KR100756863B1 - Fabricating method of semiconductor device - Google Patents

Fabricating method of semiconductor device Download PDF

Info

Publication number
KR100756863B1
KR100756863B1 KR1020050132295A KR20050132295A KR100756863B1 KR 100756863 B1 KR100756863 B1 KR 100756863B1 KR 1020050132295 A KR1020050132295 A KR 1020050132295A KR 20050132295 A KR20050132295 A KR 20050132295A KR 100756863 B1 KR100756863 B1 KR 100756863B1
Authority
KR
South Korea
Prior art keywords
film
sro
semiconductor device
fsg
metal wiring
Prior art date
Application number
KR1020050132295A
Other languages
Korean (ko)
Other versions
KR20070069808A (en
Inventor
김광수
Original Assignee
동부일렉트로닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부일렉트로닉스 주식회사 filed Critical 동부일렉트로닉스 주식회사
Priority to KR1020050132295A priority Critical patent/KR100756863B1/en
Publication of KR20070069808A publication Critical patent/KR20070069808A/en
Application granted granted Critical
Publication of KR100756863B1 publication Critical patent/KR100756863B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

본 발명에 따른 반도체 소자 제조방법은, 금속 배선이 형성된 기판을 제공하는 단계; 결과물에 SRO(Silicon Rich Oxide) 막을 형성하는 단계; 금속 배선의 상부 모서리 부분에 형성된 SRO 막을 식각하는 단계; 결과물에 FSG(Fluorinated Silicate Glass) 막을 형성하는 단계; 를 포함한다.A semiconductor device manufacturing method according to the present invention includes the steps of providing a substrate on which metal wiring is formed; Forming a silicon rich oxide (SRO) film on the resultant; Etching the SRO film formed on the upper edge portion of the metal wiring; Forming a Fluorinated Silicate Glass (FSG) film on the resultant; It includes.

또한 본 발명에 의하면, SRO 막은 PECVD 방식으로 형성되며, FSG 막은 HDP(High Density Plasma) 방식으로 형성된다.In addition, according to the present invention, the SRO film is formed by a PECVD method, the FSG film is formed by a High Density Plasma (HDP) method.

또한 본 발명에 의하면, 금속 배선의 상부 모서리 부분에 형성된 SRO 막을 식각하는 단계는, HDP 방식으로 처리하되, Ar 가스만 공급하고 RF 바이어스 전력을 인가하여 식각을 수행한다. 이때, Ar 가스는 50~200sccm으로 공급되고, RF 바이어스 전력은 1000~4000W로 인가된다.In addition, according to the present invention, the step of etching the SRO film formed on the upper edge portion of the metal wiring, by processing in the HDP method, the etching is performed by supplying only Ar gas and applying RF bias power. At this time, the Ar gas is supplied at 50 ~ 200sccm, RF bias power is applied at 1000 ~ 4000W.

또한, SRO 막은 금속 배선 간에 형성된 간격에 대하여 1/4 이상의 두께로 형성된다.Further, the SRO film is formed to a thickness of 1/4 or more with respect to the gap formed between the metal wires.

이와 같은 본 발명에 의하면, 층간 절연막으로 FSG 막을 형성하는 반도체 소자 제조방법에 있어서, 금속 배선과 층간 절연막에 보이드(void)가 형성되는 것을 방지할 수 있는 장점이 있다.According to the present invention as described above, the semiconductor device manufacturing method for forming the FSG film with the interlayer insulating film has an advantage of preventing the formation of voids in the metal wiring and the interlayer insulating film.

Description

반도체 소자 제조방법{Fabricating method of semiconductor device}Fabrication method of semiconductor device

도 1은 종래 반도체 소자 제조방법의 제 1 실시 예에 따라 SRO 막과 FSG 막이 형성되는 경우의 문제점을 설명하기 위한 도면.1 is a view for explaining a problem when the SRO film and the FSG film is formed according to the first embodiment of the conventional semiconductor device manufacturing method.

도 2는 종래 반도체 소자 제조방법의 제 2 실시 예에 따라 SRO 막과 FSG 막이 형성되는 경우의 문제점을 설명하기 위한 도면.2 is a view for explaining a problem when the SRO film and the FSG film is formed according to the second embodiment of the conventional semiconductor device manufacturing method.

도 3은 본 발명에 따른 반도체 소자 제조방법에 의하여 금속 배선 상에 SRO 막이 형성된 상태를 설명하기 위한 도면.3 is a view for explaining a state in which the SRO film is formed on the metal wiring by the semiconductor device manufacturing method according to the present invention.

도 4는 본 발명에 따른 반도체 소자 제조방법에 의하여 금속 배선 상에 SRO 막과 FSG 막이 순차적으로 형성된 상태를 설명하기 위한 도면.4 is a view for explaining a state in which the SRO film and the FSG film sequentially formed on the metal wiring by the semiconductor device manufacturing method according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

100, 200, 300... 기판 110, 210, 310... 금속 배선100, 200, 300 ... PCB 110, 210, 310 ... Metal Wiring

120, 220, 320... SRO 막 130, 230, 330... FSG 막120, 220, 320 ... SRO membranes 130, 230, 330 ... FSG membranes

140... 메탈 보이드 240... IMD 보이드140 ... metal voids 240 ... IMD voids

본 발명은 반도체 소자 제조방법에 관한 것이다.The present invention relates to a semiconductor device manufacturing method.

반도체 소자 제조 공정 중 소자가 고집적화 됨에 따라 금속 배선의 폭이 감소하였고, 이에 따라 RC 지연이 증가하게 되었다. RC 중 캐패시턴스(C)를 낮추려는 방안의 하나로 유전 상수(dielectric constant)가 작은 물질을 선택하는 방안이 시도되었다. 이와 같은 물질의 하나로 FSG(Fluorinated Silicate Glass)가 사용되고 있다.As the device is highly integrated during the semiconductor device fabrication process, the width of the metal wiring is reduced, thereby increasing the RC delay. As one of the methods to lower the capacitance (C) among RC, a method of selecting a material having a small dielectric constant has been attempted. Fluorinated Silicate Glass (FSG) is used as one of such materials.

종래 FSG를 사용하여 금속 배선을 채우는 공정은 HDP(High Density Plasma) 방식으로 진행되고 있다. 그러나 FSG 막은 플루오린(Fluorine) 성분이 금속 배선에까지 확산되어 금속 성분이 열화되는 현상이 나타나게 된다. 이를 방지하기 위하여 FSG막 형성 전, 금속 배선 위에 SRO(Silicon Rich Oxide) 막을 형성한다. 상기 SRO 막은 Si 성분이 과도하게 포함된 막으로서, 과도한 Si 성분이 F 성분을 흡착하여 Si-F를 형성함으로써 F 성분이 금속 배선으로 확산되는 것을 방지할 수 있게 된다.Conventionally, the process of filling a metal wiring by using the FSG is progressing by HDP (High Density Plasma) method. However, in the FSG film, a fluorine component is diffused to the metal wires, thereby degrading the metal component. In order to prevent this, a SRO (Silicon Rich Oxide) film is formed on the metal wiring before forming the FSG film. The SRO film is a film containing an excessively Si component, and the excessive Si component adsorbs the F component to form Si-F, thereby preventing the F component from diffusing into the metal wiring.

도 1은 종래 반도체 소자 제조방법의 제 1 실시 예에 따라 SRO 막과 FSG 막이 형성되는 경우의 문제점을 설명하기 위한 도면이다.1 is a view for explaining a problem when the SRO film and the FSG film is formed according to the first embodiment of the conventional semiconductor device manufacturing method.

일반적으로 SRO 막(120)은 PECVD 방식으로 증착되므로 스텝 커버리지(step coverage)의 한계 때문에 두껍게 증착할 수 없으며, 도 1에 나타낸 바와 같이, 금속 배선(110)의 측벽에는 상기 SRO 막(120)이 더욱 얇게 형성된다. 이후 상기 기판(100)을 포함하는 결과물에 FSG 막(130)이 형성된다.In general, since the SRO film 120 is deposited by PECVD, it cannot be deposited due to the limitation of step coverage. As shown in FIG. 1, the SRO film 120 is formed on the sidewall of the metal wire 110. It is formed thinner. Thereafter, the FSG film 130 is formed on the resultant including the substrate 100.

이와 같이 FSG 막(130)을 형성하게 되면, 상기 금속 배선(110)의 측벽 부분을 통하여 F 성분이 확산되어 상기 금속 배선(120)에 메탈 보이드(140)가 형성되는 문제점이 발생된다.As such, when the FSG film 130 is formed, the F component is diffused through the sidewall portion of the metal wire 110, so that a metal void 140 is formed in the metal wire 120.

한편, 도 2는 종래 반도체 소자 제조방법의 제 2 실시 예에 따라 SRO 막과 FSG 막이 형성되는 경우의 문제점을 설명하기 위한 도면이다.Meanwhile, FIG. 2 is a view for explaining a problem when the SRO film and the FSG film are formed according to the second embodiment of the conventional semiconductor device manufacturing method.

상기 도 1에 나타낸 바와 같은 문제점을 해소하기 위하여 도 2에 나타낸 바와 같이 SRO 막(220)을 두껍게 형성하는 경우에는 추후 형성되는 FSG 막(230)에 IMD 보이드(240)가 형성되는 문제점이 있다. 상기 SRO 막(220)을 두껍게 형성하는 경우에는 F 성분이 기판(200) 상의 금속 배선(220)으로 확산되는 것을 방지할 수 있게 된다. 그러나, 상기 금속 배선(210)의 상부 모서리 부분에 돌출되어 형성된 SRO 막(220)에 의하여 FSG 막(230) 형성 시에 갭필(gap fill) 불량이 발생된다. 이에 따라 상기 IMD 보이드(240)가 형성되는 문제점이 발생된다. In order to solve the problem as shown in FIG. 1, when the SRO film 220 is thickly formed as shown in FIG. 2, the IMD void 240 is formed in the FSG film 230 formed later. When the SRO film 220 is thickly formed, the F component may be prevented from being diffused into the metal wire 220 on the substrate 200. However, a gap fill defect occurs when the FSG film 230 is formed by the SRO film 220 protruding from the upper edge portion of the metal wire 210. Accordingly, there is a problem that the IMD void 240 is formed.

본 발명은 층간 절연막으로 FSG 막을 형성하는 반도체 소자 제조방법에 있어서, 금속 배선과 층간 절연막에 보이드(void)가 형성되는 것을 방지할 수 있는 반도체 소자 제조방법을 제공함에 그 목적이 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device in which a void is formed in a metal wiring and an interlayer insulating film in a method of manufacturing a semiconductor device in which an FSG film is formed of an interlayer insulating film.

상기 목적을 달성하기 위하여 본 발명에 따른 반도체 소자 제조방법은, 금속 배선이 형성된 기판을 제공하는 단계; 상기 결과물에 SRO(Silicon Rich Oxide) 막을 형성하는 단계; 상기 금속 배선의 상부 모서리 부분에 형성된 SRO 막을 식각하는 단계; 상기 결과물에 FSG(Fluorinated Silicate Glass) 막을 형성하는 단계; 를 포함한다.In order to achieve the above object, a semiconductor device manufacturing method includes: providing a substrate on which metal wires are formed; Forming a silicon rich oxide (SRO) film on the resultant; Etching the SRO film formed on the upper edge portion of the metal wire; Forming a Fluorinated Silicate Glass (FSG) film on the resultant; It includes.

또한 본 발명에 의하면, 상기 SRO 막은 PECVD 방식으로 형성된다.In addition, according to the present invention, the SRO film is formed by PECVD.

또한 본 발명에 의하면, 상기 FSG 막은 HDP(High Density Plasma) 방식으로 형성된다.In addition, according to the present invention, the FSG film is formed by HDP (High Density Plasma).

또한 본 발명에 의하면, 상기 금속 배선의 상부 모서리 부분에 형성된 SRO 막을 식각하는 단계는, HDP 방식으로 처리하되, Ar 가스만 공급하고 RF 바이어스 전력을 인가하여 식각을 수행한다.In addition, according to the present invention, the step of etching the SRO film formed on the upper edge portion of the metal wiring, by processing in the HDP method, the etching is performed by supplying only Ar gas and applying RF bias power.

또한 본 발명에 의하면, 상기 Ar 가스는 50~200sccm으로 공급되고, 상기 RF 바이어스 전력은 1000~4000W로 인가된다.In addition, according to the present invention, the Ar gas is supplied at 50 ~ 200sccm, the RF bias power is applied at 1000 ~ 4000W.

또한, 상기 SRO 막은 상기 금속 배선 간에 형성된 간격에 대하여 1/4 이상의 두께로 형성된다.In addition, the SRO film is formed to a thickness of 1/4 or more with respect to the gap formed between the metal wires.

이와 같은 본 발명에 의하면, 층간 절연막으로 FSG 막을 형성하는 반도체 소자 제조방법에 있어서, 금속 배선과 층간 절연막에 보이드(void)가 형성되는 것을 방지할 수 있는 장점이 있다.According to the present invention as described above, the semiconductor device manufacturing method for forming the FSG film with the interlayer insulating film has an advantage of preventing the formation of voids in the metal wiring and the interlayer insulating film.

이하, 첨부된 도면을 참조하여 본 발명에 따른 실시 예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 반도체 소자 제조방법에 의하여 금속 배선 상에 SRO 막과 FSG 막이 형성되는 과정을 도 3 및 도 4를 참조하여 설명한다. 도 3은 본 발명에 따른 반도체 소자 제조방법에 의하여 금속 배선 상에 SRO 막이 형성된 상태를 설명하기 위한 도면이고, 도 4는 본 발명에 따른 반도체 소자 제조방법에 의하여 금속 배선 상에 SRO 막과 FSG 막이 순차적으로 형성된 상태를 설명하기 위한 도면이다.A process of forming the SRO film and the FSG film on the metal wiring by the semiconductor device manufacturing method according to the present invention will be described with reference to FIGS. 3 and 4. 3 is a view for explaining a state in which the SRO film is formed on the metal wiring by the semiconductor device manufacturing method according to the present invention, Figure 4 is a SRO film and FSG film on the metal wiring by the semiconductor device manufacturing method according to the present invention It is a figure for demonstrating the state formed sequentially.

본 발명에 따른 반도체 소자 제조방법에 의하면, 도 3에 나타낸 바와 같이, 먼저 금속 배선(310)이 형성된 기판(300)에 SRO 막(320)이 형성된다. 상기 SRO 막 (320)은 PECVD 방식에 의하여 형성될 수 있다. According to the semiconductor device manufacturing method according to the present invention, as shown in FIG. 3, an SRO film 320 is first formed on the substrate 300 on which the metal wiring 310 is formed. The SRO film 320 may be formed by PECVD.

이때, 상기 SRO 막(320)은 상기 금속 배선(310) 간에 형성된 간격에 대하여 1/4 이상의 두꺼운 두께로 형성된다. 예를 들어, 상기 금속 배선(310) 간의 간격이 2000Å인 경우에, 상기 SRO 막(320)의 두께는 500Å 이상으로 형성될 수 있다. In this case, the SRO film 320 is formed to have a thickness of 1/4 or more with respect to the gap formed between the metal wiring 310. For example, when the spacing between the metal wires 310 is 2000 kW, the thickness of the SRO film 320 may be 500 kW or more.

이와 같이 상기 SRO 막(320)을 두껍게 형성하는 경우에는 추후 FSG 막(330)을 형성하는 공정에서 F 성분이 상기 금속 배선(310)으로 확산되는 것을 방지할 수 있게 된다. 이에 따라 상기 금속 배선(310)에 메탈 보이드가 형성되는 것을 방지할 수 있게 된다.As such, when the SRO film 320 is thickly formed, it is possible to prevent the F component from being diffused into the metal wire 310 in a process of forming the FSG film 330 later. Accordingly, it is possible to prevent the metal voids from being formed in the metal wire 310.

또한 본 발명에서는 상기 SRO 막(320)에 FSG 막(330)을 형성하기 전에, 상기 금속 배선(310)의 상부 모서리 부분에 돌출되어 형성된 SRO 막(340)을 식각하는 공정을 수행한다. In addition, in the present invention, before forming the FSG film 330 on the SRO film 320, a process of etching the SRO film 340 formed by protruding from the upper edge portion of the metal wiring 310 is performed.

이는 별도의 식각 챔버에서 수행될 수도 있으며, 추후 진행될 FSG 막(330) 형성을 위한 챔버에서 수행될 수도 있다. 상기 FSG 막(330)은 HDP 방식에 의하여 형성될 수 있다. 이와 같은 경우 HDP 방식으로 처리하되, Ar 가스만 공급하고 RF 바이어스 전력을 인가하여 식각을 수행할 수도 있다. 즉, Ar 가스만 공급함으로써, 증착은 수행되지 않고 상기 금속 배선(310)의 상부 모서리 부분에 돌출되어 형성된 SRO 막(340)에 대한 식각이 주로 발생되게 되는 것이다. 이때, 하나의 예로서 상기 Ar 가스는 50~200sccm으로 공급되고, 상기 RF 바이어스 전력은 1000~4000W로 인가되도록 할 수 있다. This may be performed in a separate etching chamber, or may be performed in a chamber for forming the FSG film 330 to be performed later. The FSG film 330 may be formed by an HDP method. In this case, the etching process may be performed by using the HDP method, but supplying only Ar gas and applying RF bias power. That is, by supplying only the Ar gas, the deposition is not performed and etching is mainly performed on the SRO film 340 formed protruding from the upper edge portion of the metal wire 310. In this case, as an example, the Ar gas may be supplied at 50 to 200 sccm, and the RF bias power may be applied at 1000 to 4000W.

이와 같은 식각 공정을 통하여 도 4에 나타낸 바와 같은 형상의 SRO 막(320) 을 형성할 수 있게 된다. 즉, 도 4에 나타낸 바와 같이, 상기 금속 배선(310)의 상부 모서리 부분에 경사지게 형성된 SRO 막(350)을 형성할 수 있게 된다.Through such an etching process, the SRO film 320 having a shape as shown in FIG. 4 can be formed. That is, as shown in FIG. 4, it is possible to form the SRO film 350 formed to be inclined at the upper edge portion of the metal wire 310.

이후, 상기 결과물에 FSG 막(330)을 형성하는 단계가 수행된다. 상기 FSG 막(330)은 HDP(High Density Plasma) 방식에 의하여 형성될 수 있다.Thereafter, the step of forming the FSG film 330 in the result is performed. The FSG film 330 may be formed by a high density plasma (HDP) method.

본 발명에 의하면, 상기 금속 배선(310)의 측벽에 충분한 두께의 SRO 막(320)이 형성될 수 있도록 상기 SRO 막(320)을 전체적으로 두껍게 형성한다. 이에 따라, 추후 FSG 막(330)을 형성하는 공정에서 F 성분이 상기 금속 배선(310)으로 확산되는 것을 방지할 수 있게 된다. 이에 따라 상기 금속 배선(310)에 메탈 보이드가 형성되는 것을 방지할 수 있게 되며, 상기 금속 배선(310)이 열화되는 것을 방지할 수 있게 된다.According to the present invention, the SRO film 320 is formed to be thick overall so that the SRO film 320 having a sufficient thickness can be formed on the sidewall of the metal wiring 310. Accordingly, it is possible to prevent the F component from being diffused into the metal wire 310 in a process of forming the FSG film 330 later. Accordingly, the metal voids can be prevented from being formed in the metal wires 310, and the metal wires 310 can be prevented from deteriorating.

이런 상태에서 FSG 막(300)을 형성하는 경우에는 갭필(gap fill) 불량이 발생되므로, 본 발명에서는 이를 해소하기 위하여 상기 금속 배선(310)의 상부 모서리 부분에 돌출되어 형성된 SRO 막(340)을 식각하는 공정을 수행한다. 이에 따라 상기 금속 배선(310) 간에 충분한 공간을 확보할 수 있게 되며, 추후 FSG 막(330)을 형성하는 과정에서 IMD 보이드가 생성되는 것을 방지할 수 있게 된다.In the case of forming the FSG film 300 in this state, a gap fill defect occurs, so in the present invention, in order to solve this problem, the SRO film 340 protruding from the upper edge portion of the metal wire 310 is formed. Perform the process of etching. Accordingly, sufficient space can be secured between the metal wires 310, and the IMD voids can be prevented from being generated in the process of forming the FSG film 330 later.

이와 같이 본 발명에 의하면, 상기 금속 배선(310) 위에 SRO 막(320)과 FSG 막(330)을 순차적으로 적층 형성하는 경우에도, 상기 금속 배선(310)을 열화시키는 메탈 보이드가 생성되는 것을 방지할 수 있게 되며, FSG 막(330)에 IMD 보이드가 생성되는 것을 방지할 수 있게 된다.As described above, according to the present invention, even when the SRO film 320 and the FSG film 330 are sequentially stacked on the metal wire 310, metal voids that deteriorate the metal wire 310 are prevented from being generated. It is possible to prevent the IMD voids from being generated in the FSG film 330.

이상의 설명에서와 같이 본 발명에 따른 반도체 제조 방법에 의하면 층간 절연막으로 FSG 막을 형성하는 반도체 소자 제조방법에 있어서, 금속 배선 및 층간 절연막에 보이드(void)가 형성되는 것을 방지할 수 있는 장점이 있다.As described above, according to the semiconductor manufacturing method according to the present invention, in the semiconductor device manufacturing method for forming the FSG film as the interlayer insulating film, there is an advantage in that voids are formed in the metal lines and the interlayer insulating film.

Claims (6)

금속 배선이 형성된 기판을 제공하는 단계;Providing a substrate on which metal wiring is formed; 상기 결과물에 PECVD 방식으로 SRO(Silicon Rich Oxide) 막을 형성하는 단계;Forming a silicon rich oxide (SRO) film on the resultant by PECVD; 상기 금속 배선의 상부 모서리 부분에 형성된 SRO 막을 식각하는 단계;Etching the SRO film formed on the upper edge portion of the metal wire; 상기 결과물에 HDP(High Density Plasma) 방식으로 FSG(Fluorinated Silicate Glass) 막을 형성하는 단계;Forming a Fluorinated Silicate Glass (FSG) film on the resultant by HDP (High Density Plasma); 를 포함하며,Including; 상기 금속 배선의 상부 모서리 부분에 형성된 SRO 막을 식각하는 단계는, HDP 방식으로 처리하되, Ar 가스만 공급하고 RF 바이어스 전력을 인가하여 식각을 수행하는 것을 특징으로 하는 반도체 소자 제조방법. The etching of the SRO film formed on the upper edge portion of the metal wiring, the semiconductor device manufacturing method, characterized in that the etching is performed by supplying only Ar gas and applying RF bias power. 삭제delete 삭제delete 삭제delete 제 1항에 있어서,The method of claim 1, 상기 Ar 가스는 50~200sccm으로 공급되고, 상기 RF 바이어스 전력은 1000~4000W로 인가되는 것을 특징으로 하는 반도체 소자 제조방법.The Ar gas is supplied to 50 ~ 200sccm, the RF bias power is a semiconductor device manufacturing method characterized in that applied to 1000 ~ 4000W. 제 1항에 있어서,The method of claim 1, 상기 SRO 막은 상기 금속 배선 간에 형성된 간격에 대하여 1/4 이상의 두께로 형성되는 것을 특징으로 하는 반도체 소자 제조방법.The SRO film is a semiconductor device manufacturing method, characterized in that formed in a thickness of 1/4 or more with respect to the gap formed between the metal wiring.
KR1020050132295A 2005-12-28 2005-12-28 Fabricating method of semiconductor device KR100756863B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050132295A KR100756863B1 (en) 2005-12-28 2005-12-28 Fabricating method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050132295A KR100756863B1 (en) 2005-12-28 2005-12-28 Fabricating method of semiconductor device

Publications (2)

Publication Number Publication Date
KR20070069808A KR20070069808A (en) 2007-07-03
KR100756863B1 true KR100756863B1 (en) 2007-09-07

Family

ID=38505380

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050132295A KR100756863B1 (en) 2005-12-28 2005-12-28 Fabricating method of semiconductor device

Country Status (1)

Country Link
KR (1) KR100756863B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270264A (en) * 1991-12-20 1993-12-14 Intel Corporation Process for filling submicron spaces with dielectric
KR20040098952A (en) * 2003-05-16 2004-11-26 아남반도체 주식회사 Method for forming a silicon rich oxide in a semiconductor metal line procedure
KR20050035024A (en) * 2003-10-11 2005-04-15 동부아남반도체 주식회사 Method for fabricating intermetal dielectric of semiconductor device
US6908862B2 (en) 2002-05-03 2005-06-21 Applied Materials, Inc. HDP-CVD dep/etch/dep process for improved deposition into high aspect ratio features

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270264A (en) * 1991-12-20 1993-12-14 Intel Corporation Process for filling submicron spaces with dielectric
US6908862B2 (en) 2002-05-03 2005-06-21 Applied Materials, Inc. HDP-CVD dep/etch/dep process for improved deposition into high aspect ratio features
KR20040098952A (en) * 2003-05-16 2004-11-26 아남반도체 주식회사 Method for forming a silicon rich oxide in a semiconductor metal line procedure
KR20050035024A (en) * 2003-10-11 2005-04-15 동부아남반도체 주식회사 Method for fabricating intermetal dielectric of semiconductor device

Also Published As

Publication number Publication date
KR20070069808A (en) 2007-07-03

Similar Documents

Publication Publication Date Title
US6087278A (en) Method for fabricating semiconductor devices having an HDP-CVD oxide layer as a passivation layer
US8993440B2 (en) Method of manufacturing a semiconductor device with processes carried out without atmospheric exposure
US20100330811A1 (en) Method for forming via holes
KR20030011667A (en) Semiconductor device and manufacturing method thereof
KR100707656B1 (en) Method for forming metal line and semiconductor device including the same
US6149779A (en) Low-k BSG gap fill process using HDP
US7687392B2 (en) Semiconductor device having metal wiring and method for fabricating the same
KR100756863B1 (en) Fabricating method of semiconductor device
US7648921B2 (en) Method of forming dielectric layer
US20070273003A1 (en) Semiconductor device and manufacturing method thereof
US20080157366A1 (en) Semiconductor device and fabricating method thereof
KR100637965B1 (en) Method of fabricating metal interconnection in semiconductor using FSG layer
KR20050099097A (en) Method of forming an isolation layer in a semiconductor device
KR20020010807A (en) Method of forming interdielectric layer in semiconductor device
KR100850137B1 (en) Method for manufacturing the inter metal dielectric layers of semiconductor device
KR100769205B1 (en) Method for Fabricating of Semiconductor Device
KR20070048820A (en) Wiring structure in a semiconductor device and method of manufacturing the same
JP2009117673A (en) Semiconductor device and manufacturing method thereof
KR101107568B1 (en) Method for forming metal line of semiconductor device
KR100257749B1 (en) Method for manufacturing protection film of semiconductor device
KR100459063B1 (en) Method for manufacturing intermetal dielectric layer of semiconductor device
US20030003732A1 (en) Method of post treatment for a metal line of semiconductor device
CN1448998A (en) Method for manufacturing metal interlayer dielectric layer which can block penetration of hydrogen ion
KR100652316B1 (en) Method for manufacturing inter metal dielectric layer of semiconductor device
KR100545218B1 (en) Gap filling method for inter-metal dielectric layer in semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20110719

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee