KR20060076369A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
KR20060076369A
KR20060076369A KR1020040114763A KR20040114763A KR20060076369A KR 20060076369 A KR20060076369 A KR 20060076369A KR 1020040114763 A KR1020040114763 A KR 1020040114763A KR 20040114763 A KR20040114763 A KR 20040114763A KR 20060076369 A KR20060076369 A KR 20060076369A
Authority
KR
South Korea
Prior art keywords
substrate
active region
ion implantation
gate
isolation layer
Prior art date
Application number
KR1020040114763A
Other languages
Korean (ko)
Inventor
강대인
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020040114763A priority Critical patent/KR20060076369A/en
Publication of KR20060076369A publication Critical patent/KR20060076369A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66621Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

본 발명은 문턱전압 감소를 방지할 수 있는 리세스 채널을 갖는 반도체 소자의 제조방법에 관한 것이다. 본 발명은, 반도체 기판 내에 액티브 영역을 한정하는 소자분리막을 형성하는 단계; 상기 소자분리막이 형성된 기판 내에 문턱전압 조절 이온주입을 수행하는 단계; 상기 기판의 액티브 영역 및 소자분리막 일부를 식각하여 단차를 형성하는 단계; 상기 단차부를 포함한 기판 액티브 영역 상에 게이트를 형성하는 단계; 및 상기 게이트 아래의 기판 부분 내에 소실된 도펀트를 보상하기 위해 추가 이온주입을 수행하는 단계;를 포함한다.The present invention relates to a method for manufacturing a semiconductor device having a recess channel capable of preventing a decrease in threshold voltage. The present invention provides a method for forming a semiconductor device, comprising: forming an isolation layer in a semiconductor substrate to define an active region; Performing threshold voltage control ion implantation into the substrate on which the device isolation layer is formed; Etching a portion of the active region and the device isolation layer of the substrate to form a step; Forming a gate on a substrate active region including the stepped portion; And performing additional ion implantation to compensate for dopants lost in the portion of the substrate under the gate.

Description

반도체 소자의 제조방법{Method for manufacturing semiconductor device}Method for manufacturing semiconductor device

도 1a 내지 도 1g는 본 발명의 실시예에 따른 반도체 소자의 제조방법을 설명하기 위한 공정 단면도.1A to 1G are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with an embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10: 기판 11: 소자분리막10: substrate 11: device isolation film

12: 스크린 산화막 13: 감광막 패턴12: screen oxide film 13: photoresist pattern

14: 게이트 산화막 15: 폴리실리콘막14 gate oxide film 15 polysilicon film

16: 텅스텐 실리사이드막 17: 하드마스크 질화막16: tungsten silicide film 17: hard mask nitride film

18: 감광막 패턴 19: 게이트18: photoresist pattern 19: gate

20: 감광막 패턴 21: 추가 이온주입 영역20: photoresist pattern 21: additional ion implantation region

본 발명은 반도체 소자의 제조방법에 관한 것으로, 보다 상세하게는, 문턱전압 감소를 방지할 수 있는 리세스 채널을 갖는 반도체 소자의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of manufacturing a semiconductor device having a recess channel capable of preventing a threshold voltage decrease.

반도체 메모리 소자의 고집적화가 급격히 진행됨에 따라, 기존의 평면형 트 랜지스터 구조에서는 셀 지역의 문턱전압 마진 및 리프레쉬 시간 감소로 상당한 어려움을 겪고 있다. 이에, 반도체 메모리 소자의 고집적화에 부합하는 문턱전압을 확보하면서 리프레쉬 특성을 확보하기 위한 다양한 연구들이 활발하게 진행되고 있다.As high integration of semiconductor memory devices proceeds rapidly, the conventional planar transistor structure is experiencing significant difficulties due to reduction of threshold voltage margin and refresh time in the cell region. Accordingly, various studies have been actively conducted to secure refresh characteristics while securing threshold voltages corresponding to high integration of semiconductor memory devices.

