KR20040098952A - Method for forming a silicon rich oxide in a semiconductor metal line procedure - Google Patents
Method for forming a silicon rich oxide in a semiconductor metal line procedure Download PDFInfo
- Publication number
- KR20040098952A KR20040098952A KR1020030031290A KR20030031290A KR20040098952A KR 20040098952 A KR20040098952 A KR 20040098952A KR 1020030031290 A KR1020030031290 A KR 1020030031290A KR 20030031290 A KR20030031290 A KR 20030031290A KR 20040098952 A KR20040098952 A KR 20040098952A
- Authority
- KR
- South Korea
- Prior art keywords
- sro
- fsg
- forming
- metal wiring
- layer
- Prior art date
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05C—BOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
- E05C19/00—Other devices specially designed for securing wings, e.g. with suction cups
- E05C19/16—Devices holding the wing by magnetic or electromagnetic attraction
- E05C19/161—Devices holding the wing by magnetic or electromagnetic attraction magnetic gaskets
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/32—Arrangements of wings characterised by the manner of movement; Arrangements of movable wings in openings; Features of wings or frames relating solely to the manner of movement of the wing
- E06B3/48—Wings connected at their edges, e.g. foldable wings
- E06B3/481—Wings foldable in a zig-zag manner or bi-fold wings
Landscapes
- Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Formation Of Insulating Films (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
본 발명은 반도체 금속 배선 공정에서의 SRO(Silicon Rich Oxide)막 형성 기술에 관한 것으로, 특히, FSG(Fluoro-Silicate Glass)로부터의 F 확산을 막는데 적합한 반도체 금속 배선 공정에서의 산화막 형성 방법에 관한 것이다.The present invention relates to a technology for forming a silicon rich oxide (SRO) film in a semiconductor metal wiring process, and more particularly, to a method for forming an oxide film in a semiconductor metal wiring process suitable for preventing F diffusion from fluoro-silicate glass (FSG). will be.
도 1은 종래의 전형적인 산화막 형성 과정을 설명하기 위한 도면이다.1 is a view for explaining a conventional typical oxide film formation process.
도시한 바와 같이, 콘택이나 비아와 같은 접촉구가 형성된 층간 절연막(100) 상부에 접촉구에 전기적으로 연결되는 금속 배선층(102)이 형성된 상태에서, 배선 층간을 채우기 위하여 고밀도 플라즈마(HDP : High Density Plasma) 방식을 이용한 FSG(104)를 증착한다.As shown, in the state where the metal wiring layer 102 electrically connected to the contact hole is formed on the interlayer insulating film 100 on which contact holes such as a contact or via are formed, a high density plasma (HDP: High Density) The FSG 104 is deposited using a plasma method.
이때, 이러한 FSG(104)는 금속 배선간의 선폭이 극도로 좁아짐에 따라 공극을 메우기 위해 사용되는 주요 요소로서, 그 유전율이 3.7 정도로 일반 USG(Undoped Silicate Glass)의 유전율인 4.3보다 낮게 설정되는 바, 금속간의 캐패시턴스를 낮출 수 있다는 장점이 있다.At this time, the FSG 104 is the main element used to fill the gap as the line width between the metal wiring is extremely narrow, the dielectric constant is set to be lower than 4.3, the dielectric constant of general USG (Undoped Silicate Glass) as 3.7, There is an advantage that the capacitance between metals can be lowered.
한편, FSG(104)를 14000Å으로 두껍게 증착한 다음, 평탄화를 위한 화학적 기계적 연마(CMP : Chemical Mechanical Polishing)를 실시한다.Meanwhile, the FSG 104 is thickly deposited at 14000 kPa and then chemical mechanical polishing (CMP) is performed for planarization.
이렇게 형성된 FSG(104)는 그 막질 자체가 상당히 불안정한데 이는 Si-O-F 결합에서 F기가 이온화율이 크기 때문이며, 이로 인해 F기가 결합으로부터 쉽게 이탈하게 된다. 이렇게 이탈된 F 이온은 그 크기가 작아 일반 옥사이드(USG)를 쉽게 투과할 수 있다.The FSG 104 thus formed is quite unstable because of its large ionization rate at the Si—O—F bond, which causes the F group to easily escape from the bond. Thus released F ions are small in size can easily penetrate the general oxide (USG).
이러한 F기의 확산을 막기 위하여 실리콘이 다량 함유된 옥사이드인 SRO(106)를 사용하며, SRO(106) 내부의 비결합 실리콘 원자를 이용하여 F기를 트래핑(trap)하게 된다.In order to prevent diffusion of the F group, an SRO 106, which is an oxide containing a large amount of silicon, is used, and the F group is trapped using an unbonded silicon atom inside the SRO 106.
이상과 같이 완료된 종래의 기술에서는 다음과 같은 단점들이 내포된다.In the prior art completed as described above, the following disadvantages are included.
1. F기의 확산을 보다 신뢰성 있게 방지하기 위해서는 Si 함량(%)을 높일 수밖에 없으며, 이 경우 SRO(106)의 높은 유전율에 의하여 금속 상하위 층간의 캐패시턴스가 증가하게 된다.1. In order to more reliably prevent diffusion of the F group, it is necessary to increase the Si content (%). In this case, the capacitance between the upper and lower metal layers increases due to the high dielectric constant of the SRO 106.
2. SRO(106)의 비결합 실리콘의 경우 트랩 차지(trap charge)를 형성하게 되어 SRO(106) 내부에 전하를 띄게 되며, 이러한 현상이 심화될 경우 누설 전류의 원인이 된다.2. In the case of the non-bonded silicon of the SRO (106) forms a trap charge (charge) inside the SRO (106), which causes a leakage current if this phenomenon is intensified.
3. 결과적으로, 웨이퍼 내의 국부적인 공정 조건의 변화나 소자의 수명을 단축시키는 결과를 초래한다.3. As a result, local process conditions in the wafer may change or shorten the life of the device.
이에, 본 출원인은 상술한 F기가 주로 층간 계면(界面)에 존재한다는 사실을 확인하고 이러한 계면이 다수 개 형성된다면 SRO(106)의 실리콘 비율을 낮추면서도 F기의 확산을 보다 효율적으로 방지할 수 있다는데 착안하였다.Accordingly, the present applicant has confirmed that the above-described F group is mainly present at the interlayer interface, and if a plurality of such interfaces are formed, the F group can be prevented more efficiently while lowering the silicon ratio of the SRO 106. I thought it was.
따라서, 본 발명은 상술한 착안에 의해 안출한 것으로, SRO를 적층으로 구성하여 F기의 확산을 신뢰성 있게 방지하도록 한 반도체 금속 배선 공정에서의 산화막 형성 방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for forming an oxide film in a semiconductor metal wiring step in which SRO is formed in a stack to reliably prevent diffusion of F groups.
이러한 목적을 달성하기 위한 본 발명의 바람직한 실시예에 따르면, 접촉구를 포함한 층간 절연막 상부에 금속 배선층을 형성하는 단계; 금속 배선층 상부에 금속 배선간의 절연을 위한 FSG를 형성하는 단계; FSG 상부에 SRO를 적층으로 증착하는 단계를 포함하는 반도체 금속 배선 공정에서의 산화막 형성 방법을 제공한다.According to a preferred embodiment of the present invention for achieving this object, forming a metal wiring layer on the interlayer insulating film including a contact hole; Forming an FSG on the metal wiring layer for insulation between the metal wirings; Provided is an oxide film formation method in a semiconductor metal wiring process comprising depositing SRO on top of an FSG.
도 1은 종래의 전형적인 산화막 형성 과정을 설명하기 위한 공정 단면도,1 is a cross-sectional view illustrating a conventional typical oxide film formation process;
도 2는 본 발명의 바람직한 실시예에 따른 산화막 형성 과정을 설명하기 위한 공정 단면도.2 is a cross-sectional view illustrating a process of forming an oxide film according to a preferred embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 실시예에 따른 반도체 금속 배선 공정에서의 산화막 형성 과정을 설명하기 위한 도면으로서, SRO(206)를 적층으로 구성하여 계면을 여러 개 형성하고 그 실리콘 비율을 낮춘 것을 특징으로 한다.FIG. 2 is a view for explaining an oxide film forming process in a semiconductor metal wiring process according to a preferred embodiment of the present invention. The SRO 206 is formed by stacking to form multiple interfaces and lowers the silicon ratio. do.
도시한 바와 같이, 먼저 콘택이나 비아와 같은 접촉구가 형성된 층간 절연막(200) 상부에 금속막을 증착한다. 그리고, 금속막을리소그래피(lithography) 공정 등에 의해 패터닝(patterning)하여 접촉구에 전기적으로 연결되는 금속 배선층(202)을 형성한다.As shown, first, a metal film is deposited on the interlayer insulating film 200 on which contact holes such as contacts or vias are formed. The metal film is patterned by a lithography process to form a metal wiring layer 202 electrically connected to the contact hole.
그리고, 금속 배선층(202)의 배선간의 절연을 위해 금속 배선층(202) 상부 전면에 고밀도 플라즈마 방식 등을 이용하여 FSG(204)를 증착한다. 이때, FSG(204)의 증착은 14000Å 이상으로 두껍게 증착한 다음 화학 기계적 연마 공정 등에 의해 평탄화하는 것이 바람직하다.In order to insulate the wiring between the metal wiring layer 202, the FSG 204 is deposited on the entire upper surface of the metal wiring layer 202 by using a high density plasma method or the like. At this time, the deposition of the FSG 204 is preferably deposited at a thickness of 14000 kPa or more and then planarized by a chemical mechanical polishing process or the like.
여기서 FSG(204)는 금속 배선간의 선폭이 극도로 좁아짐에 따라 금속 배선간의 공극을 메우기 위해 사용되는 주요 요소로서, 그 유전율이 3.7 정도로 일반 USG의 유전율인 4.3보다 낮게 설정되는 것으로 금속 배선간의 캐패시턴스를 낮출 수 있는 장점이 있다.Here, the FSG 204 is a main element used to fill the gaps between the metal wires as the line width between the metal wires becomes extremely narrow. The dielectric constant of the FSG 204 is set to about 3.7, which is lower than that of the general USG dielectric constant of 4.3. There is an advantage that can be lowered.
그리고, 증착된 FSG(204) 상부에 SRO(206a)(206b)(206c)층을 본 실시예에 따라 적층으로 증착한다. 이때, 종래와는 달리 SRO층을 적층 구조로 형성함으로써 SRO(206a)로부터 확산된 F기는 SRO(206b)에서 트랩될 수 있고, SRO(206b)로부터 확산된 잔여 F기는 SRO(206c)에서 트랩될 수 있는 바, F기의 확산을 보다 신뢰성 있게 트래핑할 수 있을 것이다. 즉, 종래와는 달리 FSG(204)로부터 SRO(206a)(206b)(206c)로 확산되는 F기는 SRO(206a)(206b)(206c)의 각 계면에 트래핑된다.A SRO 206a, 206b, 206c layer is then deposited on top of the deposited FSG 204 in a stack according to this embodiment. At this time, unlike the prior art by forming the SRO layer in a stacked structure, the F group diffused from the SRO 206a can be trapped in the SRO 206b, and the remaining F group diffused from the SRO 206b can be trapped in the SRO 206c. As can be seen, it is possible to more reliably trap the diffusion of the F group. That is, unlike the prior art, the F group spreading from the FSG 204 to the SROs 206a, 206b, and 206c is trapped at each interface of the SROs 206a, 206b, and 206c.
이때, 본 실시예에서는 이러한 SRO(206a)(206b)(206c)층을 3회에 걸쳐 증착한 것으로 한정하였으나, 이러한 증착 회수는 반드시 국한되는 것은 아니며, 필요에 따라 2회 또는 그 이상으로 구현 가능하다.In this embodiment, the SRO 206a, 206b, 206c layer is limited to three depositions, but the number of depositions is not necessarily limited, and may be implemented two or more times as necessary. Do.
한편, 본 실시예에 따라 SRO(206a)(206b)(206c)층을 3회에 걸쳐 적층으로 증착함에 있어서 FSG(204)로부터 확산되는 F기는 SRO(206a)(206b)(206c)의 각 계면에 트랩되므로 SRO(206a)(206b)(206c)의 실리콘 비율은 1.48 RI(Reflective Index)로 낮게 설정될 수 있으며, 이는 종래 한 번으로 증착되는 SRO의 실리콘 비율(1.5 RI)에 비해 낮은 수치임을 확인할 수 있을 것이다.On the other hand, in the deposition of the SRO 206a, 206b and 206c layers three times in a stack according to the present embodiment, the F group diffused from the FSG 204 is provided at each interface of the SRO 206a, 206b and 206c. Since the silicon ratio of SRO 206a, 206b, 206c can be set as low as 1.48 Reflective Index (RI), it is lower than the silicon ratio (1.5 RI) of SRO that is conventionally deposited once. You will see.
따라서 본 발명은, 낮은 Si 함량(%)에서도 F기의 확산을 막아 SRO의 유전율을 낮추어 금속 상하위 층간의 캐패시턴스를 줄일 수 있다. 또한, SRO의 내부 전하량을 줄여 누설 전류를 차단할 수 있고, 이로 인해 안정적인 소자의 운용이 가능하다는 효과가 있다.Therefore, the present invention can reduce the dielectric constant of the SRO by preventing the diffusion of the F group even at a low Si content (%) to reduce the capacitance between the upper and lower metal layers. In addition, it is possible to cut off the leakage current by reducing the internal charge amount of the SRO, which has the effect that it is possible to operate a stable device.
이상, 본 발명을 실시예에 근거하여 구체적으로 설명하였지만, 본 발명은 이러한 실시예에 한정되는 것이 아니라, 후술하는 특허청구범위의 요지를 벗어나지 않는 한도내에서 여러 가지 변형이 가능한 것은 물론이다.As mentioned above, although this invention was demonstrated concretely based on the Example, this invention is not limited to this Example, Of course, various deformation | transformation is possible without departing from the summary of a Claim mentioned later.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030031290A KR100559609B1 (en) | 2003-05-16 | 2003-05-16 | Method for forming a silicon rich oxide in a semiconductor metal line procedure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030031290A KR100559609B1 (en) | 2003-05-16 | 2003-05-16 | Method for forming a silicon rich oxide in a semiconductor metal line procedure |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040098952A true KR20040098952A (en) | 2004-11-26 |
KR100559609B1 KR100559609B1 (en) | 2006-03-10 |
Family
ID=37376642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030031290A KR100559609B1 (en) | 2003-05-16 | 2003-05-16 | Method for forming a silicon rich oxide in a semiconductor metal line procedure |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100559609B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100591183B1 (en) * | 2004-12-23 | 2006-06-19 | 동부일렉트로닉스 주식회사 | Method for forming inter metal dielectric of semiconductor device using copper damascene process |
KR100756863B1 (en) * | 2005-12-28 | 2007-09-07 | 동부일렉트로닉스 주식회사 | Fabricating method of semiconductor device |
KR100850137B1 (en) * | 2006-10-23 | 2008-08-04 | 동부일렉트로닉스 주식회사 | Method for manufacturing the inter metal dielectric layers of semiconductor device |
KR100943487B1 (en) * | 2007-11-06 | 2010-02-22 | 주식회사 동부하이텍 | High voltage semiconductor device, and method for manufacturing thereof |
CN102815663A (en) * | 2011-06-08 | 2012-12-12 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method for semiconductor device |
-
2003
- 2003-05-16 KR KR1020030031290A patent/KR100559609B1/en not_active IP Right Cessation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100591183B1 (en) * | 2004-12-23 | 2006-06-19 | 동부일렉트로닉스 주식회사 | Method for forming inter metal dielectric of semiconductor device using copper damascene process |
KR100756863B1 (en) * | 2005-12-28 | 2007-09-07 | 동부일렉트로닉스 주식회사 | Fabricating method of semiconductor device |
KR100850137B1 (en) * | 2006-10-23 | 2008-08-04 | 동부일렉트로닉스 주식회사 | Method for manufacturing the inter metal dielectric layers of semiconductor device |
KR100943487B1 (en) * | 2007-11-06 | 2010-02-22 | 주식회사 동부하이텍 | High voltage semiconductor device, and method for manufacturing thereof |
CN102815663A (en) * | 2011-06-08 | 2012-12-12 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method for semiconductor device |
CN102815663B (en) * | 2011-06-08 | 2015-09-09 | 中芯国际集成电路制造(上海)有限公司 | The preparation method of semiconductor devices |
Also Published As
Publication number | Publication date |
---|---|
KR100559609B1 (en) | 2006-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100353542C (en) | Integrated circuit, its forming method, and electronic assembly | |
KR100585115B1 (en) | Semiconductor device having metal-insulator-metal capacitor and method for fabricating same | |
JP2004193563A (en) | Semiconductor device having mim capacitor | |
CN103811414A (en) | Copper etching integration scheme | |
TW559958B (en) | Dual-damascene interconnects without an etch stop layer by alternating ILDs | |
KR100559609B1 (en) | Method for forming a silicon rich oxide in a semiconductor metal line procedure | |
KR20080017745A (en) | Method for forming intermetal dielectric in semiconductor device | |
US20040152294A1 (en) | Method for forming metal line of semiconductor device | |
KR100521436B1 (en) | Semiconductor device and manufacturing method thereof | |
KR100664339B1 (en) | Method for forming metal line of semiconductor device | |
US6358845B1 (en) | Method for forming inter metal dielectric | |
US7585723B2 (en) | Method for fabricating capacitor | |
KR20070087856A (en) | Metal line in semiconductor device and fabricating method thereof | |
KR100365753B1 (en) | Formation method of intermetallic insulator in semiconductor device | |
KR20020010807A (en) | Method of forming interdielectric layer in semiconductor device | |
KR20020047523A (en) | Method of forming a dielectric layer in a semiconductor device | |
KR20100036008A (en) | Method for forming metal wiring of semiconductor device | |
KR100588661B1 (en) | Structure Of Multi-level Metal Line And Method For Manufacturing The Same | |
KR100770533B1 (en) | Semiconductor device and method for manufacturing the semiconductor device | |
KR20010017242A (en) | Method for forming inter metal dielectric layer utilizing FSG material | |
KR100994368B1 (en) | Method for manufacturing semiconductor device | |
KR100277867B1 (en) | Method for forming metal line of semiconductor device | |
KR100452315B1 (en) | Method for fabricating semiconductor device to prevent contact resistance from being increased in via hole | |
KR100682246B1 (en) | A semiconductor device and method for manufacturing the same | |
KR20070074183A (en) | Metal line in semiconductor device and method for forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120221 Year of fee payment: 7 |
|
LAPS | Lapse due to unpaid annual fee |