KR20060022540A - Bake hardening cold rolled steel sheet having superior workability and process for producing the same - Google Patents
Bake hardening cold rolled steel sheet having superior workability and process for producing the same Download PDFInfo
- Publication number
- KR20060022540A KR20060022540A KR1020040071395A KR20040071395A KR20060022540A KR 20060022540 A KR20060022540 A KR 20060022540A KR 1020040071395 A KR1020040071395 A KR 1020040071395A KR 20040071395 A KR20040071395 A KR 20040071395A KR 20060022540 A KR20060022540 A KR 20060022540A
- Authority
- KR
- South Korea
- Prior art keywords
- less
- cold rolled
- rolled steel
- steel sheet
- mns
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
본 발명은 자동차, 가전제품 등의 소재로 사용되는 소부경화형 냉연강판에 관한 것이다.이 냉연강판은, 중량%로 C:0.003-0.005%, Mn:0.05-0.2%, S:0.005-0.03%, Al:0.01-0.1%, N:0.004%이하, P:0.015%이하, Mo:0.01~0.2%를 포함하고, 상기 Mn와 S의 중량비가 다음의 조건 0.58*Mn/S≤10를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, MnS석출물의 평균크기가 0.2㎛이하로 이루어지는 것이다. 또한, 이 냉연강판의 제조방법 역시 제공된다.The present invention relates to a hardened hardened cold rolled steel sheet used as a material for automobiles, home appliances, and the like. The cold rolled steel sheet is, by weight, C: 0.003-0.005%, Mn: 0.05-0.2%, S: 0.005-0.03%, Al: 0.01-0.1%, N: 0.004% or less, P: 0.015% or less, Mo: 0.01-0.2%, wherein the weight ratio of Mn and S satisfies the following condition 0.58 * Mn / S ≦ 10, It is composed of the remaining Fe and other unavoidable impurities, the average size of the MnS precipitate is less than 0.2㎛. In addition, a method for producing this cold rolled steel sheet is also provided.
본 발명의 냉연강판은 미세한 MnS가 석출되는 강에서 탄소의 함량을 적절히 조절하여 소부경화특성을 확보함과 더불어, Mo의 첨가에 의해 소성이방성지수가 높고 면내이방성지수는 낮아져 가공성이 우수하다.In the cold rolled steel sheet of the present invention, by controlling the content of carbon in the steel in which fine MnS is precipitated, the baking hardening property is secured, and the addition of Mo results in a high plastic anisotropy index and a low in-plane anisotropy index.
냉연강판, 소부경화, Mo, 소성이방성 지수, MnSCold Rolled Steel, Hardening Hardening, Mo, Plastic Anisotropy Index, MnS
Description
도 1은 MnS석출물의 크기에 따른 결정립내 고용탄소량의 변화를 나타내는 그래프이며,1 is a graph showing the change in the amount of solid solution carbon in the grain according to the size of the MnS precipitate,
도 2는 냉각속도에 따른 MnS석출물의 크기를 나타내는 그래프이다. 2 is a graph showing the size of the MnS precipitates according to the cooling rate.
본 발명은 자동차, 가전제품 등의 소재로 사용되는 소부경화형 냉연강판에 관한 것으로, 보다 상세하게는 미세한 MnS석출물과 탄소의 함량을 조절하여 소부경화특성을 확보하면서 Mo의 첨가에 의한 가공성이 우수한 냉연강판과 그 제조방법에 관한 것이다.
The present invention relates to a hardening hardened cold rolled steel sheet used as a material for automobiles, home appliances, etc. More specifically, by controlling the content of fine MnS precipitates and carbon to secure the hardening hardening properties, cold rolling is excellent by the addition of Mo It relates to a steel sheet and a method of manufacturing the same.
자동차 등의 외판 소재에는 내덴트성을 향상하기 위하여 소부경화형 냉연강판이 많이 사용되고 있다. 소부경화형 냉연강판은 강판중에 적정량의 고용탄소를 잔존시켜 프레스 성형시에 생성된 전위를 도장소부시의 열을 이용하여 고용탄소를 고착하여 항복점을 높인 강이다.
In order to improve the dent resistance, exterior hardening type cold rolled steel sheets are frequently used for exterior materials such as automobiles. The hardened hardened cold rolled steel is a steel in which a yield of solid solution carbon is retained in the steel sheet and the dislocation generated during press molding is fixed by using solid heat of the coating furnace to increase the yield point.
소부경화형 냉연강판에는 상소둔재인 Al-Killed강과 IF강(Interstitial Free Steel)이 있다. There are Al-Killed steel and IF steel (Interstitial Free Steel).