이러한 노력의 하나로 최근 STAR(Step-gated asymmetry recess) 셀 구조가 제안되었다. STAR 셀은 액티브 영역의 일부를 리세스시켜 상기 액티브 영역이 단차지도록 만들고, 이렇게 단차진 액티브 영역에 게이트를 형성하여 모스펫(MOSFET) 소자에서의 유효 채널 길이(effective channel length)를 증가시켜 준 구조로서, 단채널효과를 줄여주어 낮은 문턱전압 도우즈(Vt dose)로도 원하는 정도의 문턱전압을 얻을 수 있으며, 아울러, 모스펫 소자에 걸리는 전계를 낮출 수 있어서, 데이터를 갱신하는 리프레쉬 시간을 기존의 평면형 셀 구조에 비해 3배 이상 개선시킬 수 있다.As one of these efforts, a step-gated asymmetry recess (STAR) cell structure has recently been proposed. The STAR cell is a structure in which a portion of the active region is recessed so that the active region is stepped, and a gate is formed in the stepped active region to increase the effective channel length in the MOSFET device. In addition, by reducing the short channel effect, a desired threshold voltage can be obtained even at a low threshold voltage dose (Vt dose), and the electric field applied to the MOSFET element can be reduced, thereby refreshing the refresh time for updating data. It can be improved by three times or more compared to the structure.

특히, 이와 같은 STAR 셀은 기존 공정에 간단한 공정을 추가하거나 변경하여 구현할 수 있으므로, 그 적용이 매우 용이해서 현재로선 반도체 메모리 소자의 고집적화에 따른 문턱전압 마진 및 리프레쉬 시간의 감소 문제를 해결할 수 있는 매우 유용한 방법으로 대두되고 있다.In particular, such a STAR cell can be implemented by adding or changing a simple process to an existing process, and thus is very easy to apply, and can solve the problem of reducing the threshold voltage margin and refresh time caused by high integration of semiconductor memory devices. It is emerging as a useful way.

한편, 종래에는 STAR 셀을 형성함에 있어서, 우선, 기판 내에 소자분리막을 형성하고, 이어서, 문턱전압 조절 이온주입을 실시한 다음, 기판을 리세스시키고 있다. On the other hand, in forming a STAR cell, a device isolation film is first formed in a substrate, and then threshold voltage controlled ion implantation is performed, and then the substrate is recessed.

그런데, 기판을 리세스 시킬때 이미 주입된 문턱전압 조절 이온이 손실되어 문턱전압이 250∼300mV 까지 감소하게 된다. 문턱전압이 감소하면 셀 영역의 펀치 특성이 취약해져서 원하는 소자특성을 얻을 수 없게 된다.However, when the substrate is recessed, the threshold voltage control ions implanted therein are lost and the threshold voltage is reduced to 250 to 300 mV. When the threshold voltage decreases, the punch characteristics of the cell region become weak, so that the desired device characteristics cannot be obtained.

따라서, 본 발명은 상기한 바와 같은 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 문턱전압 감소를 방지할 수 있는 리세스 채널을 갖는 반도체 소자의 제조방법을 제공함에 있다.Accordingly, an object of the present invention is to provide a method of manufacturing a semiconductor device having a recess channel capable of preventing a threshold voltage from being reduced.

상기 목적을 달성하기 위한 본 발명은, 반도체 기판 내에 액티브 영역을 한정하는 소자분리막을 형성하는 단계; 상기 소자분리막이 형성된 기판 내에 문턱전압 조절 이온주입을 수행하는 단계; 상기 기판의 액티브 영역 및 소자분리막 일부를 식각하여 단차를 형성하는 단계; 상기 단차부를 포함한 기판 액티브 영역 상에 게이트를 형성하는 단계; 및 상기 게이트 아래의 기판 부분 내에 소실된 도펀트를 보상하기 위해 추가 이온주입을 수행하는 단계;를 포함한다.The present invention for achieving the above object comprises the steps of forming a device isolation film defining an active region in a semiconductor substrate; Performing threshold voltage control ion implantation into the substrate on which the device isolation layer is formed; Etching a portion of the active region and the device isolation layer of the substrate to form a step; Forming a gate on a substrate active region including the stepped portion; And performing additional ion implantation to compensate for dopants lost in the portion of the substrate under the gate.

