KR20050000898A - Method of manufacturing ferroelectric memory device - Google Patents

Method of manufacturing ferroelectric memory device Download PDF

Info

Publication number
KR20050000898A
KR20050000898A KR1020030041490A KR20030041490A KR20050000898A KR 20050000898 A KR20050000898 A KR 20050000898A KR 1020030041490 A KR1020030041490 A KR 1020030041490A KR 20030041490 A KR20030041490 A KR 20030041490A KR 20050000898 A KR20050000898 A KR 20050000898A
Authority
KR
South Korea
Prior art keywords
film
memory device
manufacturing
ferroelectric
thin film
Prior art date
Application number
KR1020030041490A
Other languages
Korean (ko)
Inventor
김남경
염승진
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020030041490A priority Critical patent/KR20050000898A/en
Publication of KR20050000898A publication Critical patent/KR20050000898A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors

Abstract

PURPOSE: A method for manufacturing a ferroelectric memory device is provided to minimize thermal budget and to easily grow perovskite site by using three-step RTP(Rapid Thermal Processing). CONSTITUTION: A lower electrode is formed on a semiconductor substrate. A ferroelectric thin film having perovskite structure as a dielectric film is deposited on the lower electrode. The ferroelectric film is annealed by three-step RTP. That is, the first RTP is performed to uniformly generate the perovskite site under the temperature of 100-625°C, the second RTP is performed to control the crystal orientation of the ferroelectric film under the temperature of 625-750°C, and the third RTP is performed to grow large perovskite site under the temperature of 750-1000°C.

Description

강유전체 메모리 소자의 제조방법{METHOD OF MANUFACTURING FERROELECTRIC MEMORY DEVICE}Manufacturing method of ferroelectric memory device {METHOD OF MANUFACTURING FERROELECTRIC MEMORY DEVICE}

본 발명은 반도체 메모리 소자의 제조방법에 관한 것으로, 특히 캐패시터 유전막으로서 강유전체막을 적용하는 강유전체 메모리 소자의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor memory device, and more particularly, to a method of manufacturing a ferroelectric memory device in which a ferroelectric film is applied as a capacitor dielectric film.

반도체 메모리 소자에서 강유전체(ferroelectric) 재료를 캐패시터에 사용함으로써 기존 DRAM(Dynamic Random Access Memory) 소자에서 필요한 리프레시 (refresh)의 한계를 극복하고 대용량의 메모리를 이용할 수 있는 소자의 개발이 진행되어 왔다. FeRAM(ferroelectric random access memory) 소자는 비휘발성 메모리 소자의 일종으로 전원이 끊어진 상태에서도 저장 정보를 기억하는 장점이 있을뿐만 아니라 동작 속도도 기존의 DRAM에 필적하여 차세대 기억소자로 각광받고 있다.By using a ferroelectric material in a capacitor in a semiconductor memory device, the development of a device capable of using a large-capacity memory while overcoming the limitation of refresh required in a conventional DRAM (Dynamic Random Access Memory) device has been in progress. A ferroelectric random access memory (FeRAM) device is a nonvolatile memory device that not only stores stored information even when the power supply is cut off, but also has an operation speed that is comparable to that of conventional DRAMs.

일반적으로, FeRAM 소자의 강유전체 물질로는 페롭스카이트(perovskite) 구조를 가지는 BLT((Bi,La)4Ti3O12)), SBT (SrBi2Ta2O9), SBTN(SrBi2(Ta1-X, Nbx)2O9), BIT(Bi4Ti3O12), PZT(Pb, Zr)TiO3, BLT(Bi1-X, Lax)Ti3O12등의 박막이 주로 사용되고 있으며, 우수한 전기적 특성의 캐패시터를 얻기 위해서는 강유전체 박막의 페롭스카이트 핵을 거대하게 성장시키면서 강유전체 박막 내에 열악한 전기적 특성을 가지는 c-축이 존재하지 않도록 하는 것이 중요하다.In general, ferroelectric materials of FeRAM devices include BLT ((Bi, La) 4Ti 3 O 12 )), SBT (SrBi 2 Ta 2 O 9 ), and SBTN (SrBi 2 (Ta 1 ) having a perovskite structure. Thin films such as -X , Nbx) 2 O 9 ), BIT (Bi 4 Ti 3 O 12 ), PZT (Pb, Zr) TiO 3 , BLT (Bi 1-X , Lax) Ti 3 O 12 are mainly used. In order to obtain a capacitor having excellent electrical properties, it is important to grow the perovskite nucleus of the ferroelectric thin film without causing c-axis having poor electrical properties in the ferroelectric thin film.

그러나, 거대한 페롭스카이트 핵의 성장을 위해서는 높은 열에너지가 요구되는데, 이러한 높은 열에너지(thermal energy)에 의해 박막의 표면 에너지가 높아져 전기적 특성이 열악한 c-축이 급격하게 조대화될 뿐만 아니라 접합영역과 콘택된 플러그의 산화를 심화시켜 소자의 신뢰성을 저하시킨다.However, high thermal energy is required for the growth of the huge perovskite nucleus, and the surface energy of the thin film is increased by such high thermal energy, which not only sharply coarsens the c-axis, which has poor electrical properties, Oxidation of the contacted plug is intensified to reduce the reliability of the device.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 제안된 것으로, 강유전체 박막의 열처리시 열적버젯을 최소화하면서 거대한 페롭스카이트 핵을 용이하게 성장시킬 수 있는 강유전체 메모리 소자의 제조방법을 제공하는데 그 목적이 있다.The present invention has been proposed to solve the above problems of the prior art, and provides a method of manufacturing a ferroelectric memory device capable of easily growing a huge perovskite nucleus while minimizing thermal budget during heat treatment of a ferroelectric thin film. There is a purpose.

도 1은 본 발명의 실시예에 따른 강유전체 메모리 소자의 제조방법을 설명하기 위한 도면으로서, 강유전체 박막의 열처리 과정을 나타내는 그래프.1 is a view for explaining a method of manufacturing a ferroelectric memory device according to an embodiment of the present invention, a graph showing a heat treatment process of the ferroelectric thin film.

상기의 기술적 과제를 달성하기 위한 본 발명의 일 측면에 따르면, 상기의 본 발명의 목적은 하부전극이 형성된 반도체 기판 상에 캐패시터 유전막으로서 페롭스카이트 구조를 가지는 강유전체 박막을 증착하는 단계; 및 강유전체 박막을 3 단계 급속열처리로 열처리하는 단계를 포함하는 강유전체 메모리 소자의 제조방법에 의해 달성될 수 있다.According to an aspect of the present invention for achieving the above technical problem, an object of the present invention is the step of depositing a ferroelectric thin film having a perovskite structure as a capacitor dielectric film on a semiconductor substrate formed with a lower electrode; And heat-treating the ferroelectric thin film in three stages of rapid thermal treatment.

바람직하게, 3 단계 급속열처리는 강유전체 박막의 페롭스카이트 핵을 균일하게 생성하기 위한 제 1 급속열처리와, 하부전극의 결정방향에 따라 강유전체 박막의 결정방위를 조절하기 위한 제 2 급속열처리와, 페롭스카이트 핵을 거대하게 성장시키기 위한 제 3 급속열처리로 이루어진다.Preferably, the three-step rapid heat treatment may include a first rapid heat treatment for uniformly generating the perovskite nucleus of the ferroelectric thin film, a second rapid heat treatment for adjusting the crystal orientation of the ferroelectric thin film according to the crystallographic direction of the lower electrode, and a perovskite. And a third rapid heat treatment to grow the skype nucleus enormously.

여기서, 제 1 급속열처리는 반응개스로서 산화개스를 사용하여 100 내지 625℃의 온도범위에서 25 내지 250℃/초의 승온속도로 수행하고, 제 2 급속열처리는 반응개스로서 산화개스를 사용하여 625 내지 750℃의 온도범위에서 25 내지 250℃/초의 승온속도로 수행하며, 제 3 급속열처리는 반응개스로서 산화개스와 환원개스를 사용하여 750 내지 1000℃의 온도범위에서 100 내지 250℃/초의 승온속도를 가지는 스파이크 급속열처리로 수행하며, 산화개스로서는 N2O, O2, H2O 및 H2O2중 선택되는 하나를 사용하고, 환원개스로서는 NH3또는 N2을 사용한다.Here, the first rapid heat treatment is carried out at an elevated temperature rate of 25 to 250 ° C./sec in the temperature range of 100 to 625 ° C. using an oxidation gas as the reaction gas, and the second rapid heat treatment is performed using the oxidation gas as the reaction gas at 625 to The temperature increase rate of 25 to 250 ℃ / sec in the temperature range of 750 ℃, the third rapid heat treatment using the oxidation gas and reducing gas as the reaction gas temperature increase rate of 100 to 250 ℃ / second in the temperature range of 750 to 1000 ℃ It is carried out by a rapid heat treatment with a spike, one selected from N 2 O, O 2 , H 2 O and H 2 O 2 as the oxidation gas, NH 3 or N 2 is used as the reducing gas.

또한, 강유전체 박막은 BLT, SBT, SBTN, BIt, PZT 및 BLT 중 선택되는 하나로 이루어지고, 하부전극은 Pt막, Ir막, IrOx막, Ru막 및 RuOx막 중 선택되는 하나의 막 또는 하나 이상의 적층막으로 이루어진다.In addition, the ferroelectric thin film is made of one selected from BLT, SBT, SBTN, BIt, PZT, and BLT, and the lower electrode is one film or one or more layers selected from Pt film, Ir film, IrOx film, Ru film, and RuOx film. Is made of membrane.

이하, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자가 본 발명을 보다 용이하게 실시할 수 있도록 하기 위하여 본 발명의 바람직한 실시예를 소개하기로 한다.Hereinafter, preferred embodiments of the present invention will be introduced in order to enable those skilled in the art to more easily carry out the present invention.

도 1은 본 발명의 실시예에 따른 강유전체 메모리 소자의 제조방법을 설명하기 위한 도면으로서, 강유전체 박막의 열처리 과정을 나타내는 그래프이다.1 is a diagram illustrating a method of manufacturing a ferroelectric memory device according to an exemplary embodiment of the present invention, and is a graph illustrating a heat treatment process of a ferroelectric thin film.

도시되지는 않았지만, 상부에 하부전극이 형성되어 있는 반도체 기판을 준비한다. 여기서, 하부전극은 Pt막, Ir막, IrOx막, Ru막 및 RuOx막 중 선택되는 하나의 막 또는 하나 이상의 적층막으로 이루어진다. 그 다음, 하부전극이 형성된 기판 상부에 캐패시터의 유전막으로서 BLT, SBT, SBTN, BIt, PZT, BLT와 같은 페롭스카이트 구조의 강유전체 박막을 증착한 후, 강유전체 박막의 페롭스카이트 핵성장을 위한 열처리를 수행한다.Although not shown, a semiconductor substrate having a lower electrode formed thereon is prepared. Here, the lower electrode is composed of one film selected from a Pt film, an Ir film, an IrOx film, a Ru film, and a RuOx film or one or more laminated films. Then, a ferroelectric thin film of a perovskite structure such as BLT, SBT, SBTN, BIt, PZT, BLT is deposited as a dielectric film of the capacitor on the substrate on which the lower electrode is formed, and then a heat treatment for ferro-sky thin film growth of the ferroelectric thin film is performed. Perform

여기서, 강유전체 박막의 증착은 화학기상증착(Chemical Vapor Deposition; CVD), 원자층증착(Atomic Layer Deposition; ALD), 물리기상증착(Physical Vapor Deposition), 스핀코팅(Spin Coating) 또는 액체소오스혼합 화학증착(Liquid Source Mixed Chemical Deposition; LSMCD)으로 수행한다.The deposition of the ferroelectric thin film may include chemical vapor deposition (CVD), atomic layer deposition (ALD), physical vapor deposition, spin coating, or liquid source mixed chemical vapor deposition. (Liquid Source Mixed Chemical Deposition; LSMCD).

강유전체 박막의 열처리는 도 1에 나타낸 바와 같이, 강유전체 박막의 페롭스카이트 핵을 균일하게 생성하는 제 1 급속열처리(Rapid Thermal Process; RTP)와, 강유전체 박막의 퀴리점(curie point)을 급속하게 지나간 후 열적 평형을 유지시켜 하부전극의 결정방향에 따라 강유전체 박막의 결정방위를 조절하는 제 2 RTP와, 일정방향성을 가지는 페롭스카이트 핵을 거대하게 성장시키는 제 3 RTP로 이루어진 3 단계 RTP로 수행한다.As shown in FIG. 1, the heat treatment of the ferroelectric thin film rapidly passes a first rapid thermal process (RTP) that uniformly generates a perovskite nucleus of the ferroelectric thin film, and a Curie point of the ferroelectric thin film. After maintaining the thermal equilibrium, a third stage RTP consisting of a second RTP for controlling the crystal orientation of the ferroelectric thin film according to the crystal orientation of the lower electrode and a third RTP for enlarging the perovskite nucleus having a constant orientation are performed. .

바람직하게, 제 1 RTP는 반응개스로서 N2O, O2, H2O 및 H2O2등의 산화개스를 사용하여 100 내지 625℃의 온도범위에서 25 내지 250℃/초의 승온속도로 수행하고, 제 2 RTP는 반응개스로서 N2O, O2, H2O 및 H2O2등의 산화개스를 사용하여 625 내지 750℃의 온도범위에서 25 내지 250℃/초의 승온속도로 수행하며, 제 3 RTP는 반응개스로서 N2O, O2, H2O 및 H2O2등의 산화개스와 NH3및 N2등의 환원개스를 사용하여 750 내지 1000℃의 온도범위에서 100 내지 250℃/초의 승온속도를 가지는 스파이크(spike) RTP로 수행한다.Preferably, the first RTP is carried out at a temperature increase rate of 25 to 250 ℃ / sec in the temperature range of 100 to 625 ℃ using an oxidation gas such as N 2 O, O 2 , H 2 O and H 2 O 2 as the reaction gas And, the second RTP is carried out at a temperature rising rate of 25 to 250 ℃ / second in the temperature range of 625 to 750 ℃ using an oxidation gas such as N 2 O, O 2 , H 2 O and H 2 O 2 as the reaction gas , The third RTP is 100 to 100 in the temperature range of 750 to 1000 ℃ using an oxidation gas such as N 2 O, O 2 , H 2 O and H 2 O 2 and a reducing gas such as NH 3 and N 2 as the reaction gas It is performed with a spike RTP having a temperature rise rate of 250 ° C./sec.

그 다음, 강유전체 박막 상부에 Pt막, Ir막, IrOx막, Ru막, RuOx막, W막 및 TiN막 중 선택되는 하나의 막으로 상부전극을 형성하여 캐패시터를 완성한다.Next, the capacitor is completed by forming an upper electrode on one of the Pt film, Ir film, IrOx film, Ru film, RuOx film, W film, and TiN film on the ferroelectric thin film.

상기 실시예에 의하면, 강유전체 박막의 페롭스카이트 핵성장을 위한 열처리를 3단계의 RTP로 수행하되 제 1 RTP는 비교적 낮은 온도에서 수행하고 제 2 RTP 시에는 강유전체 박막의 퀴리점을 급속하게 지나가도록 하며 제 3 RTP는 스파이크 RTP로 수행하여 열적 버젯(thermal budget)을 최소화함으로써 전기적 특성이 열악한 c-축의 급격한 조대화 및 플러그 등의 산화를 방지하면서 강유전체 박막의 페롭스카이트 핵을 거대하게 성장시키는 것이 가능해지므로 소자의 신뢰성을 향상시킬 수 있게 된다.According to the above embodiment, the heat treatment for the perovskite nuclear growth of the ferroelectric thin film is performed in three stages of RTP, but the first RTP is performed at a relatively low temperature, and the second RTP rapidly passes the Curie point of the ferroelectric thin film. The third RTP is performed by the spike RTP to minimize the thermal budget, thereby enlarging the perovskite nucleus of the ferroelectric thin film while preventing the rapid coarsening of the c-axis and the oxidation of the plug, which have poor electrical properties. This makes it possible to improve the reliability of the device.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made in the art without departing from the technical spirit of the present invention. It will be clear to those of ordinary knowledge.

전술한 본 발명은 강유전체 박막의 열처리를 3 단계 RTP로 수행함에 따라 열적버젯을 최소화면서 거대한 페롭스카이트 핵을 용이하게 성장시킬 수 있으므로 강유전체 메모리 소자의 신뢰성을 향상시킬 수 있다.According to the present invention described above, the ferroelectric thin film may be heat-treated in three steps, thereby minimizing thermal budget and easily growing huge perovskite nuclei, thereby improving reliability of the ferroelectric memory device.

Claims (9)

하부전극이 형성된 반도체 기판 상에 캐패시터 유전막으로서 페롭스카이트 구조를 가지는 강유전체 박막을 증착하는 단계; 및Depositing a ferroelectric thin film having a perovskite structure as a capacitor dielectric film on a semiconductor substrate on which a lower electrode is formed; And 상기 강유전체 박막을 3 단계 급속열처리로 열처리하는 단계를 포함하는 강유전체 메모리 소자의 제조방법.The method of manufacturing a ferroelectric memory device comprising the step of heat-treating the ferroelectric thin film in a three-step rapid heat treatment. 제 1 항에 있어서,The method of claim 1, 상기 3 단계 급속열처리는 상기 강유전체 박막의 페롭스카이트 핵을 균일하게 생성하기 위한 제 1 급속열처리와, 상기 하부전극의 결정방향에 따라 상기 강유전체 박막의 결정방위를 조절하기 위한 제 2 급속열처리와, 상기 페롭스카이트 핵을 거대하게 성장시키기 위한 제 3 급속열처리로 이루어진 것을 특징으로 하는 강유전체 메모리 소자의 제조방법.The three-step rapid thermal treatment may include a first rapid thermal treatment for uniformly generating a perovskite nucleus of the ferroelectric thin film, a second rapid thermal treatment for adjusting the crystal orientation of the ferroelectric thin film according to a crystal direction of the lower electrode, And a third rapid heat treatment for growing the perovskite nucleus enormously. 제 2 항에 있어서,The method of claim 2, 상기 제 1 급속열처리는 반응개스로서 산화개스를 사용하여 100 내지 625℃의 온도범위에서 25 내지 250℃/초의 승온속도로 수행하는 것을 특징으로 하는 강유전체 메모리 소자의 제조방법.The first rapid heat treatment is a method of manufacturing a ferroelectric memory device, characterized in that performed using an oxidation gas as the reaction gas at a temperature increase rate of 25 to 250 ℃ / sec in the temperature range of 100 to 625 ℃. 제 3 항에 있어서,The method of claim 3, wherein 상기 제 2 급속열처리는 반응개스로서 산화개스를 사용하여 625 내지 750℃의 온도범위에서 25 내지 250℃/초의 승온속도로 수행하는 것을 특징으로 하는 강유전체 메모리 소자의 제조방법.The second rapid heat treatment is a method of manufacturing a ferroelectric memory device, characterized in that carried out at a temperature increase rate of 25 to 250 ℃ / sec in the temperature range of 625 to 750 ℃ using an oxide gas as the reaction gas. 제 4 항에 있어서,The method of claim 4, wherein 상기 제 3 급속열처리는 반응개스로서 산화개스와 환원개스를 사용하여 750 내지 1000℃의 온도범위에서 100 내지 250℃/초의 승온속도를 가지는 스파이크 급속열처리로 수행하는 것을 특징으로 하는 강유전체 메모리 소자의 제조방법.The third rapid heat treatment is performed using a spike rapid heat treatment having a temperature rising rate of 100 to 250 ° C./sec in a temperature range of 750 to 1000 ° C. using an oxidation gas and a reducing gas as reaction gas. Way. 제 3 항 내지 제 5 항 중 어느 한 항에 있어서,The method according to any one of claims 3 to 5, 상기 산화개스는 N2O, O2, H2O 및 H2O2중 선택되는 하나인 것을 특징으로 하는 강유전체 메모리 소자의 제조방법.The oxide gas is a method of manufacturing a ferroelectric memory device, characterized in that one selected from N 2 O, O 2 , H 2 O and H 2 O 2 . 제 5 항에 있어서,The method of claim 5, wherein 상기 환원개스는 NH3또는 N2인 것을 특징으로 하는 강유전체 메모리 소자의 제조방법.The reducing gas is a method of manufacturing a ferroelectric memory device, characterized in that NH 3 or N 2 . 제 1 항에 있어서,The method of claim 1, 상기 강유전체 박막은 BLT, SBT, SBTN, BIt, PZT 및 BLT 중 선택되는 하나로 이루어진 것을 특징으로 하는 강유전체 메모리 소자의 제조방법.The ferroelectric thin film is a method of manufacturing a ferroelectric memory device, characterized in that consisting of one selected from BLT, SBT, SBTN, BIt, PZT and BLT. 제 1 항에 있어서,The method of claim 1, 상기 하부전극은 Pt막, Ir막, IrOx막, Ru막 및 RuOx막 중 선택되는 하나의 막 또는 하나 이상의 적층막으로 이루어진 것을 특징으로 하는 강유전체 메모리 소자의 제조방법.The lower electrode is a method of manufacturing a ferroelectric memory device, characterized in that consisting of one film or one or more laminated films selected from Pt film, Ir film, IrOx film, Ru film and RuOx film.
KR1020030041490A 2003-06-25 2003-06-25 Method of manufacturing ferroelectric memory device KR20050000898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030041490A KR20050000898A (en) 2003-06-25 2003-06-25 Method of manufacturing ferroelectric memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030041490A KR20050000898A (en) 2003-06-25 2003-06-25 Method of manufacturing ferroelectric memory device

Publications (1)

Publication Number Publication Date
KR20050000898A true KR20050000898A (en) 2005-01-06

Family

ID=37216770

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030041490A KR20050000898A (en) 2003-06-25 2003-06-25 Method of manufacturing ferroelectric memory device

Country Status (1)

Country Link
KR (1) KR20050000898A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022188852A1 (en) * 2021-03-11 2022-09-15 吉林大学 Perovskite film and preparation method therefor, solar cell and light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022188852A1 (en) * 2021-03-11 2022-09-15 吉林大学 Perovskite film and preparation method therefor, solar cell and light-emitting device

Similar Documents

Publication Publication Date Title
JP4051567B2 (en) Ferroelectric memory device
JP3971645B2 (en) Manufacturing method of semiconductor device
KR20090012666A (en) Method of forming a ferro-electric layer and method of manufacturing a ferro-electric capacitor
US6309896B1 (en) Method of manufacturing a ferroelectric film
KR100321714B1 (en) Method for forming capacitor of semiconductor memory device
KR20030015142A (en) Mocvd and annealing processes for c-axis oriented ferroelectric thin films
KR20050000898A (en) Method of manufacturing ferroelectric memory device
KR20000003484A (en) Method of forming capacitor of semiconductor device
JP2001139313A (en) Method for manufacturing oxide film and method for manufacturing ferroelectric memory
KR100362185B1 (en) A method of forming ferroelectric capacitor in semiconductor device
KR100324587B1 (en) Method for forming ferroelectric capacitor capable of preventing degradation of electrode during high temperature annealing
KR100296128B1 (en) Capacitor Manufacturing Method of Ferroelectric Memory Device
KR100388465B1 (en) Ferroelectric capacitor having ruthenium bottom electrode and forming method thereof
KR100362184B1 (en) A method of forming ferroelectric capacitor in semiconductor device
KR100513796B1 (en) Capacitor having Bismuth-base ferroelectric layer and method for fabricating the same
KR100390845B1 (en) Ferroelectric capacitor in semiconductor device and forming method thereof
KR100388467B1 (en) A method of forming BLT layer in semiconductor device
KR100390844B1 (en) Ferroelectric capacitor in semiconductor device and forming method thereof
JP4840794B2 (en) Manufacturing method of electronic device
US6440751B1 (en) Method of manufacturing thin film and thin film capacitor
KR100472724B1 (en) Method for fabrication of ferroelectric capacitor having tungsten plug
KR100573835B1 (en) Method for forming ferroelectric capacitor by using Ta-NbN hard mask
KR100388466B1 (en) Ferroelectric capacitor having ruthenium bottom electrode and forming method thereof
JP2004207628A (en) Semiconductor memory device and its manufacturing method
KR20030084331A (en) Method for fabricating capacitor with 2 step annealing in semiconductor device

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid