KR20040022836A - Far infrared ray radiator and manufacturing method of the radiator - Google Patents

Far infrared ray radiator and manufacturing method of the radiator Download PDF

Info

Publication number
KR20040022836A
KR20040022836A KR1020020054399A KR20020054399A KR20040022836A KR 20040022836 A KR20040022836 A KR 20040022836A KR 1020020054399 A KR1020020054399 A KR 1020020054399A KR 20020054399 A KR20020054399 A KR 20020054399A KR 20040022836 A KR20040022836 A KR 20040022836A
Authority
KR
South Korea
Prior art keywords
weight
parts
far
infrared
radiator
Prior art date
Application number
KR1020020054399A
Other languages
Korean (ko)
Inventor
김종철
김기태
Original Assignee
주식회사 나노세라
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노세라 filed Critical 주식회사 나노세라
Priority to KR1020020054399A priority Critical patent/KR20040022836A/en
Publication of KR20040022836A publication Critical patent/KR20040022836A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0097Anion- and far-infrared-emitting materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Radiation-Therapy Devices (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: Far infrared emitters having high emissivity and low sintering temperature are provided to give beneficial effects on human bodies by adding KNO3, Na2CO3 and CaCO3 to main materials including SiO2. CONSTITUTION: The far infrared emitters are produced by the following steps of: mixing 38-43 parts by weight of SiO2, 2-4 parts by weight of KNO3, 2-5 parts by weight of alumina, 20-35 parts by weight of boric acid, 14-27 parts by weight of soda ash(Na2CO3) and 5-11 parts by weight of CaCO3 for 30-60min; sintering the mixture at 1200-1400deg.C for 11-13hrs; quenching it in water; and grinding.

Description

원적외선 방사체 및 그 제조방법{Far infrared ray radiator and manufacturing method of the radiator}Far infrared ray radiator and manufacturing method of the same

본 발명은 원적외선을 방출하는 방사체 및 그 방사체를 제조하는 방법에 관한 것으로, 인체 건강증진에 유용하게 활용될 수 있도록 한 원적외선 방사체 및 그 제조방법에 관한 것이다.The present invention relates to a radiator emitting far infrared rays and a method of manufacturing the radiator, and relates to a far infrared radiator and a method of manufacturing the same that can be usefully used for the promotion of human health.

일반적으로 원적외선은 3∼1000㎛까지의 파장을 총칭하는 것으로서 가시광선보다는 파장이 길고 마이크로파보다는 짧은 파장을 가지며, 공명흡수작용과 방사 및 심달력의 물성을 가지고 있다.In general, far-infrared rays are generally referred to as the wavelength of 3 ~ 1000㎛ as a longer wavelength than visible light and shorter wavelength than microwave, and has the properties of resonance absorption and radiation and cardiac calendar.

공명흡수 작용이라 함은 물질에 원적외선을 조사할 때의 방사에너지 진동수와 분자의 진동수가 일치하게 되면 분자는 원적외선 방사에너지를 흡수하여 진동이 더욱 격렬해지는 작용을 말하며, 상기 공명흡수 작용으로 인해 운동에너지의 일부는 활성에너지로 변하여 분자운동이 활성화된다. 또, 방사라 함은 물체에서 방출되는 원적외선이 열로 전달되는 것을 말하며, 심달력이라 함은 조사되는 방사에너지의 파장의 제곱근에 비례하여 침투력이 결정된다는 것으로서 짧은 파장의 원적외선은 긴파장의 원적외선에 비하여 침투력이 떨어지게 된다.Resonance absorption action refers to the action that the vibration absorbs far-infrared radiation energy when the frequency of the radiation energy and the frequency of the molecule when irradiating the far infrared rays on the material becomes more intense, the kinetic energy due to the resonance absorption action Part of is converted into active energy and molecular motion is activated. Radiation refers to the transmission of far-infrared rays emitted from an object, and heart calendar means penetrating power is determined in proportion to the square root of the wavelength of irradiated radiation energy. Short-range far infrared rays are compared to long-wave far infrared rays. Penetration will drop.

상기와 같은 원적외선의 특징으로 인하여 원적외선이 신체 깊숙한 곳까지 침투하여 체내의 분자나 원자를 활성화시키게 되고, 이로 인하여 체내의 각종 노폐물을 배출하고 신진대사를 촉진시켜 세포재생과 피로회복 등의 신체건강 리듬을 살려주게 된다.Far-infrared rays penetrate deep into the body and activate molecules or atoms in the body due to the characteristics of the far-infrared rays, thereby releasing various wastes in the body and promoting metabolism to promote physical health rhythms such as cell regeneration and fatigue recovery. Will save you.

상술한 원적외선 방사물질의 효능으로 인하여 최근 그 특성을 이용하여 일상생활의 건강제품으로 활용하려는 연구가 다양하게 시도되고 있으나, 기존 원적외선 방사체의 경우 점토나 원석등의 소지를 그대로 활용함에 따라 원적외선 방사율이 낮는 단점이 있다.Due to the efficacy of the above-mentioned far-infrared radiation substance, various studies have recently been attempted to utilize it as a health product in daily life, but the existing far-infrared radiator has far-infrared emissivity due to the use of clay or gemstones. There is a low disadvantage.

따라서, 본 발명은 높은 방사율로 인체에 유익하게 활용될 수 있도록한 원적외선 방사체를 연구한 끝에 본 발명을 완성하기에 이르렀다.Therefore, the present invention has been completed to study the far-infrared radiator that can be beneficially used in the human body at high emissivity.

이에 본 발명은 높은 원적외선 방사율로 인체 건강증진에 유용하게 활용될 수 있도록 한 원적외선 방사체 및 그 제조방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a far-infrared radiator and a method of manufacturing the same, which can be usefully used for improving human health with high far-infrared emissivity.

상기한 목적을 달성하기 위하여 본 발명은The present invention to achieve the above object

규석 38∼43중량부, 초산카리 2~4중량부, 알루미나 2~5중량부, 붕산 20∼25중량, 소다회 14∼27중량부 및 탄산칼슘 5~11중량을 용기에 넣고 30∼60분간 혼합한 다음, 상기 혼합물을 1200∼1400℃의 용해로에 투입하여 1∼3시간 소성한 후 급냉시키고 분쇄하는 것을 특징으로 하는 원적외선 방사체의 제조방법을 제공함으로서 달성할 수 있다.38 to 43 parts by weight of silica, 2 to 4 parts by weight of acetic acid, 2 to 5 parts by weight of alumina, 20 to 25 parts by weight of boric acid, 14 to 27 parts by weight of soda ash and 5 to 11 parts of calcium carbonate are mixed in a container and mixed for 30 to 60 minutes. Then, the mixture can be achieved by providing a method for producing a far-infrared radiator, characterized in that the mixture is put into a melting furnace at 1200 to 1400 ° C., calcined for 1 to 3 hours, and then quenched and pulverized.

또한 본 발명은 상기한 제조방법에 의해 제조된 원적외선 방사체를 제공한다.In addition, the present invention provides a far-infrared radiator manufactured by the above-described manufacturing method.

이하 본 발명을 보다 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

원적외선 방사체를 제조하기 위하여 본 발명에서는 먼저 규석 38∼43중량부, 초산카리 2~4중량부, 알루미나 2∼5중량부, 붕산 20∼35중량, 소다회 14∼27중량부 및 탄산칼슘 5~11중량을 용기에 넣고 30∼60분간 혼합하게 된다.In order to produce a far-infrared radiator, in the present invention, 38 to 43 parts by weight of silica, 2 to 4 parts by weight of acetic acid, 2 to 5 parts by weight of alumina, 20 to 35 parts of boric acid, 14 to 27 parts by weight of soda ash and 5 to 11 calcium carbonate The weight is placed in a container and mixed for 30 to 60 minutes.

상기에서 규석는 원적외선 방사효율이 뛰어나 원적외선 방사체 제조시 일반적으로 사용되고 있는 재료이며, 본 발명에서는 규석의 함량을 통상의 사용범위 내인 38∼43중량부를 사용하였다.The silica is a material that is generally used in the production of far-infrared radiator with excellent far-infrared radiation efficiency, and in the present invention, the content of silica is used in the range of 38 to 43 parts by weight.

원적외선 방사율이 높은 원적외선 방사체를 제조하기 위해서는 상기 규석를 고온에서 소성시키는 것을 필요로 하나, 너무 고온에서 소성할 경우 용융기의 부식으로 인한 장비의 손상 및 불순물의 혼입을 초래하여 오히려 원적외선 방사율을 저하시키게 되는 단점이 있다.In order to manufacture a far-infrared radiator with a high far-infrared emissivity, the silica needs to be calcined at a high temperature, but when it is fired at a too high temperature, it causes damage to equipment and incorporation of impurities due to corrosion of the melter, which lowers the far-infrared emissivity. There are disadvantages.

이러한 단점을 해결하기 위하여 규석의 용융온도를 낮추는 것이 필요하며, 본 발명에서는 용융온도를 낮추기 위하여 규석 함량의 일부를 붕산와 알루미나로 대체하여 사용하였다.In order to solve this drawback, it is necessary to lower the melting temperature of the silica, and in the present invention, a part of the silica content was replaced by boric acid and alumina in order to lower the melting temperature.

상기에서 붕산와 알루미나의 첨가량은 각 물질의 규석에 대한 고용량에 따라 결정되는데, 본 발명에서는 알루미나 2∼5중량부, 붕산 20∼35중량부를 사용하였다.In the above, the addition amount of boric acid and alumina is determined according to the high capacity for the silica of each material. In the present invention, 2 to 5 parts by weight of alumina and 20 to 35 parts by weight of boric acid were used.

이때, 알루미나는 고온에서 규석와 치환과정을 통해 규석의 구조를 느슨하게 하여 규석의 용융온도를 낮추는 역할을 하는 것으로, 2중량부 미만으로 첨가될 경우 용융온도를 낮추는 충분한 효과가 나타나지 않으며, 그 첨가량이 5중량부를 초과할 경우 규석에 대한 알루미나의 치환한도가 초과하여 용융온도가 오히려 증가하는 문제점이 있으므로 알루미나는 2∼5중량부 첨가하는 것이 바람직하다.At this time, the alumina is to act to lower the temperature of the silica by loosening the structure of the silica through the process of silica and substitution at a high temperature, and when added to less than 2 parts by weight does not exhibit a sufficient effect of lowering the melting temperature, the addition amount of 5 When it exceeds the weight part, the melting temperature increases rather than the limit of substitution of alumina for silica, so it is preferable to add 2 to 5 parts by weight of alumina.

또, 붕산는 고온에서 규석와 치환과정을 통해 규석의 구조를 느슨하게 하여 규석의 용융온도를 낮추는 역할을 하는 것으로, 그 첨가량이 20중량부 미만일 경우 용융온도의 충분한 낮춤효과를 얻을 수 없으며, 그 첨가량이 35중량부를 초과할 경우 규석의 구조가 너무 느슨해져 제조된 방사체가 취약해지는 문제점이 발생하므로 붕산는 20∼35중량부 첨가하는 것이 바람직하다.In addition, boric acid loosens the structure of silica by changing the process with silica at high temperature, thereby lowering the temperature of melting the silica, and if the amount is less than 20 parts by weight, sufficient lowering of the melting temperature cannot be obtained. When exceeding the weight part, the structure of the silica is too loose, so that the problem is that the produced radiator is weak, it is preferable to add 20 to 35 parts by weight of boric acid.

본 발명에 따르면 소성온도를 낮춤과 동시에 원적외선 방사율을 높이기 위하여 초산카리와 소다회 및 탄산칼슘을 추가로 투입하게 되는데, 이와 같이 소다회 및 초산카리을 추가로 투입하게 되면 규석의 원자간 결합을 절단하는 작용을 통해 소성온도를 낮출 수 있음과 동시에 제조된 원적외선 방사체의 원자구조가 랜덤하게 되어 전체적인 원자결합이 느슨해지게 되며, 이러한 변화로 인해 인체에 유익한 단파장 영역의 원적외선 방사율이 높아지게 된다.According to the present invention, in order to lower the firing temperature and increase the far-infrared emissivity, additionally adds acetic acid and soda ash and calcium carbonate. In addition, the firing temperature can be lowered, and the atomic structure of the manufactured far infrared emitter becomes random, resulting in loosening of the overall atomic bond. This change increases the far-infrared emissivity of the short wavelength region, which is beneficial to the human body.

상기에서 초산카리의 첨가량이 2중량부 미만으로 첨가될 경우 소성온도를 낮추는 효과를 충분히 얻을 수 없으며, 그 첨가량이 4중량부를 초과할 경우 초산카리가 추후에 용출이 되어 백화현상을 나타내는 문제점이 발생하게 되므로, 상기 초산카리의 첨가량은 2∼4중량부 첨가하는 것이 바람직하다.If the added amount of the carry acetate is less than 2 parts by weight, the effect of lowering the firing temperature is not sufficiently obtained, if the added amount exceeds 4 parts by weight, the acetate acetate is eluted later, causing a problem of whitening phenomenon Therefore, it is preferable to add 2 to 4 parts by weight of the amount of the above-mentioned carriacetic acid.

또, 소다회의 첨가량이 14중량부 미만일 경우 소성온도를 낮추는 효과를 충분히 얻을 수 없으며, 그 첨가량이 27중량부를 초과할 경우 소다회가 추후에 용출이 되는 문제점이 발생하게 되므로, 소다회의 첨가량은 14∼27중량부 첨가하는 것이 바라직하다.If the amount of soda ash is less than 14 parts by weight, the effect of lowering the firing temperature cannot be sufficiently obtained. If the amount of the soda ash is more than 27 parts by weight, soda ash is eluted later. It is desirable to add 27 parts by weight.

이와 같이 초산카리와 소다회을 투입하게 되면 이들은 수분과 접촉하여 소량이 이온상태로 용출되어 백화현상을 일으키게 되는데, 본 발명에서는 이를 방지하기 위하여 탄산칼슘 5∼11중량부를 첨가하였다.In this way, when the sodium acetate and soda ash is added, they are in contact with water, and a small amount of the eluted ions causes whitening. In the present invention, 5 to 11 parts by weight of calcium carbonate was added.

탄산칼슘을 첨가하게 되면 칼슘이온은 칼륨 및 나트륨 등의 알칼리 이온들과 혼합되면서 칼륨 및 나트륨이온의 용출을 방해하는 동시에 재료의 인성을 증대시키게 된다.When calcium carbonate is added, calcium ions are mixed with alkali ions such as potassium and sodium while preventing the elution of potassium and sodium ions and increasing the toughness of the material.

상술한 범위 내에서 규석, 초산카리, 알루미나, 붕산, 소다회 및 탄산칼슘을 용기에 넣고 30∼60분간 혼합한 다음, 상기 혼합물을 1200∼1400℃의 용해로에 투입하여 11∼13시간 소성한 후 급냉시켜 분쇄하게 된다.Within the above-mentioned range, add silica, carry acetate, alumina, boric acid, soda ash and calcium carbonate into the container and mix for 30 to 60 minutes, and then the mixture is put into a melting furnace at 1200 to 1400 ° C., calcined for 11 to 13 hours, and then quenched. To crush.

이때, 소성온도가 1200℃ 미만일 경우 첨가재료들이 충분히 용융혼합되지 않아 제조된 원적외선 방사체의 균일한 특성이 나타나지 않는 문제점이 있으며, 소성온도가 1400℃를 초과할 경우 용융기의 부식으로 인한 불순물의 혼입을 초래하여 원적외선 방사율을 저하시키는 문제점이 발생하게 되므로 상기 범위내의 온도에서 소성하는 것이 바람직하다.At this time, when the firing temperature is less than 1200 ℃ there is a problem that the additive material is not sufficiently melt mixed and the uniform characteristics of the far-infrared radiator produced, do not appear, and if the firing temperature exceeds 1400 ℃ mixed with impurities due to corrosion of the melter Since it causes a problem of lowering the far-infrared emissivity, it is preferable to fire at a temperature within the above range.

또한 소성 후 용융물을 서서히 냉각시킬 경우 용융물의 결정화로 인해 원적외선 방사효율이 감소되므로 이를 방지하기 위해서 본 발명에서는 용융물을 급냉시켰으며, 급냉은 상온의 물을 이용하여 실시하였다.In addition, when the melt is slowly cooled after firing, the far-infrared radiation efficiency decreases due to the crystallization of the melt. In order to prevent this, the melt was quenched, and quenching was performed using water at room temperature.

급냉 후에는 이를 분쇄하게 되는데, 분쇄 입도는 제조된 방사체의 용도에 따라 적절히 조절하여 분쇄할 수 있다.After quenching, it is pulverized, and the pulverized particle size can be pulverized by appropriately adjusting according to the use of the produced radiator.

이와 같이 제조된 본 발명에 따른 원적외선 방사체는 5∼20μm의 파장대에서 최대파장을 나타내며, 원적외선 방사율은 0.95 정도로 매우 높아 원적외선 방사에 의한 효능을 극대화시킬 수 있어, 인체의 건강증진에 유용하게 활용될 수 있다.The far-infrared radiator according to the present invention prepared in this way exhibits a maximum wavelength in the wavelength range of 5 ~ 20μm, the far-infrared emissivity is very high as 0.95 can be maximized by the effect of far-infrared radiation, it can be usefully used for health promotion of the human body have.

특히, 본 발명에 따라 제조된 원적외선 방사체는 높은 방사율로 원적외선을 방사함으로서 건강증진을 위한 다양한 용도로 사용될 수 있으며, 이렇게 제조된 원적외선 방사체는 사용용도에 따라 적절하게 후처리 가공을 거칠 수도 있다.In particular, the far-infrared emitter prepared according to the present invention can be used for various purposes for health promotion by radiating far-infrared radiation at high emissivity, the far-infrared radiator prepared in this way may be appropriately subjected to post-treatment processing depending on the intended use.

이하 본 발명을 하기한 실시예를 통하여 보다 상세하게 설명하기로 하나 이는 본 발명의 이해를 돕기 위하여 제시된 것일 뿐 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, which are presented to aid the understanding of the present invention, but the present invention is not limited thereto.

<실시예 1><Example 1>

규석 1920g, 초산카리 200g, 알루미나 180g, 붕산 1050g, 소다회 800g 및 탄산칼슘 400g을 용기에 넣고 30분간 혼합한 다음, 상기 혼합물을 1300℃의 용해로에 투입하여 2시간 소성한 후 급냉시키고 200메쉬로 분쇄하여 원적외선 방사체를 제조하였다.1920 g of silica, 200 g of acetonitrile, 180 g of alumina, 1050 g of boric acid, 800 g of soda ash, and 400 g of calcium carbonate were mixed in a container and mixed for 30 minutes.The mixture was put into a melting furnace at 1300 ° C., fired for 2 hours, quenched and crushed into 200 mesh. To prepare a far infrared emitter.

상기 제조된 원적외선 방사체 분말을 50℃로 가열한 후 FT-IR(미국 MIDAC사, M 2400-C)을 이용하여 5∼20㎛의 원적외선 방사율과 방사에너지를 측정하였으며, 측정결과를 하기 표 1에 나타내었다.After the far-infrared radiator powder was heated to 50 ° C., far-infrared emissivity and emission energy of 5-20 μm were measured using FT-IR (M 2400-C, USA). The measurement results are shown in Table 1 below. Indicated.

<실시예 2><Example 2>

규석 1800g, 초산카리 200g, 알루미나 150g, 붕산 1100g, 소다회 830g 및 탄산칼슘 400g을 용기에 넣고 30분간 혼합한 다음, 상기 혼합물을 1400℃의 용해로에 투입하여 2시간 소성한 후 급냉시키고 200메쉬로 분쇄하여 원적외선 방사체를 제조하였다.1800 g of silica, 200 g of acetonitrile, 150 g of alumina, 1100 g of boric acid, 830 g of soda ash, and 400 g of calcium carbonate were mixed in a container for 30 minutes, and then the mixture was put in a melting furnace at 1400 ° C., fired for 2 hours, quenched and crushed into 200 mesh. To prepare a far infrared emitter.

상기 제조된 원적외선 방사체를 상기 실시예 1과 동일한 방법으로 원적외선 방사율과 방사에너지를 측정하고 그 결과를 하기 표 1에 나타내었다.The far-infrared radiator prepared above was measured in the same manner as in Example 1 to measure the far-infrared emissivity and radiation energy, and the results are shown in Table 1 below.

<비교예 1>Comparative Example 1

산화규소 53.56%, 알루미나 30.67%, 산화철 1.16%, 산화칼슘 0.20%, 산화마그네슘 0.22% 산화티탄 0.95%, 산화칼륨 1.07% 및 기타 감열감량이 12.17%의 조성을 갖는 기부시 점토 2kg을 1400℃의 용해로에 투입하여 2시간 소성한 후 급냉시키고 200메쉬로 분쇄하여 원적외선 방사체를 제조하였다.2 kg of clay at the base of the composition of 53.56% silicon oxide, 30.67% alumina, 1.16% iron oxide, 0.20% calcium oxide, 0.22% magnesium oxide, 0.95% titanium oxide, 1.07% potassium oxide and 12.17% other thermal loss It was calcined for 2 hours, quenched and pulverized into 200 mesh to prepare a far-infrared radiator.

상기 제조된 원적외선 방사체를 상기 실시예 1과 동일한 방법으로 원적외선 방사율과 방사에너지 및 음이온농도를 측정하고 그 결과를 하기 표 1에 나타내었다.Far-infrared emissivity, radiation energy and anion concentration were measured in the same manner as in Example 1, and the results are shown in Table 1 below.

구분division 원적외선 방사율Far Infrared Emissivity 방사에너지(W/㎡·㎛)Radiation energy (W / ㎡ · ㎛) 실시예 1Example 1 0.950.95 4.6×1024.6 × 102 실시예 2Example 2 0.940.94 4.5×1024.5 × 102 비교예 1Comparative Example 1 0.890.89 3.9×1023.9 × 102

상기 표 1에서 보는 바와 같이 본 발명에 따라 원적외선 방사체를 제조한 실시예 1 및 실시예 2의 경우 기존의 방법에 따라 제조된 원적외선 방사체에 비하여 원적외선 방사율이 매우 높음을 확인할 수 있다.As shown in Table 1, in the case of Example 1 and Example 2 produced the far-infrared radiator according to the present invention, it can be confirmed that the far-infrared emissivity is very high compared to the far-infrared radiator manufactured according to the conventional method.

따라서 본 발명에 따라 제조된 원적외선 방사체의 경우 원적외선 방사로 인한 효능을 함께 얻을 수 있어 인체의 건강증진에 매우 유용하게 활용될 수 있음을 알 수 있다.Therefore, in the case of the far-infrared radiator manufactured according to the present invention can be obtained with the effect due to the far-infrared radiation can be seen that it can be very useful for health promotion of the human body.

증진에 유용하게 활용될 수 있도록 한 원적외선 방사체 및 그 제조방법을 제공하는 유용한 발명이다. 상기에서 설명한 바와 같이 본 발명은 높은 방사율로 원적외선을 방출할 수 있어 인체 건강증진에 기여할 수 있다.It is a useful invention to provide a far-infrared radiator and a method for producing the same that can be usefully used for promotion. As described above, the present invention can emit far infrared rays with high emissivity, thereby contributing to the improvement of human health.

Claims (2)

규석 38∼43중량부, 초산카리 2∼4중량부, 알루미나 2∼5중량부, 붕산 20∼35중량, 소다회 14∼27중량부 및 탄산칼슘 5∼11중량을 용기에 넣고 30∼60분간 혼합한 다음, 상기 혼합물을 1200∼1400℃의 용해로에 투입하여 1∼3시간 소성한 후 급냉시키고 분쇄하는 것을 특징으로 하는 원적외선 방사체의 제조방법.38 to 43 parts by weight of silica, 2 to 4 parts by weight of acetic acid, 2 to 5 parts by weight of alumina, 20 to 35 parts by weight of boric acid, 14 to 27 parts by weight of soda ash, and 5 to 11 weight of calcium carbonate are mixed in a container for 30 to 60 minutes. Then, the mixture is put into a melting furnace at 1200 to 1400 ° C and calcined for 1 to 3 hours, followed by quenching and pulverizing. 상기 청구항 1의 제조방법에 의해 제조됨을 특징으로 하는 원적외선 방사체.Far-infrared radiator, characterized in that produced by the manufacturing method of claim 1.
KR1020020054399A 2002-09-10 2002-09-10 Far infrared ray radiator and manufacturing method of the radiator KR20040022836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020054399A KR20040022836A (en) 2002-09-10 2002-09-10 Far infrared ray radiator and manufacturing method of the radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020054399A KR20040022836A (en) 2002-09-10 2002-09-10 Far infrared ray radiator and manufacturing method of the radiator

Publications (1)

Publication Number Publication Date
KR20040022836A true KR20040022836A (en) 2004-03-18

Family

ID=37326550

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020054399A KR20040022836A (en) 2002-09-10 2002-09-10 Far infrared ray radiator and manufacturing method of the radiator

Country Status (1)

Country Link
KR (1) KR20040022836A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180020413A (en) * 2016-08-18 2018-02-28 서승완 Emission device of infrared rays

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100344944B1 (en) * 2002-01-21 2002-07-22 Hanil Medical Company Ltd Far infrared ray radiator and preparation method thereof
KR20020073866A (en) * 2001-03-16 2002-09-28 배효완 Far-infrared ray reflective and manu facturing method thereof
KR20030016154A (en) * 2002-03-07 2003-02-26 (주) 채널링크 High functional composition having action on minus ion and far infrared ray
KR20030066857A (en) * 2002-02-05 2003-08-14 오외춘 Manufacturing method of far-infrared-and-negative-ion-emitting machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020073866A (en) * 2001-03-16 2002-09-28 배효완 Far-infrared ray reflective and manu facturing method thereof
KR100344944B1 (en) * 2002-01-21 2002-07-22 Hanil Medical Company Ltd Far infrared ray radiator and preparation method thereof
KR20030066857A (en) * 2002-02-05 2003-08-14 오외춘 Manufacturing method of far-infrared-and-negative-ion-emitting machine
KR20030016154A (en) * 2002-03-07 2003-02-26 (주) 채널링크 High functional composition having action on minus ion and far infrared ray

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180020413A (en) * 2016-08-18 2018-02-28 서승완 Emission device of infrared rays

Similar Documents

Publication Publication Date Title
KR102109692B1 (en) Manufacturing Method of Multi-functional Powder
CN110040960A (en) A kind of rare earth anti-bacteria ceramic glaze and preparation method thereof
Bhatkar et al. Combustion synthesis and photoluminescence study of silicate biomaterials
CN105293907B (en) Discharge anion and transmitting far-infrared functional foam pyroceram and its preparation method and application
CA2382364C (en) Far-infrared ray radiator and method for manufacturing the same
KR20040022836A (en) Far infrared ray radiator and manufacturing method of the radiator
KR20140110380A (en) Far infrared ray materials and method of the same
DE868777C (en) Stabilized calcium phosphate phosphor and process for its manufacture
KR20040022838A (en) Minus ions radiator and manufacturing method of the radiator
KR101878897B1 (en) High efficiency far infrared ray and anion radiator and producing method thereof
KR20040022837A (en) Far infrared ray and minus ion radiator and manufacturing method of the radiator
CN110540728A (en) energy-storage self-luminous material, preparation method and application thereof, self-luminous particles and self-luminous brick
CN107337444A (en) Beautiful energy porcelain
KR102146794B1 (en) foam ceramic fabrication and manufacturing method thereof
KR100560861B1 (en) A building cement mortar using olivine and a production method thereof
KR20100021018A (en) Accessory and it&#39;s manufacturing method
KR20080048270A (en) Long-infrared ray emission thermal plastic composition and the manufacturing method
KR100411492B1 (en) A Method for Manufactuting Artificial Marble Using Slag
KR101649927B1 (en) Method for producing nanodiamond bio-ceramic
KR102003214B1 (en) Manufacturing method of nano composition and nano composition therefrom
KR20000018929A (en) Ceramic to emit far-infrared rays using ocher
MY122868A (en) Far-infrared ray radiator and method for manufacturing the same
CN113402174B (en) Preparation method and application of borosilicate bioactive glass containing bismuth
US2775524A (en) Method of producing cellulated articles
CN103374350A (en) Ultrafine particle energy-storage type long-lasting phosphor material and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application