KR20040094033A - Manufacturing method for semiconductor device - Google Patents

Manufacturing method for semiconductor device Download PDF

Info

Publication number
KR20040094033A
KR20040094033A KR1020030027958A KR20030027958A KR20040094033A KR 20040094033 A KR20040094033 A KR 20040094033A KR 1020030027958 A KR1020030027958 A KR 1020030027958A KR 20030027958 A KR20030027958 A KR 20030027958A KR 20040094033 A KR20040094033 A KR 20040094033A
Authority
KR
South Korea
Prior art keywords
forming
metal wiring
semiconductor device
insulating film
wee
Prior art date
Application number
KR1020030027958A
Other languages
Korean (ko)
Other versions
KR100527583B1 (en
Inventor
노재선
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR10-2003-0027958A priority Critical patent/KR100527583B1/en
Publication of KR20040094033A publication Critical patent/KR20040094033A/en
Application granted granted Critical
Publication of KR100527583B1 publication Critical patent/KR100527583B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A method for manufacturing a semiconductor device is provided to prevent crack and to reduce stress of a passivation layer without using WEE(Wafer Edge Exposure) processing in metal contact process. CONSTITUTION: An interlayer dielectric(22) is formed on a semiconductor substrate(20) with a desired lower structure. A photoresist pattern is formed on the interlayer dielectric without performing WEE processing. A contact hole is formed by selectively etching the interlayer dielectric using the photoresist pattern as a mask. A metal line(24) and a passivation layer(26) are sequentially formed on the interlayer dielectric.

Description

반도체소자의 제조방법{Manufacturing method for semiconductor device}Manufacturing method for semiconductor device

본 발명은 반도체소자의 제조방법에 관한 것으로서, 특히 금속배선 콘택을 위한 식각 마스크의 웨이퍼 에지 부분 제거를 실시하지 않아 에지 부분에서의 단차에 의한 크랙발생을 방지할 수 있는 반도체소자의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of manufacturing a semiconductor device capable of preventing crack generation due to a step in an edge part without removing a wafer edge portion of an etch mask for metal wiring contact. will be.

최근의 반도체 장치의 고집적화 추세는 미세 패턴 형성 기술의 발전에 큰 영향을 받고 있으며, 반도체 장치의 제조 공정 중에서 식각 또는 이온주입 공정 등의 마스크로 매우 폭 넓게 사용되는 감광막 패턴의 미세화가 필수 요건이다.The recent trend of high integration of semiconductor devices has been greatly influenced by the development of fine pattern formation technology, and the miniaturization of photoresist patterns, which are widely used as masks such as etching or ion implantation processes, are essential in the manufacturing process of semiconductor devices.

이러한 감광막 패턴의 분해능(R)은 감광막 자체의 재질이나 기판과의 접착력등과도 밀접한 연관이 있으나, 일차적으로는 사용되는 축소노광장치의 광원 파장(λ) 및 공정 변수(k)에 비례하고, 노광 장치의 렌즈 구경(numerical aperture; NA, 개구수)에 반비례한다.The resolution (R) of the photoresist pattern is closely related to the material of the photoresist itself or the adhesion to the substrate. It is inversely proportional to the lens aperture (NA, numerical aperture) of the device.

[R=k*λ/NA,~R=해상도,~λ=광원의~파장,~NA=개구수~][R = k * λ / NA, ~ R = resolution, ~ λ = wavelength of light source, NA = opening number ~]

여기서 상기 축소노광장치의 광분해능을 향상시키기 위하여 광원의 파장을 감소시키게 되며, 축소노광장치와는 별도로 공정 상의 방법으로 위상반전마스크(phase shift mask)를 사용하거나, 씨.이.엘(contrast enhancement layer; CEL) 방법이나, 삼층레지스트(Tri layer resister; 이하 TLR이라 칭함) 방법 또는 감광막의 상측에 선택적으로 실리콘을 주입시키는 실리레이션 방법 등이 개발되어 분해능 한계치를 낮추고 있다.In this case, the wavelength of the light source is reduced to improve the optical resolution of the reduced exposure apparatus, and a phase shift mask is used as a process method separately from the reduced exposure apparatus, or C.E. (contrast enhancement). A layer (CEL) method, a tri layer resister (hereinafter referred to as a TLR) method, or a silicide method for selectively injecting silicon into the upper side of the photosensitive film has been developed to lower the resolution limit.

또한 상하의 도전배선을 연결하는 콘택홀은 상기에서의 라인/스페이스 패턴에 비해 디자인룰이 더 크게 나타나는데, 소자가 고집적화 되어감에 따라 자체의 크기와 주변배선과의 간격이 감소되고, 콘택홀의 지름과 깊이의 비인에스팩트비(aspect ratio)가 증가한다. 따라서, 다층의 도전배선을 구비하는 고집적 반도체소자에서는 콘택 형성 공정에서의 마스크들간의 정확하고 엄격한 정렬이 요구되어 공정여유도가 감소되거나, 여유가 전혀없이 공정을 진행하여야하는 어려움이 있다.In addition, the contact hole connecting the upper and lower conductive wirings has a larger design rule than the above line / space pattern. As the device becomes more integrated, the size of the contact hole and the distance between the peripheral wirings are reduced, and the contact hole diameter and The aspect ratio of depth increases. Therefore, in the highly integrated semiconductor device having the multilayer conductive wiring, accurate and strict alignment between the masks in the contact forming process is required, so that the process margin is reduced or the process must be performed without any margin.

이러한 콘택홀은 홀간의 간격 유지를 위하여 마스크 정렬시의 오배열 여유(misalignment tolerance), 노광공정시의 렌즈 왜곡(lens distortion), 마스크 제작 및 사진식각 공정시의 임계크기 변화(critical dimension variation), 마스크간의 정합(registration)등과 같은 요인들을 고려하여 마스크를 형성하여야 한다.These contact holes can be used for misalignment tolerance during mask alignment, lens distortion during exposure, critical dimension variation during mask fabrication and photolithography, The mask should be formed in consideration of factors such as registration between the masks.

또한 소자가 고집적화되어 감에 따라 적층되는 박막의 수도 증가되어 웨이퍼의 에지 부분에서 들뜸이나 떨어짐등의 불량이 발생되고 있어 이를 방지하기 위하여 웨이퍼 에지 부분의 박막을 적당한 폭으로 제거하여주기 위한 마스크 제거 공정인 웨이퍼 에지 노광(wafer edge exposure; 이하 WEE라 칭함) 공정을 여러차례 진행하게 된다.In addition, as the device becomes more integrated, the number of thin films to be stacked increases, resulting in defects such as lifting or falling at the edge of the wafer. Thus, a mask removing process for removing the thin film of the wafer edge portion to an appropriate width to prevent such defects occurs. The wafer edge exposure (WEE) process is performed several times.

상기의 WEE 공정은 하나의 소자를 완성하는 다수번의 식각 공정에서 여러차례 진행하게 되며, 각 단계에서의 마스크 제거 폭은 증착된 박막의 접착력이나 응력등에 따라 계산되어 결정되며, 감광막 노광시 에지 부분을 선택 노광시키는 방법으로 진행된다.The WEE process is performed several times in a plurality of etching processes to complete a single device, and the mask removal width at each step is calculated and determined according to the adhesion or stress of the deposited thin film. It progresses by the method of exposing.

예를들어 소자분리시의 WEE 폭은 5밀리가 적용되고, 게이트 패턴닝시에는 6밀리, 비트라인 콘택 마스크는 5.5밀리가 적용되는 식으로 다양한 폭으로 제거된다.For example, the WEE width is 5 millimeters for device isolation, 6 millimeters for gate patterning, and 5.5 millimeters for bitline contact masks.

도 1은 종래 기술에 따른 반도체소자의 웨이퍼 에지 부분 단면도로서, 패턴지역(Ⅰ)과 에지지역(Ⅱ)을 구비하는 반도체기판(10)상에 소정의 하부 구조물 예를들어 소자분리산화막(도시되지 않음)과 게이트전극, 바람직하게는 및 캐패시터 등을 형성한 후에 평탄화막(12)을 도포하고, 금속배선 콘택을 위한 감광막 패턴(도시되지 않음)을 형성한다. 이때 상기 에지 부분에 WEE 공정을 적용하여 일정 폭의 감광막 패턴을 제거한 상태이다.1 is a cross-sectional view of a wafer edge of a semiconductor device according to the prior art, in which a predetermined substructure such as a device isolation oxide film (not shown) is formed on a semiconductor substrate 10 having a pattern region I and an edge region II. And a gate electrode, preferably, and a capacitor, and the like, and then the planarization film 12 is applied to form a photoresist pattern (not shown) for metal wiring contacts. In this case, a photosensitive film pattern having a predetermined width is removed by applying a WEE process to the edge portion.

그다음 상기 감광막 패턴을 마스크로 고종횡부의 식각 공정인 금속배선 콘택홀 식각 공정을 진행하여 금속배선 콘택홀을 형성한다. 이때 패턴 지역(Ⅰ)의 평탄화층(12)이나 층간절연막(도시되지 않음)들이 식각 되는 동안 에지 지역(Ⅱ)의 평탄화층(12)이나 층간절연막들도 함께 식각되어 패턴 지역(Ⅰ)과 심한 단차가 지게된다.Next, a metal wiring contact hole etching process, which is an etching process of a high vertical and horizontal portions, is performed using the photoresist pattern as a mask to form a metal wiring contact hole. At this time, while the planarization layer 12 or the interlayer insulating film (not shown) of the pattern region I is etched, the planarization layer 12 or the interlayer insulating layers of the edge region II are also etched together, so that the pattern region I and the The step is lost.

그후, 금속배선(14)을 형성하고, SOG 재질의 보호막(16)을 형성한다.Thereafter, the metal wiring 14 is formed, and a protective film 16 made of SOG material is formed.

상기와 같은 종래 기술에 따른 반도체소자의 제조방법은 금속배선 콘택을 위한 감광막 패턴 공정에서 WEE를 적용하게 되어 패턴지역과 에지 지역간에 고단차게 발생하고 이러한 단차에 의해 보호막인 SOG층이 심한 스트래스 및 응력을 받아 도 2에서와 같은 일정 부분이 갈라져 크랙(18)이 발생하게 되며, 표면에 깨지는 결함이 발생되기도하고, 후속 제2금속배선용 장벽금속층 증착 공정시에 아웃가싱에 의해 이러한 결함들이 떨어져나와 박편이 되어 오염을 일으키는 등의 문제점이 있다.In the method of manufacturing a semiconductor device according to the prior art as described above, WEE is applied in a photoresist pattern process for metal wiring contact, and a high step is generated between the pattern region and the edge region. The cracks 18 are generated by cracking a predetermined portion as shown in FIG. 2, and cracks may be generated on the surface, and these defects may fall off by outgassing during the subsequent deposition process of the barrier metal layer for the second metal wiring. This causes problems such as contamination.

도 3은 박편이 떨어져 나간 지역(Ⅲ)의 SEM 사진이며, 도 4는 떨어진 박편(19)의 SEM 사진이다.FIG. 3 is an SEM photograph of the region III separated from the flakes, and FIG. 4 is an SEM photograph of the separated flakes 19.

이러한 문제점들은 웨이퍼의 플레이트존의 레이져 마킹 지역에서 자주 발생되며, 이는 다른 지역에 비해 패턴 밀도나 균일도가 이지역에서 더 떨어지기 때문으로 예상된다.These problems often occur in the laser marking area of the plate zone of the wafer, which is expected because the pattern density or uniformity is lower in this area than in other areas.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 고단차가 예상되는 금속배선 콘택 공정에서 WEE 공정을 진행하지 않아 단차 발생을 방지하여 보호막의 손상을 방지하고 금속 증착시의 결함 발생을 방지하여 공정 수율 및 소자 동작의 신뢰성을 향상시킬 수 있는 반도체소자의 제조방법을 제공함에 있다.The present invention is to solve the above problems, the object of the present invention is to prevent the damage of the protective film to prevent the generation of the step by the WEE process does not proceed in the metal wiring contact process that is expected to be a high step to prevent defects during metal deposition It is to provide a method of manufacturing a semiconductor device that can prevent the process to improve the process yield and the reliability of device operation.

도 1은 종래 기술에 따른 반도체소자의 단면도.1 is a cross-sectional view of a semiconductor device according to the prior art.

도 2는 종래 반도체소자에서 크랙이 발생된 상태의 SEM 사진.2 is a SEM photograph of a state in which a crack is generated in a conventional semiconductor device.

도 3은 종래 반도체소자에서 결함이 떨어져 나간 부분의 SEM 사진.3 is a SEM photograph of a portion where a defect is dropped in a conventional semiconductor device.

도 4는 종래 반도체소자에서 떨어져 나온 박편의 SEM 사진.4 is a SEM photograph of the flakes separated from the conventional semiconductor device.

도 5는 본 발명의 제1실시예에 따른 반도체소자의 단면도.5 is a sectional view of a semiconductor device according to a first embodiment of the present invention.

도 6은 본 발명의 제2실시예에 따른 반도체소자의 단면도.6 is a sectional view of a semiconductor device according to a second embodiment of the present invention.

< 도면의 주요 부분에 대한 부호의 설명 ><Description of Symbols for Main Parts of Drawings>

10, 20, 30 : 반도체기판 12, 22, 31 : 층간절연막10, 20, 30: semiconductor substrate 12, 22, 31: interlayer insulating film

14, 24, 32 : 금속배선 16, 26 : 보호막14, 24, 32: metal wiring 16, 26: protective film

18 : 크랙 19 : 결함18: Crack 19: Defect

33 : 금속배선간 절연막 34 : 제2금속배선용 장벽금속층33: insulating film between metal wiring 34: barrier metal layer for second metal wiring

Ⅰ: 패턴지역 Ⅱ: 에지지역Ⅰ: Pattern Area Ⅱ: Edge Area

Ⅲ: 박편이 떨어져 나간 지역Ⅲ: Area where the flakes fell off

상기와 같은 목적을 달성하기 위한 본 발명에 따른 반도체소자 제조방법의 특징은,Features of the semiconductor device manufacturing method according to the present invention for achieving the above object,

다수번의 박막 적층 및 사진식각공정에 의해 형성되는 반도체소자의 제조방법에 있어서,In the method of manufacturing a semiconductor device formed by a plurality of thin film stacking and photolithography process,

반도체기판상에 소정의 하부 구조물을 형성하는 공정과,Forming a predetermined lower structure on the semiconductor substrate;

상기 구조의 전표면에 층간절연막을 형성하는 공정과,Forming an interlayer insulating film on the entire surface of the structure;

상기 층간절연막상에 금속배선 형성을 위한 감광막 패턴을 형성하되, WEE를 실시하지 않고 형성하는 공정과,Forming a photoresist pattern for forming metal wiring on the interlayer insulating layer, without forming WEE;

상기 감광막 패턴을 마스크로 콘택홀을 형성하는 공정과,Forming a contact hole using the photoresist pattern as a mask;

상기 층간절연막상에 금속배선과 보호막을 형성하는 공정을 구비함에 있다.A metal wiring and a protective film are formed on the interlayer insulating film.

또한 본 발명의 다른 특징은,In addition, another feature of the present invention,

반도체기판상에 소정의 하부 구조물을 형성하는 공정과,Forming a predetermined lower structure on the semiconductor substrate;

상기 구조의 전표면에 하부층간절연막을 형성하는 공정과,Forming a lower interlayer insulating film on the entire surface of the structure;

상기 구조에서 금속배선 콘택 형성을 위한 사진식각 공정에서 WEE를 실시하지 않아 패턴지역과 에지지역간의 단차 발생을 방지하는 공정과,In the above structure, the step of preventing the generation of the step between the pattern region and the edge region by not performing WEE in the photolithography process for forming the metal wiring contact;

상기 제1금속배선과, 금속배선간 절연막을 순차적으로 형성하는 공정과,Sequentially forming the insulating film between the first metal wiring and the metal wiring;

상기 절연막 상에 장벽금속층을 형성하되, 50∼200℃ 에서 실시하는 공정과,Forming a barrier metal layer on the insulating film, and performing at 50 ~ 200 ℃,

상기 구조의 전표면에 제2금속배선용 도전층을 형성하는 공정과,Forming a conductive layer for a second metal wiring on the entire surface of the structure;

상기 제2금속배선용 도전층과 장벽금속층을 식각하는 식각 공정을 실시하여 제2금속배선을 형성하여 박편 분리를 방지하는 것을 특징으로한다.The etching process of etching the conductive layer and the barrier metal layer for the second metal wiring is performed to form a second metal wiring to prevent flake separation.

또한 본 발명의 또 다른 특징은 상기 제2금속배선 형성을 위한 식각 공정을 이단계로 실시하되, 일단계에서 RF 파워를 100∼400W로 유지시키고, 이단계 식각에서는 50∼150W 를 유지시켜 실시하는 것에 있다.In still another aspect of the present invention, the etching process for forming the second metal wiring is carried out in two steps, while maintaining RF power at 100 to 400 W in one step, and maintaining 50 to 150 W in two steps. have.

이하, 첨부된 도면을 참조하여 본 발명에 따른 반도체소자의 제조방법에 대하여 상세히 설명을 하기로 한다.Hereinafter, a method of manufacturing a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.

도 5는 본 발명의 제1실시예에 따른 반도체소자의 단면도이다.5 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention.

먼저, 패턴지역(Ⅰ)과 에지지역(Ⅱ)을 구비하는 실리콘 웨이퍼등의 반도체기판(20)상에 소정의 하부구조물(미도시), 예를 들어 소자분리산화막과 게이트전극 및 소오스/드레인영역을 구비하는 MOSFET, 비트라인 및 캐패시터등을 순차적으로 형성하고 층간절연막(22)을 도포한다.First, a predetermined substructure (not shown) on a semiconductor substrate 20 such as a silicon wafer having a pattern region I and an edge region II, for example, an element isolation oxide film, a gate electrode, and a source / drain region. MOSFETs, bit lines, capacitors, and the like are sequentially formed, and the interlayer insulating film 22 is applied.

여기서 상기의 하부 구조물 형성을 위한 다양한 공정에서 WEE를 일부 적용하였으나, WEE를 실시하지 않은 일부 공정들에 의해 상기 패턴지역(Ⅰ)과 에지지역(Ⅱ)의 단차는 거의 발생되지 않는다.Here, the WEE is partially applied in various processes for forming the substructure, but the step between the pattern region (I) and the edge region (II) is hardly generated by some processes not performing the WEE.

그다음 금속배선 콘택홀 형성을 위한 사진식각 공정을 진행하여 금속배선 콘택홀(도시되지 않음)을 형성하고 금속배선(24)을 형성한 후, SOG 재질의 보호막(26)을 형성한다. 여기서 상기 콘택홀 형성공정에서 에지 부분에서의 WEE를 실시하지 않아 에지지역(Ⅱ)에서의 층간절연막(22)이나 그 하부 적층막들의 제거가 일어나지 않아 패턴지역(Ⅰ)과 에지지역(Ⅱ)간의 단차는 금속배선 두께 정도에 불과하여 보호막(26)에 가해지는 응력이나 스트레스가 감소된다. 이러한 효과는 패턴 밀도나 반복성등이 다른 부분에 비해 현저히 떨어지는 웨이퍼 플레이트존의 레이져마킹 지역에서 더욱 큰 효과를 나타낼수 있다.Then, a photolithography process for forming a metal wiring contact hole is performed to form a metal wiring contact hole (not shown), a metal wiring 24 is formed, and then a protective film 26 made of SOG. Here, in the contact hole forming process, the WEE is not performed at the edge portion, so that the interlayer insulating film 22 or the lower laminated films are not removed at the edge region (II), so that the pattern region (I) and the edge region (II) are not removed. Since the step is only about the thickness of the metal wiring, the stress or stress applied to the protective film 26 is reduced. This effect may be more effective in the laser marking area of the wafer plate zone where the pattern density or repeatability is significantly lower than other parts.

도 6은 본 발명의 제2실시예에 따른 단면도로서, 제1금속배선 공정후의 예로서, 소정의 하부 구조물들이 형성되어있는 반도체기판(30)상에 하부 층간절연막(31)과, 제1금속배선(32)과 금속배선간 절연막(33) 및 제2금속배선용 장벽금속층(34)이 순차적으로 형성되어있다.FIG. 6 is a cross-sectional view according to a second embodiment of the present invention. As an example after a first metal wiring process, a lower interlayer insulating film 31 and a first metal are formed on a semiconductor substrate 30 on which predetermined lower structures are formed. The insulating film 33 between the wiring 32 and the metal wiring and the barrier metal layer 34 for the second metal wiring are sequentially formed.

상기 하부 층간절연막(30)에 대한 제1금속배선 콘택 홀 형성 공정시 WEE 공정을 실시하지 않았으며, 상기 제1금속배선(32)과 금속배선간 절연막(33) 및 제2금속배선용 장벽금속층(34) 모두 WEE를 실시하지 않아 패턴지역(Ⅰ)과 에지지역(Ⅱ)간에 단차가 발생하지 않은 상태이다.In the first metal interconnection contact hole forming process for the lower interlayer insulating layer 30, a WEE process was not performed, and the insulating layer 33 between the first metal interconnection 32 and the metal interconnection layer and the barrier metal layer for the second metal interconnection ( 34) In all cases, there was no step between the pattern area (I) and the edge area (II) because WEE was not implemented.

또한 상기 제2금속배선용 장벽금속층(34)은 박편 발생을 방지하기 위하여 디가싱 온도인 250℃ 보다 낮은 50∼200℃ 정도에서 실시하고, 박편 분리를 가속 시키는 제2금속배선 에치 공정에서 RF 에치시의 RF 파워를 종래보다 10∼90% 감소시켜 이단계 식각 공정시의 일단계에서 RF 파워를 100∼400W로 유지시키고, 이단계 식각에서는 50∼150W 정도를 유지시켜 박편 분리를 방지한다.In addition, the barrier metal layer 34 for the second metal wiring is performed at about 50 to 200 ° C. lower than the degassing temperature of 250 ° C. to prevent the occurrence of flakes, and is applied to the RF in the second metal wiring etch process to accelerate the separation of the flakes. The RF power of the dental floss is reduced by 10 to 90% compared to the conventional method, and the RF power is maintained at 100 to 400 W in one step during the two-step etching process, and the separation of flakes is prevented by maintaining about 50 to 150 W in the second step etching.

이상에서 설명한 바와 같이 본 발명에 따른 반도체소자의 제조방법은 다수의 박막의 적층 및 사진식각공정에 의해 형성되는 반도체소자 제조시에 적층막의 안정적인 접착 및 공정 수행의 안정을 위하여 실시하는 WEE 공정을 금속배선 콘택 공정에서는 실시하지 않아 단차를 감소시키고, 후속 제2금속배선 공정에서의 증착 온도를 낮추어 디가싱을 방지하여 크랙의 박편분리를 방지하고, 박편분리를 가속하는 금속배선 에칭시의 RF 파워를 감소시켜 박편 분리가 일어나지 않도록하였으므로, 웨이퍼 에지 부분에서의 단차에 의한 보호막의 스트레스나 응력을 감소시켜 그에 따른 크랙이나 결함 발생을 방지하여 공정 수율 및 소자 동작의 신뢰성을 향상시킬 수 있는 이점이 있다.As described above, the method of manufacturing a semiconductor device according to the present invention uses a metal WEE process for the stable adhesion of a laminated film and the performance of a process during the manufacture of a semiconductor device formed by a plurality of thin film deposition and photolithography processes. RF power at the time of etching the metal wiring to reduce the delamination by preventing the degassing by preventing the degassing by lowering the deposition temperature in the subsequent second metal wiring process by not performing it in the wiring contact process. Since it is possible to reduce the delamination to prevent delamination, the stress or stress of the protective film due to the step difference in the wafer edge portion can be reduced, thereby preventing cracks and defects from occurring, thereby improving process yield and reliability of device operation. .

Claims (3)

박막 적층 및 사진식각공정을 복수번 수행하여 형성되는 반도체소자의 제조방법에 있어서,In the method of manufacturing a semiconductor device formed by performing a plurality of thin film stacking and photolithography process, 반도체기판상에 소정의 하부 구조물을 형성하는 공정과,Forming a predetermined lower structure on the semiconductor substrate; 상기 구조의 전표면에 층간절연막을 형성하는 공정과,Forming an interlayer insulating film on the entire surface of the structure; 상기 층간절연막상에 금속배선 형성을 위한 감광막 패턴을 형성하되, WEE를 실시하지 않고 형성하는 공정과,Forming a photoresist pattern for forming metal wiring on the interlayer insulating layer, without forming WEE; 상기 감광막 패턴을 마스크로 콘택홀을 형성하는 공정과,Forming a contact hole using the photoresist pattern as a mask; 상기 층간절연막상에 금속배선과 보호막을 형성하는 공정을 구비하는 반도체소자의 제조방법.Forming a metal wiring and a protective film on said interlayer insulating film. 반도체기판상에 소정의 하부 구조물을 형성하는 공정과,Forming a predetermined lower structure on the semiconductor substrate; 상기 구조의 전표면에 하부층간절연막을 형성하는 공정과,Forming a lower interlayer insulating film on the entire surface of the structure; 상기 구조에서 금속배선 콘택 형성을 위한 사진식각 공정에서 WEE를 실시하지 않아 패턴지역과 에지지역간의 단차 발생을 방지하는 공정과,In the above structure, the step of preventing the generation of the step between the pattern region and the edge region by not performing WEE in the photolithography process for forming the metal wiring contact; 상기 제1금속배선과, 금속배선간 절연막을 순차적으로 형성하는 공정과,Sequentially forming the insulating film between the first metal wiring and the metal wiring; 상기 절연막 상에 장벽금속층을 형성하되, 50∼200℃ 에서 실시하는 공정과,Forming a barrier metal layer on the insulating film, and performing at 50 ~ 200 ℃, 상기 구조의 전표면에 제2금속배선용 도전층을 형성하는 공정과,Forming a conductive layer for a second metal wiring on the entire surface of the structure; 상기 제2금속배선용 도전층과 장벽금속층을 식각하는 식각 공정을 실시하여제2금속배선을 형성하여 박편 분리를 방지하는 것을 특징으로하는 반도체소자의 제조방법.A method of manufacturing a semiconductor device, characterized in that the etching process of etching the conductive layer and the barrier metal layer for etching the second metal wiring to form a second metal wiring to prevent separation of the flakes. 제 1 항에 있어서,The method of claim 1, 상기 제2금속배선 형성을 위한 식각 공정을 이단계로 실시하되, 일단계에서 RF 파워를 100∼400W로 유지시키고, 이단계 식각에서는 50∼150W 를 유지시켜 실시하는 것을 특징으로하는 반도체소자의 제조방법.The etching process for forming the second metal wiring is performed in two steps, but the RF power is maintained at 100 to 400 W in one step, and the semiconductor device is manufactured by maintaining 50 to 150 W in this step. .
KR10-2003-0027958A 2003-05-01 2003-05-01 Manufacturing method for semiconductor device KR100527583B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0027958A KR100527583B1 (en) 2003-05-01 2003-05-01 Manufacturing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0027958A KR100527583B1 (en) 2003-05-01 2003-05-01 Manufacturing method for semiconductor device

Publications (2)

Publication Number Publication Date
KR20040094033A true KR20040094033A (en) 2004-11-09
KR100527583B1 KR100527583B1 (en) 2005-11-09

Family

ID=37373821

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0027958A KR100527583B1 (en) 2003-05-01 2003-05-01 Manufacturing method for semiconductor device

Country Status (1)

Country Link
KR (1) KR100527583B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100835420B1 (en) * 2006-12-27 2008-06-04 동부일렉트로닉스 주식회사 Method for fabricating semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100835420B1 (en) * 2006-12-27 2008-06-04 동부일렉트로닉스 주식회사 Method for fabricating semiconductor device

Also Published As

Publication number Publication date
KR100527583B1 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
KR100340879B1 (en) Method for forming fine patterns and method for forming gate electrodes in semiconductor device using the same
KR20080099999A (en) Method of forming a micro pattern in a semiconductor device
KR100527583B1 (en) Manufacturing method for semiconductor device
KR100583103B1 (en) Method for fabricating of semiconductor device
KR100944344B1 (en) Manufacturing method for semiconductor device
KR20060114446A (en) Manufacturing method for semiconductor device
KR20060113282A (en) Manufacturing method for semiconductor device
KR20030058573A (en) Manufacturing method for semiconductor device
KR20020058289A (en) Manufacturing method for semiconductor device
KR100535083B1 (en) Manufacturing method for semiconductor device
KR19990069748A (en) Manufacturing Method of Semiconductor Device
KR100482997B1 (en) Manufacturing method for semiconductor device
KR100527568B1 (en) Manufacturing method for semiconductor device
KR100868634B1 (en) Semiconductor device and manufacturing method of semiconductor device
KR20040061857A (en) Method for fabricating of semiconductor device
KR100527531B1 (en) Manufacturing method for semiconductor device
KR20050014156A (en) Manufacturing method for semiconductor device
KR20010038436A (en) Method for opening bit line fuse
KR20020002641A (en) Manufacturing method for semiconductor device
KR20020002009A (en) Manufacturing method for semiconductor device
KR20050052579A (en) Manufacturing method for semiconductor device
KR20040089305A (en) Manufacturing method of semiconductor device
KR20020002024A (en) Manufacturing method for semiconductor device
KR20040080574A (en) Method for manufacturing semiconductor device
KR20050041553A (en) Manufacturing method for semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101025

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee