KR100957946B1 - High strength bake hardening cold rolled steel sheet having excellent surface quality and manufacturing method thereof - Google Patents

High strength bake hardening cold rolled steel sheet having excellent surface quality and manufacturing method thereof Download PDF

Info

Publication number
KR100957946B1
KR100957946B1 KR1020070140113A KR20070140113A KR100957946B1 KR 100957946 B1 KR100957946 B1 KR 100957946B1 KR 1020070140113 A KR1020070140113 A KR 1020070140113A KR 20070140113 A KR20070140113 A KR 20070140113A KR 100957946 B1 KR100957946 B1 KR 100957946B1
Authority
KR
South Korea
Prior art keywords
precipitates
steel sheet
rolled steel
content
hardening
Prior art date
Application number
KR1020070140113A
Other languages
Korean (ko)
Other versions
KR20090072113A (en
Inventor
윤정봉
강덕구
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020070140113A priority Critical patent/KR100957946B1/en
Publication of KR20090072113A publication Critical patent/KR20090072113A/en
Application granted granted Critical
Publication of KR100957946B1 publication Critical patent/KR100957946B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 자동차 등의 소재로 사용되는 고강도 소부경화형 냉연강판에 관한 것으로, 탄소함량을 적정량으로 조절하고 석출물을 미세하게 분포시켜 소부경화특성이 개선된 고강도 냉연강판 및 그 제조방법에 관한 것이다. 이 냉연강판은, 중량%로, C:0.0005~0.004%, Si:0.02~0.6%, Mn:0.2~0.8%, P:0.005~0.2%, S:0.003~0.02%, Al:0.01~0.08%, N:0.004%이하(0%를 포함하지 않음), Cu:0.005~0.2%를 포함하며, 상기 Mn, Cu, S의 함량이 5≤0.27*(Mn+Cu)/S≤25 를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, MnS, CuS, (Mn, Cu)S 로 구성된 그룹에서 선택된 1종 또는 2종 이상의 석출물을 포함하고, 상기 석출물의 평균크기가 0.2㎛이하로 이루어진다. 또한, 본 발명에서는 이 냉연강판의 제조방법 역시 제공된다. The present invention relates to a high-strength quenched hardened steel sheet used as a material for automobiles, and to a high-strength cold-rolled steel sheet and a method of manufacturing the same by improving the quench hardening characteristics by adjusting the carbon content to an appropriate amount and finely distribute the precipitates. This cold rolled steel sheet is, in weight%, C: 0.0005 to 0.004%, Si: 0.02 to 0.6%, Mn: 0.2 to 0.8%, P: 0.005 to 0.2%, S: 0.003 to 0.02%, Al: 0.01 to 0.08% , N: 0.004% or less (not including 0%), Cu: 0.005 ~ 0.2%, and the content of Mn, Cu, S satisfies 5≤0.27 * (Mn + Cu) / S≤25 It is composed of the remaining Fe and other unavoidable impurities, including one or two or more precipitates selected from the group consisting of MnS, CuS, (Mn, Cu) S, and the average size of the precipitates is 0.2㎛ or less. In addition, the present invention also provides a method for producing this cold rolled steel sheet.

냉연강판, 소부경화, 고강도, 소성이방성 지수, (Mn,Cu)S, CuS Cold Rolled Steel, Hardening Hardening, High Strength, Plastic Anisotropy Index, (Mn, Cu) S, CuS

Description

표면품질이 우수한 소부경화형 고강도 냉연강판 및 그 제조방법{HIGH STRENGTH BAKE HARDENING COLD ROLLED STEEL SHEET HAVING EXCELLENT SURFACE QUALITY AND MANUFACTURING METHOD THEREOF}High hardness hardened cold rolled steel sheet with excellent surface quality and manufacturing method {HIGH STRENGTH BAKE HARDENING COLD ROLLED STEEL SHEET HAVING EXCELLENT SURFACE QUALITY AND MANUFACTURING METHOD THEREOF}

본 발명은 자동차 등의 소재로 사용되는 고강도 냉연강판에 관한 것으로, 보다 상세하게는 탄소함량을 적정량으로 조절하면서 미세한 석출물의 분포에 의해 결정립내 고용탄소량을 제어하여 표면품질이 우수한 소부경화형 고강도 냉연강판 및 그 제조방법에 관한 것이다. The present invention relates to a high-strength cold-rolled steel sheet used as a material for automobiles, and more particularly, to control the amount of carbon in the grains by controlling the distribution of fine precipitates while controlling the carbon content to an appropriate amount, the surface hardening type high strength cold rolled steel having excellent surface quality It relates to a steel sheet and a method of manufacturing the same.

자동차 등의 외판 소재에는 내덴트성을 향상하기 위하여 소부경화형 냉연강판이 많이 사용되고 있다. 소부경화형 냉연강판은 강판중에 적정량의 고용탄소를 잔존시키고 도장소부시의 열을 이용하여 고용탄소가 프레스 성형시에 생성된 전위를 고착하도록 하여 항복점을 높인 강이다. In order to improve the dent resistance, exterior hardening type cold rolled steel sheets are frequently used for exterior materials such as automobiles. A small hardened type cold rolled steel sheet is a steel having a high yield point by allowing an appropriate amount of solid solution carbon to remain in the steel sheet and using solidified heat of the coated sheet to fix the potential generated during press molding.

소부경화형 냉연강판에는 상소둔재인 Al-Killed강과 IF강(Interstitial Free Steel)이 있다. There are Al-Killed steel and IF steel (Interstitial Free Steel).

상소둔재인 Al-Killed강의 경우에는 적은 양의 고용탄소가 잔존하고 있어 내시효특성을 확보하면서 소부처리후 10~20Mpa 정도의 소부경화능을 가진다. 상소둔재의 경우 소부처리후 상승하는 항복강도가 낮고 생산성이 낮다는 단점이 있다. In the case of Al-Killed steel, which is an ordinary annealing material, a small amount of solid carbon remains, and it has a hardening hardening capacity of about 10 to 20 Mpa after the quenching treatment while securing aging characteristics. The upper annealing material has the disadvantages of low yield strength and low productivity after baking.

IF강의 경우에는 Ti, Nb을 첨가하여 강중에 고용된 탄소 또는 질소를 완전히 석출하여 성형성을 향상시킨 강종으로, 이 IF강에 소부경화특성을 부여한 것이 소부경화형 IF강이다. 소부경화형 IF강은 Ti 또는 Nb의 첨가량과 탄소의 첨가량을 제어하여 적당한 양의 탄소를 강중에 잔존하게 하여 소부경화특성을 부여한 것이다. 소부경화형 IF강의 경우 적당한 양의 탄소를 고용하기 위해서는 첨가되는 탄소의 양 뿐만 아니라, 첨가되는 Ti 또는 Nb의 양은 물론, Ti, Nb과 반응하여 석출물을 생성하는 황, 질소의 양도 매우 좁은 범위에서 제어를 해야하므로 안정적인 품질확보가 어려우며, Ti 또는 Nb를 첨가할 경우 재결정온도가 높아지므로 고온 소둔을 해야 하고, 첨가하는 합금원소가 고가이므로 생산비용도 많이 드는 단점이 있다. In the case of IF steel, Ti and Nb are added to completely precipitate the carbon or nitrogen dissolved in the steel to improve moldability. The hardening hardening characteristic is given to the IF steel by hardening. The baking hardening type IF steel controls the adding amount of Ti or Nb and the adding amount of carbon so that an appropriate amount of carbon remains in the steel to give the baking hardening characteristic. In the case of small hardening IF steel, in order to employ an appropriate amount of carbon, not only the amount of carbon added, but also the amount of Ti or Nb added, as well as the amount of sulfur and nitrogen that react with Ti and Nb to form precipitates are controlled within a very narrow range. Since it is difficult to secure stable quality, and when Ti or Nb is added, the recrystallization temperature is high, so high temperature annealing is required.

미세한 석출물을 이용하여 소부경화특성을 향상한 종래강은 소부경화특성 및 제조원가 측면에서 이점이 있지만 그 방법으로 제조할 경우 자동차용 강판에서는 표면결함이 발생하는 단점이 있다.Conventional steel that has improved the hardening hardening properties using fine precipitates has advantages in terms of hardening hardening properties and manufacturing costs, but when manufactured by the method, surface defects occur in automotive steel sheets.

본 발명은 Ti, Nb을 첨가하지 않고 석출물에 의한 결정립내 고용탄소의 제어로 소부경화특성을 가지면서 표면결함이 발생하지 않는 고강도의 냉연강판과 그 제조방법을 제공하는데 그 목적이 있다. It is an object of the present invention to provide a high strength cold rolled steel sheet and a method of manufacturing the same, which have a hardening characteristic and do not cause surface defects by controlling solid solution carbon in grains by adding precipitates without Ti and Nb.

상기 목적을 달성하기 위한 본 발명의 냉연강판은, 중량%로, C:0.0005~0.004%, Si:0.02~0.6%, Mn:0.2~0.8%, P:0.005~0.2%, S:0.003~0.02%, Al:0.01~0.08%, N:0.004%이하(0%를 포함하지 않음), Cu:0.005~0.2%를 포함하며, 상기 Mn, Cu, S의 함량이 5≤0.27*(Mn+Cu)/S≤25 를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, MnS, CuS, (Mn, Cu)S 로 구성된 그룹에서 선택된 1종 또는 2종 이상의 석출물을 포함하고, 상기 석출물의 평균크기가 0.2㎛이하로 이루어지는 것을 특징으로 한다. Cold rolled steel sheet of the present invention for achieving the above object, in weight%, C: 0.0005 ~ 0.004%, Si: 0.02 ~ 0.6%, Mn: 0.2 ~ 0.8%, P: 0.005 ~ 0.2%, S: 0.003 ~ 0.02 %, Al: 0.01 ~ 0.08%, N: 0.004% or less (not including 0%), Cu: 0.005 ~ 0.2%, the content of Mn, Cu, S is 5≤0.27 * (Mn + Cu Satisfies) / S ≦ 25, is composed of the remaining Fe and other unavoidable impurities, and includes one or two or more precipitates selected from the group consisting of MnS, CuS, (Mn, Cu) S, and the average size of the precipitates. It is characterized by consisting of 0.2 μm or less.

나아가, 본 발명의 냉연강판 제조방법은, 중량%로, 중량%로, C:0.0005~0.004%, Si:0.02~0.6%, Mn:0.2~0.8%, P:0.005~0.2%, S:0.003~0.02%, Al:0.01~0.08%, N:0.004%이하(0%를 포함하지 않음), Cu:0.005~0.2%를 포함하며, 상기 Mn, Cu, S의 함량이 5≤0.27*(Mn+Cu)/S≤25 를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강을 1100~1300℃의 온도로 재가열한 후 마무리 압연온도를 Ar3변태점 이상으로 하여 열간압연하고, 300~1000℃/min의 속도로 냉각하고, 500~750℃의 온도에서 권취한 후, 30~90%의 압하율로 냉간압연하고, 500~900℃ 온도범위에서 10초~30분 동안 연속소둔하는 것을 포함하여 구성되는 것을 특징으로 한다.Further, the method for producing a cold rolled steel sheet of the present invention, in weight%, in weight%, C: 0.0005 to 0.004%, Si: 0.02 to 0.6%, Mn: 0.2 to 0.8%, P: 0.005 to 0.2%, S: 0.003 ~ 0.02%, Al: 0.01 ~ 0.08%, N: 0.004% or less (not including 0%), Cu: 0.005 ~ 0.2%, and the content of Mn, Cu, S is 5≤0.27 * (Mn + Cu) / S≤25, reheating the steel composed of the remaining Fe and other unavoidable impurities to a temperature of 1100 ~ 1300 ℃, hot rolling with the finish rolling temperature above Ar3 transformation point, and 300 ~ 1000 ℃ / After cooling at a rate of min, wound at a temperature of 500 ~ 750 ℃, cold rolling at a reduction ratio of 30 ~ 90%, and continuous annealing for 10 seconds to 30 minutes in the temperature range of 500 ~ 900 ℃ It is characterized by.

본 발명에 따라 제공되는 냉연강판은 동급 인장강도급에 비해 항복강도가 높고 소부경화값이 높아 소부후 항복강도가 높으며 가공성 및 내2차가공취성 특성 또한 우수하며, 표면결함이 발생하지 않아 표면품질도 우수하다.The cold rolled steel sheet provided according to the present invention has a higher yield strength and a higher bake hardening value than the same tensile strength class, and thus yields high bake yield strength, and has excellent workability and secondary machinability, and does not cause surface defects. Is also excellent.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명자들은 Ti, Nb을 첨가하지 않으면서 소부경화특성을 개선하기 위한 연구과정에서 다음과 같은 새로운 사실을 밝혀내었다. 탄소함량을 적정량으로 제어하면서 석출물을 미세하게 분포시키면 항복강도가 높은 강에서 소부후의 항복강도가 크게 증가한다는 것이다. 이는 미세한 MnS, CuS, (Mn,Cu)S의 석출물이 결정립내 고용탄소의 양에 영향을 미친다는 연구에 기반한 것이다. The present inventors have discovered the following new facts in the course of research to improve the baking hardening properties without adding Ti and Nb. By controlling the carbon content to an appropriate amount and finely distributing the precipitates, the yield strength of the post-loading is greatly increased in high yield strength steels. This is based on the study that the fine precipitates of MnS, CuS and (Mn, Cu) S affect the amount of solid carbon in the grains.

도 1에 나타난 바와 같이, 석출물이 미세하게 분포할수록 결정립내의 고용탄소량이 줄어드는 것을 확인할 수 있다. 이러한 사실에 착안하여 본 발명자들은 석출물의 크기에 의해 조절되는 결정립내 고용탄소의 함량을 감안하여 냉연강판의 탄소함량을 0.0005~0.004%의 범위로 하면 소부경화특성을 갖게 된다는 것을 확인하였다. 미세하게 분포하는 석출물들의 주변에는 탄소가 석출되는데, 이러한 탄소는 상온에서는 시효를 일으키지 않고 도장소부열처리에서 탄소가 용해되어 항복강도를 크게 상승시키는 것으로 판단된다. 이를 위해서는 탄소의 함량이 0.0005~0.004%로 조절되어야 하며, MnS, CuS, (Mn,Cu)S의 석출물의 평균크기가 0.2㎛이하가 될 때 안정적으로 확보될 수 있다. As shown in FIG. 1, the finer the precipitates, the smaller the amount of the dissolved carbon in the grains. In view of this fact, the present inventors confirmed that the carbon content of the cold rolled steel sheet in the range of 0.0005 to 0.004% has a hardening hardening characteristic in consideration of the content of solid solution carbon in the grains controlled by the size of the precipitate. Carbon is precipitated around the finely distributed precipitates, which do not cause aging at room temperature, and are believed to significantly increase yield strength by dissolving carbon in coating heat treatment. To this end, the carbon content should be adjusted to 0.0005 to 0.004%, and can be stably secured when the average size of precipitates of MnS, CuS, and (Mn, Cu) S is 0.2 μm or less.

이와 같은 새로운 사실에 주목하여 MnS, CuS, (Mn,Cu)S를 미세하게 분포시키는 방안에 대하여 연구하게 되었다. 그 결과, (1) Mn의 함량 0.2~0.8%, S의 함량 0.003-0.02%, Cu의 함량을 0.005~0.2%로 하면서 상기 Mn, Cu, S의 함량을 다음의 조건 0.5*(Mn+Cu)/S:5-20을 만족하도록 조절하는 것이 필요하며, (2) 이와 함께 압간압연이 끝난 후 냉각속도를 300℃/min이상으로 하면 MnS, CuS, (Mn,Cu)S의 석출물의 평균크기가 0.2㎛이하로 미세하게 된다는 것이다. Paying attention to these new facts, we have studied how to finely distribute MnS, CuS, and (Mn, Cu) S. As a result, (1) the content of Mn, Cu, S was adjusted under the following conditions 0.5 * (Mn + Cu, while the content of Mn was 0.2-0.8%, the content of S 0.003-0.02%, and the content of Cu was 0.005-0.2%. ) / S: 5-20, it is necessary to adjust it. (2) If the cooling rate is over 300 ℃ / min after rolling, the average of precipitates of MnS, CuS, (Mn, Cu) S The size is less than 0.2㎛ fine.

이와 같이, 본 발명에 따라 탄소의 함량과 석출물의 크기를 조절하면 소부경화성을 기본적으로 확보하면서 내2차가공취성도 우수해진다. 석출물이 미세해지면 결정립계에 적당량의 탄소가 잔류하게 되어 결정립계가 강화되므로 가공후 결정립계가 취약하여 발생하는 취성파괴를 방지할 수 있는 것이다. 나아가, 본 발명자들은 MnS, CuS, (Mn,Cu)S 석출물의 분포에서 Mn과 Cu의 복합석출물 보다 MnS와 CuS의 단독석 출물이 많아질수록 미세한 석출물이 균일하게 분포되어 가공성이 보다 좋아지는 것을 확인하였다. 즉, 0.27*(Mn+Cu)/S의 비가 2.7~3.9의 범위일 때, (Mn,Cu)S의 복합석출물 보다 MnS와 CuS의 단독석출물이 많아짐에 따라 석출물의 분포수가 커져서 가공성이 좋아진다.As such, by adjusting the content of carbon and the size of precipitates according to the present invention, the secondary processing brittleness is also excellent while securing the hardening hardening property. When the precipitate becomes fine, an appropriate amount of carbon remains in the grain boundary and the grain boundary is strengthened, thereby preventing brittle fracture caused by the weak grain boundary after processing. Furthermore, the present inventors confirmed that in the distribution of MnS, CuS, and (Mn, Cu) S precipitates, fine precipitates are uniformly distributed as MnS and CuS are more uniform than Mn and Cu composite precipitates, resulting in better processability. It was. That is, when the ratio of 0.27 * (Mn + Cu) / S is in the range of 2.7 to 3.9, the more the precipitates of MnS and CuS are added than the composite precipitates of (Mn, Cu) S, the larger the number of precipitates is, the better the workability is. .

이하, 본 발명의 냉연강판의 조성범위에 대하여 구체적으로 설명한다. Hereinafter, the composition range of the cold rolled steel sheet of the present invention will be described in detail.

탄소(C)의 함량은 0.0005~0.004%가 바람직하다.The content of carbon (C) is preferably 0.0005 to 0.004%.

탄소(C)의 함량이 0.0005%미만의 경우에는 강중 소부경화량이 적고, 0.004% 초과의 경우에는 성형성이 급격히 저하된다. If the content of carbon (C) is less than 0.0005%, the amount of hardening in steel is small, and if it is more than 0.004%, the moldability is drastically reduced.

실리콘(Si)의 함량은 0.02~0.6%가 바람직하다.The content of silicon (Si) is preferably 0.02 to 0.6%.

실리콘은 강의 고용강화원소로 타 원소에 비해 강도 향상대비 연신율 저하율이 낮고, 도금시 파우더링 특성이 우수해지는 특성이 있지만 0.6% 초과하여 첨가할 경우 적Scale의 생성량이 많아 산세특성이 급격히 열화하고, 표면결함이 증가하므로 상한값을 0.6%로 하였으며, 0.02%이하 첨가시 강화효과 및 파우더링성 향상 효과가 적으므로 하한값을 0.02%로 하였다. Silicon is a solid solution strengthening element of steel, which has lower elongation reduction rate compared with other elements, and has excellent powdering characteristics when plating, but when it is added more than 0.6%, the amount of red scale is large, and the pickling characteristics deteriorate rapidly. As the surface defects increased, the upper limit was set to 0.6%, and the lower limit was set to 0.02% because the strengthening effect and the powdering property were not improved when added below 0.02%.

망간(Mn)의 함량은 0.2~0.8%가 바람직하다. The content of manganese (Mn) is preferably 0.2 to 0.8%.

망간은 강중 고용황을 MnS로 석출하여 고용 황에 의한 적열취성(Hot shortness)을 방지하는 원소로 알려져 있다. 본 발명에서는 망간과 황의 함량을 적절해지는 경우에 매우 미세한 MnS가 석출되고 이 석출물의 주변에는 탄소가 석출되어 석출된 탄소는 도장소부경화처리 과정에서 용해되어 항복강도를 증진시킨다는 연구결과에 기초하여 망간의 함량을 0.2~0.8%로 하는 것이 바람직하다. 망간함량 0.2%미만에서는 고용상태로 남아있는 S의 양이 많아 재가열중 FeS의 생성양이 많아 표면결함이 발생할 확률이 높아진다. 망간의 함량이 0.2%이상되어야 상기한 효과를 발휘할 수 있을 뿐만 아니라 표면결함발생도 없고, 망간의 함량이 0.8% 초과의 경우에는 망간의 함량이 높아 조대한 MnS석출물이 생성되어 소부경화특성이 열악해진다Manganese is known as an element that precipitates solid sulfur in steel as MnS to prevent hot shortness caused by solid sulfur. In the present invention, when the content of manganese and sulfur is appropriate, very fine MnS is precipitated, and carbon precipitates around the precipitate, and the precipitated carbon is dissolved in the coating hardening process to enhance yield strength. It is preferable to make the content of 0.2 to 0.8%. If the manganese content is less than 0.2%, the amount of S remaining in the solid solution state is high, so the amount of FeS generated during reheating increases the probability of surface defects. When the content of manganese is 0.2% or more, the above-mentioned effect is not only exhibited, and there are no surface defects, and when the content of manganese is more than 0.8%, manganese has a high content of coarse MnS precipitates, resulting in poor hardening characteristics. Become

인(P)의 함량은 0.005~0.2%가 바람직하다. The content of phosphorus (P) is preferably 0.005 to 0.2%.

인은 고용강화효과가 높으면서 r값(소성이방성지수)의 저하가 적은 원소로서 본 발명에 따라 석출물을 제어하는 강에서 고강도를 보증한다. 인의 함량이 0.005%이상 되어야 강도를 확보할 수 있으며, 0.2% 초과의 경우에는 연성이 저하하여 상한값을 0.2%로 제한하였다.Phosphorus is an element having a high solid solution strengthening effect and a small decrease in the r value (plastic anisotropy index), which guarantees high strength in steels for controlling precipitates according to the present invention. When the content of phosphorus is more than 0.005% to ensure the strength, in the case of more than 0.2% ductility is lowered to limit the upper limit to 0.2%.

황(S)의 함량은 0.003~0.02%가 바람직하다.The content of sulfur (S) is preferably 0.003 ~ 0.02%.

황(S)의 함량이 0.003%미만의 경우에는 MnS, CuS, (Mn,Cu)S 석출량이 적을 뿐만 아니라 석출되는 석출물의 크기가 매우 조대해져 소부경화특성이 좋지 않다. 황의 함량이 0.02% 초과의 경우에는 고용된 황의 함량이 많아 연성 및 성형성이 크게 낮아지며, 적열취성의 우려가 있기 때문이다. When the content of sulfur (S) is less than 0.003%, the amount of precipitates of MnS, CuS, and (Mn, Cu) S is small, and the precipitates are very coarse in size, so that the hardening hardening characteristic is not good. If the sulfur content is more than 0.02%, the content of solute sulfur is large, so the ductility and formability are greatly lowered, and there is a fear of red brittleness.

알루미늄(Al)의 함량은 0.01~0.08%가 바람직하다.The content of aluminum (Al) is preferably 0.01 to 0.08%.

알루미늄은 탈산제로 첨가하는 원소이지만 본 발명에서는 강중 질소를 석출하여 고용질소에 의한 성형성 저하의 방지를 위해 첨가한다. 알루미늄의 함량이 0.01%미만의 경우에는 고용질소의 양이 많아 성형성이 좋지 않고, 알루미늄의 함량이 0.08%초과의 경우에는 고용 상태로 존재하는 알루미늄의 양이 많아 연성을 저하한다. Aluminum is an element added as a deoxidizer, but in the present invention, nitrogen is added in the steel to prevent formability deterioration due to solid nitrogen. If the aluminum content is less than 0.01%, the amount of solid solution is high, so the moldability is not good. If the aluminum content is more than 0.08%, the amount of aluminum present in the solid solution is high, so the ductility is lowered.

질소(N)의 함량은 0.004%이하(0%를 포함하지 않음)가 바람직하다.The content of nitrogen (N) is preferably 0.004% or less (not including 0%).

질소는 제강중 불가피하게 첨가되는 원소로 0.004%초과의 경우에는 시효지수가 높아지고 성형성이 저하하므로 0.004%이하가 바람직하다. Nitrogen is an element inevitably added during steelmaking, and if it is more than 0.004%, the aging index is increased and moldability is deteriorated, so 0.004% or less is preferable.

구리(Cu)의 함량은 0.005~0.2%가 바람직하다.The content of copper (Cu) is preferably 0.005 to 0.2%.

구리는 Cu와 S의 함량비 그리고 열간압연공정에서 권취전의 냉각속도가 적절해지는 경우 0.2㎛이하의 석출물을 형성하고 이 석출물의 주변에는 탄소가 석출되어 석출된 탄소는 도장소부처리과정에서 용해되어 항복강도가 커진다는 연구에 기초하여 0.005~0.2% 첨가한다. 구리의 함량이 0.005%이상되어야 미세하게 석출할 수 있고 0.2%초과하면 조대하게 석출하여 비시효특성이 열악해진다.Copper forms precipitates of less than 0.2 µm when the ratio of Cu and S content and the cooling rate before winding in the hot rolling process are appropriate, and carbon precipitates around the precipitates, and the precipitated carbon is dissolved and yielded during the coating part treatment. Add 0.005-0.2% based on the study of increasing strength. If the copper content is 0.005% or more, fine precipitation can occur, and if it exceeds 0.2%, the coarsening precipitates poorly.

상기 Mn, Cu와 S의 중량비는 5≤0.27*(Mn+Cu)/S≤25 를 만족하는 것이 바람직하다.It is preferable that the weight ratio of said Mn, Cu, and S satisfy | fills 5 <= 0.27 * (Mn + Cu) / S <= 25.

S은 Mn, Cu와 결합하여 MnS, CuS, (Mn,Cu)S로 석출되는데, 이러한 석출물은 Mn, Cu 와 S의 첨가량에 따라 석출상태가 달라져 소부경화특성, 2차가공취성, 소성이방성지수, 면내이방성 지수에 영향을 미친다. 본 발명의 연구에 따르면 Mn, Cu와 S의 첨가비(0.27*(Mn+Cu)/S(여기서, Mn, Cu, S의 함량은 중량%)가 5이상이 되어야 유효한 석출물이 얻어지며, 25초과의 경우에는 석출물이 조대하여 소부경화특성이 좋지 않으며, 소성이방성지수, 면내이방성 지수의 특성이 좋지 않다. S is combined with Mn and Cu to be precipitated as MnS, CuS, (Mn, Cu) S, and the precipitates vary depending on the amount of Mn, Cu, and S added, resulting in hardening hardening properties, secondary processing brittleness, and plastic anisotropy index. This affects the in-plane anisotropy index. According to the present invention, an effective precipitate is obtained when the addition ratio of Mn, Cu and S (0.27 * (Mn + Cu) / S (wherein the content of Mn, Cu, S is in weight%)) is 5 or more, 25 In the case of excess, the precipitates are coarse, so that the hardening hardening characteristic is not good, and the characteristics of plastic anisotropy index and in-plane anisotropy index are not good.

본 발명의 성분계에서 석출물의 평균크기는 0.2㎛이하가 바람직하다. In the component system of the present invention, the average size of the precipitate is preferably 0.2 µm or less.

본 발명의 연구결과에 따르면 MnS, CuS, (Mn, Cu)S 석출물의 크기가 소부경화특성과 2차가공취성, 소성이방성지수, 면내이방성지수에 직접적으로 영향을 미치는데, 이들 석출물의 평균크기가 0.2㎛ 초과의 경우에는 특히 소부경화특성이 좋지 않고, 2차가공취성, 소성이방성지수, 면내이방성지수가 좋지 않다. 석출물의 크기는 적을수록 동일한 석출양에서 석출물의 숫자가 많아지므로 강화효과가 크게 되어 유리하므로 바람직하게는 0.1㎛이하가 좋다.According to the results of the present invention, the size of MnS, CuS, (Mn, Cu) S precipitates directly affects the hardening characteristics, secondary processing brittleness, plastic anisotropy index, and in-plane anisotropy index, and the average size of these precipitates. In the case of more than 0.2 µm, the baking hardening characteristic is not good, and the secondary work brittleness, the plastic anisotropy index, and the in-plane anisotropy index are not good. The smaller the size of the precipitate, the greater the number of precipitates in the same amount of precipitation, so that the reinforcing effect is large and advantageous, preferably 0.1 μm or less.

본 발명의 냉연강판에는 추가로 Mo이 포함될 수 있다. 이러한 몰리브덴(Mo)의 함량은 0.01~0.2%가 바람직하다. 몰리브덴은 소성이방성지수를 높이는 원소로서 첨가되는데, 그 함량이 0.01%이상되어야 소성이방성지수가 커지며, 0.2%를 초과하면 소성이방성지수는 더 이상 커지지 않고 열간취성을 일으킬 우려가 있다. Cold rolled steel sheet of the present invention may further include Mo. The content of such molybdenum (Mo) is preferably 0.01 ~ 0.2%. Molybdenum is added as an element to increase the plastic anisotropy index, the plastic anisotropy index is increased only when the content is more than 0.01%, the plastic anisotropy index does not increase any more it may cause hot brittleness.

이하, 본 발명의 냉연강판의 제조방법에 대하여 구체적으로 설명한다.Hereinafter, the manufacturing method of the cold rolled steel sheet of this invention is demonstrated concretely.

본 발명은 상기한 강조성을 만족하는 강을 소재로 하여 열간압연과 냉간압연 및 소둔 등의 제어조건을 조절하여 냉간압연판에 석출물의 평균크기가 0.2㎛ 이하인 MnS, CuS 및 (Mn,Cu)S 로 구성된 그룹에서 선택된 1종 또는 2종 이상의 석출물을 형성시키는데 특징이 있다. 냉간압연판에서 이들 석출물의 평균 크기는 첨가량의 조건과 재가열온도, 권취온도 등의 제조공정에 영향을 받으나 특히 열간압연후의 냉각속도에 직접적인 영향을 받는다. According to the present invention, MnS, CuS, and (Mn, Cu) having an average size of precipitates of 0.2 μm or less on a cold rolled plate by adjusting control conditions such as hot rolling, cold rolling, and annealing based on a steel material satisfying the above-mentioned emphasis. It is characterized by forming one or two or more precipitates selected from the group consisting of S. The average size of these precipitates in the cold rolled plate is affected by the conditions of addition, reheating temperature, winding temperature, etc., but is directly affected by the cooling rate after hot rolling.

[열간압연조건][Hot Rolling Condition]

본 발명에서는 상기한 강조성을 만족하는 강을 재가열하여 열간압연한다. 재가열온도는 1100~1300℃가 바람직하다. 재가열온도가 1100℃미만의 경우에는 재가열온도가 낮아 연속주조중에 생성된 조대한 CuS가 완전히 용해되지 않은 상태로 남아있어 열간압연후에도 조대한 석출물이 많이 남아있기 때문이다. 재가열온도가 1300℃ 초과할 경우에는 미용해된 석출물이 거의 없으므로 온도상승에 따른 석출물 미세화효과가 거의 없고 온도상승에 따라 제조원가가 상승한다.In the present invention, the steel that satisfies the above-mentioned emphasis is reheated and hot rolled. As for reheating temperature, 1100-1300 degreeC is preferable. If the reheating temperature is less than 1100 ℃, the reheating temperature is low, the coarse CuS produced during the continuous casting is not completely dissolved, the coarse precipitates remain even after hot rolling. If the reheating temperature exceeds 1300 ℃, there is almost no undissolved precipitate, so there is little effect of refining the precipitate due to the temperature rise and the manufacturing cost increases with the temperature rise.

열간압연은 마무리압연온도를 Ar3변태온도 이상의 조건에서 행하는 것이 바람직하다. 마무리압연온도가 Ar3변태온도 미만의 경우에는 압연립의 생성으로 가공성이 저하할 뿐만아니라 연성이 크게 저하기 때문이다. Hot rolling is preferably carried out under the conditions of the finish rolling temperature higher than the Ar3 transformation temperature. If the finish rolling temperature is less than the Ar3 transformation temperature, not only the workability is degraded by the formation of the rolled grain, but also the ductility is greatly reduced.

열간압연후 권취전 냉각속도는 300~1000℃/min로 하는 것이 바람직하다. 본 발명에 따라 5≤0.27*(Mn+Cu)/S≤25로 하더라도 냉각속도가 300℃/min미만이면 석출물의 평균크기가 0.2㎛를 초과해 버린다. 즉, 냉각속도가 빨라질수록 많은 수의 핵이 생성하여 석출물이 미세해지기 때문이다. 0.27*(Mn+Cu)/S가 25초과의 경우에는 재가열공정에서 미용해된 조대한 석출물이 많아 냉각속도가 빨라지더라도 새로운 핵이 생성되는 수가 적어 석출물은 미세해지지 않는다(도2, 0.0041%C-0.16%Mn-0.062%P-0.005%S-0.03%Al-0.0025%N-0.11%Cu). 도2의 그래프를 보면, 냉각속도가 빨라질수록 석출물의 크기가 미세해지므로 냉각속도의 상한을 제한할 필요는 없으나, 냉각속도가 1000℃/min 초과하더라도 석출물 미세화 효과가 더 이상 커지지 않으므로 냉각속도는 300~1000℃/min가 보다 바람직하다. 냉각속도의 상한을 1000℃/min로 한정한 것은 현재의 설비로는 이를 초과하는 냉각속도를 가지기가 거의 불가능하므로 상한을 1000℃/min로 하였다. 그리고 냉각종료온도는 권취직전의 온도 즉, 코일이 권취기에 감기기 직전의 온도이다.After hot rolling, the cooling rate before winding is preferably 300 to 1000 ° C / min. According to the present invention, even when the temperature is 5≤0.27 * (Mn + Cu) / S≤25, if the cooling rate is less than 300 ° C / min, the average size of precipitates exceeds 0.2 µm. In other words, as the cooling rate increases, a large number of nuclei are generated and the precipitate becomes fine. In the case of 0.27 * (Mn + Cu) / S exceeding 25, the coarse precipitates undissolved in the reheating process, and even if the cooling rate is fast, the number of new nuclei is generated and the precipitates do not become fine (Fig. 2, 0.0041% C). -0.16% Mn-0.062% P-0.005% S-0.03% Al-0.0025% N-0.11% Cu). Referring to the graph of FIG. 2, the faster the cooling rate, the finer the size of the precipitate is. Therefore, there is no need to limit the upper limit of the cooling rate. However, even if the cooling rate exceeds 1000 ° C./min, the fineness of the precipitate is no longer increased. 300-1000 degreeC / min is more preferable. The upper limit of the cooling rate was set at 1000 ° C./min, and the upper limit was set at 1000 ° C./min since it is almost impossible to have a cooling rate exceeding that of the current equipment. The cooling end temperature is the temperature just before winding up, that is, the temperature immediately before the coil is wound around the winder.

[권취조건][Coiling condition]

상기와 같이 열간압연한 다음에는 권취를 행하는데, 권취온도는 500~750℃가 바람직하다. 권취온도가 750℃초과하는 경우에는 석출물이 너무 조대하게 성장하여 소부경화성이 열악해진다. 권취온도가 500℃ 미만일 경우 고용 질소가 Al에 의해 완전히 석출되지 않아 시효성에 나쁜 영향을 미치므로 권취온도의 하한은 500℃이 바 람직하다.Winding is performed after hot rolling as mentioned above, but winding temperature is preferable 500-750 degreeC. If the coiling temperature exceeds 750 ° C., precipitates grow too coarsely, resulting in poor baking hardening. If the coiling temperature is less than 500 ℃, the solid nitrogen is not completely precipitated by Al, which adversely affects aging. Therefore, the lower limit of the coiling temperature is preferably 500 ℃.

[냉간압연조건][Cold rolling condition]

냉간압연은 30~90%의 압하율로 행하는 것이 바람직하다. 냉간압하율이 30%미만의 경우에는 소둔재결정 핵생성양이 적기 때문에 소둔시 결정립이 너무 크게 성장하여 소둔 재결정립의 조대화로 강도 및 성형성이 저하한다. 냉간압하율이 90%를 초과할 경우 연성이 저하되므로 상한을 90%로 제한하는 것이 바람직하다.Cold rolling is preferably performed at a reduction ratio of 30 to 90%. If the cold reduction rate is less than 30%, since the annealing recrystallization nucleation amount is small, the crystal grains grow too large during annealing, and the strength and formability decrease due to the coarsening of the annealing recrystallization grains. If the cold reduction rate exceeds 90%, the ductility is lowered, it is preferable to limit the upper limit to 90%.

[연속소둔][Continuous Annealing]

연속소둔 온도는 제품의 재질을 결정하는 중요한 역할을 한다. 본 발명에서는 500~900℃의 온도범위에서 행하는 것이 바람직하다. 연속소둔 온도가 500℃미만의 경우에는 재결정이 완료되지 않아 목표로 하는 연성값을 확보할수 없으며, 소둔온도가 900℃초과의 경우에는 재결정립의 조대화로 강도가 저하된다. 연속소둔시간은 재결정이 완료되도록 유지하는데, 약 10초이상이면 재결정이 완료된다. 바람직하게는 연속소둔시간을 10초~30분의 범위내로 하는 것이다. 연속소둔시간이 10초 미만일 경우 연신율이 낮아 가공성이 열화하고 30분을 초과할 경우 결정립의 조대화로 강도가 저하되므로 상기 범위로 제한한다.Continuous annealing temperature plays an important role in determining the material of the product. In this invention, it is preferable to carry out in the temperature range of 500-900 degreeC. If the continuous annealing temperature is less than 500 ° C., recrystallization is not completed and the target ductility value cannot be secured. If the annealing temperature is higher than 900 ° C., the strength decreases due to coarsening of the recrystallized grains. The continuous annealing time keeps the recrystallization complete. If it is about 10 seconds or more, the recrystallization is completed. Preferably, the continuous annealing time is in the range of 10 seconds to 30 minutes. If the continuous annealing time is less than 10 seconds, the elongation is low, the workability is deteriorated, and if it exceeds 30 minutes, the strength is reduced by coarsening of the crystal grains, so it is limited to the above range.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

표 1에서 강슬라브를 1200℃에서 재가열하여 마무리열간압연하고 600℃/min의 속도로 냉각하여 650℃에서 권취하였다. 이때의 마무리압연온도는 Ar3변태점이상인 910℃이며, 연속소둔은 10℃/초의 속도로 700℃로 40초 동안 가열하여 행하였다. In Table 1, the steel slab was reheated at 1200 ° C, hot rolled to finish, cooled at a rate of 600 ° C / min, and wound up at 650 ° C. The finishing rolling temperature at this time was 910 degreeC above Ar3 transformation point, and continuous annealing was performed by heating at 700 degreeC for 40 second at the speed of 10 degreeC / sec.

얻어진 소둔판은 기계적 특성을 조사하기 위해 ASTM규격(ASTM E-8 standard)에 의한 표준시편으로 가공하였다. 시편은 인장시험기(INSTRON사, Model 6025)를 이용하여 항복강도, 인장강도, 연신율 및 소성이방성 지수(rm값)을 측정하였다. 여기서 rm=(r0+2r45+r90)/4이다. 소부경화특성은 시편에 2%의 스트레인을 가한 후 170℃에서 20분간 열처리후 항복강도의 하항복를 측정하고 측정된 항복강도를 원래의 항복강도값을 뺀값을 소부경화지수(BH)로 하여 표 2에 나타내었다.The obtained annealing plate was processed into a standard specimen according to ASTM E-8 standard to investigate the mechanical properties. The specimen was measured for yield strength, tensile strength, elongation and plastic anisotropy index (rm value) using a tensile tester (INSTRON, Model 6025). Where rm = (r0 + 2r45 + r90) / 4. The quench hardening properties were measured by applying a 2% strain to the specimens, followed by heat treatment at 170 ° C for 20 minutes, measuring the yield yield of the yield strength, and subtracting the measured yield strength from the original yield strength value as Table BH. Shown in

구분division 화학성분(중량%)Chemical composition (% by weight) 0.27*(Mn+ Cu)/S0.27 * (Mn + Cu) / S CC SiSi MnMn PP SS AlAl NN CuCu 기타Etc 발명강1Inventive Steel 1 0.00320.0032 0.050.05 0.250.25 0.010.01 0.010.01 0.0280.028 0.00120.0012 0.050.05 -- 8.108.10 발명강2Inventive Steel 2 0.00080.0008 0.050.05 0.290.29 0.0610.061 0.0090.009 0.0610.061 0.00190.0019 0.110.11 -- 12.0012.00 발명강3Invention Steel 3 0.00180.0018 0.320.32 0.330.33 0.0720.072 0.0120.012 0.0520.052 0.00210.0021 0.120.12 -- 10.1310.13 발명강4Inventive Steel 4 0.00220.0022 0.450.45 0.720.72 0.0930.093 0.0120.012 0.0410.041 0.00130.0013 0.080.08 -- 18.0018.00 발명강5Inventive Steel 5 0.00180.0018 0.480.48 0.660.66 0.0720.072 0.0090.009 0.0480.048 0.00210.0021 0.120.12 Mo:0.06Mo: 0.06 23.4023.40 비교강1Comparative Steel 1 0.00150.0015 00 0.140.14 0.0570.057 0.0210.021 0.0290.029 0.00280.0028 0.080.08 -- 2.832.83 비교강2Comparative Steel 2 0.00620.0062 0.230.23 0.150.15 0.0580.058 0.0120.012 0.030.03 0.00220.0022 0.120.12 -- 6.086.08 비교강3Comparative Steel 3 0.00280.0028 00 0.40.4 0.070.07 0.010.01 0.040.04 0.00160.0016 00 Ti:0.022Ti: 0.022 10.8010.80 비교강4Comparative Steel 4 0.00280.0028 00 0.40.4 0.070.07 0.010.01 0.040.04 0.00160.0016 00 Ti:0.022Ti: 0.022 10.8010.80

구분division 항복강도 (MPa)Yield strength (MPa) 인장강도 (MPa)Tensile Strength (MPa) 연신율 (%)Elongation (%) 소성이방성 지수(rm)Plastic anisotropy index (rm) 2차가공 취성 (DBTT-℃)Secondary process brittleness (DBTT- ℃) 소부경화 지수 (MPa)Sore Hardening Index (MPa) 표면결함 발생여부Surface Defects 석출물의 평균크기(μm)Average size of precipitate (μm) 발명강1Inventive Steel 1 186186 309309 4949 1.831.83 -40-40 5858 발생없음No occurrence 0.080.08 발명강2Inventive Steel 2 218218 358358 4242 1.791.79 -40-40 3737 "" 0.090.09 발명강3Invention Steel 3 253253 403403 3838 1.731.73 -50-50 4545 "" 0.10.1 발명강4Inventive Steel 4 302302 459459 3333 1.631.63 -40-40 4242 "" 0.130.13 발명강5Inventive Steel 5 298298 462462 3232 1.591.59 -40-40 3939 "" 0.150.15 비교강1Comparative Steel 1 208208 352352 4040 1.771.77 -40-40 3333 발생 Occur 0.10.1 비교강2Comparative Steel 2 239239 361361 3535 1.391.39 -50-50 8282 발생Occur 0.080.08 비교강3Comparative Steel 3 279279 402402 3131 1.391.39 -10-10 3939 발생없음No occurrence 0.380.38 비교강4Comparative Steel 4 202202 345345 4040 1.831.83 00 3232 0.380.38

표 1, 2에서 발명강 1 내지 5는 석출물의 평균크기가 0.2㎛이하로서 고강도이고 30MPa이상의 소부경화특성을 가지고, 가공성이 우수하며, 표면결함이 발생하지 않아 표면품질도 우수하다. Inventive steels 1 to 5 in Tables 1 and 2 have an average size of precipitates of 0.2 μm or less, high strength, a hardening characteristic of 30 MPa or more, excellent workability, and excellent surface quality due to no surface defects.

한편, 비교강1의 경우 석출물의 평균크기가 0.2㎛이하로서 고강도이고 30MPa이상의 소부경화특성을 가지지만, Mn의 함량이 낮고, 0.27*(Mn+Cu)/S 값이 낮아 표면결함이 발생하였다. 비교강2는 탄소함량이 높아 연신율 및 소성이방성 지수가 낮아 성형가공시 파단이 일어날 가능성이 크며, Mn함량이 낮아 표면결함이 발생하였다. On the other hand, in the case of Comparative Steel 1, the average size of precipitates was 0.2 µm or less, which was high strength and had a bake hardening characteristic of 30 MPa or more. . Comparative steel 2 has a high carbon content and a low elongation and plastic anisotropy index, which is highly likely to cause breakage during molding, and a surface defect occurs due to a low Mn content.

비교강3은 동일 인장강도급에서 발명강에 비해 항복강도가 너무 높고, 연신율 및 소성이방지수가 매우 낮아 성형가공시 파단이 일어날 가능성이 높다. Ti첨가IF강의 경우 재결정 온도가 높아 동일 소둔온도에서는 성형성 확보가 어렵고 좀더 높은 온도에서 소둔을 해야 하므로 원가측면에서 매우 불리하다. Comparative steel 3 has a higher yield strength than that of the inventive steel in the same tensile strength class, a very low elongation and a low plasticity preventive rate, and is likely to break during molding. In the case of Ti-added IF steel, it is difficult to secure formability at the same annealing temperature due to the high recrystallization temperature and it is very disadvantageous in terms of cost because it must be annealed at a higher temperature.

비교강4는 시료7과 동일 성분강을 더 높은 온도인 830℃에서 소둔처리한 것인데 동일 인장강도급에 비해 항복강도가 낮고 소부경화 값이 낮아 내덴트성이 낮다. 또한 2차가공취성 평가 척도도 알려진 천이온도(DBTT)가 높아 극한 지방에서는 성형가공후에 파단이 일어날 확률이 큰 단점이 있다.Comparative steel 4 is annealing treatment of the same component steels as the sample 7 at a higher temperature of 830 ℃, lower yield strength and lower cure resistance than the same tensile strength class. In addition, the secondary processing brittleness evaluation scale is also known to have a high transition temperature (DBTT) has a high disadvantage that the probability of fracture after molding processing in extreme fat.

도1은 석출물의 크기에 따른 결정립내 고용탄소량의 변화를 나타내는 그래프이다.1 is a graph showing the change in the amount of solid solution carbon in the grain according to the size of the precipitate.

도2는 냉각속도에 따른 석출물크기 변화를 나타내는 그래프이다.2 is a graph showing the change in precipitate size according to the cooling rate.

Claims (3)

중량%로, C:0.0005~0.004%, Si:0.02~0.6%, Mn:0.25~0.8%, P:0.005~0.2%, S:0.003~0.02%, Al:0.01~0.08%, N:0.004%이하(0%를 포함하지 않음), Cu:0.005~0.2%를 포함하며, 상기 Mn, Cu, S의 함량이 5≤0.27*(Mn+Cu)/S≤25 를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, In weight%, C: 0.0005-0.004%, Si: 0.02-0.6%, Mn: 0.25-0.8%, P: 0.005-0.2%, S: 0.003-0.02%, Al: 0.01-0.08%, N: 0.004% (Not including 0%), Cu: 0.005 to 0.2%, the content of Mn, Cu, S satisfies 5≤0.27 * (Mn + Cu) / S≤25, and the remaining Fe and other Composed of inevitable impurities, MnS, CuS, (Mn, Cu)S 로 구성된 그룹에서 선택된 1종 또는 2종 이상의 석출물을 포함하고, 상기 석출물의 평균크기가 0.2㎛이하로 이루어지는 것을 특징으로 하는 소부경화형 고강도 냉연강판.A small hardening type high strength cold rolled steel sheet comprising one or two or more precipitates selected from the group consisting of MnS, CuS, and (Mn, Cu) S, wherein the average size of the precipitates is 0.2 μm or less. 제 1항에 있어서, 상기 강판은 Mo 이 0.01-0.2% 추가로 포함되는 것을 특징으로 하는 소부경화형 고강도 냉연강판.According to claim 1, wherein the steel sheet is hard to harden the high strength cold-rolled steel sheet, characterized in that the Mo is added 0.01-0.2%. 중량%로, C:0.0005~0.004%, Si:0.02~0.6%, Mn:0.25~0.8%, P:0.005~0.2%, S:0.003~0.02%, Al:0.01~0.08%, N:0.004%이하(0%를 포함하지 않음), Cu:0.005~0.2%를 포함하며, 상기 Mn, Cu, S의 함량이 5≤0.27*(Mn+Cu)/S≤25 를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강을 1100~1300℃의 온도로 재가열한 후 마무리 압연온도를 Ar3변태점 이상으로 하여 열간압연하고, 300~1000℃/min의 속도로 냉각하고, 500~750℃의 온도에서 권취한 후, 30~90%의 압하율로 냉간압연하고, 500~900℃ 온도범위에서 10초~30분 동안 연속소둔하는 것을 포함하여 구성되는 것을 특징으로 하는 소부경화형 고강도 냉연강판의 제조방법.In weight%, C: 0.0005-0.004%, Si: 0.02-0.6%, Mn: 0.25-0.8%, P: 0.005-0.2%, S: 0.003-0.02%, Al: 0.01-0.08%, N: 0.004% (Not including 0%), Cu: 0.005 to 0.2%, the content of Mn, Cu, S satisfies 5≤0.27 * (Mn + Cu) / S≤25, and the remaining Fe and other After reheating the steel composed of unavoidable impurities to a temperature of 1100 ~ 1300 ℃, hot rolling with the finish rolling temperature above Ar3 transformation point, cooling at a speed of 300 ~ 1000 ℃ / min, and winding at a temperature of 500 ~ 750 ℃ After that, cold rolling at a reduction ratio of 30 to 90%, and a method for producing a hardened hardened type cold rolled steel sheet comprising a continuous annealing for 10 seconds to 30 minutes in a temperature range of 500 to 900 ° C.
KR1020070140113A 2007-12-28 2007-12-28 High strength bake hardening cold rolled steel sheet having excellent surface quality and manufacturing method thereof KR100957946B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070140113A KR100957946B1 (en) 2007-12-28 2007-12-28 High strength bake hardening cold rolled steel sheet having excellent surface quality and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070140113A KR100957946B1 (en) 2007-12-28 2007-12-28 High strength bake hardening cold rolled steel sheet having excellent surface quality and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20090072113A KR20090072113A (en) 2009-07-02
KR100957946B1 true KR100957946B1 (en) 2010-05-13

Family

ID=41329376

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070140113A KR100957946B1 (en) 2007-12-28 2007-12-28 High strength bake hardening cold rolled steel sheet having excellent surface quality and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100957946B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171285A (en) * 1991-12-25 1993-07-09 Nippon Steel Corp Production of extremely soft steel sheet for vessel reduced in low anisotropy and having ageing resistance
KR20050069898A (en) * 2003-12-29 2005-07-05 주식회사 포스코 Bake-hardenable cold rolled steel sheet having excellent resistance to second work embrittleness and high strength, and method of manufacturing the same
KR20050071346A (en) * 2003-12-30 2005-07-07 주식회사 포스코 Bake- hardening cold rolled steel sheet having high strength, method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171285A (en) * 1991-12-25 1993-07-09 Nippon Steel Corp Production of extremely soft steel sheet for vessel reduced in low anisotropy and having ageing resistance
KR20050069898A (en) * 2003-12-29 2005-07-05 주식회사 포스코 Bake-hardenable cold rolled steel sheet having excellent resistance to second work embrittleness and high strength, and method of manufacturing the same
KR20050071346A (en) * 2003-12-30 2005-07-07 주식회사 포스코 Bake- hardening cold rolled steel sheet having high strength, method of manufacturing the same

Also Published As

Publication number Publication date
KR20090072113A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
KR100742931B1 (en) Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same
KR101105055B1 (en) Bake-hardenable cold rolled steel sheet having excellent resistance to second work embrittleness and high strength, and method of manufacturing the same
KR101104976B1 (en) Bake- hardening cold rolled steel sheet having high strength, method of manufacturing the same
KR100957946B1 (en) High strength bake hardening cold rolled steel sheet having excellent surface quality and manufacturing method thereof
KR101053345B1 (en) High strength cold rolled steel sheet with excellent surface and hardening properties and its manufacturing method
KR100957945B1 (en) High strength bake hardening cold rolled steel sheet having excellent surface quality and manufacturing method thereof
KR101105021B1 (en) Bake-hardenable cold rolled having less anisotropy and high strength, and method of manufacturing the same
KR101105032B1 (en) Bake hardenable cold rolled steel sheet having excellent formability and method of manufacturing the same
KR101105008B1 (en) Bake-hardening cold rolled steel sheet having excellent formability and high strength, and method of manufacturing the same
KR101105132B1 (en) Baking hardening cold rolled steel sheet having high strength, process for producing the same
KR101105007B1 (en) Cold rolled steel sheet having excellent baking hardenability and process for producing the same
KR101105025B1 (en) Bake-hardening cold rolled steel sheet having less anistropy and high strength, process for producing the same
KR101105098B1 (en) Bake-harding cold rolled steel sheet having excellent workability and high strength, process for producing the same
KR101104981B1 (en) Bake hardening cold rolled steel sheet having excellent resistance to second work embrittleness and high strength, process for producing the same
KR101115842B1 (en) Bake hardening cold rolled steel sheet having superior workability and high strength, and process for producing the same
KR101143116B1 (en) High strength cold rolled steel sheet having excellent resistance to second work embrittleness and aging resistance, and process for producing the same
KR101171114B1 (en) High strength cold rolled steel sheet having excellent resistance to second work embrittleness and aging resistance, and process for producing the same
KR101171113B1 (en) High strength cold rolled steel sheet having excellent resistance to second work embrittleness and aging resistance, and process for producing the same
KR101104993B1 (en) Non-aging cold rolled steel sheet and process for producing the same
KR101171112B1 (en) Cold rolled steel sheet having excellent formability and aging resistance, and process for producing the same
KR20050055612A (en) High strength cold rolled steel sheet having aging resistance and superior workability, and process for producing the same
KR20060062976A (en) Non aging cold rolled steel sheet having superior workability and high strength, and process for producing the same
KR20060022540A (en) Bake hardening cold rolled steel sheet having superior workability and process for producing the same
KR20060062975A (en) Non aging cold rolled steel sheet having superior workability and process for producing the same
KR20060022912A (en) Bake hardening cold rolled steel sheet having superior workability and high strength, and process for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130503

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140507

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150506

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160509

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180508

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190508

Year of fee payment: 10