KR101105007B1 - Cold rolled steel sheet having excellent baking hardenability and process for producing the same - Google Patents

Cold rolled steel sheet having excellent baking hardenability and process for producing the same Download PDF

Info

Publication number
KR101105007B1
KR101105007B1 KR1020030095393A KR20030095393A KR101105007B1 KR 101105007 B1 KR101105007 B1 KR 101105007B1 KR 1020030095393 A KR1020030095393 A KR 1020030095393A KR 20030095393 A KR20030095393 A KR 20030095393A KR 101105007 B1 KR101105007 B1 KR 101105007B1
Authority
KR
South Korea
Prior art keywords
less
rolled steel
steel sheet
cold rolled
cold
Prior art date
Application number
KR1020030095393A
Other languages
Korean (ko)
Other versions
KR20050064110A (en
Inventor
윤정봉
손원호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020030095393A priority Critical patent/KR101105007B1/en
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN200480038805XA priority patent/CN1898403B/en
Priority to US10/583,701 priority patent/US20070137739A1/en
Priority to EP04808506A priority patent/EP1704261B1/en
Priority to CN2008102118977A priority patent/CN101372733B/en
Priority to PCT/KR2004/003375 priority patent/WO2005061748A1/en
Priority to ES04808506T priority patent/ES2389656T3/en
Priority to JP2006546817A priority patent/JP4439525B2/en
Priority to TW93140008A priority patent/TWI361223B/en
Publication of KR20050064110A publication Critical patent/KR20050064110A/en
Application granted granted Critical
Publication of KR101105007B1 publication Critical patent/KR101105007B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Abstract

본 발명은 자동차 등의 소재로 사용되는 소부경화형 냉연강판에 관한 것이다.이 냉연강판은, 중량%로 C:0.003~0.005%, Mn:0.05-0.2%, S:0.005-0.03%, Al:0.01-0.1%, N:0.004%이하, P:0.015%이하, 상기 Mn와 S의 중량비가 다음의 조건 0.58*Mn/S≤10를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, MnS석출물의 평균크기가 0.2㎛이하로 이루어진다. 또한, 이 냉연강판의 제조방법 역시 제공된다. The present invention relates to a hardened hardened cold rolled steel sheet used in automobiles and the like. The cold rolled steel sheet is, by weight, C: 0.003 to 0.005%, Mn: 0.05-0.2%, S: 0.005-0.03%, and Al: 0.01. -0.1%, N: 0.004% or less, P: 0.015% or less, the weight ratio of Mn and S satisfies the following condition 0.58 * Mn / S ≤ 10, is composed of the remaining Fe and other unavoidable impurities, MnS precipitate The average size is made less than 0.2㎛. In addition, a method for producing this cold rolled steel sheet is also provided.

본 발명의 냉연강판은 항복강도가 200Mpa이상에서 소부후 항복강도 상승이 클 뿐 아니라, 항복강도-연성밸런스가 10950이상으로 제품두께를 줄일수 있어 경량화 효과가 있을뿐만 아니라, 면내이방성 지수가 0.41이하로서 가공시 주름 발생이 적으며 가공후에는 귀(ear) 발생이 적다. The cold rolled steel sheet of the present invention not only has a large increase in the yield strength after firing at 200Mpa or more, but also can reduce the product thickness to a yield strength-ductility balance of 10950 or more, thereby reducing the weight and in-plane anisotropy index of 0.41 or less. Less wrinkles are generated during processing and less ears occur after processing.

냉연강판, 소부경화, 면내이방성 지수, MnS석출물Cold rolled steel, hardened hardening, in-plane anisotropy index, MnS precipitate

Description

소부경화형 냉연강판과 그 제조방법{COLD ROLLED STEEL SHEET HAVING EXCELLENT BAKING HARDENABILITY AND PROCESS FOR PRODUCING THE SAME} COLD ROLLED STEEL SHEET HAVING EXCELLENT BAKING HARDENABILITY AND PROCESS FOR PRODUCING THE SAME}

도 1은 MnS석출물의 크기에 따른 결정립내 고용탄소량의 변화를 나타내는 그래프이며,1 is a graph showing the change in the amount of solid solution carbon in the grain according to the size of the MnS precipitate,

도 2는 냉각속도에 따른 MnS석출물의 크기를 나타내는 그래프이다. 2 is a graph showing the size of MnS precipitates according to the cooling rate.

본 발명은 자동차 등의 소재로 사용되는 냉연강판에 관한 것으로, 보다 상세하게는 미세한 MnS석출물에 의해 고용탄소를 제어하여 소부경화성, 항복강도와 강도-연성 밸런스가 우수하고 면내이방성이 작은 소부경화형 냉연강판과 그 제조방법에 관한 것이다.
The present invention relates to a cold-rolled steel sheet used as a material for automobiles, and more particularly, to control solid-solution carbon by fine MnS precipitates, and thus, hard-curing type cold rolled steel having excellent bake hardenability, yield strength and strength-ductility balance and small in-plane anisotropy. It relates to a steel sheet and a method of manufacturing the same.

자동차 등의 외판 소재에는 내덴트성을 향상하기 위하여 소부경화형 냉연강판이 많이 사용되고 있다. 소부경화형 냉연강판은 강판중에 적정량의 고용탄소를 잔존시켜 프레스 성형시에 생성된 전위를 도장소부시의 열을 이용하여 고용탄소를 고착하여 항복점을 높인 강이다. In order to improve the dent resistance, exterior hardening type cold rolled steel sheets are frequently used for exterior materials such as automobiles. The hardened hardened cold rolled steel is a steel in which a yield of solid solution carbon is retained in the steel sheet and the dislocation generated during press molding is fixed by using solid heat of the coating furnace to increase the yield point.                         

소부경화형 냉연강판에는 상소둔재인 Al-Killed강과 IF강(Interstitial Free Steel)이 있다. There are Al-Killed steel and IF steel (Interstitial Free Steel).

상소둔재인 Al-Killed강의 경우에는 적은 양의 고용탄소가 잔존하고 있어 비시효특성을 확보하면서 소부처리후 10~20Mpa 정도의 소부경화능을 가진다. 상소둔재의 경우 소부처리후 상승하는 항복강도가 낮고, 장시간 소둔하므로 생산성이 낮다는 단점이 있다. In the case of Al-Killed steel, an annealing material, small amount of dissolved carbon remains, and it has a hardening hardening capacity of about 10 ~ 20Mpa after the baking treatment while securing the non-aging characteristics. In the case of the annealing material, the yield strength rising after the baking treatment is low, and there is a disadvantage in that productivity is low because it is annealed for a long time.

IF강의 경우에는 Ti, Nb을 첨가하여 강중에 고용된 탄소 또는 질소를 완전히 석출하여 성형성을 향상시킨 강종으로, 이 IF강에 소부경화특성을 부여한 것이 소부경화형 IF강이다. 소부경화형 IF강은 Ti 또는 Nb의 첨가량과 탄소의 첨가량을 제어하여 적당한 양의 탄소를 강중에 잔존하게 하여 소부경화특성을 부여한 것이다. 소부경화형 IF강의 경우 적당한 양의 탄소를 고용하기 위해서는 첨가되는 탄소의 양 뿐만 아니라, 첨가되는 Ti 또는 Nb의 양은 물론, Ti, Nb과 반응하여 석출물을 생성하는 황, 질소의 양도 매우 좁은 범위에서 제어를 해야하므로 안정적인 품질확보가 어려우며, 생산비용도 많이 드는 단점이 있다. In the case of IF steel, Ti and Nb are added to completely precipitate the carbon or nitrogen dissolved in the steel to improve moldability. The hardening hardening characteristic is given to the IF steel by hardening. The baking hardening type IF steel controls the adding amount of Ti or Nb and the adding amount of carbon so that an appropriate amount of carbon remains in the steel to give the baking hardening characteristic. In the case of small hardening IF steel, in order to employ an appropriate amount of carbon, not only the amount of carbon added, but also the amount of Ti or Nb added, as well as the amount of sulfur and nitrogen that react with Ti and Nb to form precipitates are controlled within a very narrow range. Because of this, it is difficult to secure stable quality and costs a lot of production.

본 발명은 Ti, Nb을 첨가하지 않으면서 소부경화 특성을 갖고 나아가 항복강도 특성이 우수하고 면내이방성이 작은 소부경화형 냉연강판과 그 제조방법을 제공하는데, 그 목적이 있다. The present invention provides a hardening hardened cold rolled steel sheet having a hardening hardening property without adding Ti and Nb and further excellent in yield strength and small in-plane anisotropy, and a method of manufacturing the same.

상기 목적을 달성하기 위한 본 발명의 냉연강판은, 중량%로 C:0.003~0.005%, Mn:0.05-0.2%, S:0.005-0.03%, Al:0.01-0.1%, N:0.004%이하, P:0.015%이하, 상기 Mn와 S의 중량비가 다음의 조건 0.58*Mn/S≤10를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, MnS석출물의 평균크기가 0.2㎛이하로 이루어진다.
Cold rolled steel sheet of the present invention for achieving the above object, by weight% C: 0.003 ~ 0.005%, Mn: 0.05-0.2%, S: 0.005-0.03%, Al: 0.01-0.1%, N: 0.004% or less, P: 0.015% or less, the weight ratio of Mn and S satisfies the following condition 0.58 * Mn / S ≤ 10, is composed of the remaining Fe and other unavoidable impurities, the average size of the MnS precipitate is 0.2㎛ or less.

또한, 본 발명의 냉연강판 제조방법은, 중량%로 C:0.003~0.005%, Mn:0.05-0.2%, S:0.005-0.03%, Al:0.01-0.1%, N:0.004%이하, P:0.015%이하, 상기 Mn와 S의 중량비가 다음의 조건 0.58*Mn/S≤10를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강을 1100℃이상의 온도로 재가열한 후 마무리 압연온도를 Ar3변태점 이상으로 하여 열간압연하고 200℃/min이상의 속도로 냉각하고 700℃이하의 온도에서 권취한 다음, 50~90%의 압하율로 냉간 압연하고, 500-900℃ 온도 범위에서 연속소둔하는 것이다.
In addition, the cold rolled steel sheet manufacturing method of the present invention, by weight% C: 0.003 ~ 0.005%, Mn: 0.05-0.2%, S: 0.005-0.03%, Al: 0.01-0.1%, N: 0.004% or less, P: 0.015% or less, the weight ratio of Mn and S satisfies the following condition 0.58 * Mn / S ≦ 10, and re-heats the steel composed of the remaining Fe and other unavoidable impurities to a temperature of 1100 ° C. or higher, followed by Ar 3 Hot rolling over the transformation point, cooling at a rate of 200 ° C./min or more, winding at a temperature of 700 ° C. or lower, cold rolling at a reduction ratio of 50-90%, and continuous annealing at a temperature range of 500-900 ° C.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명자들은 Ti, Nb을 첨가하지 않으면서 소부경화특성을 개선하기 위한 연구과정에서 다음과 같은 새로운 사실을 밝혀내었다. 탄소함량을 적정량으로 제어하면서 MnS의 석출물을 미세하게 분포시키면 기본적으로 항복강도도 높으면서 소부후의 항복강도가 증대되는데, 이는 미세한 MnS석출물이 고용탄소에 영향을 미친다는 것이다. The present inventors have discovered the following new facts in the course of research to improve the baking hardening properties without adding Ti and Nb. The fine distribution of MnS precipitates while controlling the carbon content to an appropriate amount basically increases the yield strength and increases the yield strength of the post-load. This means that the fine MnS precipitates affect the solid solution carbon.

도 1에 나타난 바와 같이, MnS의 석출물이 미세하게 분포할수록 결정립내의 고용탄소량이 줄어드는데, 냉연강판의 탄소함량이 0.003~0.005%의 경우에는 소부경화특성을 갖게 된다. 이것은 MnS석출물이 미세하게 분포하면 MnS석출물 주변에 탄소가 석출되어 상온에서는 시효를 일으키지 않고 도장소부열처리에서 탄소가 용해되어 항복강도를 크게 상승시키는 것으로 판단된다. As shown in FIG. 1, the finer the precipitate of MnS, the smaller the amount of solid solution carbon in the grains. When the carbon content of the cold rolled steel sheet is 0.003% to 0.005%, it has a hardening characteristic. This suggests that when the MnS precipitates are minutely distributed, carbon precipitates around the MnS precipitates, which does not cause aging at room temperature, but dissolves the carbon in the coating sub-heat treatment to significantly increase the yield strength.

이를 위해서는 탄소의 함량이 0.003~0.005%로 조절되어야 하며, MnS의 미세석출물의 크기는 0.2㎛이하로 판단되었다. For this purpose, the content of carbon should be adjusted to 0.003 ~ 0.005%, the size of the fine precipitate of MnS was determined to be less than 0.2㎛.

이와 같은 새로운 사실에 주목하여 MnS를 미세하게 분포시키는 방안에 대하여 연구하게 되었다. 그 결과, (1) Mn의 함량을 0.05~0.2%로 하고 S의 함량을 0.005~0.03%로 하면서 이들의 성분비(0.58*Mn/S)를 10이하로 조절하는 것이 필요하며, (2) 이와 함께 압간압연이 끝난 후 냉각속도를 200℃/min이상으로 하면 0.2㎛이하의 미세한 MnS의 석출물을 얻을 수 있다는 것이다. Paying attention to these new facts, we have studied how to finely distribute MnS. As a result, (1) it is necessary to adjust the content ratio (0.58 * Mn / S) of 10 or less while (2) Mn content of 0.05 to 0.2% and S content of 0.005 to 0.03%. In addition, when the cooling rate is 200 ℃ / min or more after the end of the rolling rolling, it is possible to obtain a fine MnS precipitate of 0.2 ㎛ or less.

즉, 도 2(a)는 0.004%C-0.15%Mn-0.008%P-0.015%S-0.03%Al-0.0012%N인 강으로 Mn과 S의 성분비(0.58*Mn/S)가 5.8인 조성의 강을 열간압연후 냉각속도에 따른 석출물의 크기를 조사한 그래프이다. 도 2(a)의 그래프를 보면, Mn과 S의 성분비(0.58*Mn/S)가 10이하를 만족하는 경우에 대해 냉각속도를 조절하면 MnS의 석출물 크기가 0.2㎛이하를 만족할 수 있음을 확인할 수 있다.
That is, FIG. 2 (a) is a steel having 0.004% C-0.15% Mn-0.008% P-0.015% S-0.03% Al-0.0012% N, and the composition ratio of Mn and S (0.58 * Mn / S) is 5.8 The graph shows the size of precipitates according to the cooling rate after hot rolling of steel. Looking at the graph of Figure 2 (a), the Mn and S component ratio (0.58 * Mn / S) when the cooling rate is adjusted for the case of less than 10 confirms that the precipitate size of MnS can satisfy 0.2㎛ or less Can be.

본 발명에 따라 C:0.003~0.005%, Mn:0.05-0.2%, S:0.005-0.03%, Al:0.01-0.1%, N:0.004%이하, P:0.015%이하이고 상기 Mn와 S의 중량비가 다음의 조건 0.58*Mn/S≤10를 만족하는 성분계에서 MnS석출물의 평균크기가 0.2㎛이하로 만족하 는 경우에는 소부경화특성을 기본적으로 확보하면서 항복강도가 220MPa이상을 만족하면서 면내이방성지수(△r)가 0.41이하를 만족한다. 항복강도가 높으면 강판의 두께를 줄일수 있어 경량화효과가 있으며, 또한, 면내이방성이 낮아 가공시 주름 발생이 적으며 가공후에는 귀(ear) 발생이 적은 장점이 있다. 이러한 본 발명의 소부경화형 냉연강판과 그 제조방법을 이하에서 구체적으로 설명한다.
According to the invention C: 0.003 ~ 0.005%, Mn: 0.05-0.2%, S: 0.005-0.03%, Al: 0.01-0.1%, N: 0.004% or less, P: 0.015% or less and the weight ratio of Mn and S If the average size of MnS precipitates is less than 0.2㎛ in the component system satisfying the following condition 0.58 * Mn / S≤10, the in-plane anisotropy index is satisfied while the yield strength meets 220MPa or more while basically securing the hardening characteristic (Δr) satisfies 0.41 or less. If the yield strength is high, the thickness of the steel sheet can be reduced, thereby reducing the weight, and also having low in-plane anisotropy, less wrinkles during processing, and less ears after processing. The baking hardening type cold rolled steel sheet of this invention and its manufacturing method are demonstrated in detail below.

[본 발명의 냉연강판][Cold rolled steel sheet of the present invention]

탄소(C)의 함량은 0.003~0.005%가 바람직하다.The content of carbon (C) is preferably 0.003% to 0.005%.

탄소의 함량이 0.003%미만의 경우 강중 소부경화량이 적고, 0.0005%초과의 경우에는 성형성이 급격히 저하된다. If the content of carbon is less than 0.003%, the amount of hardening of baking in steel is small, and if the content of carbon is more than 0.0005%, the moldability decreases rapidly.

망간(Mn)의 함량은 0.05-0.2%가 바람직하다. The content of manganese (Mn) is preferably 0.05-0.2%.

망간은 강중 고용황을 MnS로 석출하여 고용 황에 의한 적열취성(Hot shortness)을 방지하는 원소로 알려져 있다. 본 발명에서는 망간과 황의 함량을 적절해지는 경우에 매우 미세한 MnS가 석출되고 이 MnS석출물의 주변에는 탄소가 석출되고 석출된 탄소는 도장소부처리과정에서 용해되어 소부경화능을 부여한다는 연구결과에 기초하여 망간의 함량을 0.05~0.2%로 하는 것이 바람직하다. 망간의 함량이 0.05%미만의 경우에는 고용 상태로 잔존하는 황의 함량이 많기 때문에 적열취성이 발생할 수 있으며, 망간의 함량이 0.2% 초과의 경우에는 망간의 함량이 높아 조대한 MnS석출물이 생성되어 소부경화특성이 열악해진다.
Manganese is known as an element that precipitates solid sulfur in steel as MnS to prevent hot shortness caused by solid sulfur. In the present invention, when the content of manganese and sulfur is appropriate, very fine MnS is precipitated, and carbon is precipitated around the MnS precipitate, and the precipitated carbon is dissolved in the coating baking treatment to give baking hardening capacity. It is preferable to make content of manganese into 0.05 to 0.2%. If the content of manganese is less than 0.05%, red brittleness may occur due to the large amount of sulfur remaining in solid solution. If the content of manganese is more than 0.2%, coarse MnS precipitates are formed due to high content of manganese. Curing properties are poor.

황(S)의 함량은 0.005-0.03%가 바람직하다.The content of sulfur (S) is preferably 0.005-0.03%.

황(S)의 함량이 0.005%미만의 경우에는 MnS 석출량이 적을 뿐만 아니라 석출되는 MnS의 크기가 매우 조대해져 소부경화특성에 좋지 않다. 황의 함량이 0.03% 초과의 경우에는 고용된 황의 함량이 많아 연성 및 성형성이 크게 낮아지며, 적열취성의 우려가 있기 때문이다. 황의 함량은 0.005~0.03%의 범위일 때 MnS의 석출물 크기를 원하는 범위로 조절하기가 용이해진다.
When the content of sulfur (S) is less than 0.005%, not only the amount of MnS precipitates but also the size of precipitated MnS is very coarse, which is not good for baking hardening characteristics. If the content of sulfur is more than 0.03%, the content of solute is high so that the ductility and moldability is greatly lowered, there is a fear of red brittleness. When the content of sulfur is in the range of 0.005 ~ 0.03%, it becomes easy to adjust the precipitate size of MnS to the desired range.

알루미늄(Al)의 함량은 0.01-0.1%가 바람직하다.The content of aluminum (Al) is preferably 0.01-0.1%.

알루미늄은 탈산제로 첨가하는 원소이지만 본 발명에서는 강중 질소를 석출하여 고용질소에 의한 성형성저하를 방지하기위해 첨가한다. 알루미늄의 함량이 0.01%미만의 경우에는 고용질소의 양이 많아 성형성이 저하하고, 알루미늄의 함량이 0.1%초과의 경우에는 고용 상태로 존재하는 알루미늄의 양이 많아 연성을 저하한다.
Aluminum is an element added as a deoxidizer, but in the present invention, nitrogen is added in order to prevent formability deterioration due to solid nitrogen by precipitating nitrogen in steel. If the aluminum content is less than 0.01%, the amount of solid solution is high because the amount of solid solution decreases, and when the aluminum content is more than 0.1%, the amount of aluminum in the solid solution state is high and the ductility is lowered.

질소(N)의 함량은 0.004%이하가 바람직하다.The content of nitrogen (N) is preferably 0.004% or less.

질소는 제강중 불가피하게 첨가되는 원소로 0.004%초과의 경우에는 성형성이 저하하므로 0.004%이하가 바람직하다.
Nitrogen is an element inevitably added during steelmaking, and in the case of more than 0.004%, the moldability is lowered, so 0.004% or less is preferable.

인(P)의 함량은 0.015%이하가 바람직하다. The content of phosphorus (P) is preferably 0.015% or less.

인의 함량이 0.015% 초과의 경우에는 연성 및 성형성이 저하하므로 0.015%이 하로 하는 것이 바람직하다.
If the content of phosphorus is more than 0.015%, the ductility and moldability are lowered, it is preferable to be 0.015% or less.

상기 Mn와 S의 중량비는 0.58*Mn/S≤10를 만족하는 것이 바람직하다.The weight ratio of Mn and S preferably satisfies 0.58 * Mn / S ≦ 10.

망간과 황은 결합하여 MnS로 석출되는데, 이 MnS석출물은 망간과 황의 첨가량에 따라 석출상태가 달라져 소부경화능, 항복강도, 면내이방성 지수에 영향을 미친다. 본 발명의 연구에 따르면 망간과 황의 첨가비(0.58*Mn/S, 여기서, Mn, S의 함량은 중량%)가 10초과의 경우에는 MnS석출물이 조대하여 소부경화특성이 떨어지고, 항복강도, 면내이방성 지수의 특성이 좋지 않다.
Manganese and sulfur combine to precipitate as MnS, which affects the hardening hardening ability, yield strength, and in-plane anisotropy index, depending on the amount of manganese and sulfur added. According to the present invention, when the addition ratio of manganese and sulfur (0.58 * Mn / S, where the content of Mn, S in weight%) is more than 10, MnS precipitates are coarse, and the hardening hardening property is lowered, yield strength, in-plane Anisotropy index is not good.

MnS석출물의 평균크기는 0.2㎛이하가 바람직하다. The average size of the MnS precipitates is preferably 0.2 μm or less.

본 발명의 연구결과에 따르면 MnS석출물의 크기가 소부경화, 항복강도, 면내이방성 지수에 직접적으로 영향을 미치는데, MnS의 평균크기가 0.2㎛ 초과의 경우에는 특히 소부경화특성을 급격히 떨어지고 면내이방성지수도 높아진다. 따라서, MnS 석출물의 평균크기는 0.2㎛ 이하가 바람직하다.
According to the results of the present invention, the size of MnS precipitates directly affects the hardening hardening, yield strength and in-plane anisotropy index. Especially, when the average size of MnS is more than 0.2㎛, the hardening hardening characteristic drops sharply and the in-plane anisotropic index is reduced. Also increases. Therefore, the average size of the MnS precipitates is preferably 0.2 μm or less.

[냉연강판의 제조방법][Manufacturing method of cold rolled steel sheet]

본 발명은 상기한 강조성을 만족하는 강을 열간압연과 냉간압연을 통해 냉간압연판에 MnS석출물의 평균크기가 0.2㎛ 이하를 만족하도록 하는데 특징이 있다. 냉간압연판의 MnS석출물의 크기는 Mn/S의 비와 제조공정에 영향을 받으나 특히 열간압연후의 냉각속도에 직접적인 영향을 받는다. The present invention is characterized in that an average size of MnS precipitates in a cold rolled sheet is hot and cold rolled to satisfy the above-described stress. The size of MnS precipitates in the cold rolled plate is affected by the ratio of Mn / S and the manufacturing process, but in particular by the cooling rate after hot rolling.                     

[열간압연조건][Hot Rolling Condition]

본 발명에서는 상기한 강조성을 만족하는 강을 재가열하여 열간압연한다. 재가열온도는 1100℃이상이 바람직하다. 재가열온도가 1100℃미만의 경우에는 재가열온도가 낮아 연속주조중에 생성된 조대한 MnS가 완전히 용해되지 않은 상태로 남아있어 열간압연후에도 조대한 MnS가 많이 남아있기 때문이다.
In the present invention, the steel that satisfies the above-mentioned emphasis is reheated and hot rolled. The reheating temperature is preferably 1100 ° C or more. If the reheating temperature is lower than 1100 ℃, the reheating temperature is low, the coarse MnS produced during the continuous casting is not completely dissolved, the coarse MnS remains even after hot rolling.

열간압연은 마무리압연온도를 Ar3변태온도 이상의 조건에서 행하는 것이 바람직하다. 마무리압연온도가 Ar3변태온도 미만의 경우에는 압연립의 생성으로 가공성이 저하할 뿐만아니라 연성이 크게 저하기 때문이다.
Hot rolling is preferably performed at a finish rolling temperature above Ar 3 transformation temperature. This is because when the finish rolling temperature is lower than the Ar 3 transformation temperature, not only the workability is degraded due to the formation of the rolled grain but also the ductility is greatly reduced.

열간압연후 권취전 냉각속도는 200℃/min이상으로 하는 것이 바람직하다. 본 발명에 따라 Mn과 S의 성분비(0.58*Mn/S)를 10이하로 하더라도 냉각속도가 200℃/min미만이면 MnS의 석출물 크기가 0.2㎛를 초과해 버린다. 즉, 냉각속도가 빨라질수록 많은 수의 핵이 생성하여 MnS석출물이 미세해지기 때문이다. Mn과 S의 성분비(0.58*Mn/S)를 10초과의 경우에는 재가열공정에서 미용해된 조대한 MnS석출물이 많아 냉각속도가 빨라지더라도 새로운 핵이 생성되는 수가 적어 석출물은 미세해지지 않는다(도 2b, 0.0038%C-0.43%Mn-0.011%P-0.009%S-0.035%Al-0.0043%N). 도 2의 그래프를 보면, 냉각속도가 빨라질수록 MnS석출물의 크기가 미세해지므로 냉각속도의 상한을 제한할 필요는 없으나, 냉각속도가 1000℃/min이상이라도 석출 물 미세화 효과가 더 이상 커지지 않으므로 냉각속도는 200~1000℃/min가 보다 바람직하다.
After hot rolling, the cooling rate before winding is preferably 200 ° C / min or more. According to the present invention, even if the component ratio (0.58 * Mn / S) of Mn and S is 10 or less, the precipitate size of MnS exceeds 0.2 µm when the cooling rate is less than 200 ° C / min. In other words, as the cooling rate increases, a large number of nuclei are generated, thereby minimizing MnS precipitates. In the case where the composition ratio of Mn and S (0.58 * Mn / S) is more than 10, there are many coarse MnS precipitates unresolved in the reheating process, and even if the cooling rate is fast, new nuclei are generated less and the precipitates do not become fine (Fig. 2b). , 0.0038% C-0.43% Mn-0.011% P-0.009% S-0.035% Al-0.0043% N). Referring to the graph of FIG. 2, the faster the cooling rate, the smaller the size of the MnS precipitate is, so it is not necessary to limit the upper limit of the cooling rate. As for a speed | rate, 200-1000 degreeC / min is more preferable.

[권취조건][Coiling condition]

상기와 같이 열간압연한 다음에는 권취를 행하는데, 권취온도는 700℃이하가 바람직하다. 권취온도가 700℃초과의 경우에는 MnS석출물이 너무 조대하게 성장하여 소부경화특성이 좋지 않다.
Winding is performed after hot rolling as above, but the winding temperature is preferably 700 ° C or lower. If the coiling temperature exceeds 700 ℃ MnS precipitates grow too coarse, so the hardening hardening characteristics are not good.

[냉간압연조건][Cold rolling condition]

냉간압연은 50~90%의 압하율로 행하는 것이 바람직하다. 냉간압하율이 50%미만의 경우에는 소둔재결정 핵생성양이 적기 때문에 소둔시 결정립이 너무 크게 성장하여 소둔 재결정립의 조대화로 강도 및 성형성이 저하한다. 냉간압하율이 90%초과의 경우에는 성형성은 향상되지만 핵생성 양이 너무 많아 소둔 재결정립은 오히려 너무 미세하여 연성이 저하한다.
Cold rolling is preferably performed at a reduction ratio of 50 to 90%. If the cold reduction rate is less than 50%, the amount of nucleation of the annealing recrystallization is small, so that grains grow too large during annealing, resulting in a decrease in strength and formability due to coarsening of the annealing recrystallization grains. If the cold reduction ratio is more than 90%, the moldability is improved, but the nucleation amount is too high, so the annealing recrystallized grain is too fine to decrease the ductility.

[연속소둔][Continuous Annealing]

연속소둔 온도는 제품의 재질을 결정하는 중요한 역할을 한다. 본 발명에서는 500~900℃의 온도범위에서 행하는 것이 바람직하다. 연속소둔 온도가 500℃미만의 경우에는 재결정립이 너무 미세하여 목표로 하는 연성값을 확보할수 없으며, 소둔온도가 900℃초과의 경우에는 재결정립의 조대화로 강도가 저하된다. 연속소둔시 간은 재결정이 완료되도록 유지하는데, 약 10초이상이면 재결정이 완료된다.
Continuous annealing temperature plays an important role in determining the material of the product. In this invention, it is preferable to carry out in the temperature range of 500-900 degreeC. If the continuous annealing temperature is less than 500 ° C., the recrystallized grain is too fine to obtain a target ductility value. If the annealing temperature is higher than 900 ° C., the strength decreases due to coarsening of the recrystallized grain. The continuous annealing time keeps the recrystallization completed. If it is about 10 seconds or longer, the recrystallization is completed.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예][Example]

표 1의 강괴를 재가열하고 마무리열간압연한 후 권취한 다음, 75%의 압하율로 냉간압연과 연속소둔처리하였다. 이때의 마무리압연온도는 Ar3변태점이상인 910℃이며, 연속소둔은 10℃/초의 속도로 750℃로 40초 동안 가열하여 행하였다. 얻어진 소둔판은 기계적 특성을 조사하기 위해 ASTM규격(ASTM E-8 standard)에 의한 표준시편으로 가공하였다. 시편은 인장시험기(INSTRON사, Model 6025)를 이용하여 항복강도, 인장강도, 연신율, 소성이방성 지수(rm값), 면내이방성 지수(△r값), 2차가공취성을 측정하였다. 여기서 rm=(r0+2r45+r90)/4, △r=(r0 -2r45+r90)/2이다. 소부경화특성은 시편을 2% 스트레인을 가한 후 170℃에서 20분간 열처리후 항복강도 측정한 값을 소부후 항복강도로 하여 표 2에 기재하였다. The ingots of Table 1 were reheated, rolled up after finishing hot rolling, and then cold-rolled and continuous annealing at a reduction ratio of 75%. The finishing rolling temperature at this time was 910 degreeC above Ar3 transformation point, and continuous annealing was performed by heating at 750 degreeC for 40 second at the speed of 10 degreeC / sec. The obtained annealing plate was processed into a standard specimen according to ASTM E-8 standard to investigate the mechanical properties. The specimens were tested for yield strength, tensile strength, elongation, plastic anisotropy index (r m value), in-plane anisotropy index (Δr value), and secondary processing brittleness using a tensile tester (INSTRON, Model 6025). Where r m = (r 0 + 2r 45 + r 90 ) / 4 and Δr = (r 0 −2r 45 + r 90 ) / 2. The quench hardening properties are shown in Table 2 as the yield strength measured after quenching after 20% heat treatment at 170 ° C. after 2% strain of the specimen.

시료sample 화학성분(중량%)Chemical composition (% by weight) 0.58*
Mn/S
0.58 *
Mn / S
재가열
온도
(℃)
Reheat
Temperature
(℃)
냉각속도
(℃/min.)
Cooling rate
(℃ / min.)
권취
온도
(℃)
Winding
Temperature
(℃)
CC MnMn PP SS AlAl NN 기타Etc 1One 0.00350.0035 0.10.1 0.010.01 0.0090.009 0.040.04 0.00210.0021 -- 6.446.44 12001200 200200 650650 22 0.00410.0041 0.100.10 0.0090.009 0.0120.012 0.050.05 0.00300.0030 -- 4.834.83 12001200 200200 650650 33 0.00380.0038 0.080.08 0.0110.011 0.0120.012 0.0350.035 0.00230.0023 -- 3.873.87 12001200 200200 650650 44 0.00440.0044 0.10.1 0.010.01 0.0060.006 0.020.02 0.00320.0032 -- 9.679.67 12001200 200200 650650 55 0.00220.0022 0.10.1 0.0090.009 0.0110.011 0.040.04 0.00380.0038 -- 5.275.27 12001200 200200 650650 66 0.00390.0039 0.430.43 0.010.01 0.0080.008 0.050.05 0.00380.0038 -- 31.231.2 12001200 200200 650650 77 0.00670.0067 0.10.1 0.0080.008 0.010.01 0.040.04 0.00280.0028 -- 5.85.8 12001200 200200 650650 88 0.00240.0024 0.40.4 0.070.07 0.010.01 0.040.04 0.00160.0016 Ti 0.02Ti 0.02 11.611.6 12001200 200200 650650

시료번호Sample Number 기계적 성질Mechanical properties 석출물의 평균크기
(㎛)
Average size of precipitate
(Μm)
비고Remarks
항복강도
(MPa)
Yield strength
(MPa)
인장강도
(MPa)
The tensile strength
(MPa)
연신율
(%)
Elongation
(%)
소성이방성
지수
(rm)
Plastic anisotropy
Indices
(r m )
면내이방성
지수
(△r)
In-plane anisotropy
Indices
(△ r)
소부후 항복강도(MPa)Post-Seizure Yield Strength (MPa) 2차가공취성
(DBTT-℃)
2nd processing brittleness
(DBTT- ℃)
1One 221221 310310 4949 1.831.83 0.410.41 288288 - 70-70 0.130.13 발명강Invention steel 22 241241 315315 4747 1.751.75 0.360.36 292292 - 70-70 0.140.14 발명강Invention steel 33 233233 312312 4747 1.731.73 0.380.38 282282 - 70-70 0.120.12 발명강Invention steel 44 245245 328328 4545 1.691.69 0.310.31 301301 - 70-70 0.10.1 발명강Invention steel 55 209209 299299 5151 1.881.88 0.420.42 232232 - 70-70 0.110.11 비교강Comparative steel 66 211211 290290 5252 1.821.82 0.380.38 235235 - 70 -70 0.590.59 비교강Comparative steel 77 251251 329329 4242 1.531.53 0.290.29 298298 - 70 -70 0.120.12 비교강Comparative steel 88 182182 292292 4848 1.831.83 0.580.58 215215 - 10-10 0.210.21 종래강Conventional Steel

표 1, 2에 나타난 바와 같이, 시료1~4(발명강)는 화학성분 및 제조조건이 본 발명에서 제시하는 범위에 포함되어 항복강도가 220MPa이상이고, 연신율 45%이상으로 강도-연성밸런스는 10950이상이다. 또한, 소성이방성 지수 1.6이상, 면내이방성 지수 0.41이하로 매우 우수한 성형성을 가지며, 소부후 항복강도도 높다. 이러한 재질특성을 나타내는 것은 석출물의 크기를 0.2㎛이하로 제어함으로써 가능하다.
As shown in Tables 1 and 2, Samples 1 to 4 (inventive steel) contained the chemical composition and manufacturing conditions in the range suggested by the present invention, yield strength was 220 MPa or more, and elongation was 45% or more. More than 10950 In addition, the plastic anisotropy index is 1.6 or more, the in-plane anisotropy index is 0.41 or less, it has very excellent moldability, and the yield strength after baking is also high. Such material characteristics can be exhibited by controlling the size of the precipitate to be 0.2 µm or less.

한편, 시료5(비교강)는 탄소함량이 낮아 소부후 항복강도가 낮다. 시료 6(비교강)은 석출물의 크기가 커서 소부후 항복강도가 낮다. 시료7(비교강)은 탄소함량이 높아 연신율 및 소성이방성지수가 낮아 성형가공시 파단이 일어날 가능성이 크다.On the other hand, Sample 5 (comparative steel) has a low carbon content and low yield strength after baking. Sample 6 (comparative steel) had a large size of precipitates, resulting in low yield strength after baking. Sample 7 (comparative steel) has a high carbon content and a low elongation and plastic anisotropy index, so that fracture may occur during molding.

시료8(종래강)은 종래의 IF강으로 소부후 항복강도가 낮을뿐 아니라 2차가공취성온도도 높아 충격시 파단이 일어날 확률이 높다. Sample 8 (conventional steel) is a conventional IF steel, which has a low yield strength after firing and a high secondary processing brittleness temperature, so that there is a high possibility of fracture at impact.

상술한 바와 같이, 본 발명에 따라 제공되는 냉연강판은 소부경화특성이 우수하고 가공성, 항복강도, 2차가공취성이 우수하다. As described above, the cold rolled steel sheet provided in accordance with the present invention is excellent in hardening hardening properties and excellent in workability, yield strength and secondary workability.

Claims (6)

중량%로 C:0.003~0.005%, Mn:0.05-0.2%, S:0.005-0.03%, Al:0.01-0.1%, N:0.004%이하, P:0.015%이하, 상기 Mn와 S의 중량비가 다음의 조건 0.58*Mn/S≤10를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, MnS석출물의 평균크기가 0.2㎛이하로 이루어지는 소부경화형 냉연강판.C: 0.003-0.005% by weight, Mn: 0.05-0.2%, S: 0.005-0.03%, Al: 0.01-0.1%, N: 0.004% or less, P: 0.015% or less, and the weight ratio of Mn and S A hardened hardened cold rolled steel sheet having the following conditions of 0.58 * Mn / S ≦ 10, consisting of remaining Fe and other unavoidable impurities, and having an average size of MnS precipitates of 0.2 μm or less. 제 1항에 있어서, 상기 S은 0.016~0.03%임을 특징으로 소부경화형 냉연강판.According to claim 1, wherein S is hardening type cold-rolled steel sheet, characterized in that 0.016 ~ 0.03%. 제 1항에 있어서, 상기 냉연강판은 항복강도가 220Mpa이상이고, 강도-연성 밸런스가 10950이상이며, 면내이방성 지수가 0.41이하임을 특징으로 하는 소부경화형 냉연강판.According to claim 1, wherein the cold-rolled steel sheet has a yield strength of 220Mpa or more, strength-ductility balance is 10950 or more, in-plane hardened cold-rolled steel sheet characterized in that the in-plane anisotropy index is 0.41 or less. 중량%로 C:0.003~0.005%, Mn:0.05-0.2%, S:0.005-0.03%, Al:0.01-0.1%, N:0.004%이하, P:0.015%이하, 상기 Mn와 S의 중량비가 다음의 조건 0.58*Mn/S≤10를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강을 1100℃이상의 온도로 재가열한 후 마무리 압연온도를 Ar3변태점 이상으로 하여 열간압연하고 200~1000℃/min의 속도로 냉각하고 700℃이하의 온도에서 권취한 다음, 50~90%의 압하율로 냉간 압연하고, 500-900℃ 온도 범위에서 연속소둔하는 소부경화형 냉연강판의 제조방법. C: 0.003-0.005% by weight, Mn: 0.05-0.2%, S: 0.005-0.03%, Al: 0.01-0.1%, N: 0.004% or less, P: 0.015% or less, and the weight ratio of Mn and S After satisfying the following condition 0.58 * Mn / S≤10 and reheating the steel composed of the remaining Fe and other unavoidable impurities to a temperature of 1100 ℃ or more, hot rolling with a finish rolling temperature of Ar 3 transformation point or more and 200 ~ 1000 ℃ Cooling at a rate of / min, wound at a temperature of 700 ℃ or less, followed by cold rolling at a rolling reduction rate of 50 ~ 90%, and continuous annealing in the temperature range of 500-900 ℃ a method for producing a hardened hardened cold rolled steel sheet. 제 4항에 있어서, 상기 S은 0.016~0.03%임을 특징으로 하는 소부경화형 냉연강판의 제조방법.The method of claim 4, wherein S is 0.016 to 0.03%. 제 4항에 있어서, 상기 냉연강판은 220Mpa이상이고, 강도-연성 밸런스가 10950이상이며, 면내이방성 지수가 0.41이하 임을 특징으로 하는 소부경화형 냉연강판의 제조방법.The method of claim 4, wherein the cold rolled steel sheet is 220 Mpa or more, the strength-ductility balance is 10950 or more, and the in-plane anisotropy index is 0.41 or less.
KR1020030095393A 2003-12-23 2003-12-23 Cold rolled steel sheet having excellent baking hardenability and process for producing the same KR101105007B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020030095393A KR101105007B1 (en) 2003-12-23 2003-12-23 Cold rolled steel sheet having excellent baking hardenability and process for producing the same
US10/583,701 US20070137739A1 (en) 2003-12-23 2004-12-21 Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same
EP04808506A EP1704261B1 (en) 2003-12-23 2004-12-21 Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same
CN2008102118977A CN101372733B (en) 2003-12-23 2004-12-21 Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same
CN200480038805XA CN1898403B (en) 2003-12-23 2004-12-21 Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same
PCT/KR2004/003375 WO2005061748A1 (en) 2003-12-23 2004-12-21 Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same
ES04808506T ES2389656T3 (en) 2003-12-23 2004-12-21 Cold rolled and baked hardened steel sheet that has excellent formability, and method of manufacturing
JP2006546817A JP4439525B2 (en) 2003-12-23 2004-12-21 Bake-hardening cold-rolled steel sheet with excellent workability and method for producing the same
TW93140008A TWI361223B (en) 2003-12-23 2004-12-22 Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030095393A KR101105007B1 (en) 2003-12-23 2003-12-23 Cold rolled steel sheet having excellent baking hardenability and process for producing the same

Publications (2)

Publication Number Publication Date
KR20050064110A KR20050064110A (en) 2005-06-29
KR101105007B1 true KR101105007B1 (en) 2012-01-16

Family

ID=37255751

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030095393A KR101105007B1 (en) 2003-12-23 2003-12-23 Cold rolled steel sheet having excellent baking hardenability and process for producing the same

Country Status (1)

Country Link
KR (1) KR101105007B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662942B (en) * 2020-11-19 2022-04-19 南京钢铁股份有限公司 Damping steel and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0121737B1 (en) * 1992-08-31 1997-12-04 다나까 미노루 Cold rolled sheet and hot-galvanized, cold-rolled sheet, both excellent in bake hardening, cold nonaging and forming
KR0128986B1 (en) * 1992-09-14 1998-04-16 다나까 미노루 Ferrite single phase cold rolled steel sheet or fused zinc plated steel sheet for cold non-ahing deep drawing and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0121737B1 (en) * 1992-08-31 1997-12-04 다나까 미노루 Cold rolled sheet and hot-galvanized, cold-rolled sheet, both excellent in bake hardening, cold nonaging and forming
KR0128986B1 (en) * 1992-09-14 1998-04-16 다나까 미노루 Ferrite single phase cold rolled steel sheet or fused zinc plated steel sheet for cold non-ahing deep drawing and method for manufacturing the same

Also Published As

Publication number Publication date
KR20050064110A (en) 2005-06-29

Similar Documents

Publication Publication Date Title
KR100742937B1 (en) Baking hardening type cold rolled steel sheet having reduced plane anisotropy and process for producing the same
KR101104976B1 (en) Bake- hardening cold rolled steel sheet having high strength, method of manufacturing the same
KR101105055B1 (en) Bake-hardenable cold rolled steel sheet having excellent resistance to second work embrittleness and high strength, and method of manufacturing the same
KR101105007B1 (en) Cold rolled steel sheet having excellent baking hardenability and process for producing the same
KR101105132B1 (en) Baking hardening cold rolled steel sheet having high strength, process for producing the same
KR101105025B1 (en) Bake-hardening cold rolled steel sheet having less anistropy and high strength, process for producing the same
KR101105098B1 (en) Bake-harding cold rolled steel sheet having excellent workability and high strength, process for producing the same
KR101104981B1 (en) Bake hardening cold rolled steel sheet having excellent resistance to second work embrittleness and high strength, process for producing the same
KR101105021B1 (en) Bake-hardenable cold rolled having less anisotropy and high strength, and method of manufacturing the same
KR101105032B1 (en) Bake hardenable cold rolled steel sheet having excellent formability and method of manufacturing the same
KR101125916B1 (en) Non-aging cold rolled steel sheet having less anisotropy and process for producing the same
KR101115709B1 (en) Bake hardening cold rolled steel sheet having superior workability and process for producing the same
KR101115842B1 (en) Bake hardening cold rolled steel sheet having superior workability and high strength, and process for producing the same
KR101053345B1 (en) High strength cold rolled steel sheet with excellent surface and hardening properties and its manufacturing method
KR101105008B1 (en) Bake-hardening cold rolled steel sheet having excellent formability and high strength, and method of manufacturing the same
KR101115763B1 (en) Bake hardening cold rolled steel sheet having superior workability and high strength, and process for producing the same
KR101115703B1 (en) Non aging cold rolled steel sheet having high strength, and process for producing the same
KR101104993B1 (en) Non-aging cold rolled steel sheet and process for producing the same
KR100957945B1 (en) High strength bake hardening cold rolled steel sheet having excellent surface quality and manufacturing method thereof
KR100957946B1 (en) High strength bake hardening cold rolled steel sheet having excellent surface quality and manufacturing method thereof
KR101143240B1 (en) Non aging cold rolled steel sheet having superior workability and process for producing the same
KR101143098B1 (en) High strength cold rolled steel sheet having aging resistance and superior workability, and process for producing the same
KR101143084B1 (en) Cold rolled steel sheet having aging resistance superior workability and process for producing the same
KR101143083B1 (en) Bake hardening cold rolled steel sheet having superior workability and high strength, and method of manufacturing the same
KR20050054221A (en) Non-aging cold rolled steel sheet having excellent resistance to second work embrittleness and high strength, process for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150106

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160105

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170105

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180104

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190103

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200103

Year of fee payment: 9