상소둔재인 Al-Killed강의 경우에는 적은 양의 고용탄소가 잔존하고 있어 내시효특성을 확보하면서 소부처리후 10~20Mpa 정도의 소부경화능을 가진다. 상소둔재의 경우 소부처리후 상승하는 항복강도가 낮고, 장시간 소둔하므로 생산성이 낮다는 단점이 있다. In the case of Al-Killed steel, which is an ordinary annealing material, a small amount of solid carbon remains, and it has a hardening hardening capacity of about 10 to 20 Mpa after the quenching treatment while securing aging characteristics. In the case of the annealing material, the yield strength rising after the baking treatment is low, and there is a disadvantage in that the productivity is low because it is annealed for a long time.
IF강의 경우에는 Ti, Nb을 첨가하여 강중에 고용된 탄소 또는 질소를 완전히 석출하여 성형성을 향상시킨 강종으로, 이 IF강에 소부경화특성을 부여한 것이 소부경화형 IF강이다. 소부경화형 IF강은 Ti 또는 Nb의 첨가량과 탄소의 첨가량을 제어하여 적당한 양의 탄소를 강중에 잔존하게 하여 소부경화특성을 부여한 것이다. 소부경화형 IF강의 경우 적당한 양의 탄소를 고용하기 위해서는 첨가되는 탄소의 양 뿐만 아니라, 첨가되는 Ti 또는 Nb의 양은 물론, Ti, Nb과 반응하여 석출물을 생성하는 황, 질소의 양도 매우 좁은 범위에서 제어를 해야하므로 안정적인 품질확보가 어려우며, 생산비용도 많이 드는 단점이 있다.
In the case of IF steel, Ti and Nb are added to completely precipitate the carbon or nitrogen dissolved in the steel to improve moldability. The hardening hardening characteristic is given to the IF steel by hardening. The baking hardening type IF steel controls the adding amount of Ti or Nb and the adding amount of carbon so that an appropriate amount of carbon remains in the steel to give the baking hardening characteristic. In the case of small hardening IF steel, in order to employ an appropriate amount of carbon, not only the amount of carbon added, but also the amount of Ti or Nb added, as well as the amount of sulfur and nitrogen that react with Ti and Nb to form precipitates are controlled within a very narrow range. Because of this, it is difficult to secure stable quality and costs a lot of production.
본 발명은 Ti, Nb을 첨가하지 않으면서 소부경화특성을 갖고 가공성이 우수한 냉연강판과 그 제조방법을 제공하는데, 그 목적이 있다. The present invention provides a cold rolled steel sheet having a bake hardening property and excellent workability without adding Ti and Nb, and an object thereof.
상기 목적을 달성하기 위한 본 발명의 냉연강판은, 중량%로 C:0.003-0.005%, Mn:0.05-0.2%, S:0.005-0.03%, Al:0.01-0.1%, N:0.004%이하, P:0.015%이하, Mo:0.01~0.2%를 포함하고, 상기 Mn와 S의 중량비가 다음의 조건 0.58*Mn/S≤10를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, MnS석출물의 평균크기가 0.2㎛이하로 이루어진다.Cold rolled steel sheet of the present invention for achieving the above object, by weight% C: 0.003-0.005%, Mn: 0.05-0.2%, S: 0.005-0.03%, Al: 0.01-0.1%, N: 0.004% or less, P: 0.015% or less, Mo: 0.01% to 0.2%, the weight ratio of Mn and S satisfies the following conditions 0.58 * Mn / S ≤ 10, and is composed of the remaining Fe and other unavoidable impurities, MnS precipitate The average size is made less than 0.2㎛.
또한, 본 발명의 냉연강판의 제조방법은, 중량%로 C:0.003-0.005%, Mn:0.05-0.2%, S:0.005-0.03%, Al:0.01-0.1%, N:0.004%이하, P:0.015%이하, Mo:0.01~0.2%를 포함하고, 상기 Mn와 S의 중량비가 다음의 조건 0.58*Mn/S≤10를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강을 1100℃이상의 온도로 재가열한 후 마무리 압연온도를 Ar3변태점 이상으로 하여 열간압연하고 200℃/min이상의 속도로 냉각하고 700℃이하의 온도에서 권취한 다음, 냉간 압연하고, 연속소둔하는 것을 포함하여 이루어진다.
In addition, the manufacturing method of the cold rolled steel sheet of this invention is C: 0.003-0.005%, Mn: 0.05-0.2%, S: 0.005-0.03%, Al: 0.01-0.1%, N: 0.004% or less by weight%, : 0.015% or less, Mo: 0.01% to 0.2%, the weight ratio of Mn and S satisfy the following conditions 0.58 * Mn / S ≤ 10, the steel is composed of the remaining Fe and other unavoidable impurities 1100 ℃ or more After reheating to a temperature, hot rolling is performed at a finish rolling temperature of at least Ar 3 transformation point, cooled at a rate of 200 ° C./min or more, wound at a temperature of 700 ° C. or lower, and then cold rolled and continuously annealed.
이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.
본 발명자들은 Ti, Nb을 첨가하지 않으면서 소부경화특성을 개선하기 위한 연구과정에서 다음과 같은 새로운 사실을 밝혀내었다. 탄소함량을 적정량으로 제어하면서 MnS의 석출물을 미세하게 분포시키면 기본적으로 항복강도도 높으면서 소부 후의 항복강도가 증대되는데, 이는 미세한 MnS석출물이 고용탄소에 영향을 미친다는 것이다. 또한, 미세한 MnS석출물이 분포하는 강판에 Mo을 첨가하는 경우에 소성이방성지수가 높아지고 면내이방성지수가 낮아져 가공성이 현저하게 개선된다는 것이다. The present inventors have discovered the following new facts in the course of research to improve the baking hardening properties without adding Ti and Nb. The fine distribution of MnS precipitates while controlling the carbon content to an appropriate amount basically increases the yield strength and increases the yield strength after baking, which means that the fine MnS precipitates affect the solid solution carbon. In addition, when Mo is added to the steel sheet in which the fine MnS precipitates are distributed, the plastic anisotropy index is increased and the in-plane anisotropy index is lowered, thereby significantly improving workability.
도 1에 나타난 바와 같이, MnS의 석출물이 미세하게 분포할수록 결정립내의 고용탄소량이 줄어든다. MnS석출물이 미세하게 분포하는 강에서 탄소함량이 0.003~0.005%의 경우에는 소부경화특성을 갖게 된다. 이것은 MnS석출물이 미세하게 분포하면 MnS석출물 주변에 탄소가 석출되어 상온에서는 시효를 일으키지 않고 도장소부열처리에서 탄소가 용해되어 항복강도를 크게 상승시키는 것으로 판단된다. As shown in FIG. 1, the finer the precipitate of MnS, the smaller the amount of solid solution carbon in the grains. If the carbon content is 0.003 ~ 0.005% in the steel with finely distributed MnS precipitates, it will have a hardening characteristic. This suggests that when the MnS precipitates are minutely distributed, carbon precipitates around the MnS precipitates, which does not cause aging at room temperature, but dissolves the carbon in the coating sub-heat treatment to significantly increase the yield strength.
이를 위해서는 탄소의 함량이 0.003~0.005%로 조절되어야 하며, MnS의 미세석출물의 크기는 0.2㎛이하로 판단되었다. For this purpose, the content of carbon should be adjusted to 0.003 ~ 0.005%, the size of the fine precipitate of MnS was determined to be less than 0.2㎛.
이와 같은 새로운 사실에 주목하여 MnS를 미세하게 분포시키는 방안에 대하여 연구하게 되었다. 그 결과, (1) Mn의 함량을 0.05~0.2%로 하고 S의 함량을 0.005~0.03%로 하면서 이들의 성분비(0.58*Mn/S)를 10이하로 조절하는 것이 필요하며, (2) 이와 함께 압간압연이 끝난 후 냉각속도를 200℃/min이상으로 하면 0.2㎛이하의 미세한 MnS의 석출물을 얻을 수 있다는 것이다. Paying attention to these new facts, we have studied how to finely distribute MnS. As a result, (1) it is necessary to adjust the content ratio (0.58 * Mn / S) of 10 or less while (2) Mn content of 0.05 to 0.2% and S content of 0.005 to 0.03%. In addition, when the cooling rate is 200 ℃ / min or more after the end of the rolling rolling, it is possible to obtain a fine MnS precipitate of 0.2 ㎛ or less.
즉, 도 2(a)는 0.004%C-0.15%Mn-0.008%P-0.015%S-0.03%Al-0.0012%N-0.05%Mo인 강으로 Mn과 S의 성분비(0.58*Mn/S)가 5.8인 조성의 강을 열간압연후 냉각속도에 따른 석출물의 크기를 조사한 그래프이다. 도 2(a)의 그래프를 보면, Mn과 S의 성분비(0.58*Mn/S)가 10이하를 만족하는 경우에 대해 냉각속도를 조절하면 MnS의 석출물 크기가 0.2㎛이하를 만족할 수 있음을 확인할 수 있다.
That is, Figure 2 (a) is a steel of 0.004% C-0.15% Mn-0.008% P-0.015% S-0.03% Al-0.0012% N-0.05% Mo and the component ratio of Mn and S (0.58 * Mn / S) It is a graph that investigates the size of precipitates according to the cooling rate after hot rolling steel with composition of 5.8. Looking at the graph of Figure 2 (a), the Mn and S component ratio (0.58 * Mn / S) when the cooling rate is adjusted for the case of less than 10 confirms that the precipitate size of MnS can satisfy 0.2㎛ or less Can be.
이러한 관점에 기초하여 완성된 본 발명의 냉연강판과 그 제조방법을 이하에서 구체적으로 설명한다.
Based on this aspect, the cold rolled steel sheet of the present invention and a method of manufacturing the same will be described in detail below.
[본 발명의 냉연강판][Cold rolled steel sheet of the present invention]
탄소(C)의 함량은 0.003~0.005%가 바람직하다.The content of carbon (C) is preferably 0.003% to 0.005%.
탄소의 함량이 0.003%미만의 경우 강중 소부경화량이 적고, 0.005%초과의 경우에는 성형성이 급격히 저하된다.
If the content of carbon is less than 0.003%, the amount of hardening of baking in steel is small, and if the content of carbon is more than 0.005%, the moldability decreases rapidly.
망간(Mn)의 함량은 0.05-0.2%가 바람직하다. The content of manganese (Mn) is preferably 0.05-0.2%.
망간은 강중 고용황을 MnS로 석출하여 고용 황에 의한 적열취성(Hot shortness)을 방지하는 원소로 알려져 있다. 본 발명에서는 망간과 황의 함량을 적절해지는 경우에 매우 미세한 MnS가 석출되고 이 MnS석출물의 주변에는 탄소가 석출되고 석출된 탄소는 도장소부처리과정에서 용해되어 소부경화능을 부여한다는 연구결과에 기초하여 망간의 함량을 0.05~0.2%로 하는 것이 바람직하다. 망간의 함량이 0.05%미만의 경우에는 고용 상태로 잔존하는 황의 함량이 많기 때문에 적열취성이 발생할 수 있으며, 망간의 함량이 0.2% 초과의 경우에는 망간의 함량이 높아 조대한 MnS석출물이 생성되어 소부경화특성이 열악해진다.
Manganese is known as an element that precipitates solid sulfur in steel as MnS to prevent hot shortness caused by solid sulfur. In the present invention, when the content of manganese and sulfur is appropriate, very fine MnS is precipitated, and carbon is precipitated around the MnS precipitate, and the precipitated carbon is dissolved in the coating baking treatment to give baking hardening capacity. It is preferable to make content of manganese into 0.05 to 0.2%. If the content of manganese is less than 0.05%, red brittleness may occur due to the large amount of sulfur remaining in solid solution. If the content of manganese is more than 0.2%, coarse MnS precipitates are formed due to high content of manganese. Curing properties are poor.
황(S)의 함량은 0.005-0.03%가 바람직하다.The content of sulfur (S) is preferably 0.005-0.03%.
황(S)의 함량이 0.005%미만의 경우에는 MnS 석출량이 적을 뿐만 아니라 석출되는 MnS의 크기가 매우 조대해져 소부경화특성에 좋지 않다. 황의 함량이 0.03% 초과의 경우에는 고용된 황의 함량이 많아 연성 및 성형성이 크게 낮아지며, 적열취성의 우려가 있기 때문이다. 황의 함량은 0.005~0.03%의 범위일 때 MnS의 석출물 크기를 원하는 범위로 조절하기가 용이해진다.
When the content of sulfur (S) is less than 0.005%, not only the amount of MnS precipitates but also the size of precipitated MnS is very coarse, which is not good for baking hardening characteristics. If the content of sulfur is more than 0.03%, the content of solute is high so that the ductility and moldability is greatly lowered, there is a fear of red brittleness. When the content of sulfur is in the range of 0.005 ~ 0.03%, it becomes easy to adjust the precipitate size of MnS to the desired range.
알루미늄(Al)의 함량은 0.01-0.1%가 바람직하다.The content of aluminum (Al) is preferably 0.01-0.1%.
알루미늄은 탈산제로 첨가하는 원소이지만 본 발명에서는 강중 질소를 석출하여 고용질소에 의한 성형성저하를 방지하기 위해 첨가한다. 알루미늄의 함량이 0.01%미만의 경우에는 고용질소의 양이 많아 성형성이 저하하고, 알루미늄의 함량이 0.1%초과의 경우에는 고용 상태로 존재하는 알루미늄의 양이 많아 연성을 저하한다.
Aluminum is an element added as a deoxidizer, but in the present invention, nitrogen is added in order to prevent formability deterioration due to solid nitrogen by precipitating nitrogen in steel. If the aluminum content is less than 0.01%, the amount of solid solution is high because the amount of solid solution decreases, and when the aluminum content is more than 0.1%, the amount of aluminum in the solid solution state is high and the ductility is lowered.
질소(N)의 함량은 0.004%이하가 바람직하다.The content of nitrogen (N) is preferably 0.004% or less.
질소는 제강중 불가피하게 첨가되는 원소로 0.004%초과의 경우에는 성형성이 저하하므로 0.004%이하가 바람직하다.
Nitrogen is an element inevitably added during steelmaking, and in the case of more than 0.004%, the moldability is lowered, so 0.004% or less is preferable.
인(P)의 함량은 0.015%이하가 바람직하다. The content of phosphorus (P) is preferably 0.015% or less.
인의 함량이 0.015% 초과의 경우에는 연성 및 성형성이 저하하므로 0.015%이 하로 하는 것이 바람직하다.
If the content of phosphorus is more than 0.015%, the ductility and moldability are lowered, it is preferable to be 0.015% or less.
몰리브덴(Mo)의 함량은 0.01~0.2%가 바람직하다.The content of molybdenum (Mo) is preferably 0.01 to 0.2%.
몰리브덴은 가공성확보를 위해 첨가되는데, 그 함량이 0.01%이상되어야 가공성이 좋아지며, 0.2%를 초과하면 가공성은 더 이상 좋아지지 않고 열간취성을 일으킬 우려가 있다.
Molybdenum is added to ensure the processability, the content is more than 0.01% to improve the processability, when the content exceeds 0.2% there is a fear that the workability is no longer improved and cause hot brittleness.
상기 Mn와 S의 중량비는 0.58*Mn/S≤10를 만족하는 것이 바람직하다.The weight ratio of Mn and S preferably satisfies 0.58 * Mn / S ≦ 10.
망간과 황은 결합하여 MnS로 석출되는데, 이 MnS석출물은 망간과 황의 첨가량에 따라 석출상태가 달라져 소부경화능, 항복강도, 면내이방성 지수에 영향을 미친다. 본 발명의 연구에 따르면 망간과 황의 첨가비(0.58*Mn/S, 여기서, Mn, S의 함량은 중량%)가 10초과의 경우에는 MnS석출물이 조대하여 소부경화특성이 떨어지고, 항복강도, 면내이방성 지수의 특성이 좋지 않다.
Manganese and sulfur combine to precipitate as MnS, which affects the hardening hardening ability, yield strength, and in-plane anisotropy index, depending on the amount of manganese and sulfur added. According to the present invention, when the addition ratio of manganese and sulfur (0.58 * Mn / S, where the content of Mn, S in weight%) is more than 10, MnS precipitates are coarse, and the hardening hardening property is lowered, yield strength, in-plane Anisotropy index is not good.
MnS석출물의 평균크기는 0.2㎛이하가 바람직하다. The average size of the MnS precipitates is preferably 0.2 μm or less.
본 발명의 연구결과에 따르면 MnS석출물의 크기가 소부경화, 항복강도, 면내이방성 지수에 직접적으로 영향을 미치는데, MnS의 평균크기가 0.2㎛ 초과의 경우에는 특히 소부경화특성을 급격히 떨어지고 면내이방성지수도 높아진다. 따라서, MnS 석출물의 평균크기는 0.2㎛ 이하가 바람직하다.
According to the results of the present invention, the size of MnS precipitate directly affects the hardening hardening, yield strength and in-plane anisotropy index. Especially, when the average size of MnS is more than 0.2 ㎛, the hardening hardening characteristic is rapidly dropped and the in-plane anisotropic index is lower. Also increases. Therefore, the average size of the MnS precipitates is preferably 0.2 μm or less.
[냉연강판의 제조방법][Manufacturing method of cold rolled steel sheet]
본 발명은 상기한 강조성을 만족하는 강을 열간압연과 냉간압연을 통해 냉간압연판에 MnS석출물의 평균크기가 0.2㎛ 이하를 만족하도록 하는데 특징이 있다. 냉간압연판의 MnS석출물의 크기는 Mn/S의 비와 제조공정에 영향을 받으나 특히 열간압연후의 냉각속도에 직접적인 영향을 받는다.
The present invention is characterized in that an average size of MnS precipitates in a cold rolled sheet is hot and cold rolled to satisfy the above-described stress. The size of MnS precipitates in the cold rolled plate is affected by the ratio of Mn / S and the manufacturing process, but in particular by the cooling rate after hot rolling.
[열간압연조건][Hot Rolling Condition]
본 발명에서는 상기한 강조성을 만족하는 강을 재가열하여 열간압연한다. 재가열온도는 1100℃이상이 바람직하다. 재가열온도가 1100℃미만의 경우에는 재가열온도가 낮아 연속주조중에 생성된 조대한 MnS가 완전히 용해되지 않은 상태로 남아있어 열간압연후에도 조대한 MnS가 많이 남아있기 때문이다.
In the present invention, the steel that satisfies the above-mentioned emphasis is reheated and hot rolled. The reheating temperature is preferably 1100 ° C or more. If the reheating temperature is lower than 1100 ℃, the reheating temperature is low, the coarse MnS produced during the continuous casting is not completely dissolved, the coarse MnS remains even after hot rolling.
열간압연은 마무리압연온도를 Ar3변태온도 이상의 조건에서 행하는 것이 바람직하다. 마무리압연온도가 Ar3변태온도 미만의 경우에는 압연립의 생성으로 가공성이 저하할 뿐만아니라 연성이 크게 저하기 때문이다.
Hot rolling is preferably performed at a finish rolling temperature above Ar 3 transformation temperature. This is because when the finish rolling temperature is lower than the Ar 3 transformation temperature, not only the workability is degraded due to the formation of the rolled grain but also the ductility is greatly reduced.
열간압연후 권취전 냉각속도는 200℃/min이상으로 하는 것이 바람직하다. 본 발명에 따라 Mn과 S의 성분비(0.58*Mn/S)를 10이하로 하더라도 냉각속도가 200℃/min미만이면 MnS의 석출물 크기가 0.2㎛를 초과해 버린다. 즉, 냉각속도가 빨라질 수록 많은 수의 핵이 생성하여 MnS석출물이 미세해지기 때문이다. Mn과 S의 성분비(0.58*Mn/S)를 10초과의 경우에는 재가열공정에서 미용해된 조대한 MnS석출물이 많아 냉각속도가 빨라지더라도 새로운 핵이 생성되는 수가 적어 석출물은 미세해지지 않는다(도 2b, 0.0038%C-0.43%Mn-0.011%P-0.009%S-0.035%Al-0.0043%N-0.05%Mo). 도 2의 그래프를 보면, 냉각속도가 빨라질수록 MnS석출물의 크기가 미세해지므로 냉각속도의 상한을 제한할 필요는 없으나, 냉각속도가 1000℃/min이상이라도 석출물 미세화 효과가 더 이상 커지지 않으므로 냉각속도는 200~1000℃/min가 보다 바람직하다.
After hot rolling, the cooling rate before winding is preferably 200 ° C / min or more. According to the present invention, even if the component ratio (0.58 * Mn / S) of Mn and S is 10 or less, the precipitate size of MnS exceeds 0.2 µm when the cooling rate is less than 200 ° C / min. In other words, as the cooling rate increases, a large number of nuclei are generated and MnS precipitates become finer. In the case where the composition ratio of Mn and S (0.58 * Mn / S) is more than 10, there are many coarse MnS precipitates unresolved in the reheating process, and even if the cooling rate is fast, new nuclei are generated less and the precipitates do not become fine (Fig. 2b). , 0.0038% C-0.43% Mn-0.011% P-0.009% S-0.035% Al-0.0043% N-0.05% Mo). Referring to the graph of Figure 2, the faster the cooling rate is the size of the MnS precipitate becomes finer, so there is no need to limit the upper limit of the cooling rate, even if the cooling rate is more than 1000 ℃ / min cooling rate is no longer increased 200-1000 degreeC / min is more preferable.
[권취조건][Coiling condition]
상기와 같이 열간압연한 다음에는 권취를 행하는데, 권취온도는 700℃이하가 바람직하다. 권취온도가 700℃초과의 경우에는 MnS석출물이 너무 조대하게 성장하여 소부경화특성이 좋지 않다.
Winding is performed after hot rolling as above, but the winding temperature is preferably 700 ° C or lower. If the coiling temperature exceeds 700 ℃ MnS precipitates grow too coarse, so the hardening hardening characteristics are not good.
[냉간압연조건][Cold rolling condition]
냉간압연은 50~90%의 압하율로 행하는 것이 바람직하다. 냉간압하율이 50%미만의 경우에는 소둔재결정 핵생성양이 적기 때문에 소둔시 결정립이 너무 크게 성장하여 소둔 재결정립의 조대화로 강도 및 성형성이 저하한다. 냉간압하율이 90%초과의 경우에는 성형성은 향상되지만 핵생성 양이 너무 많아 소둔 재결정립은 오히려 너무 미세하여 연성이 저하한다. Cold rolling is preferably performed at a reduction ratio of 50 to 90%. If the cold reduction rate is less than 50%, the amount of nucleation of the annealing recrystallization is small, so that grains grow too large during annealing, resulting in a decrease in strength and formability due to coarsening of the annealing recrystallization grains. If the cold reduction ratio is more than 90%, the moldability is improved, but the nucleation amount is too high, so the annealing recrystallized grain is too fine to decrease the ductility.
[연속소둔][Continuous Annealing]
연속소둔 온도는 제품의 재질을 결정하는 중요한 역할을 한다. 본 발명에서는 500~900℃의 온도범위에서 행하는 것이 바람직하다. 연속소둔 온도가 500℃미만의 경우에는 재결정립이 너무 미세하여 목표로 하는 연성값을 확보할수 없으며, 소둔온도가 900℃초과의 경우에는 재결정립의 조대화로 강도가 저하된다. 연속소둔시간은 재결정이 완료되도록 유지하는데, 약 10초이상이면 재결정이 완료된다.
Continuous annealing temperature plays an important role in determining the material of the product. In this invention, it is preferable to carry out in the temperature range of 500-900 degreeC. If the continuous annealing temperature is less than 500 ° C., the recrystallized grain is too fine to obtain a target ductility value. If the annealing temperature is higher than 900 ° C., the strength decreases due to coarsening of the recrystallized grain. The continuous annealing time keeps the recrystallization complete. If it is about 10 seconds or more, the recrystallization is completed.
이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.
Hereinafter, the present invention will be described in more detail with reference to Examples.
[실시예]EXAMPLE
표 1의 강슬라브를 재가열하고 마무리열간압연한 후 권취한 다음, 75%의 압하율로 냉간압연과 연속소둔처리하였다. 이때의 마무리압연온도는 Ar3변태점이상인 910℃이며, 연속소둔은 10℃/초의 속도로 750℃로 40초 동안 가열하여 행하였다. 얻어진 소둔판은 기계적 특성을 조사하기 위해 ASTM규격(ASTM E-8 standard)에 의한 표준시편으로 가공하였다. 시편은 인장시험기(INSTRON사, Model 6025)를 이용하여 항복강도, 인장강도, 연신율, 소성이방성 지수(rm값), 면내이방성 지수(△r)를 측정하였다. 여기서 rm=(r0+2r45+r90)/4, △r=(r0-2r 45+r90)/2이다. 소부경화특성은 시편에 2%의 스테레인을 가한 후 200℃에서 20분간 열처리 후 항복강도 측정한 값을 소부후 항복강도로 하여 표 2에 기재하였다. The steel slabs of Table 1 were reheated, rolled up after finishing hot rolling, and then cold-rolled and continuous annealing at a reduction ratio of 75%. The finish rolling temperature of not less than Ar 3 transformation point is 910 ℃, continuous annealing was performed by heating for 40 seconds to 750 ℃ to 10 ℃ / second. The obtained annealing plate was processed into a standard specimen according to ASTM E-8 standard to investigate the mechanical properties. The specimen was measured for yield strength, tensile strength, elongation, plastic anisotropy index (r m value) and in-plane anisotropy index (Δr) using a tensile tester (INSTRON, Model 6025). Where r m = (r 0 + 2r 45 + r 90 ) / 4 and Δr = (r 0 −2r 45 + r 90 ) / 2. The quench hardening properties are shown in Table 2 as the yield strength measured after quenching after 20% heat treatment at 200 ° C. after adding 2% of the strain to the specimen.
표 2에 나타난 바와 같이, 시료번호 1~4는 본 발명을 만족하는 발명강으로 소부경화특성을 갖으면서 가공성이 우수하다. As shown in Table 2, Sample Nos. 1 to 4 are invention steels satisfying the present invention and have excellent workability while having a hardening hardening characteristic.
시료번호 5의 경우에는 Mo의 첨가량이 본 발명의 조건 보다 많은 것으로 가공성이 좋지 않다. 시료번호 6-9의 경우에는 Mo이 첨가되지 않은 강으로 소성이방성지수가 1.9이하로서 가공성이 좋지 않다. 시료번호 10의 경우에는 종래의 IF 소부경화강으로서 가공성이 좋지 않다.
In the case of sample No. 5, the addition amount of Mo was higher than the conditions of the present invention, and the workability was not good. In the case of Sample No. 6-9, the steel was not added with Mo and the plastic anisotropy index was 1.9 or less, resulting in poor workability. In the case of Sample No. 10, the workability is poor as a conventional IF hardened steel.
상술한 바와 같이, 본 발명에 따라 제공되는 냉연강판은 소부경화특성이 우수하고 소성이방성지수가 높으면서 면내이방성 지수가 낮아서 가공시 주름 발생이 적으며 가공후에는 귀발생이 적은 유용한 효과가 있다. As described above, the cold rolled steel sheet provided in accordance with the present invention has a small hardening property, a high plastic anisotropy index, a low in-plane anisotropy index, and thus less wrinkles during processing, and has less useful effects after processing.
Claims (2)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040071395A KR101115709B1 (en) | 2004-09-07 | 2004-09-07 | Bake hardening cold rolled steel sheet having superior workability and process for producing the same |
PCT/KR2004/003375 WO2005061748A1 (en) | 2003-12-23 | 2004-12-21 | Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same |
EP04808506A EP1704261B1 (en) | 2003-12-23 | 2004-12-21 | Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same |
ES04808506T ES2389656T3 (en) | 2003-12-23 | 2004-12-21 | Cold rolled and baked hardened steel sheet that has excellent formability, and method of manufacturing |
US10/583,701 US20070137739A1 (en) | 2003-12-23 | 2004-12-21 | Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same |
JP2006546817A JP4439525B2 (en) | 2003-12-23 | 2004-12-21 | Bake-hardening cold-rolled steel sheet with excellent workability and method for producing the same |
TW93140008A TWI361223B (en) | 2003-12-23 | 2004-12-22 | Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040071395A KR101115709B1 (en) | 2004-09-07 | 2004-09-07 | Bake hardening cold rolled steel sheet having superior workability and process for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060022540A true KR20060022540A (en) | 2006-03-10 |
KR101115709B1 KR101115709B1 (en) | 2012-03-06 |
Family
ID=37129036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040071395A KR101115709B1 (en) | 2003-12-23 | 2004-09-07 | Bake hardening cold rolled steel sheet having superior workability and process for producing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101115709B1 (en) |
-
2004
- 2004-09-07 KR KR1020040071395A patent/KR101115709B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR101115709B1 (en) | 2012-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101104976B1 (en) | Bake- hardening cold rolled steel sheet having high strength, method of manufacturing the same | |
KR101105055B1 (en) | Bake-hardenable cold rolled steel sheet having excellent resistance to second work embrittleness and high strength, and method of manufacturing the same | |
KR101115709B1 (en) | Bake hardening cold rolled steel sheet having superior workability and process for producing the same | |
KR101115763B1 (en) | Bake hardening cold rolled steel sheet having superior workability and high strength, and process for producing the same | |
KR101105007B1 (en) | Cold rolled steel sheet having excellent baking hardenability and process for producing the same | |
KR101115842B1 (en) | Bake hardening cold rolled steel sheet having superior workability and high strength, and process for producing the same | |
KR101105132B1 (en) | Baking hardening cold rolled steel sheet having high strength, process for producing the same | |
KR101125916B1 (en) | Non-aging cold rolled steel sheet having less anisotropy and process for producing the same | |
KR101105025B1 (en) | Bake-hardening cold rolled steel sheet having less anistropy and high strength, process for producing the same | |
KR101053345B1 (en) | High strength cold rolled steel sheet with excellent surface and hardening properties and its manufacturing method | |
KR101105098B1 (en) | Bake-harding cold rolled steel sheet having excellent workability and high strength, process for producing the same | |
KR101104981B1 (en) | Bake hardening cold rolled steel sheet having excellent resistance to second work embrittleness and high strength, process for producing the same | |
KR101105032B1 (en) | Bake hardenable cold rolled steel sheet having excellent formability and method of manufacturing the same | |
KR101104993B1 (en) | Non-aging cold rolled steel sheet and process for producing the same | |
KR101105008B1 (en) | Bake-hardening cold rolled steel sheet having excellent formability and high strength, and method of manufacturing the same | |
KR101143240B1 (en) | Non aging cold rolled steel sheet having superior workability and process for producing the same | |
KR101115703B1 (en) | Non aging cold rolled steel sheet having high strength, and process for producing the same | |
KR101115764B1 (en) | Non aging cold rolled steel sheet having high strength and process for producing the same | |
KR101126012B1 (en) | Non-aging cold rolled steel sheet having excellent recrstance to second work embrittlement and high strength, process for producing the same | |
KR101143084B1 (en) | Cold rolled steel sheet having aging resistance superior workability and process for producing the same | |
KR101143159B1 (en) | Non aging cold rolled steel sheet having superior workability and high strength, and process for producing the same | |
KR101143098B1 (en) | High strength cold rolled steel sheet having aging resistance and superior workability, and process for producing the same | |
KR100957946B1 (en) | High strength bake hardening cold rolled steel sheet having excellent surface quality and manufacturing method thereof | |
KR101143039B1 (en) | High strength cold rolled steel sheet having aging resistance and superior workability, and process for producing the same | |
KR100957945B1 (en) | High strength bake hardening cold rolled steel sheet having excellent surface quality and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150203 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20160211 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170206 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180207 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20190207 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20200206 Year of fee payment: 9 |