KR101143240B1 - Non aging cold rolled steel sheet having superior workability and process for producing the same - Google Patents

Non aging cold rolled steel sheet having superior workability and process for producing the same Download PDF

Info

Publication number
KR101143240B1
KR101143240B1 KR1020040101995A KR20040101995A KR101143240B1 KR 101143240 B1 KR101143240 B1 KR 101143240B1 KR 1020040101995 A KR1020040101995 A KR 1020040101995A KR 20040101995 A KR20040101995 A KR 20040101995A KR 101143240 B1 KR101143240 B1 KR 101143240B1
Authority
KR
South Korea
Prior art keywords
less
steel sheet
cold
rolled steel
content
Prior art date
Application number
KR1020040101995A
Other languages
Korean (ko)
Other versions
KR20060062975A (en
Inventor
윤정봉
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020040101995A priority Critical patent/KR101143240B1/en
Publication of KR20060062975A publication Critical patent/KR20060062975A/en
Application granted granted Critical
Publication of KR101143240B1 publication Critical patent/KR101143240B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Abstract

자동차, 가전제품 등의 소재로 사용되는 냉연강판과 그 제조방법이 제공된다. 이 냉연강판은, 중량%로 C:0.003%이하, Mn:0.05~0.2%, S:0.005~0.03%, Al:0.01~0.1%, N:0.004%이하, P:0.015%이하, Mo:0.01~0.2%, V:0.01~0.2%를 포함하고, 상기 Mn와 S가 조건 0.58*Mn/S≤10를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, MnS석출물의 평균크기가 0.2㎛이하로 이루어지는 것이다. 본 발명에 의하면 미세한 MnS석출물을 생성하면서 Mo의 첨가에 의해 소성이방성지수가 높아지고, V의 첨가에 의해 비시효 특성이 개선된다. A cold-rolled steel sheet used as a material for automobiles, home appliances, and the like, and a manufacturing method thereof. The cold-rolled steel sheet comprises 0.003% or less of C, 0.05 to 0.2% of Mn, 0.005 to 0.03% of S, 0.01 to 0.1% of Al, 0.004% or less of N, To 0.2%, and V: 0.01 to 0.2%, wherein the Mn and S satisfy the condition 0.58 * Mn / S? 10, the remaining Fe and other unavoidable impurities, and the average size of the MnS precipitates is 0.2 탆 or less . According to the present invention, the firing anisotropy index is increased by adding Mo while generating fine MnS precipitates, and the addition of V improves the non-aging properties.

냉연강판, 가공성, 비시효, MnS석출물Cold rolled steel sheet, Workability, Non-aging, MnS precipitate

Description

가공성이 우수한 비시효 냉연강판과 그 제조방법{NON AGING COLD ROLLED STEEL SHEET HAVING SUPERIOR WORKABILITY AND PROCESS FOR PRODUCING THE SAME} [0001] The present invention relates to a non-aged cold-rolled steel sheet having excellent workability and a method of manufacturing the same.

도 1은 MnS석출물의 크기에 따른 결정립내 고용탄소량의 변화를 나타내는 그래프이다.Fig. 1 is a graph showing changes in the amount of solid carbon in the crystal grains depending on the size of MnS precipitates.

도 2는 냉각속도에 따른 MnS석출물의 크기를 나타내는 그래프로서,2 is a graph showing the magnitude of MnS precipitates with respect to the cooling rate,

도 2(a)는 0.58*Mn/S<10의 경우이며,2 (a) shows a case of 0.58 * Mn / S < 10,

도 2(b)는 0.58*Mn/S>10의 경우이다. 2 (b) shows a case of 0.58 * Mn / S > 10.

본 발명은 자동차, 가전제품 등의 소재로 사용되는 냉연강판에 관한 것으로, 보다 상세하게는 미세한 MnS석출물을 갖으며 Mo와 V의 첨가에 의해 가공성과 비시효특성이 우수한 냉연강판과 그 제조방법에 관한 것이다.
More particularly, the present invention relates to a cold-rolled steel sheet having fine MnS precipitates and excellent in workability and non-aging properties by addition of Mo and V, and a method of manufacturing the same .

자동차, 가전제품에 사용되는 냉연강판에는 강도와 성형성의 확보와 더불어 비시효특성이 요구된다. 시효는 고용원소(C, N)가 전위에 고착함에 따라 경화가 일어나면서 스트레쳐 스트레인(Stretcher Strain)이라는 결함을 유발하는 일종의 변 형시효 현상이다. Cold rolled steel sheets used in automobiles and home appliances are required to have strength and formability as well as non-aging properties. The aging is a kind of deformed aging phenomenon which causes defects called "stretcher strain" as hardening occurs as the solid element (C, N) sticks to the potential.

냉연강판의 비시효성은 알루미늄 킬드강의 상소둔에 의해 확보 가능하다. 상소둔은 소둔시간이 길어 생산성이 낮고 부위별로 재질편차가 심하다는 단점이 있다. 따라서, Ti, Nb과 같은 강력한 탄, 질화물 형성 원소를 첨가하여 연속소둔하는 IF강(Interstitial Free Steel)을 주로 이용하고 있다.
The non-vitrification of the cold-rolled steel sheet can be ensured by the application of aluminum-killed steel. It has the disadvantage that the productivity is low due to the long annealing time and the material variation is very large in each part. Therefore, Interstitial Free Steel, which is continuously annealed by adding strong carbon and nitride forming elements such as Ti and Nb, is mainly used.

IF강을 제조하기 위해서는 강력한 탄,질화물 형성원소인 Ti, Nb등을 첨가하는데 이들 원소는 재결정온도를 상승시키므로 고온에서 소둔해야 한다. 이 때문에 생산성이 낮아지고 에너지를 많이 사용하여 원가가 상승시킨다. 또한 고온에서 소둔을 하면 파인흠, 형상결함 등 여러가지 결함이 발생하기 쉬운 단점이 있다. 또한, Ti, Nb은 산화성이 강하기 때문에 제강중 많은 비금속 개재물을 생성하여 강판의 표면결함을 유발시킨다. 또한, IF강은 결정립계가 취약하여 가공후 취성이 발생하는 소위 2차가공취성이 발생하는 단점이 있어 이를 방지하기 위해서는 B등의 원소를 첨가하여 2차가공취성을 방지하는 노력을 하고 있다. 특히, IF강의 경우 도금 및 도장등의 표면처리를 하는 제품에서 많은 결함을 발생하는 단점이 있다.
In order to produce an IF steel, Ti, Nb, etc., which are strong carbon and nitride forming elements, are added, and these elements must be annealed at a high temperature because they raise the recrystallization temperature. This lowers productivity and increases energy costs. In addition, when annealing is performed at a high temperature, various defects such as fine scratches and shape defects are likely to occur. Also, since Ti and Nb are highly oxidative, many nonmetallic inclusions are generated in steel making to cause surface defects of the steel sheet. In addition, the IF steel has a disadvantage in that so-called secondary processing brittleness occurs in which the grain boundary is weak and brittleness is generated after processing. To prevent this, an element such as B is added to prevent brittle secondary processing. Particularly, in the case of IF steel, there are disadvantages that many defects are generated in a product which performs surface treatment such as plating and painting.

이와 같은 문제를 해결하기 위하여 Ti나 Nb을 첨가하지 않는 Ti, Nb 비첨가 강이 제안되어 있다. 그 예로, 일본 공개특허공보 평6-093376, 6-093377, 6-212354호는 Ti, Nb을 첨가하지 않는 대신 B를 0.0001~0.003% 첨가한 강에 C:0.0001~0.0015%로 엄격히 관리하여 비시효성을 개선하는 기술이다. 그러나, 이 선행기술에서는 비시효성은 충분하지 않으며, 비시효성 확보를 위해 소둔후의 급냉을 추천하고 있는데, 이 경우 대부분은 수냉을 하므로 수냉시 발생하는 산화피막을 제거하기 위해 또 다시 산세처리를 하기 때문에 표면이 좋지 못하며 추가적인 비용이 든다. 또한 이들 강종은 강도가 낮은 단점이 있으며 면내이방성이 높아 주름이 발생하며 귀(ear) 발생이 높아 소재의 낭비가 많은 단점이 있다.
In order to solve this problem, Ti and Nb-free alloys without Ti or Nb have been proposed. For example, in JP-A Nos. 6-093376, 6-093377 and 6-212354, Ti and Nb are not added, and instead, 0.0001 to 0.003% of B is added to 0.0001 to 0.003% It is a technology to improve Hyosung. However, in the prior art, non-vitrification is not sufficient and quenching after annealing is recommended to ensure non-vitrification. In this case, since most of the water is cooled, the pickling treatment is performed again to remove the oxide film The surface is not good and costs extra. In addition, these steel types have disadvantages of low strength, high in-plane anisotropy, wrinkles, and ear inconvenience.

한편, 본 발명자는 대한민국 공개특허공보 2000-0039137호에 Ti, Nb을 첨가하지 않으면서 연성을 향상시켜 장출가공특성이 우수한 냉연강판의 제조방법을 제안한 바 있다. 이 냉연강판의 제조방법은, 중량%로 C:0.0005~0.002%이하, Mn:0.05~0.3%, S:0.015%이하, P:0.015%이하, Al:0.01~0.08%, N:0.001~0.005%, 상기 C+N+S+P가 0.025%이하를 만족하고 나머지 Fe 및 기타 불가피하게 함유되는 원소를 포함한 강슬라브를 대상으로 한다. 이 냉연강판은 소성이방성 지수를 일정 수준이상으로 유지하면서도 연성이 우수하며 내시효특성을 확보하고 있다. 그러나, 이 냉연강판은 재질측면에서 항복강도가 너무 낮아 보다 두꺼운 소재를 사용해야 하는 문제점이 있으며, 소성이방성지수가 1.8수준으로 가공성이 좋지 않고 시효지수 OMPa의 완전한 비시효성을 확보하지 못하고 있다.
On the other hand, the present inventors have proposed a method of manufacturing a cold-rolled steel sheet having improved ductility without adding Ti and Nb to Korean Patent Publication No. 2000-0039137. A method for producing a cold-rolled steel sheet comprising the steps of: C: 0.0005 to 0.002%, Mn: 0.05 to 0.3%, S: 0.015% or less, P: 0.015% %, A steel slab containing C + N + S + P of 0.025% or less and containing the remaining Fe and other inevitably contained elements. This cold-rolled steel sheet has excellent ductility while maintaining the plastic anisotropy index at a certain level or more, and has an anti-aging property. However, the cold-rolled steel sheet has a problem that the yield strength is too low in terms of the material, so that it is required to use a thicker material, and the plastic anisotropy index is 1.8, so that the workability is not good and the osmosis index OMPa is not completely non-viable.

본 발명은 Ti, Nb을 첨가하지 않으면서 비시효특성을 갖고 소성이방성지수가 높아 가공성이 우수한 냉연강판과 그 제조방법을 제공하는데, 그 목적이 있다. An object of the present invention is to provide a cold-rolled steel sheet having excellent non-aging properties and high plastic anisotropy index without addition of Ti and Nb and having excellent processability and a method for producing the same.

상기 목적을 달성하기 위한 본 발명의 냉연강판은, 중량%로 C:0.003%이하, Mn:0.05~0.2%, S:0.005~0.03%, Al:0.01~0.1%, N:0.004%이하, P:0.015%이하, Mo:0.01~0.2%, V:0.01~0.2%를 포함하고, 상기 Mn와 S가 조건 0.58*Mn/S≤10를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, MnS석출물의 평균크기가 0.2㎛이하로 이루어진다. In order to achieve the above object, the cold-rolled steel sheet according to the present invention comprises 0.003% or less of C, 0.05 to 0.2% of Mn, 0.005 to 0.03% of S, 0.01 to 0.1% of Al, 0.004% or less of N, : 0.015% or less, Mo: 0.01 to 0.2%, and V: 0.01 to 0.2%, wherein the Mn and S satisfy the condition 0.58 * Mn / S? 10, the balance Fe and other unavoidable impurities, MnS The average size of the precipitates is 0.2 mu m or less.

나아가 본 발명의 냉연강판의 제조방법은, 중량%로 C:0.003%이하, Mn:0.05~0.2%, S:0.005~0.03%, Al:0.01~0.1%, N:0.004%이하, P:0.015%이하, Mo:0.01~0.2%, V:0.01~0.2%를 포함하고, 상기 Mn와 S가 조건 0.58*Mn/S≤10를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강을 1100℃이상의 온도로 재가열한 후 마무리 압연온도를 Ar3변태점 이상으로 하여 열간압연하고 200℃/min이상의 속도로 냉각하고 700℃이하의 온도에서 권취한 다음, 냉간 압연하고, 연속소둔하는 것을 포함하여 이루어진다.
The method of manufacturing a cold-rolled steel sheet according to the present invention is characterized in that it contains 0.003% or less of C, 0.05 to 0.2% of Mn, 0.005 to 0.03% of S, 0.01 to 0.1% of Al, 0.004% or less of N, % Of Mo, 0.01 to 0.2% of Mo, and 0.01 to 0.2% of V, wherein the Mn and S satisfy the condition 0.58 * Mn / S? 10 and the remaining Fe and other unavoidable impurities, Or more and then hot rolled at a finishing rolling temperature of not lower than the Ar 3 transformation point, cooling at a temperature of 200 ° C / min or more and winding at a temperature of 700 ° C or lower, followed by cold rolling and continuous annealing.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명자들은 고강도 냉연강판에서 Ti, Nb을 첨가하지 않으면서 우수한 가공성과 함께 비시효특성을 확보하기 위한 연구과정에서 다음과 같은 새로운 사실을 밝혀내었다. 도 1에 나타난 바와 같이, MnS의 석출물이 미세하게 분포할수록 결정립내의 고용탄소량이 줄어들어 내시효특성이 개선되는 것이다. 결정립내에 잔존하 는 고용탄소는 이동이 비교적 자유롭기 때문에 가동전위와 결합하여 시효특성에 영향을 미치게 된다. 따라서, 결정립내에 고용탄소의 양을 일정 수준이하로 줄이게 되면 내시효특성이 개선된다. 내시효특성의 확보측면에서 결정립내 고용탄소의 량은 적어도 20ppm이하, 바람직하게는 15ppm이하의 수준이다. The inventors of the present invention have found the following facts in the research process for securing excellent workability and non-aging properties without addition of Ti and Nb in a high-strength cold-rolled steel sheet. As shown in FIG. 1, as the precipitates of MnS are finely dispersed, the amount of solid carbon in the crystal grains is reduced, thereby improving the aging resistance characteristics. The solid carbon remaining in the crystal grains is relatively free to move, and therefore, affects the aging characteristics in combination with the movable potential. Therefore, if the amount of the solid carbon in the crystal grains is reduced to a certain level or less, the aging resistance is improved. The amount of the solid carbon in the crystal grains is at least 20 ppm or less, preferably 15 ppm or less in terms of securing the aging property.

이와 같이, 결정립내 고용탄소량을 원하는 수준으로 조절하기 위해서는 강중에 첨가하는 탄소의 함량을 0.003%이하로 하면서 MnS의 석출물을 미세하게 분포시키는 것이 중요하다. 본 발명에서는 미세한 MnS의 석출물을 이용하는 것에 의해 강중 탄소의 함량을 제강공정에서 부하가 적은 0.003%까지 확대할 수 있는 것이다.
Thus, in order to control the amount of solid carbon in the crystal grains to a desired level, it is important to finely distribute the precipitates of MnS while keeping the content of carbon added to the steel to 0.003% or less. In the present invention, by using a precipitate of fine MnS, the content of carbon in steel can be increased to 0.003%, which is a small load in the steelmaking process.

이와 같은 새로운 사실에 주목하여 MnS를 미세하게 분포시키는 방안에 대하여 연구하게 되었다. 그 결과, (1) Mn의 함량을 0.05~0.2%로 하고 S의 함량을 0.005~0.03%로 하면서 이들의 성분비(0.58*Mn/S)를 10이하로 조절하는 것이 필요하며, (2) 이와 함께 압간압연이 끝난 후 냉각속도를 200℃/min이상으로 하면 0.2㎛이하의 미세한 MnS의 석출물을 얻을 수 있다는 것이다.

This new fact has been paid attention to, and we have been studying how to distribute MnS finely. As a result, it is necessary to (1) adjust the content of Mn (0.58 * Mn / S) to 10 or less while adjusting the content of Mn to 0.05 to 0.2% and the content of S to 0.005 to 0.03% When the cooling rate is 200 [deg.] C / min or more after the intermetallic rolling, a fine MnS precipitate of 0.2 [micro] m or less can be obtained.

즉, 도 2(a)는 0.0018%C-0.15%Mn-0.008%P-0.015%S-0.03%Al-0.0012%N-0.05%Mo-0.05%V 인 강으로 Mn과 S의 성분비(0.58*Mn/S)가 5.8인 조성의 강을 열간압연후 냉각속도에 따른 석출물의 크기를 조사한 그래프이다. 도 2(a)의 그래프를 보면, Mn과 S의 성분비(0.58*Mn/S)가 10이하를 만족하는 경우에 대해 냉각속도를 조절하면 MnS의 석출물 크기가 0.2㎛이하를 만족할 수 있음을 확인할 수 있다.
That is, FIG. 2 (a) is a steel in which 0.0018% C-0.15% Mn-0.008% P-0.015% S- 0.03% Al-0.0012% N-0.05% Mo- Mn / S) of 5.8 was subjected to hot rolling to examine the size of the precipitate according to the cooling rate. The graph of FIG. 2 (a) shows that when the cooling rate is adjusted for the case where the composition ratio of Mn and S (0.58 * Mn / S) satisfies 10 or less, the precipitate size of MnS can satisfy 0.2 탆 or less .

이와 같이 미세한 MnS 석출물이 분포하는 강에 V이 첨가되면 남아 있는 고용탄소를 탄질화물로 석출하여 비시효특성을 확보할 수 있다. 또한, Mo이 첨가되면 소성이방성지수가 커지면서 가공성이 개선된다. 본 발명에서 미세한 MnS석출물의 분포는 항복강도, 면내이방성지수에도 긍정적인 영향을 미친다.
When V is added to the steel in which fine MnS precipitates are distributed as described above, the remaining solid carbon can be precipitated in the carbonitride to ensure the non-aging properties. Also, when Mo is added, the plastic anisotropy index is increased and the workability is improved. The distribution of fine MnS precipitates in the present invention positively influences the yield strength and in-plane anisotropy index.

이러한 본 발명의 냉연강판과 그 제조방법을 이하에서 구체적으로 설명한다.
The cold-rolled steel sheet of the present invention and its manufacturing method will be described in detail below.

[본 발명의 냉연강판][Cold rolled steel sheet of the present invention]

탄소(C)의 함량은 0.003%이하가 바람직하다.The content of carbon (C) is preferably 0.003% or less.

탄소의 함량이 0.003%이상의 경우 강중 고용탄소의 양이 많아 비시효성의 확보가 곤란하고 소둔판의 결정립이 미세하게 되어 연성이 크게 낮아진다. 따라서, 탄소(C)의 함량은 0.003%이하로 하는 것이 바람직한데, 보다 바람직하게는 탄소(C)의 함량이 0.0005~0.003%로 하는 것이다. 탄소(C)의 함량이 0.0005%미만의 경우에는 열연판의 결정립이 조대하여 강도가 낮아지고 면내이방성이 높아지기 때문이다. 본 발명에서는 MnS석출물에 의해 결정립내 고용탄소량을 낮출수 있으므로 탄소의 함량을 0.003%까지 높일 수 있어서 탄소의 함량을 극력으로 낮추기 위한 탈탄처리를 생략할 수 있는데, 그러한 탄소의 함량은 0.002%초과~0.003%이하의 범위이다.
When the content of carbon is 0.003% or more, it is difficult to ensure non-vitrification due to a large amount of carbon in solid in the steel, and the crystal grains of the annealed plate become finer and the ductility is greatly lowered. Therefore, the content of carbon (C) is preferably 0.003% or less, and more preferably the content of carbon (C) is 0.0005 to 0.003%. When the content of carbon (C) is less than 0.0005%, the crystal grains of the hot-rolled steel sheet have a reduced strength and an in-plane anisotropy. In the present invention, since the amount of dissolved carbon in the crystal grains can be lowered by the MnS precipitate, the content of carbon can be increased up to 0.003%, so that the decarburization treatment for decreasing the content of carbon can be omitted. To 0.003% or less.

망간(Mn)의 함량은 0.05~0.2%가 바람직하다. The content of manganese (Mn) is preferably 0.05 to 0.2%.

망간은 강중 고용황을 MnS로 석출하여 고용 황에 의한 적열취성(Hot shortness)을 방지하는 원소로 알려져 있다. 본 발명에서는 망간과 황의 함량을 적절해지는 경우에 매우 미세한 MnS가 석출되어 비시효성을 기본적으로 확보해주면서 항복강도, 면내이방성을 개선한다는 연구결과에 기초하여 망간의 함량을 0.05~0.2%로 하는 것이 바람직하다. 이러한 효과를 얻기 위해서는 망간의 함량이 0.05%이상 되어야 하며, 망간의 함량이 0.2% 초과의 경우에는 망간의 함량이 높아 조대한 MnS석출물이 생성되어 비시효특성의 확보에 좋지 않다.
Manganese is known as an element to prevent hot shortness due to sulfur by precipitating solid sulfur in MnS. In the present invention, it is preferable that the content of manganese is adjusted to 0.05 to 0.2% based on the result of research on improvement of yield strength and in-plane anisotropy while basically ensuring non-viability due to precipitation of very fine MnS when manganese and sulfur are appropriately contained Do. In order to obtain such an effect, the content of manganese should be not less than 0.05%. When the content of manganese is more than 0.2%, the content of manganese is high and coarse MnS precipitates are formed.

황(S)의 함량은 0.005~0.03%가 바람직하다.The content of sulfur (S) is preferably 0.005 to 0.03%.

황(S)의 함량이 0.005%미만의 경우에는 MnS 석출량이 적을 뿐만 아니라 석출되는 MnS의 크기가 매우 조대해져 내시효성이 좋지 않다. 황의 함량이 0.03% 초과의 경우에는 고용된 황의 함량이 많아 연성 및 성형성이 크게 낮아지며, 적열취성의 우려가 있기 때문이다. 황의 함량은 0.005~0.03%의 범위일 때 MnS의 석출물 크기를 원하는 범위로 조절하기가 용이해진다. 보다 바람직한 S의 함량은 0.016~0.03%이다.
When the content of sulfur (S) is less than 0.005%, not only the MnS precipitation amount is small but also the magnitude of precipitated MnS becomes very large and the anti-aging property is poor. When the content of sulfur is more than 0.03%, the content of sulfur dissolved is large, so that the ductility and formability are greatly lowered, and there is a fear of heat brittleness. When the content of sulfur is in the range of 0.005 to 0.03%, it becomes easy to control the size of the precipitate of MnS to a desired range. The more preferable content of S is 0.016 to 0.03%.

알루미늄(Al)의 함량은 0.01~0.1%가 바람직하다.The content of aluminum (Al) is preferably 0.01 to 0.1%.

알루미늄은 탈산제로 첨가하는 원소이지만 본 발명에서는 강중 질소를 석출하여 고용질소에 의한 시효를 방지하기 위해 첨가한다. 알루미늄의 함량이 0.01%미 만의 경우에는 고용질소의 양이 많아 시효 현상을 방지 할 수 없고, 알루미늄의 함량이 0.1%초과의 경우에는 고용 상태로 존재하는 알루미늄의 양이 많아 연성을 저하한다.
Aluminum is an element to be added as a deoxidizing agent, but in the present invention, nitrogen is added to prevent precipitation of nitrogen in the steel to prevent aging by solid nitrogen. When the content of aluminum is less than 0.01%, the amount of solute nitrogen is large and the aging phenomenon can not be prevented. When the content of aluminum is more than 0.1%, the amount of aluminum existing in a solid state is large.

질소(N)의 함량은 0.004%이하가 바람직하다.The content of nitrogen (N) is preferably 0.004% or less.

질소는 제강중 불가피하게 첨가되는 원소로 0.004%초과의 경우에는 시효지수가 높아지므로 0.004%이하가 바람직하다.
Nitrogen is an element which is inevitably added during steelmaking. When it exceeds 0.004%, the aging index becomes high.

인(P)의 함량은 0.015%이하가 바람직하다. The content of phosphorus (P) is preferably 0.015% or less.

인의 함량이 0.015% 초과의 경우에는 연성 및 성형성이 저하하므로 0.015%이하로 하는 것이 바람직하다.
When the content of phosphorus is more than 0.015%, the ductility and formability are lowered, and therefore, it is preferable that the content is less than 0.015%.

몰리브덴(Mo)의 함량은 0.01~0.2%가 바람직하다.The content of molybdenum (Mo) is preferably 0.01 to 0.2%.

몰리브덴은 소성이방성지수를 높이는 원소로서 첨가되는데, 그 함량이 0.01%이상되어야 소성이방성지수가 커지며, 0.2%를 초과하면 소성이방성지수는 더 이상 커지지 않고 열간취성을 일으킬 우려가 있다.
Molybdenum is added as an element to increase the plastic anisotropy index. When the content is more than 0.01%, the plastic anisotropy index becomes large. When the content exceeds 0.2%, plastic anisotropy index does not increase any more and may cause hot brittleness.

바나듐(V)의 함량은 0.01~0.2%가 바람직하다.The content of vanadium (V) is preferably 0.01 to 0.2%.

바나듐은 고용C를 석출하여 비시효특성을 확보하기 위해 첨가되는데, 그 함량이 0.01%이상되어야 비시효특성을 얻을 수 있으며, 0.2%를 초과하면 소성이방성 지수는 낮아진다.
Vanadium is added to precipitate solute C to ensure non-aging properties. When the content is more than 0.01%, non-aging properties can be obtained. When the content exceeds 0.2%, the plastic anisotropy index is lowered.

상기 V과 C의 중량비(V/C)는 1~20을 만족하는 것이 보다 바람직하다. V와 C의 중량비가 1미만에서는 고용C의 석출효과가 크지 않으며, 20을 초과하면 소성이방성지수가 낮아진다.

It is more preferable that the weight ratio (V / C) of V and C satisfies 1 to 20. If the weight ratio of V and C is less than 1, the precipitation effect of the solid solution C is not large. If the weight ratio of V and C is more than 20, the plastic anisotropy index is low.

상기 Mn와 S의 중량비는 0.58*Mn/S≤10를 만족하는 것이 바람직하다.It is preferable that the weight ratio of Mn and S satisfies 0.58 * Mn / S? 10.

망간과 황은 결합하여 MnS로 석출되는데, 이 MnS석출물은 망간과 황의 첨가량에 따라 석출상태가 달라져 시효지수, 항복강도, 면내이방성 지수에 영향을 미친다. 본 발명의 연구에 따르면 망간과 황의 첨가비(0.58*Mn/S, 여기서, Mn, S의 함량은 중량%)가 10초과의 경우에는 MnS석출물이 조대하여 시효지수가 커지며, 항복강도, 면내이방성 지수의 특성이 좋지 않다.
Manganese and sulfur bind to MnS precipitates. The MnS precipitates vary in precipitation depending on the amount of manganese and sulfur added, affecting the age index, yield strength, and in-plane anisotropy index. According to the study of the present invention, when the addition ratio of manganese and sulfur (0.58 * Mn / S, wherein the content of Mn and S is% by weight) is more than 10, MnS precipitates have a larger aging aging index, The characteristics of the index are not good.

MnS석출물의 평균크기는 0.2㎛이하가 바람직하다. The average size of the MnS precipitates is preferably 0.2 탆 or less.

본 발명의 연구결과에 따르면 MnS석출물의 크기가 시효지수와 항복강도, 면내이방성 지수에 직접적으로 영향을 미치는데, MnS의 평균크기가 0.2㎛ 초과의 경우에는 특히 시효지수가 급격히 높아지고 면내이방성지수도 높아진다. 따라서, MnS 석출물의 평균크기는 0.2㎛ 이하가 바람직하다.
According to the results of the present invention, the size of the MnS precipitates directly affects the aging index, yield strength and in-plane anisotropy index. When the average size of MnS exceeds 0.2 μm, the aging index increases sharply and the in- . Therefore, the average size of the MnS precipitates is preferably 0.2 mu m or less.

[냉연강판의 제조방법][Production method of cold-rolled steel sheet]

본 발명은 상기한 강조성을 만족하는 강을 열간압연과 냉간압연을 통해 냉간압연판에 MnS석출물의 평균크기가 0.2㎛ 이하를 만족하도록 하는데 특징이 있다. 냉간압연판의 MnS석출물의 크기는 Mn/S의 비와 제조공정에 영향을 받으나 특히 열간압연후의 냉각속도에 직접적인 영향을 받는다.
The present invention is characterized in that an average size of MnS precipitates in the cold-rolled steel sheet is made to be 0.2 탆 or less through hot rolling and cold rolling, wherein the steel satisfying the above-described stress is obtained. The size of the MnS precipitates in the cold-rolled sheet is affected by the ratio of Mn / S and the manufacturing process, but is directly influenced by the cooling rate especially after hot rolling.

[열간압연조건][Hot rolling condition]

본 발명에서는 상기한 강조성을 만족하는 강을 재가열하여 열간압연한다. 재가열온도는 1100℃이상이 바람직하다. 재가열온도가 1100℃미만의 경우에는 재가열온도가 낮아 연속주조중에 생성된 조대한 MnS가 완전히 용해되지 않은 상태로 남아 있어 열간압연후에도 조대한 MnS가 많이 남아있기 때문이다.
In the present invention, the steel satisfying the above-mentioned stress is reheated and hot-rolled. The reheating temperature is preferably 1100 DEG C or higher. When the reheating temperature is lower than 1100 ° C, the reheating temperature is low, so that the coarse MnS generated during the continuous casting remains in a completely undissolved state, and a large amount of coarse MnS remains after the hot rolling.

열간압연은 마무리압연온도를 Ar3변태온도 이상의 조건에서 행하는 것이 바람직하다. 마무리압연온도가 Ar3변태온도 미만의 경우에는 압연립의 생성으로 가공성이 저하할 뿐만아니라 연성이 크게 저하기 때문이다.
The hot rolling is preferably carried out under the condition that the finishing rolling temperature is equal to or higher than the Ar 3 transformation temperature. When the finishing rolling temperature is lower than the Ar 3 transformation temperature, not only the workability is lowered due to the production of the pressure-relief but the ductility is greatly reduced.

열간압연후 권취전 냉각속도는 200℃/min이상으로 하는 것이 바람직하다. 본 발명에 따라 Mn과 S의 성분비(0.58*Mn/S)가 10이하로 하더라도 냉각속도가 200℃/min미만이면 MnS의 석출물 크기가 0.2㎛를 초과해 버린다. 즉, 냉각속도가 빨라질 수록 많은 수의 핵이 생성하여 MnS석출물이 미세해지기 때문이다. Mn과 S의 성분비(0.58*Mn/S)를 10초과의 경우에는 재가열공정에서 미용해된 조대한 MnS석출물이 많아 냉각속도가 빨라지더라도 새로운 핵이 생성되는 수가 적어 석출물은 미세해지지 않는다(도 2b, 0.024%C-0.43%Mn-0.011%P-0.009%S-0.035%Al-0.0043%N-0.05%Mo-0.05%V). 도 2의 그래프를 보면, 냉각속도가 빨라질수록 MnS석출물의 크기가 미세해지므로 냉각속도의 상한을 제한할 필요는 없다. 그러나, 냉각속도가 1000℃/min이상이라도 석출물 미세화 효과가 더 이상 커지지 않으므로 냉각속도는 200~1000℃/min가 보다 바람직하다.
The cooling rate before hot rolling is preferably 200 占 폚 / min or more. According to the present invention, even if the composition ratio of Mn and S (0.58 * Mn / S) is 10 or less, the precipitate size of MnS exceeds 0.2 탆 when the cooling rate is less than 200 캜 / min. That is, as the cooling rate is increased, a large number of nuclei are generated and the MnS precipitates become finer. When the composition ratio of Mn and S (0.58 * Mn / S) is more than 10, even if the cooling rate is increased due to a large amount of coarse MnS precipitates unreacted in the reheating step, new nuclei are generated and the precipitates are not fine , 0.024% C-0.43% Mn-0.011% P-0.009% S-0.035% Al-0.0043% N-0.05% Mo-0.05% V). 2, it is not necessary to limit the upper limit of the cooling rate since the size of the MnS precipitates becomes finer as the cooling rate is increased. However, even if the cooling rate is 1000 占 폚 / min or more, the effect of refining the precipitate does not further increase, so that the cooling rate is more preferably 200 to 1000 占 폚 / min.

[권취조건][Winding condition]

상기와 같이 열간압연한 다음에는 권취를 행하는데, 권취온도는 700℃이하가 바람직하다. 권취온도가 700℃초과의 경우에는 MnS석출물이 너무 조대하게 성장하여 비시효성을 저하한다.
After hot rolling as described above, winding is performed, and the winding temperature is preferably 700 DEG C or lower. When the coiling temperature exceeds 700 ° C, the MnS precipitates grow too coarse and the non-vitrification deteriorates.

[냉간압연조건][Cold rolling conditions]

냉간압연은 50~90%의 압하율로 행하는 것이 바람직하다. 냉간압하율이 50%미만의 경우에는 소둔재결정 핵생성양이 적기 때문에 소둔시 결정립이 너무 크게 성장하여 소둔 재결정립의 조대화로 강도 및 성형성이 저하한다. 냉간압하율이 90%초과의 경우에는 성형성은 향상되지만 핵생성 양이 너무 많아 소둔 재결정립은 오히려 너무 미세하여 연성이 저하한다. The cold rolling is preferably performed at a reduction ratio of 50 to 90%. When the cold rolling reduction rate is less than 50%, the amount of annealed recrystallized nuclei is small, so that the grain size grows too large during annealing and the strength and formability are lowered due to coarsening of the annealed recrystallized grains. If the cold rolling reduction ratio exceeds 90%, the formability is improved but the amount of nucleation is too large, so that the annealed recrystallized grains are rather too fine and the ductility is lowered.                     

[연속소둔][Continuous Annealing]

연속소둔 온도는 제품의 재질을 결정하는 중요한 역할을 한다. 본 발명에서는 500~900℃의 온도범위에서 행하는 것이 바람직하다. 연속소둔 온도가 500℃미만의 경우에는 재결정립이 너무 미세하여 목표로 하는 연성값을 확보할 수 없으며, 소둔온도가 900℃초과의 경우에는 재결정립의 조대화로 강도가 저하된다. 연속소둔시간은 재결정이 완료되도록 유지하는데, 약 10초이상이면 재결정이 완료된다.
The continuous annealing temperature plays an important role in determining the material of the product. In the present invention, it is preferable to carry out the reaction in a temperature range of 500 to 900 ° C. When the continuous annealing temperature is less than 500 캜, the recrystallized grains are too fine to secure a desired ductility value, and when the annealing temperature exceeds 900 캜, the strength is lowered due to coarsening of the recrystallized grains. The continuous annealing time is maintained so that the recrystallization is completed. When the time is about 10 seconds or longer, the recrystallization is completed.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to examples.

[실시예][Example]

표 1의 강슬라브를 1200℃에서 재가열하고 마무리열간압연한 후 200℃/min의 속도로 냉각하여 650℃로 권취한 다음, 75%의 압하율로 냉간압연과 연속소둔처리하였다. 이때의 마무리압연온도는 Ar3변태점이상인 910℃이며, 연속소둔은 10℃/초의 속도로 750℃로 40초 동안 가열하여 행하였다. 얻어진 소둔판은 기계적 특성을 조사하기 위해 ASTM규격(ASTM E-8 standard)에 의한 표준시편으로 가공하였다. 시편은 인장시험기(INSTRON사, Model 6025)를 이용하여 항복강도, 인장강도, 연신율, 소성이방성 지수(rm값), 면내이방성 지수(△r) 및 시효지수(AI, Aging Index)를 측정하였다. 여기서 rm=(r0+2r45+r90)/4, △r=(r0-2r 45+r90)/

Figure 112004057423278-pat00001
이다. The steel slabs shown in Table 1 were reheated at 1,200 DEG C, finishing hot-rolled, cooled at a rate of 200 DEG C / min, rolled at 650 DEG C, and subjected to cold rolling and continuous annealing at a reduction ratio of 75%. The finish rolling temperature of not less than Ar 3 transformation point is 910 ℃, continuous annealing was performed by heating for 40 seconds to 750 ℃ to 10 ℃ / second. The obtained annealed sheets were processed into standard specimens according to ASTM E-8 standard to investigate mechanical properties. The specimens were measured for yield strength, tensile strength, elongation, plastic anisotropy index ( rm value), in-plane anisotropy index (Δr) and aging index (AI) using a tensile tester (INSTRON Model 6025) . Where r m = (r 0 + 2r 45 + r 90) / 4, △ r = (r 0 -2r 45 + r 90) /
Figure 112004057423278-pat00001
to be.




city
side
time
number
화학성분(중량%)Chemical composition (% by weight) 0.58
*
Mn/S
0.58
*
Mn / S
0.25
*V/C
0.25
* V / C
CC MnMn PP SS AlAl NN MoMo VV ≤0.003≤0.003 0.05
~0.2
0.05
~ 0.2
≤0.015≤0.015 0.005
~0.03
0.005
~ 0.03
0.01
~0.1
0.01
~ 0.1
≤0.004≤0.004 0.01~
0.2
0.01 ~
0.2
0.01
~0.2
0.01
~ 0.2
≤10≤10 1~201 to 20
1One 0.00230.0023 0.110.11 0.0110.011 0.0110.011 0.0230.023 0.00170.0017 0.0170.017 0.0250.025 5.85.8 2.722.72 22 0.00270.0027 0.090.09 0.010.01 0.0090.009 0.0370.037 0.00270.0027 0.0740.074 0.0820.082 5.85.8 7.597.59 33 0.00250.0025 0.080.08 0.0090.009 0.0120.012 0.0320.032 0.00310.0031 0.150.15 0.160.16 3.873.87 1616 44 0.00190.0019 0.120.12 0.0120.012 0.0130.013 0.0220.022 0.00130.0013 0.220.22 0.240.24 5.355.35 31.631.6 55 0.00280.0028 0.090.09 0.0120.012 0.0060.006 0.0320.032 0.00320.0032 00 0.050.05 8.78.7 4.464.46 66 0.00250.0025 0.110.11 0.0090.009 0.0110.011 0.0250.025 0.00170.0017 0.0520.052 00 5.85.8 00 77 0.00210.0021 0.380.38 0.010.01 0.0080.008 0.0310.031 0.00310.0031 0.080.08 0.120.12 27.627.6 9.529.52 88 0.00230.0023 0.080.08 0.010.01 0.0050.005 0.040.04 0.00150.0015 00 00 9.289.28 00 99 0.00180.0018 0.100.10 0.0110.011 0.0120.012 0.050.05 0.00260.0026 00 00 4.834.83 00 1010 0.00180.0018 0.150.15 0.0080.008 0.0150.015 0.030.03 0.00120.0012 00 00 5.85.8 00 1111 0.00270.0027 0.090.09 0.0120.012 0.0250.025 0.0350.035 0.00180.0018 00 00 2.092.09 00




city
side
time
number
기계적 성질Mechanical property 석출물
평균크기
(㎛)
Precipitate
Average size
(탆)
비고Remarks
항복
강도
(MPa)
surrender
burglar
(MPa)
인장
강도
(MPa)
Seal
burglar
(MPa)



(%)
year
God
rate
(%)
소성
이방성
지수
(rm)
Plasticity
Anisotropy
Indices
(r m )
면내
이방성
지수
(△r)
In-plane
Anisotropy
Indices
(R)
시효지수
(AI-(MPa)
Aging index
(AI- (MPa)
1One 158158 290290 5050 2.192.19 0.350.35 00 0.070.07 발명강Invention river 22 162162 288288 4949 2.222.22 0.390.39 00 0.080.08 발명강Invention river 33 172172 292292 4949 2.082.08 0.290.29 00 0.110.11 발명강Invention river 44 178178 310310 4545 1.821.82 0.290.29 00 0.090.09 비교강Comparative steel 55 172172 292292 4545 1.821.82 0.350.35 00 0.110.11 비교강Comparative steel 66 172172 292292 4949 1.981.98 0.290.29 2323 0.110.11 비교강Comparative steel 77 158158 281281 5050 2.082.08 0.350.35 2525 0.110.11 비교강Comparative steel 88 211211 309309 4949 1.831.83 0.210.21 2323 0.050.05 비교강Comparative steel 99 209209 311311 5252 1.931.93 0.240.24 2222 0.120.12 비교강Comparative steel 1010 201201 295295 5454 1.941.94 0.260.26 2121 0.150.15 비교강Comparative steel 1111 223223 319319 4848 1.881.88 0.260.26 2727 0.140.14 비교강Comparative steel

표 1, 2에 나타난 바와 같이, 시료1~3은 본 발명을 만족하는 발명강으로 항 복강도가 높고 소성이방성지수가 높으며, 비시효특성이 확보된다. As shown in Tables 1 and 2, Samples 1 to 3 are inventive steels satisfying the present invention, and have high anti-abdominal strength, high plasticity anisotropy index, and non-aging properties.

상술한 바와 같이, 본 발명에 따라 제공되는 냉연강판은 비시효특성을 갖으면서 가공성이 우수하고 항복강도도 높아 판두께를 줄일수 있어 경량화효과가 있다. As described above, the cold-rolled steel sheet provided according to the present invention has an excellent non-aging property, excellent workability, and a high yield strength, so that the sheet thickness can be reduced, thereby reducing the weight.

Claims (4)

중량%로 C:0.003%이하(0은 제외), Mn:0.05~0.2%, S:0.005~0.03%, Al:0.01~0.1%, N:0.004%이하(0은 제외), P:0.015%이하(0은 제외), Mo:0.01~0.2%, V:0.01~0.2%를 포함하고, 상기 Mn와 S가 조건 0.58*Mn/S≤10를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, MnS석출물의 평균크기가 0.2㎛이하로 이루어지는 가공성이 우수한 비시효 냉연강판.0.003% or less (excluding 0 is excluded), Mn: 0.05 to 0.2%, S: 0.005 to 0.03%, Al: 0.01 to 0.1% (Excluding 0), Mo: 0.01 to 0.2%, V: 0.01 to 0.2%, wherein the Mn and S satisfy the condition 0.58 * Mn / S? 10 and the balance Fe and other unavoidable impurities And an average size of the MnS precipitates is 0.2 占 퐉 or less. 제 1항에 있어서, 상기 V와 C의 중량비(0.25*V/C)가 1~20을 만족하는 것을 특징으로 하는 가공성이 우수한 비시효 냉연강판. The non-agglomerated cold-rolled steel sheet according to claim 1, wherein the weight ratio of V and C (0.25 * V / C) satisfies 1 to 20. 중량%로 C:0.003%이하(0은 제외), Mn:0.05~0.2%, S:0.005~0.03%, Al:0.01~0.1%, N:0.004%이하(0은 제외), P:0.015%이하(0은 제외), Mo:0.01~0.2%, V:0.01~0.2%를 포함하고, 상기 Mn와 S가 조건 0.58*Mn/S≤10를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강을 1100℃이상의 온도로 재가열한 후 마무리 압연온도를 Ar3변태점 이상으로 하여 열간압연하고 200℃/min이상의 속도로 냉각하고 700℃이하의 온도에서 권취한 다음, 냉간 압연하고, 연속소둔하는 것을 포함하여 이루어지는 가공성이 우수한 비시효 냉연강판의 제조방법. 0.003% or less (excluding 0 is excluded), Mn: 0.05 to 0.2%, S: 0.005 to 0.03%, Al: 0.01 to 0.1% (Excluding 0), Mo: 0.01 to 0.2%, V: 0.01 to 0.2%, and the Mn and S satisfy the condition 0.58 * Mn / S? 10 and the balance Fe and other unavoidable impurities after the re-heating the steel to a temperature of at least 1100 ℃ by a finish rolling temperature above the Ar 3 transformation point, hot-rolled and cooled by more than 200 ℃ / min speed and take-up at a temperature below 700 ℃ then to cold and rolling, continuous annealing By weight based on the total weight of the non-agglomerated cold-rolled steel sheet. 제 3항에 있어서, 상기 V와 C의 중량비(0.25*V/C)가 1~20을 만족하는 것을 특징으로 하는 가공성이 우수한 비시효 냉연강판의 제조방법. 4. The method for producing a non-agglomerated cold-rolled steel sheet according to claim 3, wherein the weight ratio of V and C (0.25 * V / C) satisfies 1 to 20.
KR1020040101995A 2004-12-06 2004-12-06 Non aging cold rolled steel sheet having superior workability and process for producing the same KR101143240B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040101995A KR101143240B1 (en) 2004-12-06 2004-12-06 Non aging cold rolled steel sheet having superior workability and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040101995A KR101143240B1 (en) 2004-12-06 2004-12-06 Non aging cold rolled steel sheet having superior workability and process for producing the same

Publications (2)

Publication Number Publication Date
KR20060062975A KR20060062975A (en) 2006-06-12
KR101143240B1 true KR101143240B1 (en) 2012-05-18

Family

ID=37159044

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040101995A KR101143240B1 (en) 2004-12-06 2004-12-06 Non aging cold rolled steel sheet having superior workability and process for producing the same

Country Status (1)

Country Link
KR (1) KR101143240B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020035653A (en) * 2000-08-04 2002-05-13 아사무라 타카싯 Cold rolled steel sheet and hot rolled steel sheet excellent in bake hardenability and resistance to ordinary temperature aging and method for their production
JP2003096543A (en) * 2001-09-25 2003-04-03 Nippon Steel Corp High strength steel sheet having high baking hardenability on application of high prestrain, and production method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020035653A (en) * 2000-08-04 2002-05-13 아사무라 타카싯 Cold rolled steel sheet and hot rolled steel sheet excellent in bake hardenability and resistance to ordinary temperature aging and method for their production
JP2003096543A (en) * 2001-09-25 2003-04-03 Nippon Steel Corp High strength steel sheet having high baking hardenability on application of high prestrain, and production method therefor

Also Published As

Publication number Publication date
KR20060062975A (en) 2006-06-12

Similar Documents

Publication Publication Date Title
KR101143240B1 (en) Non aging cold rolled steel sheet having superior workability and process for producing the same
KR101143107B1 (en) Non aging cold rolled steel sheet having superior workability and high strength, and process for producing the same
KR101143159B1 (en) Non aging cold rolled steel sheet having superior workability and high strength, and process for producing the same
KR101143084B1 (en) Cold rolled steel sheet having aging resistance superior workability and process for producing the same
KR101125916B1 (en) Non-aging cold rolled steel sheet having less anisotropy and process for producing the same
KR101143098B1 (en) High strength cold rolled steel sheet having aging resistance and superior workability, and process for producing the same
KR101143157B1 (en) High strength cold rolled steel sheet having aging resistance and superior workability, and process for producing the same
KR101143251B1 (en) High strength cold rolled steel sheet having superior workability and process for producing the same
KR101126012B1 (en) Non-aging cold rolled steel sheet having excellent recrstance to second work embrittlement and high strength, process for producing the same
KR101143101B1 (en) High strength cold rolled steel sheet having excellent resistance to second work embrittleness and aging resistance, and process for producing the same
KR101115703B1 (en) Non aging cold rolled steel sheet having high strength, and process for producing the same
KR101115842B1 (en) Bake hardening cold rolled steel sheet having superior workability and high strength, and process for producing the same
KR101105132B1 (en) Baking hardening cold rolled steel sheet having high strength, process for producing the same
KR101125930B1 (en) Non-aging cold rolled steel sheet having excellent resistance to second work embrittleness and high strength, process for producing the same
KR101143039B1 (en) High strength cold rolled steel sheet having aging resistance and superior workability, and process for producing the same
KR101171114B1 (en) High strength cold rolled steel sheet having excellent resistance to second work embrittleness and aging resistance, and process for producing the same
KR101143161B1 (en) Cold rolled steel sheet having aging resistance and superior formability, and process for producing the same
KR101105025B1 (en) Bake-hardening cold rolled steel sheet having less anistropy and high strength, process for producing the same
KR101171112B1 (en) Cold rolled steel sheet having excellent formability and aging resistance, and process for producing the same
KR101115764B1 (en) Non aging cold rolled steel sheet having high strength and process for producing the same
KR101143116B1 (en) High strength cold rolled steel sheet having excellent resistance to second work embrittleness and aging resistance, and process for producing the same
KR101115709B1 (en) Bake hardening cold rolled steel sheet having superior workability and process for producing the same
KR101104981B1 (en) Bake hardening cold rolled steel sheet having excellent resistance to second work embrittleness and high strength, process for producing the same
KR101104993B1 (en) Non-aging cold rolled steel sheet and process for producing the same
KR101105098B1 (en) Bake-harding cold rolled steel sheet having excellent workability and high strength, process for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150427

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160427

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170426

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180426

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190426

Year of fee payment: 8