세공 직경이 0.05 ∼ 150㎛ 인 세공으로 이루어지는 제 1 세공군의 영역과, 세공 직경이 0.006 ∼ 0.01㎛ 인 세공으로 이루어지는 제 2 세공군의 영역으로 2개로 나누었을 경우, 각각의 영역에 피크 (극대치) 를 갖도록 세공 구조로 했을 경우, 배기 가스의 정화 효율을 높일 수 있다.
이와 같이 구성된 세라믹 허니컴 구조체에 있어서, 격벽 (셀 벽) 의 세공 분포를, 특히 제 2 세공군 (0.006 ∼ 0.01㎛) 에 있는 세공에 대해서도, 이 영역에서 피크를 갖도록 했을 경우, 격벽 전체가 고비표면적이 되고, 촉매 금속의 입자도 작게 할 수 있음과 함께, 분산율을 향상시킬 수 있게 된다. 따라서, 배기 가스와 촉매 금속 및/또는 NOx 흡장제와의 접촉률(효율)이 높아져, 배기 가스의 정화 효율을 향상시킬 수 있는 것이다.
이 경우, 격벽의 표면은 비표면적이 커지는 점에서 높은 반응성을 확보할 수 있게 되지만, 이러한 세공 분포를 갖는 세라믹 허니컴 구조체는 각 세공의 구멍 직경이 작은 점에서, 격벽의 두께 방향의 내부에까지 가스를 충분히 침투시키는 것은 어렵고, 격벽 내부에서의 촉매 반응은 잘 일어나지 않게 되는 것을 알 수 있다.
그래서, 본 발명의 바람직한 실시 형태에 있어서는, 상기 제 1 세공군 (0.05 ∼ 150㎛) 의 세공 직경 분포에도 피크가 생길 수 있는 격벽 세공 구조로 했다. 그 결과, 이 격벽은 두께 방향의 깊은 곳까지 가스가 침투하기 쉬워지고, 나아가서는 격벽의 내면에서도 가스의 정화 반응이 일어나, 전체적인 반응성의 향상으로 연결된다.
또한, 본 발명에 있어서, 제 1 세공군에 속하는 세공의 세공 직경 분포는 0.05 ∼ 1.0㎛ 의 영역에서 1 이상의 피크가 존재하도록 구성된다. 이러한 격벽 구조로 하면, 가스가 내부에까지 침투하기 쉬워지는 것을 알 수 있다.
또한, 격벽의 두께는 상기 세공 구조와의 관련에 있어서, 0.05 ∼ 0.35mm 정도, 바람직하게는 0.10 ∼ 0.30mm 정도, 보다 바람직하게는 0.15 ∼ 0.25mm 정도로 한다. 그 이유는, 벽 두께가 0.35mm 를 초과할 때까지는, 배기 가스와의 접촉 면적이 격벽의 내부에까지 침투하기 쉬워, 촉매 성능의 향상을 기대할 수 있기 때문이다. 한편, 격벽의 두께가 0.05mm 미만에서는, 강도가 저하될 우려가 있다.
또한, 상기 세라믹 허니컴 구조체에 있어서, 상기 세공 직경 분포 곡선은 제 1 세공군에 속하는 세공 중 세공 직경이 0.01 ∼ 1.0㎛ 의 범위, 및/또는 제 1, 제 2 세공군에 나타내는 각 피크치 사이의 영역에 대해서는 log 미분 세공 용적의 값이 정수를 나타내어 연속하고 있는 것이 바람직하다. 즉, 도 1 의 적산 세공 용적 (cc/g) 의 그래프 (파선으로 나타낸다) 에 나타낸 바와 같이 이 곡선은 연속적으로 상승하고 있는 것이 바람직하다. 이 상태라면, 자동차에서 배출되는 배기 가스 성분의 분자의 크기 등에 의한 흡착의 용이성에도 불구하고, 폭넓은 가스 종류의 정화를 가능하게 한다고 생각된다.
본 발명의 바람직한 실시 형태의 세라믹 허니컴 구조체는 다수의 관통공 (셀) 이 격벽을 사이에 두고 병렬 배치된 주상 허니컴 구조의 다공질 세라믹 부재 (이하, 간단히 「허니컴 유닛」으로 약기한다) 를 구성 단위로 하여 1개 또는 복수개를 조합하여 형성된다. 즉, 본 발명에 있어서, 간단히 세라믹 허니컴 구조체라고 할 때에는, 허니컴 유닛 복수개를 시일재층을 개재시켜 결속한 것 (이하, 「집합형 허니컴 구조체」라고 한다) 이외에, 전체가 단일의 허니컴 유닛만으로 이루어지는 것 (이하, 「일체형 허니컴 구조체」라고 한다) 의 양쪽을 포함하는 것이다.
상기 집합체형 허니컴 구조체는, 이웃하는 허니컴 유닛 사이를 시일하기 위한 시일재층이 필요하고, 최외층 부분에는 코팅재층을 형성할 수 있다. 그러나, 일체형 허니컴 구조체의 경우, 단일의 허니컴 유닛으로 이루어지기 때문에 적어도 허니컴 유닛 상호간에 개재시키는 상기 시일재층은 필요없다.
도 3a 는 본 발명의 세라믹 허니컴 구조체의 일례인 집합형 허니컴 구조체에 이용되는 다공질 세라믹 부재 (허니컴 유닛 (11)) 의 일례를 나타낸 일부를 생략하여 나타내는 사시도이다. 도 3b 는 도 3a 에 나타낸 허니컴 유닛의 복수개를 조합하여 집합형 허니컴 구조체로 한 배기 가스 정화 장치의 사시도이다. 이 집합형 허니컴 구조체에 있어서, 상기 허니컴 유닛 (11) 은 가스 유로로 이루어지는 다수의 관통공 (셀) (12) 과 격벽 (셀 벽) (13) 을 갖는다. 이 허니컴 유닛 (11) 의 형상은 허니컴 유닛 (11) 끼리를 접합하기 쉬운 형상으로 하는 것이 바람직하고, 관통공에 직교하는 면의 단면 형상이 정사각형이나 직사각형, 육각형, 팬(fan) 형상 등 또는 이들을 적절히 조합한 것을 생각할 수 있다.
도 3b 에 나타낸 바와 같이, 집합형 허니컴 구조체 (10) 는, 복수개의 허니컴 유닛 (11) 이 시일재층 (14) 을 개재하여 복수개 결속시켜 블록 형상으로 한 것으로서, 바람직하게는 이 블록의 외주 주위에는 배기 가스의 누설을 방지하거나, 강도를 확보하기 위한 코팅재층 (16) 을 형성해도 된다.
이 집합형 허니컴 구조체의 특징 중 하나는 열충격이나 진동에 대한 강도가 높다는 점에 있다. 그 이유는 허니컴 구조체에 급격한 온도 변화 등에 의해 온도 분포가 생기는 경우에도, 이 구조체 내에서의 온도차를 작게 억제할 수 있다는 점 및 열충격을 상기 시일재층 (14) 에 의해 완화시킬 수 있기 때문으로 추찰된다. 특히, 상기 시일재층 (14) 은 예를 들어 허니컴 유닛이 열응력 등에 의해 크랙을 생기게 한 경우에 있어서도, 그 유닛에 발생된 크랙이 허니컴 구조체 전체에 진전되는 것을 방지하는데도 유효하고, 또한, 허니컴 구조체 본체 (프레임) 의 일부로서의 역할도 담당함으로써, 허니컴 구조체로서의 형상을 유지하고, 촉매 담체로서의 기능을 잃지 않도록 하는 데에 유효하다고 생각된다.
집합형 허니컴 구조체를 구성하는 상기 허니컴 유닛 (11) 은 다공질 세라믹제로서, 관통공 (12) 과 직교하는 단면의 면적 (유닛 자체의 크기, 이하, 간단히 「단면적」이라 한다) 의 크기가 5 ∼ 50㎠ 정도인 것이 바람직하다. 그 이유는, 이 단면적이 5㎠ 정도 미만에서는 복수의 허니컴 유닛을 접합하는 시일재층 (14) 의 단면적이 커지고, 압력 손실이 커지는 것 이외에, 촉매를 담지하는 비표면적이 상대적으로 작아지기 때문에 촉매 성분을 고효율 분산시킬 수 없게 된다. 한편, 단면적이 50㎠ 정도를 초과하면, 이 허니컴 유닛의 크기가 지나치게 커져, 각각의 허니컴 유닛에 발생하는 열응력을 충분히 억제할 수 없게 된다. 또한, 이 단면적은 6 ∼ 40㎠ 정도가 바람직하고, 나아가 8 ∼ 30㎠ 정도의 크기로 하는 것이 보다 바람직하다.
또한, 이 허니컴 유닛 (11) 은 단면적의 크기를 상기의 범위로 하면, 비표면적을 크게 유지하면서 압력 손실을 적게 억제할 수 있는 것 이외에 열충격 (열응력) 에 대하여 충분한 강도를 나타내고, 또한, 높은 내진동성이나 내구성을 나타내기 때문에 실용적이다.
여기서, 상기 허니컴 유닛의 단면적은, 허니컴 구조체가 단면적이 다른 복수의 허니컴 유닛을 조합할 때에는 허니컴 구조체를 구성하는 기본 유닛으로 되어 있는 허니컴 유닛의 단면적을 의미하고, 통상, 단면적이 최대인 것을 의미한다. 또한, 허니컴 구조체의 단면적에 대한 허니컴 유닛의 총단면적이 차지하는 비율은 85% 정도 이상으로 하는 것이 바람직하고, 90% 이상이 보다 바람직하다. 그 이유는 이 허니컴 유닛의 비율이 85% 미만에서는 총단면적에 차지하는 허니컴 유닛의 비율이 감소되기 때문에, 촉매를 담지하는 비표면적이 상대적으로 작아지고, 시일재층 (14) 의 단면적이 상대적으로 커짐으로써 그 분만큼 압력 손실이 커지기 때문이다. 또한, 이 비율은 90% 이상으로 하면, 압력 손실을 보다 적게 할 수 있다.
세라믹 허니컴 구조체에 있어서, 허니컴 유닛 본체를 구성하는 재료는 고비표면적을 갖는 세라믹 입자를 사용하는 것이 바람직하다.
예를 들어 알루미나, 실리카, 지르코니아, 티타니아, 산화세륨, 물라이트 (mullite), 제오라이트에서 선택되는 1종 또는 2종 이상의 입자를 사용할 수 있지만, 이 중에서는 알루미나의 사용이 바람직하다.
이러한 허니컴 유닛의 기공률은 20 ∼ 80% 정도, 바람직하게는 50 ∼ 70% 정도로 한다. 그 이유는, 기공률이 20% 정도 미만이면, 벽 내부까지 가스를 충분히 침투시킬 수 없는 경우가 있고, 한편, 기공률이 80% 정도를 초과하면, 세라믹 부재의 강도가 저하되어, 용이하게 파괴되는 경우가 있다.
또한, 기공률은 예를 들어 수은 압입법, 아르키메데스법 및 주사형 전자 현미경 (SEM) 에 의한 측정 등, 종래 공지의 방법에 의해 측정할 수 있다.
그런데, 상기한 세라믹 허니컴 구조체는 제 1 형태의 무기 재료 (비표면적이 큰 무기 재료) 에 제 2 형태의 무기 재료와 같은 이종 재료를 혼합함으로써 제조한 다공질 허니컴 세라믹 부재 (허니컴 유닛) 로 구성할 수 있다 (이하, 이를 「고비표면적 허니컴 유닛」이라고 한다).
이 고비표면적 허니컴 유닛은 적어도 세라믹 입자와 무기 바인더를 함유하고 있는 것, 또한, 세라믹 입자와 무기 보강재와 무기 바인더를 함유하고 있는 것이 바람직하다.
이러한 허니컴 유닛은 무기입자를 무기 바인더로 결합 (접착)시킬 수 있다. 이 경우에 있어서, 무기입자를 비표면적의 큰 입자로 구성하면, 이 허니컴 유닛은, 높은 단위 부피 당의 비표면적이 커지고, 또한, 허니컴 형상을 안정적으로 유지하기 위한 강도를 갖는 허니컴 구조체를 얻는데도 유효해진다.
또한, 이 허니컴 유닛은 무기 보강재를 첨가함으로써, 보다 높은 강도가 부 여되어, 단위 부피 당의 고표면적을 갖는 허니컴 구조체를 얻을 수 있게 된다.
따라서, 이러한 허니컴 유닛으로 이루어지는 허니컴 구조체는 촉매 성분을 구조체 전체에 널리 분산시켜 담지할 수 있게 되기 때문에, 높은 비표면적을 확보할 수 있다. 또한, 이 유닛에 대해서는, 예를 들어 세라믹 입자가 충분히 소결되어 있지 않는 경우에도, 열충격이나 진동이 가해지는 상황 하 (예를 들어 차량 탑재로서 사용되는 경우) 에 있어서의 형상의 유지가 가능하다.
고비표면적 허니컴 유닛의 제작에 해당하여 이용되는 상기 제 1 형태의 무기 재료로는 소정 애스펙트비 (긴 변/짧은 변) 를 갖는 무기 재료 (고비표면적입자) 이며, 제 2 형태의 무기 재료와는 상기 소정 애스펙트비보다도 큰 애스펙트비를 갖는 무기 재료를 사용할 수 있다. 이러한 재료 배합에 관련된 허니컴 유닛은 애스펙트비가 큰 제 2 형태의 무기 재료를 첨가함으로써, 허니컴 유닛의 강도를 향상시킬 수 있다. 여기서, 제 2 형태의 무기 재료는 애스펙트비가 2 ∼ 1000 인 것, 바람직하게는 5 ∼ 800 인 것, 보다 바람직하게는 10 ∼ 500 인 것이 좋다. 그 이유는, 이 제 2 형태의 무기 재료는 애스펙트비가 2 미만인 경우에는 허니컴 구조체의 강도 향상에 대한 기여가 적고, 한편, 1000 을 초과하는 경우에는 성형시에 성형용 금형에 막힘을 일으키기 쉽고, 성형성이 나빠지는 경우가 있다. 또한, 압출 성형 등의 성형시에 무기 재료가 꺾여, 길이에 편차가 생겨 허니컴 구조체의 강도 향상에 대한 기여가 작아지기 때문이다. 또한, 이 제 2 형태의 무기 재료의 애스펙트비에 분포가 있을 때에는, 그 평균치를 사용하여 판단하면 된다.
본 발명에 있어서는, 상기 제 1 형태의 무기 재료를 고비표면적을 갖는 세라 믹 입자로 하고, 제 2 형태의 무기 재료를 무기 섬유로 한 것이어도 된다. 이러한 구성으로 하면, 무기 섬유에 의해 허니컴 유닛의 강도가 향상되기 때문이다.
또한, 제 1 형태의 무기 재료를 소정의 입경을 갖는 세라믹 입자로 하고, 제 2 형태의 무기 재료를 상기 제 1 형태의 무기 재료의 입경보다도 큰 입경을 갖는 세라믹 입자로 해도 된다. 이러한 구성으로 하면, 입경이 큰 세라믹 입자에 의해 허니컴 유닛의 강도가 향상된다.
상기 제 2 형태의 무기 재료는 제 1 형태의 무기 재료의 입경의 5배 이상의 입경인 것이 바람직하고, 제 1 형태의 무기 재료의 입경의 10 ∼ 30배의 입경인 것이 보다 바람직하다. 구체적으로는, 이 제 2 형태의 무기 재료인 세라믹 입자는 입경이 10 ∼ 60㎛ 정도인 것이 바람직하고, 20 ∼ 50㎛ 정도인 것이 보다 바람직하다. 그 이유는, 입경이 10㎛ 미만에서는 허니컴 구조체의 강도를 충분히 높일 수 없고, 한편, 60㎛ 을 초과하면, 성형시에 성형용 금형에 막힘 등을 일으키기 쉬워, 성형성이 나빠지는 경우가 있기 때문이다.
여기서, 제 1 형태의 무기 재료의 입경이나 제 2 형태의 무기 재료의 입경에 분포가 있을 때에는 그 평균치를 사용하면 된다. 또한, 제 2 형태의 무기 재료의 세라믹 입자는 상기한 제 1 형태의 무기 재료의 세라믹 입자와 다른 종류인 것을 선택해도 되고, 제 2 형태의 무기 재료의 세라믹 입자와 동종이며 형상이 다른 것 (입자 형상) 이나 물성이 다른 것 (예를 들어 결정형이 다르고 융해 온도가 다른 것 등) 을 선택해도 된다.
또한, 제 2 형태의 무기 재료가 세라믹 입자일 경우에는, 이 재료의 입경은 크기에 의해 허니컴 구조체의 강도를 높일 수 있기 때문에, 제 1 형태의 무기 재료와 애스펙트비가 동일해도 된다.
제 1 형태의 무기 재료로서, 세라믹 입자가 이용되는 경우, 이 세라믹 입자로서는, 비표면적이 큰 것이 바람직하고, 예를 들어 알루미나, 실리카, 지르코니아, 티타니아, 산화세륨 및 물라이트에서 선택되는 1종 또는 2종 이상의 입자를 사용할 수 있지만, 이들 중에서는 알루미나가 특히 바람직하다.
또한, 제 2 형태의 무기 재료로서는, 특별히 한정되지 않지만, 예를 들어 질화 알루미늄, 질화 규소, 질화 붕소, 질화 티탄 등의 질화물 세라믹, 탄화 규소, 탄화 지르코늄, 탄화 티탄, 탄화 탄탈, 탄화 텅스텐 등의 탄화물 세라믹, 알루미나, 지르코니아, 코디어라이트, 물라이트, 지르코니아 등의 산화물 세라믹을 사용할 수 있다.
제 1, 제 2 형태의 무기 재료로서, 무기 섬유가 이용되는 경우, 그 무기 섬유로서는, 예를 들어 알루미나, 실리카, 실리카-알루미나, 유리, 티탄산 칼륨, 붕산 알루미늄 등으로 이루어지는 세라믹 섬유나, 예를 들어 알루미나, 실리카, 지르코니아, 티타니아, 산화세륨, 물라이트, 탄화 규소 등으로 이루어지는 위스커(whisker)를 사용할 수 있다. 이들은 단독으로 이용되어도 되고, 2종류 이상을 병용해도 된다. 상기 무기 섬유의 중에서는 알루미나 섬유가 바람직하다.
제 1 형태의 무기 재료 (세라믹 입자 등) 의 배합량은 30 ∼ 97mass% 정도, 바람직하게는 30 ∼ 90mass%、보다 바람직하게는 40 ∼ 80mass%、더욱 바람직하게는 50 ∼ 75mass% 가 된다. 그 이유는, 제 1 형태의 배합량이 30mass% 보 다 적으면, 허니컴 구조체로서의 비표면적이 작아지고, 촉매 성분을 담지할 때에 촉매 성분을 대부분 분산시킬 수 없게 된다. 한편, 97mass% 를 초과하면, 강도 향상에 기여하는 제 2 형태의 무기 재료 (무기 섬유 등) 의 배합량이 적어지기 때문에, 허니컴 구조체의 강도가 저하된다고 생각된다.
제 2 형태의 무기 재료 (무기 섬유, 위스커 등) 의 배합량은 3 ∼ 70mass% 정도, 바람직하게는 3 ∼ 50mass%、보다 바람직하게는 5 ∼ 40mass%、더욱 바람직하게는 8 ∼ 30mass% 가 좋다. 그 이유는, 제 2 형태의 무기 재료의 함유량이 3mass% 미만에서는 허니컴 구조체의 강도가 저하되고, 한편, 70mass% 을 초과하면, 비표면적의 향상에 기여하는 제 1 형태의 형태의 무기 재료 (세라믹 입자 등) 의 배합량이 상대적으로 적어지기 때문에, 허니컴 구조체로서의 비표면적이 작아지고, 촉매 성분을 많이 분산시킬 수 없게 되는 것으로 생각된다.
허니컴 유닛의 제조에 있어서는 무기 바인더를 사용할 수 있다. 이 무기 바인더는, 허니컴 유닛의 소성 온도를 낮게 해도 높은 강도를 얻을 수 있기 때문에 유효하다. 그 무기 바인더로서는, 예를 들어 무기 졸이나 점토계 바인더 등을 사용할 수 있다. 이들 중, 무기 졸로서는, 예를 들어 알루미나 졸, 실리카 졸, 티타니아 졸 및 물 유리(water glass) 등에서 선택되는 1종 또는 2종 이상의 무기 졸을 사용할 수 있다. 점토계 바인더로서는, 예를 들어 백토(clay), 카올린(kaoline), 몬모릴로나이트(montmorillonite), 복쇄구조형 점토 (세피오라이트(sepiolite), 애타풀자이트(attapulgite)) 등에서 선택되는 1종 또는 2종 이상의 점토계 바인더 등을 사용할 수 있다.
이 무기 바인더의 배합량은 제 1 형태의 무기 재료를 제 2 형태의 무기 재료를 합친 양을 100질량부에 대하여, 고형분으로 하여, 50질량부 이하, 바람직하게는 5 ∼ 50질량부, 보다 바람직하게는 10 ∼ 40질량부, 더욱 바람직하게는 15 ∼ 35질량부가 좋다. 그 이유는 무기 바인더의 함유량이 50질량부를 초과하면 성형성(formability)이 악화되는 것으로 생각된다.
상기 허니컴 유닛에 형성된 관통공의 수는 단위 단면적 당 15.5 ∼ 186개/㎠ (100 ∼ 1200cpi) 정도로 하는 것이 바람직하고, 46.5 ∼ 170.5개/㎠ (300 ∼ 1100cpsi) 이 보다 바람직하고, 62.0 ∼ 155개/㎠ (400 ∼ 1000cpsi) 이 더욱 바람직하다. 그 이유는, 관통공의 수가 15.5개/㎠ 미만에서는, 다공질 허니컴 유닛 내부의 배기 가스와 접촉하는 벽의 면적이 작아지고, 한편, 186개/㎠ 을 초과하면, 압력 손실이 높아져, 허니컴 유닛의 제작이 곤란해지기 때문이라고 생각된다
이 허니컴 유닛에 형성된 관통공의 단면 형상은 대략 삼각형이나 대략 육각형으로 하는 것이 바람직하다. 그 이유는, 압력 손실이나 배기의 정화 성능 등을 저하시키지 않고 허니컴 유닛의 강도를 높여 세라믹 허니컴 구조체의 강도 (예를 들어 아이소스태틱(isostatic) 강도 등) 를 높일 수 있는 것으로 생각되기 때문이다. 예를 들어 이 관통공의 단면 형상이 삼각형인 경우, 그 단면삼각형의 관통공 (12) 을 상하로 서로 다르게 대향시킨 것, 또는 단면 삼각형의 관통공 4개를 각각의 삼각형의 정점을 대향시켜 사각형을 형성하도록 배치한다. 또한, 단면 육각형의 관통공을 형성해도 된다.
또한, 본 발명에 있어서 바람직하게 이용되는 상기 세라믹 허니컴 구조체는 상기 허니컴 유닛의 격벽 표면 또는 이 격벽을 구성하고 있는 각 세라믹 입자 각각의 표면에 촉매 성분을 담지하기 위한 담체로서 이용되면 유효하다. 이 경우, 이 세라믹 허니컴 구조체는 허니컴 촉매가 된다. 이 경우에 있어서, 구조체에 담지되는 촉매 성분으로서는, 예를 들어 귀금속, 알칼리 금속 화합물, 알칼리 토금속 화합물, 산화물 등을 사용할 수 있다. 그 귀금속으로서는, 예를 들어 백금, 팔라듐, 로듐에서 선택되는 1종 또는 2종 이상을 사용하고, 알칼리금속 화합물로서는 예를 들어 칼륨, 나트륨 등에서 선택되는 1종 또는 2종 이상의 화합물이 사용되고, 알칼리 토금속 화합물로서는, 예를 들어 바륨 등의 화합물이 사용되고, 산화물로서는, 페로브스카이트(perovskite)(LaO.75K0.25MnO3 등), CeO2 등이 사용된다.
이러한 허니컴 촉매는 예를 들어 자동차의 배기 가스 정화용의 소위 삼원 촉매나 NOx 흡장 촉매로서 사용할 수 있다. 또한, 구조체에 대한 촉매 성분의 담지는, 세라믹 허니컴 구조체를 제작한 후에 담지시켜도 되고, 원료의 세라믹 입자의 단계에서 담지시켜도 된다. 촉매 성분의 담지 방법은 예를 들어 함침법 등을 적용할 수 있다.
이하에, 상기 서술한 본 발명의 세라믹 허니컴 구조체의 제조 방법의 일례를 설명한다. 우선, 상기한 원료 (제 1 형태의 무기 재료, 제 2 형태의 무기 재료 및 무기 바인더 등) 를 주성분으로 하는 원료 페이스트를 이용하여 압출 성형하고, 허니컴 유닛이 되는 생 성형체를 제작한다. 이 원료 페이스트에는, 이들 이외에 유기 바인더, 분산매(dispersion medium) 및 성형 보조제를 성형성에 맞추어 적 절히 첨가해도 된다. 유기 바인더로서는, 예를 들어 메틸셀룰로오스, 카르복시메틸셀룰로오스, 히드록시에틸셀룰로오스, 폴리에틸렌글리콜, 페놀 수지 및 에폭시 수지에서 선택되는 1종 또는 2종 이상의 유기 바인더를 사용할 수 있다. 이 유기 바인더의 배합량은 제 1 형태의 무기 재료, 제 2 형태의 무기 재료 및 무기 바인더의 합계 100중량부에 대하여, 1 ∼ 10mass% 정도가 바람직하다. 분산매로서는, 예를 들어 물, 유기용매 (벤젠 등) 및 알코올 (메탄올 등) 등을 사용할 수 있다. 성형 보조제로서는, 예를 들어 에틸렌글리콜, 덱스트린, 지방산, 지방산 비누 및 폴리비닐알코올 등을 사용할 수 있다.
원료 페이스트는, 예를 들어 믹서나 애트라이터 등을 이용하여 혼합해도 되고, 니더(kneader) 등으로 충분히 혼합시키는 것이 바람직하다. 원료 페이스트의 성형 방법은 예를 들어 압출 성형 등에 의해 관통공을 갖는 허니컴 형상으로 일체로 성형하는 것이 바람직하다.
다음으로 얻어진 생(生) 성형체를 건조시킨다. 이 건조에 이용되는 건조기는 예를 들어 마이크로파 건조기, 열풍 건조기, 유전 건조기, 감압 건조기, 진공 건조기 및 동결 건조기 등을 사용할 수 있다. 이렇게하여 얻어진 건조 성형체는, 다음으로, 탈지하는 것이 바람직하다. 탈지하는 조건은, 성형체에 함유되는 유기물의 종류나 양에 의해 적절히 선택하면 되는데, 대략 400℃, 2시간의 조건으로 하는 것이 바람직하다. 다음으로, 얻어지는 상기 건조 성형체는 계속해서 승온하여 소성하는 것이 바람직하다. 그 소성 조건으로는 예를 들어 600 ∼ 1200℃ 정도의 온도로 가열하는 것이 바람직하다.
이 소성에 있어서, 산화물을 600 ∼ 1200℃ 의 온도로 가열하는 이유는, 소성 온도가 600℃ 미만에서는 세라믹 입자 등의 소결이 진행되지 않아 허니컴 구조체로서의 강도가 낮아지고, 한편, 1200℃ 를 초과하면 세라믹 입자 등의 소결이 지나치게 진행되어 단위 체적 당의 비표면적이 작아져, 담지시키는 촉매 성분을 충분히 고분산시킬 수 없어지기 때문이다. 또한, 이 소성 온도는, 질화물이나 탄화물 세라믹스의 경우에는 1000 ∼ 2200℃ 정도로 가열하는 것이 바람직하다.
이들 공정을 거쳐 복수의 관통공을 갖는 다공질 세라믹제의 소성 허니컴 유닛을 얻을 수 있다.
이렇게 하여 얻어진 허니컴 유닛의 세공 직경 분포는 재료의 입경과 입도분포, 슬러리의 첨가 상태에 따라서 조정한다.
다음으로 얻어진 다공질 세라믹제의 허니컴 유닛의 표면에는, 시일재층이 되는 시일재 페이스트를 도포한 후, 이웃하는 것끼리를 순차적으로 접합-접착시키고, 그 후 건조시키고, 고정화시켜, 소정 크기의 허니컴 유닛의 접합체를 제작한다. 이 경우에 있어서, 각 유닛을 접합하기 위해 사용하는 시일재로서는, 예를 들어 무기 바인더에 세라믹 입자를 섞은 것이나, 무기 바인더에 무기 섬유를 섞은 것이나, 무기 바인더에 세라믹 입자 및 무기 섬유를 섞은 것 등을 사용할 수 있다.
또한, 이들 시일재는, 유기 바인더를 첨가한 것이어도 된다. 그 유기 바인더로서는, 예를 들어 폴리비닐알코올, 메틸셀룰로오스, 에틸셀룰로오스 및 카르복시메틸셀룰로오스 등에서 선택되는 1종 또는 2종 이상을 사용할 수 있다. 이 시일재에 사용되는 상기 무기 바인더로서는 예를 들어 실리카 졸, 알루미나 졸 등 을 사용할 수 있다. 이들은 단독으로 이용해도 되고, 2종 이상을 병용해도 된다. 이들 무기 바인더 중에서는 실리카 졸이 바람직하다. 또한, 이 시일재에 이용되는 상기 무기 섬유로서는, 예를 들어 실리카-알루미나, 물라이트, 알루미나, 실리카 등의 세라믹 섬유 등을 사용할 수 있다. 이들은 단독으로 사용해도 되고, 2종 이상을 병용해도 된다. 이들 무기 섬유 중에서는 실리카-알루미나 섬유가 바람직하다. 또한, 이 시일재에 이용되는 상기 무기입자로서는, 예를 들어 탄화물, 질화물 등을 사용할 수 있고, 구체적으로는, 탄화 규소, 질화 규소, 질화 붕소 등으로 이루어지는 무기분말 또는 위스커 등을 사용할 수 있다. 이들은 단독으로 사용해도 되고, 2종 이상을 병용해도 된다. 이들 무기입자 중에서는 열전도성이 우수한 탄화 규소가 바람직하다.
허니컴 유닛의 상호 간에 개재시키는 상기 시일재의 층 (14) 은 치밀질이거나 또는 다공질이어도 되고, 내부로의 배기 가스의 유입이 가능하게 되는 것이 좋지만, 집합형 허니컴 구조체의 외주에 형성되는 시일재층 (코팅재층) (16) 은, 치밀체로 이루어지는 것이 바람직하다. 그 이유는, 시일재층 (16) 인 경우, 본 발명의 집합형 허니컴 구조체를 내연기관의 배기 통로에 설치했을 때, 이 허니컴 구조체의 외주로부터 배기 가스가 새어나가는 것을 방지할 필요가 있기 때문이다.
또한, 인접 배치되는 허니컴 유닛의 상호간에 삽입되어, 이들을 접합하고, 접착시키기 위해 사용할 수 있는 시일재층 (14) 은 두께가 0.5 ∼ 2mm 정도인 것이 바람직하다. 이 시일재층 (14) 의 두께가 0.5mm 미만에서는 충분한 접착 강도를 얻을 수 없기 때문이다. 또한, 이 시일재층 (14) 은 촉매 담체로서 기능하 지 않는 부분이기 때문에, 그 두께가 2mm 를 초과하면, 세라믹 허니컴 구조체의 단위 체적 당의 비표면적이 상대적으로 저하되고, 촉매 성분의 분산 효율이 저하된다. 또한, 이 시일재층 (14) 의 두께가 2mm 를 초과하면, 압력 손실이 커진다. 또한, 접합하는 허니컴 유닛의 수는, 허니컴 촉매로서 사용하는 허니컴 구조체의 크기에 맞추어 적절히 정하면 된다. 또한, 허니컴 유닛을 시일재에 의해 접합한 접합체는 세라믹 허니컴 구조체의 크기에 맞추어, 적절히 절단하고, 연마 등을 실시하여 제품으로 한다.
세라믹 허니컴 구조체의 외주면 (측면) 으로는, 코팅재를 도포하여 건조 - 고화시켜 얻어진 코팅재층, 즉 시일재층 (16) 을 형성할 수 있다. 이 시일재층 (16) 은, 구조체의 외주면의 보호와 강도의 향상을 도모한 후에 유효하게 기능한다. 그 코팅재는 상기한 시일재층 (14) 과 동일한 재료이거나 또한, 다른 재료이어도 좋다. 이들 배합 비율은 동일하거나 또한, 다른 배합으로 해도 된다. 이 코팅재층 (16) 의 두께는 0.1 ∼ 2mm 정도로 하는 것이 바람직하다. 그 이유는, 0.1mm 미만에서는, 외주면의 보호, 구조체 강도의 상승을 도모할 수 없고, 한편, 2mm 를 초과하면, 허니컴 구조체로서의 단위 부피 당의 비표면적이 상대적으로 저하되어, 촉매 성분을 담지했을 때, 충분히 분산될 수 없게 된다.
복수의 허니컴 유닛의 조합으로 이루어지는 집합형 허니컴 구조체는 시일재층 (14) 을 개재시켜 접합한 후 (단, 시일재층 (코팅재층 (16)) 을 형성한 경우에는 그 시일재층 (16) 을 형성한 후) 에, 하소(calcine)하는 것이 바람직하다. 이러한 처리를 실시하면, 시일재, 코팅재에 유기 바인더가 함유되어 있는 경우, 탈 지 제거할 수 있기 때문이다. 하소의 조건은 유기물의 종류나 양에 의해 적절히 정하는 것이 좋지만, 대략 700℃ 로 2시간 정도가 바람직하다. 하소하여 얻어진 세라믹 허니컴 구조체는 사용할 때, 이 세라믹 허니컴 구조체 내에 함유되어 있는 유기 바인더가 연소하여, 오염된 배기 가스를 방출하는 일이 없다.
여기서, 세라믹 허니컴 구조체의 일례로서, 정사각형 단면을 갖는 직사각형 다공질 허니컴 유닛 (11) 을 복수개 접합하여 원기둥 형상으로 한 집합형 허니컴 구조체 (10) 의 개념도를 도 3b 에 나타낸다. 이 집합형 허니컴 구조체 (10) 는 복수개의 허니컴 유닛 (11) 을 시일재층 (14) 을 개재시켜 접합하고, 절삭에 의해 외형을 구비하여 원기둥 형상으로 한 후, 그 외주 부분, 즉 관통공 (12) 이 개구하고 있는 않은 외주면에 시일재 (코팅재) 를 도포하고, 시일재층 (16) 을 형성하여 이루어지는 것이다. 또한, 예를 들어 단면이 팬 형상이나 단면이 정사각형의 허니컴 유닛 (11) 을 성형하고, 이들을 접합하고, 미리 원주 등의 세라믹 허니컴 구조체가 되도록 하고, 절삭 공정을 생략해도 된다.
도 4 는, 본 발명의 세라믹 허니컴 구조체의 다른 예인 일체형 허니컴 구조체를 모식적으로 나타낸 사시도이다. 이 도면에 나타낸 바와 같이, 일체형 허니컴 구조체 (20) 는, 다수의 관통공 (21) 이 격벽 (23) 을 사이에 두고 길이 방향으로 병렬 배치된 주상(pillar-shaped)의 블록으로 되어 있는 것이다.
상기 예에 나타내는 일체형 허니컴 구조체에서는, 블록이 소결에 의해 제조된 일체 구조인 것 이외는, 상기 집합형 허니컴 구조체 (10) 와 동일하게 구성되어 있다.
또한, 상기 블록 (25) 의 크기는, 사용하는 내연기관의 배기량, 배기 통로의 크기 등을 고려하여 적절히 결정된다. 또한, 그 형상은 주상이면 되고, 예를 들어 원기둥 형상, 타원주상, 각 기둥상 등의 임의인 주상인 것을 사용할 수 있다.
이하에, 여러 조건으로 제작한 세라믹 허니컴 구조체 (본 발명 실시예, 비교예) 에 관하여 설명하지만, 본 발명은 이들 실시예에 나타내는 것에만 한정되는 것은 아니다.
이 시험은, 세공 직경, 세공 분포를 변화시킨 섬유 강화 알루미나제의 허니컴 유닛을 제작하고, 그 표면 (격벽 표면) 에 백금 함유 알루미나로 이루어지는 촉매 코트층을 형성했을 때의 작용 효과를 확인하기 위해서 실시한 것이다. 실시예 1 ∼ 7, 비교예 1 ∼ 3 의 상세한 설명에 대해서 표 1 에 나타낸다. 또한, 허니컴 유닛의 제조법은 다음과 같다.
(1) 우선, γ알루미나 입자 (1차 입자와 2차 입자를 표 1 에 기재한 배합으로 한 것, 다만, 평균 입경은 2㎛) 를 40mass%、실리카-알루미나 섬유 (평균 섬유직경 10㎛ , 평균 섬유 길이 100㎛ , 애스펙트비 10) 를 10mass%、실리카 졸 (고체농도 30mass%)을 50mass% 을 혼합하고, 얻어진 혼합물 100중량부에 대하여, 유기 바인더로 하여 메틸셀룰로오스를 6중량부, 가소제 및 윤활제를 소량 첨가하여 더욱 혼합 - 혼련하여 혼합 조성물을 얻었다. 다음으로, 이 혼합 조성물을 압출 성형기에 의해 압출 성형하고, 도 3a 에 나타낸 바와 같은 생 성형체를 얻었다.
(2) 다음으로, 마이크로파건조기 및 열풍 건조기를 이용하여, 그 생 성형체를 충분히 건조시키고, 또한, 400℃ 로 2시간 유지하여 탈지하고, 그 후에 800℃ 의 온도에 2시간 유지하는 소성함으로써, 각 기둥상 (34.3mm × 34.3mm × 150mm), 셀 밀도가 93개/㎠ (600cpsi), 셀 형상이 사각형 (정사각형) 의 다공질의 섬유 강화 알루미나제의 허니컴 유닛 (11) 을 얻었다.
(3) 다음으로, γ알루미나 입자 29mass%、실리카-알루미나 섬유 (평균 섬유직경 10㎛ , 평균 섬유 길이 100㎛) 을 7mass%、실리카 졸 (국체농도 30mass%)을 4mass%、카르복시메틸셀룰로오스 5mass% 및 물 25mass% 를 혼합하여 내열성의 시일재용 페이스트를 조정했다. 이 시일재용 페이스트를 상기 허니컴 유닛 (11) 의 측면에 도포하여 서로 결합했다. 즉, 상기 허니컴 유닛 (11) 의 외면 (13) 에 두께가 1mm 가 되도록 시일재 페이스트를 도포하여 시일재층 (14) 을 형성하고, 이 시일재층 (14) 을 통해 복수개의 허니컴 유닛 (11) 끼리를 접합한 것이다. 이렇게 하여 집합형 허니컴 유닛인 접합체를 제작하고, 그 접합체를 정면이 대략 점대칭으로 되도록 다이아몬드 커터를 이용하여 원기둥 형상으로 절단하고, 관통공이 없는 측면부분의 외측 표면에 상기 시일재 페이스트를 0.5mm 두께가 되도록 도포하고, 외측 표면에 코팅층으로 이루어지는 시일재층 (16) 을 형성했다.
(4) 그 후에 얻어지는 접합체를 120℃ 로 건조시켜, 700℃ 에서 2시간 유지하여 시일재층 (14) 및 시일재층 (코팅재층) (16) 의 탈지를 실시하고, 원기둥 형상 (직경 143.8mm¢ × 높이 150mm) 의 집합형 허니컴 구조체 (10) 를 얻었다. 그들을 질산 백금 용액에 함침시켜, 집합형 허니컴 구조체 (10) 의 단위 체적 당의 백금 중량이 2g/L 이 되도록 조절하여 촉매 성분을 담지시킨 후, 600℃ 에서 1시간 유지하여 허니컴 촉매를 얻었다.
(5) 이들 허니컴 촉매의 샘플 각각에 대해서, 그들의 세공 직경을 수은 압입법 (JISR 1655:2003 에 준한다) 에 의해 측정했다.
(6) 얻어진 샘플을 시마즈제작소 제조, 마이크로메리틱스 자동 포로시메타 (micromeritics automatic porosimeter) 오토포어 III 9405 를 이용하여 세공 직경의 측정을 실시했다. 그 때의 측정 범위는, 0.006 ∼ 500㎛ 로 하고, 100㎛ ∼ 500㎛ 는 0.1psia 의 압력별로 측정하고, 0.006㎛ ∼ 100㎛ 는 0.25psia 의 압력별로 측정했다. 그 결과, 세공 직경 분포에는 몇가지의 극값 (피크) 이 생겼다. 그 수치를 표 2 에 나타낸다.
(7) 다음으로, 표 2 에 나타내는 라이트 오프 (light-off) 온도를 측정했다. 이 라이트 오프 온도는, 배기 가스에 함유되는 특정한 성분의 농도가 촉매에 의해 감소된 비율을 정화율로 했을 때, 정화율이 50% 를 나타낼 때의 반응 온도를 말한다. 그리고, 이 라이트 오프 온도가 낮을 경우, 정화에 필요한 에너지가 감소되는 것을 의미하고 있다. 즉, 라이트 오프 온도의 낮은 허니컴 촉매는 촉매 성능이 높다고 할 수 있다. 그래서, 이 라이트 오프 온도를 허니컴 촉매의 촉매 성능을 나타내는 지표로 하여 사용하는 것이다.
(8) 여기서, 라이트 오프 온도의 측정 방법에 관하여 설명한다. 이 측정은 도 5 에 나타낸 촉매 반응 장치 (30) 를 이용하여 실시할 수 있다. 촉매 반응 장치 (30) 는 공기와 질소로 이루어지는 희석 가스 공급부 (31) 와, 이 희석 가스를 허니컴 구조체까지 유통시키는 유통 경로 (32) 와, 희석 가스에 가습하는 가습기 (33) 와, 희석 가스를 가열하는 히터 (34) 와, 가열된 희석 가스에 배기 가스 성분을 혼합하여 반응 가스로 하여 조정하는 가스 혼합기 (35) 와, 허니컴 구조체를 기밀상태에 유지하는 샘플 홀더 (36) 와, 세라믹 허니컴 구조체에 접촉하기 전의 반응 가스를 샘플링하는 가스 샘플러 (37) 와, 세라믹 허니컴 구조체에 접촉한 후의 반응 가스를 샘플링하는 가스 샘플러 (38) 와, 반응 가스에 함유되는 특정한 가스 성분의 농도를 분석하는 가스 분석계 (39) 로 구성되어 있다.
(9) 이하에 라이트 오프 온도의 측정 순서를 설명한다. 우선, 허니컴 구조체를 샘플 홀더 (36) 에 세트하여 희석 가스 공급부 (31) 로부터 공기와 질소를 유통경로 (32) 에 소정 유량으로 유통시킨다. 다음으로 가습기 (33) 에 의해 희석 가스를 가습하여, 히터 (34) 에 의해 그 희석 가스의 온도를 조정한다. 계속해서, 유통하고 있는 희석 가스에 가스 혼합기 (35) 의 상류로부터 배기 가스 성분을 주입하고, 가스 혼합기 (35) 로 혼합하여, 소정 농도의 반응 가스를 조정한다. 그리고, 조정한 반응 가스를 허니컴 촉매에 접촉시켜, 반응 가스의 정화를 실시했다. 이 때, 히터 (34) 의 온도를 적절히 변경하고, 각 히터 온도일 때의 허니컴 촉매 내부의 반응 가스의 온도를 도시하지 않은 열전대로 측정하고, 가스 샘플러 (37, 38) 에 의해 샘플링된 반응 가스의 농도를 가스 분석계 (39) 에 의해 측정했다.
이 라이트 오프 온도의 측정으로는, 실시예, 비교예의 허니컴 구조체로서 가로 세로 34.3mm × 150mm 의 형상인 것을 사용했다. 촉매 반응은 반응 가스 유속 (131) (1/min), 배기 가스 성분은 산소, 일산화탄소, 이산화황, 탄화수소, 일산화질소, 수증기 및 질소로 하여 반응 가스 중의 산소 농도 13%, 일산화탄소 농 도 300ppm, 이산화황 농도 8ppm, 탄소량을 기초로 탄화수소 농도 200ppm-C, 일산화질소 농도 160ppm, 약간의 가습량을 부가한 조건으로 한다. 또한, 반응 온도는 히터 (34) 의 온도를 10℃ 피치로 변화시키고, 50 ∼ 400℃ 로 하고, 그 사이에 정화 반응 가스에 함유되는 성분 중, 일산화탄소 및 탄화수소에 대해서 가스 분석계 (39) 에 의해 농도 측정을 실시한 것이다. 정화율은 촉매에 접촉하기 전의 반응 가스 성분의 농도를 CO 로 하고, 촉매에 접촉한 후의 반응 가스 성분의 농도를 Ci 로 했을 때, 다음 식으로 계산한 것이다.
정화율(%)=(CO-Ci) /CO×100
그 후에 허니컴 촉매 내부의 반응 가스의 온도를 반응 온도로 하고, 각 반응 온도와 정화율의 관계를 얻었다. 그리고, 얻어진 반응 온도를 가로축에 정화율을 세로축에 플롯하고, 정화율이 50% 을 나타내는 온도를 이 플롯한 데이터로 구하여, 이 온도를 라이트 오프 온도로 했다.
상기 시험의 결과를 표 2 에 나타낸다. 이 표 2 에 나타낸 바와 같이 세공 직경 분포가 본 발명의 범위에 있는 것 (도 6a ∼ 도 6d) 은 라이트 오프 온도 (CO, HC) 가 모두 낮게, 배기 가스 정화 효율이 향상되나, 비교예의 것 (도 7a ∼ 7c) 은 라이트 오프 온도 (CO, HC) 가 모두 높아 이 배기 가스 정화 효율이 악화된 결과가 되었다.
A B C D 소성 온도
1차 입자 0.03㎛ 2차 입자 2㎛ 1차 입자 0.03㎛ 2차 입자 20㎛ 1차 입자 0.05㎛ 2차 입자 2㎛ 1차 입자 0.05㎛ 2차 입자 20㎛
실 시 예 1 100% - - - 800℃
2 50% 50% - 800℃
3 25% 25% 25% 25% 800℃
4 40% 10% 40% 10% 800℃
5 40% 10% 40% 10% 800℃
6 40% 10% 40% 10% 800℃
7 40% 10% 40% 10% 800℃
비 교 예 1 100% - - - 11000℃
2 40% 10% 40% 10% 1100℃
3 - - - 100% 1000℃
세공 직경 분포 상태(㎛) 벽 두께 (mm) 라이트 오프 온도CO(℃) 라이트 오프 온도 HC(℃)
실시예 1 0.006~0.01㎛ 피크 없음 (불연속) 0.05~0.5㎛ 피크 없음 (불연속) 0.2 107 154
실시예 2 0.006~0.01㎛ 피크 0.02~0.05 피크 0.05~0.5㎛ 피크 없음 (불연속) 0.2 106 149
실시예 3 0.006~0.01㎛ 피크 0.02~0.05 피크 0.05~0.5㎛ 피크 0.5~1.0㎛ 피크 0.2 106 151
실시예 4 0.006~0.01㎛ 피크 있음 (연속) 0.05~0.5㎛ 피크 있음 (연속) 0.2 107 155
실시예 5 0.006~0.01㎛ 피크 있음 (연속) 0.05~0.5㎛ 피크 있음 (연속) 0.1 110 157
실시예 6 0.006~0.01㎛ 피크 있음 (연속) 0.05~0.5㎛ 피크 있음 (연속) 0.2 116 163
실시예 7 (참고예1) 0.006~0.01㎛ 피크 있음 (연속) 0.05~0.5㎛ 피크 있음 (연속) 0.3 128 166
비교예 1 0.05~0.6㎛ 피크 없음 (불연속) 0.2 156 196
비교예 2 0.05~0.5㎛ 피크 있음 (연속) 0.2 154 191
비교예 3 0.02~0.05 피크 0.05~0.5㎛ 피크 없음 (불연속) 0.2 152 186
본 발명에 의하면, 격벽은 세공 직경이 0.05 ∼ 150㎛ 인 세공을 갖는 제 1 세공군의 영역과, 세공 직경이 0.006 ∼ 0.01㎛ 인 세공을 갖는 제 2 세공군의 영역으로 나누었을 때, 각각의 영역에 1 이상의 세공 분포의 피크 (극대치) 가 존재하는 것 같은 세공 분포를 갖는 세라믹 허니컴 구조체로 했기 때문에, 유해 배기 가스의 정화 효율이 높은 배기 가스 정화 장치용 허니컴 구조체로 할 수 있다.
또한, 본 발명은 내연기관의 배기 가스 정화 장치인 것 외에, 보일러, 가열로, 가스터빈 또는 각종공업 프로세스 등으로부터 배출되는 배기 가스 정화 장치나 필터로 하여 사용할 수 있는 것이다.
특히, 본 발명에 관련된 세라믹 허니컴 구조체의 용도는 상게의 각종 장치의 배기 가스 정화용 촉매 담체로서 사용할 수 있는 것 외에, 디젤 엔진의 배기 가스 정화용 장치로서도 사용할 수 있다. 또한, 이 허니컴 구조체는 상기한 용도로 이용할 수 있는 것은 물론, 촉매 성분을 담지하지 않고 사용하는 용도 (예를 들어, 기체 성분이나 액체 성분을 흡착시키는 흡착재 등) 로도 이용할 수 있다.

Claims (18)

  1. 가스 유로로 이루어지는 다수의 관통공이 격벽을 사이에 두고 병렬되어 있는 주상 (pillar-shaped) 허니컴 구조의 다공질 세라믹 부재로 이루어지는 세라믹 허니컴 구조체로서,
    상기 격벽은 가로축을 세공 (細孔) 직경 (㎛) 으로 하고, 세로축을 log 미분 세공 용적 (㎤/g) 로 한 세공 직경 분포 곡선에 있어서, 세공 직경이 0.05 ∼ 150㎛ 인 세공을 제 1 세공군으로 하고, 세공 직경이 0.006 ∼ 0.01㎛ 인 세공을 제 2 세공군으로 했을 때, 상기 제 1 세공군의 영역과, 상기 제 2 세공군의 영역으로 각각, 세공 분포의 피크 (극대치) 가 1개 이상 존재하는 세공 구조를 갖는 소결체로 이루어지는 것을 특징으로 하는 세라믹 허니컴 구조체.
  2. 제 1 항에 있어서,
    제 1 세공군의 영역에 있는 세공의 세공 직경 분포의 피크는 세공 직경이 0.05 ∼ 1.0㎛ 의 범위에 존재하는 것을 특징으로 하는 세라믹 허니컴 구조체.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 세공 직경 분포 곡선은, 세공 직경이 0.01 ∼ 1.0㎛ 의 범위가, log 미분 세공 용적의 값이 정수를 나타내어 연속하고 있는 것을 특징으로 하는 세라믹 허니컴 구조체.
  4. 제 1 항 또는 제 2 항에 있어서,
    상기 세공 직경 분포 곡선은, 제 1 세공군 및 제 2 세공군의 각 영역에 나타내는 피크 (극대치) 사이의 세공 직경이 log 미분 세공 용적의 값이 정수를 나타내어 연속하고 있는 것을 특징으로 하는 세라믹 허니컴 구조체.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 격벽은, 두께가 0.05 ∼ 0.35mm 인 것을 특징으로 하는 세라믹 허니컴 구조체.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 세라믹 부재는, 주성분으로 하여 알루미나를 함유하는 것으로 이루어지는 것을 특징으로 하는 세라믹 허니컴 구조체.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    복수개의 세라믹 부재를 조합할 때, 각 부재 사이에 시일재층을 개재시킨 것을 특징으로 하는 세라믹 허니컴 구조체.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 세라믹 부재는, 격벽 표면 또는 이 격벽을 구성하고 있는 각각의 세라 믹 입자 표면에, 촉매가 부여되어 이루어지는 것을 특징으로 하는 세라믹 허니컴 구조체.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
    차량의 배기 가스 정화 장치로서 사용할 수 있는 것을 특징으로 하는 세라믹 허니컴 구조체.
  10. 가스 유로로 이루어지는 다수의 관통공이 격벽을 사이에 두고 병렬되어 이루어지는 주상 허니컴 구조의 다공질 세라믹 부재의 복수개의 조합으로 이루어지는 세라믹 허니컴 구조체로서,
    상기 격벽은, 가로축을 세공 직경 (㎛) 으로 하고, 세로축을 log 미분 세공 용적 (㎤/g) 이라고 한 세공 직경 분포 곡선에 있어서, 세공 직경이 0.05 ∼ 150㎛ 인 세공을 제 1 세공군으로 하고, 세공 직경이 0.006 ∼ 0.01㎛ 인 세공을 제 2 세공군이라고 했을 때, 상기 제 1 세공군의 영역과, 상기 제 2 세공군의 영역에 각각, 세공 분포의 피크 (극대치) 가 1개 이상 존재하는 세공 구조를 갖는 소결체로 이루어지는 것을 특징으로 하는 세라믹 허니컴 구조체.
  11. 제 10 항에 있어서,
    제 1 세공군의 영역에 있는 세공의 세공 직경 분포의 피크는, 세공 직경이 0.05 ∼ 1.0㎛ 의 범위에 존재하는 것을 특징으로 하는 세라믹 허니컴 구조체.
  12. 제 10 항 또는 제 11 항에 있어서,
    상기 세공 직경 분포 곡선은, 세공 직경이 0.01 ∼ 1.0㎛ 의 범위가, log 미분 세공 용적의 값이 정수를 나타내어 연속하고 있는 것을 특징으로 하는 세라믹 허니컴 구조체.
  13. 제 10 항 또는 제 11 항에 있어서,
    상기 세공 직경 분포 곡선은, 제 1 세공군 및 제 2 세공군의 각 영역에 나타내는 피크 (극대치) 사이의 세공 직경이, log 미분 세공 용적의 값이 정수를 나타내어 연속하고 있는 것을 특징으로 하는 세라믹 허니컴 구조체.
  14. 제 10 항 내지 제 13 항 중 어느 한 항에 있어서,
    상기 격벽은 두께가 0.05 ∼ 0.35mm 인 것을 특징으로 하는 세라믹 허니컴 구조체.
  15. 제 10 항 내지 제 14 항 중 어느 한 항에 있어서,
    상기 세라믹 부재는 주성분으로서 알루미나를 함유하는 것으로 이루어지는 것을 특징으로 하는 세라믹 허니컴 구조체.
  16. 제 10 항 내지 제 15 항 중 어느 한 항에 있어서,
    복수개의 세라믹 부재를 조합시킬 때, 각 부재 사이에 시일재층을 개재시킨 것을 특징으로 하는 세라믹 허니컴 구조체.
  17. 제 10 항 내지 제 16 항 중 어느 한 항에 있어서,
    상기 세라믹 부재는 격벽 표면 또는 이 격벽을 구성하고 있는 각각의 세라믹 입자 표면에 촉매가 부여되어 이루어지는 것을 특징으로 하는 세라믹 허니컴 구조체.
  18. 제 10 항 내지 제 17 항 중 어느 한 항에 있어서,
    차량의 배기 가스 정화 장치로서 사용되는 것을 특징으로 하는 세라믹 허니컴 구조체.
KR1020067017599A 2004-12-27 2005-11-14 세라믹 허니컴 구조체 KR100883946B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020067017599A KR100883946B1 (ko) 2004-12-27 2005-11-14 세라믹 허니컴 구조체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2004-00375815 2004-12-27
KR1020067017599A KR100883946B1 (ko) 2004-12-27 2005-11-14 세라믹 허니컴 구조체

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020087007288A Division KR20080042902A (ko) 2004-12-27 2005-11-14 세라믹 허니컴 구조체

Publications (2)

Publication Number Publication Date
KR20070023651A true KR20070023651A (ko) 2007-02-28
KR100883946B1 KR100883946B1 (ko) 2009-02-18

Family

ID=41348900

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067017599A KR100883946B1 (ko) 2004-12-27 2005-11-14 세라믹 허니컴 구조체

Country Status (1)

Country Link
KR (1) KR100883946B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8021621B2 (en) 2008-03-24 2011-09-20 Ibiden Co., Ltd. Honeycomb structure, exhaust gas purifying apparatus, and method for producing honeycomb structure
US11795278B2 (en) 2017-12-19 2023-10-24 Knauf Insulation Sprl Mineral fiber based composites

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8200087A (nl) * 1981-01-19 1982-08-16 Mitsubishi Chem Ind Werkwijze voor het bereiden van een poreus vuurvast anorganisch oxyde.
JP4657566B2 (ja) * 2002-07-16 2011-03-23 日本碍子株式会社 ハニカム構造体及びその製造方法
US6677261B1 (en) * 2002-07-31 2004-01-13 Corning Incorporated Alumina-bound high strength ceramic honeycombs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8021621B2 (en) 2008-03-24 2011-09-20 Ibiden Co., Ltd. Honeycomb structure, exhaust gas purifying apparatus, and method for producing honeycomb structure
US11795278B2 (en) 2017-12-19 2023-10-24 Knauf Insulation Sprl Mineral fiber based composites

Also Published As

Publication number Publication date
KR100883946B1 (ko) 2009-02-18

Similar Documents

Publication Publication Date Title
JP5191657B2 (ja) セラミックハニカム構造体
US8232227B2 (en) Honeycomb structured body
US7981496B2 (en) Honeycomb structured body
JP5042824B2 (ja) ハニカム構造体、ハニカム構造体集合体及びハニカム触媒
JP5031562B2 (ja) ハニカム構造体
JP5042632B2 (ja) ハニカム構造体
JP4975619B2 (ja) ハニカム構造体
KR100736303B1 (ko) 벌집형 구조체
KR100692166B1 (ko) 허니콤 구조, 허니콤 구조 조립체 및 허니콤 촉매
KR100672259B1 (ko) 벌집형 구조체
JP4753785B2 (ja) ハニカム構造体
JPWO2006137158A1 (ja) ハニカム構造体
WO2006137150A1 (ja) ハニカム構造体
JP2020040033A (ja) ハニカム構造体
JP2008272731A (ja) 触媒担持体
JP6965289B2 (ja) ハニカム構造体及びハニカム構造体の製造方法
JP4753781B2 (ja) ハニカム構造体
JP4753782B2 (ja) ハニカム構造体
KR100883946B1 (ko) 세라믹 허니컴 구조체
JP6782571B2 (ja) ハニカム構造体
JP6013243B2 (ja) ハニカム触媒体
KR100779893B1 (ko) 허니컴 구조체, 허니컴 구조체 집합체 및 허니컴 촉매
KR100781928B1 (ko) 하니콤 구조체

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
A107 Divisional application of patent
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
E801 Decision on dismissal of amendment
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20080228

Effective date: 20081120

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130118

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140117

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150119

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160119

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170119

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180118

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20200115

Year of fee payment: 12