상기 기판의 액티브 영역 및 소자분리막을 일부 식각하는 단계는 100∼1000Å 두께만큼 식각하여 수행한다.Part of etching the active region and the device isolation layer of the substrate is performed by etching 100 ~ 1000Å thickness.

상기 리세스 채널 영역의 기판 내에 추가 이온주입을 수행하는 단계는 B, BF 및 BF2로 구성된 그룹에서 선택되는 어느 하나를 소스로 사용하여 수행한다.Performing additional ion implantation into the substrate of the recess channel region is performed using any one selected from the group consisting of B, BF and BF2 as a source.

상기 추가 이온주입은 1.0E13∼1.7E13의 도우즈 및 10∼80KeV의 에너지로 수행한다.The further implantation is carried out with a dose of 1.0E13-1.7E13 and an energy of 10-80 KeV.

(실시예) (Example)                     

이하, 첨부한 도면을 참고하여 본 발명의 바람직한 실시예를 상술하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1a를 참조하면, 반도체 기판(10) 내에 액티브 영역을 한정하는 소자분리막(11)을 형성한다. 상기 소자분리막(11)이 형성된 기판(10) 상에 스크린 산화막(12)을 형성하고 문턱전압 조절 이온주입을 수행한다.Referring to FIG. 1A, an isolation layer 11 defining an active region is formed in the semiconductor substrate 10. The screen oxide layer 12 is formed on the substrate 10 on which the device isolation layer 11 is formed, and threshold voltage control ion implantation is performed.

도 1b를 참조하면, 상기 기판 결과물 상에 감광막을 도포하고 노광 및 현상공정을 통해 리세스 시킬 영역을 노출시키는 감광막 패턴(13)을 형성한다.Referring to FIG. 1B, a photoresist film is coated on the substrate resultant, and a photoresist pattern 13 is formed to expose a region to be recessed through an exposure and development process.

도 1c를 참조하면, 노출된 기판의 액티브 영역 및 소자분리막을 100∼1000Å 두께만큼 식각하여 단차를 형성한 다음 스크린 산화막을 제거하고 LET(Light etch treatment) 처리한다.Referring to FIG. 1C, the active region and the device isolation layer of the exposed substrate are etched by a thickness of 100 to 1000 Å to form a step, and then the screen oxide layer is removed and subjected to LET (Light etch treatment).

도 1d를 참조하면, 기판 상에 게이트 산화막(14), 폴리실리콘막(15), 텅스텐 실리사이드막(16) 및 하드마스크 질화막(17)을 차례로 형성한다. 그런 다음, 하드마스크 질화막(17) 상에 감광막을 도포하고 노광 및 현상 공정을 통해 게이트 영역을 한정하는 감광막 패턴(18)을 형성한다. Referring to FIG. 1D, a gate oxide film 14, a polysilicon film 15, a tungsten silicide film 16, and a hard mask nitride film 17 are sequentially formed on a substrate. Then, a photoresist film is applied on the hard mask nitride film 17 and a photoresist pattern 18 defining a gate region is formed through an exposure and development process.

도 1e를 참조하면, 감광막 패턴(18)을 마스크로 이용하여 하드마스크 질화막(17), 텅스텐 실리사이드막(16), 폴리실리콘막(15)을 식각하여 단차부를 포함한 기판 액티브 영역 상에 게이트(19)를 형성한다. 이어서, 감광막 패턴(18)을 제거한다.Referring to FIG. 1E, the hard mask nitride layer 17, the tungsten silicide layer 16, and the polysilicon layer 15 may be etched using the photoresist layer pattern 18 as a mask to form a gate 19 on the substrate active region including the stepped portion. ). Next, the photosensitive film pattern 18 is removed.

1f를 참조하면, 기판 리세스시 소실된 도펀트를 보상하기 위해 게이트(19) 상에 리세스 채널 영역을 노출시키는 감광막 패턴(20)을 형성한 다음 기판 내에 B, BF 또는 BF2를 추가 이온주입한다. 이때, 추가 이온주입은 1.0E13∼1.7E13의 도우즈 및 10∼80KeV의 에너지로 수행한다.Referring to 1f, a photoresist pattern 20 exposing the recess channel region is formed on the gate 19 to compensate for the dopant lost during the substrate recess, and then further ion implantation of B, BF, or BF 2 into the substrate. At this time, additional ion implantation is performed with a dose of 1.0E13 to 1.7E13 and an energy of 10 to 80 KeV.

도 1g를 참조하면, 감광막 패턴을 제거하고, 소오스/드레인 영역(미도시)을 형성한다. Referring to FIG. 1G, the photoresist pattern is removed and a source / drain region (not shown) is formed.

이와 같이, 기판 리세스시 소실된 도펀트를 보상하기 위해 리세스 채널 영역에 추가로 불순물을 이온주입함으로써, 기판 액티브 영역을 리세스시킬때 손실된 문턱전압 조절용 이온을 보상해준다.In this manner, by implanting additional impurities into the recess channel region to compensate for the dopants lost during the substrate recess, the threshold voltage control ions lost when the substrate active region is recessed are compensated for.

이후, 도시하지는 않았으나, 소오스/드레인 영역 형성 공정을 포함한 공지된 일련의 후속 공정들을 차례로 진행하여 본 발명에 따른 반도체 소자의 제조를 완성한다.Thereafter, although not shown, a series of well-known subsequent processes including a source / drain region forming process are sequentially performed to complete the manufacture of the semiconductor device according to the present invention.

본 발명을 특정의 바람직한 실시예에 관련하여 도시하고 설명하였지만, 본 발명이 그에 한정되는 것은 아니고 이하의 특허청구의 범위에 의해 마련되는 본 고안의 정신이나 분야를 일탈하지 않는 한도 내에서 본 발명이 다양하게 개조 및 변화될 수 있다는 것을 당 업계에서 통상의 지식을 가진 자는 용이하게 알 수 있다.While the present invention has been illustrated and described with reference to certain preferred embodiments, the invention is not limited thereto and the invention may be practiced without departing from the spirit or scope of the invention as defined by the following claims. It will be readily apparent to one of ordinary skill in the art that various modifications and variations can be made.

이상에서와 같이, 본 발명은, 리세스 채널 영역에 추가로 불순물을 이온주입하여 기판을 리세스 시킬 때 손실된 문턱전압 조절 이온을 보상해 줌으로써, 문턱전압이 감소하는 것을 방지하여 소자 특성을 향상시킬 수 있다.As described above, the present invention compensates the threshold voltage control ions lost when the substrate is recessed by adding impurities to the recess channel region, thereby preventing the threshold voltage from being reduced, thereby improving device characteristics. You can.

Claims (4)

반도체 기판 내에 액티브 영역을 한정하는 소자분리막을 형성하는 단계;Forming a device isolation film defining an active region in the semiconductor substrate; 상기 소자분리막이 형성된 기판 내에 문턱전압 조절 이온주입을 수행하는 단계;Performing threshold voltage control ion implantation into the substrate on which the device isolation layer is formed; 상기 기판의 액티브 영역 및 소자분리막 일부를 식각하여 단차를 형성하는 단계;Etching a portion of the active region and the device isolation layer of the substrate to form a step; 상기 단차부를 포함한 기판 액티브 영역 상에 게이트를 형성하는 단계; 및Forming a gate on a substrate active region including the stepped portion; And 상기 게이트 아래의 기판 부분 내에 소실된 도펀트를 보상하기 위해 추가 이온주입을 수행하는 단계;를 포함하는 반도체 소자의 제조방법.And performing additional ion implantation to compensate for the dopant lost in the portion of the substrate under the gate. 제 1 항에 있어서,The method of claim 1, 상기 기판의 액티브 영역 및 소자분리막을 일부 식각하는 단계는 100∼1000Å 두께만큼 식각하여 수행하는 것을 특징으로 하는 반도체 소자의 제조방법.And partially etching the active region of the substrate and the device isolation layer by etching 100 to 1000 microns thick. 제 1 항에 있어서,The method of claim 1, 상기 게이트 아래의 기판 부분 내에 추가 이온주입을 수행하는 단계는 B, BF 및 BF2로 구성된 그룹에서 선택되는 어느 하나를 소스로 사용하여 수행하는 것을 특징으로 하는 반도체 소자의 제조방법.And performing further ion implantation into the substrate portion under the gate using any one selected from the group consisting of B, BF and BF2 as a source. 제 3 항에 있어서,The method of claim 3, wherein 상기 추가 이온주입은 1.0E13∼1.7E13의 도우즈 및 10∼80KeV의 에너지로 수행하는 것을 특징으로 하는 반도체 소자의 제조방법.The additional ion implantation is a method of manufacturing a semiconductor device, characterized in that carried out with a dose of 1.0E13 ~ 1.7E13 and an energy of 10 ~ 80KeV.
KR1020040114763A 2004-12-29 2004-12-29 Method for manufacturing semiconductor device KR20060076369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040114763A KR20060076369A (en) 2004-12-29 2004-12-29 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040114763A KR20060076369A (en) 2004-12-29 2004-12-29 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
KR20060076369A true KR20060076369A (en) 2006-07-04

Family

ID=37168666

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040114763A KR20060076369A (en) 2004-12-29 2004-12-29 Method for manufacturing semiconductor device

Country Status (1)

Country Link
KR (1) KR20060076369A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100677770B1 (en) * 2005-01-14 2007-02-02 주식회사 하이닉스반도체 Semiconductor device with stack active region and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100677770B1 (en) * 2005-01-14 2007-02-02 주식회사 하이닉스반도체 Semiconductor device with stack active region and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR100302648B1 (en) Semiconductor device and manufacturing method thereof
KR100476705B1 (en) Method of manufacturing high voltage transistor of flash memory device
US20070004159A1 (en) Method of manufacturing semiconductor device using gate-through ion implantation
KR20060076369A (en) Method for manufacturing semiconductor device
KR20050045560A (en) Method for implanting channel ions in recess gate type transistor
KR0167611B1 (en) Method for fabricating transistor
KR100691009B1 (en) Method of manufacturing semiconductor device
JPH06350040A (en) Manufacture of transistor
KR100197521B1 (en) Method for manufacturing mosfet of low-doping drain structure
KR100937650B1 (en) Method for manufacturing a transistor in a semiconductor device
KR100387258B1 (en) Method of manufacturing a transistor in a semiconductor device
KR100929422B1 (en) Manufacturing method of semiconductor device
KR100487504B1 (en) A method of forming different gate spacers
KR100537272B1 (en) Method for fabricating of semiconductor device
KR20060075079A (en) Method for manufacturing semiconductor device
KR100685633B1 (en) Method of manufacturing a flash memory device
KR100618705B1 (en) Method for forming gate of semiconductor device
KR100334968B1 (en) Method for fabricating buried channel type PMOS transistor
KR100904421B1 (en) Method for manufacturing semiconductor memory device
KR100608384B1 (en) Method of manufacturing semiconductor device
KR100325444B1 (en) Method for fabricating metal oxide semiconductor transistor of low doping drain structure
JP2006005146A (en) Semiconductor device and method of manufacturing the same
KR100800922B1 (en) Method of manufacturing transistor in semiconductor device
KR100280800B1 (en) Method for forming junction region of semiconductor device
KR100542980B1 (en) Method for formming cmos thin film transistor having a lightly doped drain structure

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination