KR20040022838A - Minus ions radiator and manufacturing method of the radiator - Google Patents

Minus ions radiator and manufacturing method of the radiator Download PDF

Info

Publication number
KR20040022838A
KR20040022838A KR1020020054403A KR20020054403A KR20040022838A KR 20040022838 A KR20040022838 A KR 20040022838A KR 1020020054403 A KR1020020054403 A KR 1020020054403A KR 20020054403 A KR20020054403 A KR 20020054403A KR 20040022838 A KR20040022838 A KR 20040022838A
Authority
KR
South Korea
Prior art keywords
weight
parts
anion
far
far infrared
Prior art date
Application number
KR1020020054403A
Other languages
Korean (ko)
Inventor
김종철
김기태
Original Assignee
주식회사 나노세라
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노세라 filed Critical 주식회사 나노세라
Priority to KR1020020054403A priority Critical patent/KR20040022838A/en
Publication of KR20040022838A publication Critical patent/KR20040022838A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/5156Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on rare earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0097Anion- and far-infrared-emitting materials

Abstract

PURPOSE: An anion emitting material applied to health promotion is provided which radiates a large quantity of anions and far infrared rays at the same time by adding monazite-based rare earth mineral to far infrared emitter. CONSTITUTION: The far infrared and anion emitter is produced by the following steps of: mixing raw materials emitting far infrared rays such as 38-43parts by weight of silica, 2-4parts by weight of KNO3, 2-5parts by weight of alumina, 20-35parts by weight of boric acid, 14-27parts by weight of Na2CO3 and 5-11parts by weight of CaCO3 for 30-60min; sintering the mixture at 1200-1400deg.C for 1-3hrs; quenching it in water to prevent decrease of far infrared emissivity; grinding; adding 1-20parts by weight of monazite-based rare earth mineral for emission of anions; and grinding.

Description

음이온 방사체 및 그 제조방법{Minus ions radiator and manufacturing method of the radiator}Anion radiator and manufacturing method

본 발명은 원적외선과 음이온을 방출하는 방사체 및 그 방사체를 제조하는 방법에 관한 것으로, 보다 상세하게는 높은 방사율로 원적외선을 방출함과 동시에 다량의 음이온을 동시에 방출할 수 있어 인체 건강증진에 유용하게 활용될 수 있도록 한 음이온 방사체 및 그 제조방법에 관한 것이다.The present invention relates to a radiator emitting far infrared rays and anions, and a method of manufacturing the radiator, and more particularly, it is possible to emit far infrared rays at a high emissivity and simultaneously release a large amount of anions, which is useful for promoting human health. It relates to an anion emitter and a method of manufacturing the same.

일반적으로 원적외선은 3∼1000㎛까지의 파장을 총칭하는 것으로서 가시광선보다는 파장이 길고 마이크로파보다는 짧은 파장을 가지며, 공명흡수작용과 방사 및 심달력의 물성을 가지고 있다.In general, far-infrared rays are generally referred to as the wavelength of 3 ~ 1000㎛ as a longer wavelength than visible light and shorter wavelength than microwave, and has the properties of resonance absorption and radiation and cardiac calendar.

공명흡수 작용이라 함은 물질에 원적외선을 조사할 때의 방사에너지 진동수와 분자의 진동수가 일치하게 되면 분자는 원적외선 방사에너지를 흡수하여 진동이 더욱 격렬해지는 작용을 말하며, 상기 공명흡수 작용으로 인해 운동에너지의 일부는 활성에너지로 변하여 분자운동이 활성화된다. 또, 방사라 함은 물체에서 방출되는 원적외선이 열로 전달되는 것을 말하며, 심달력이라 함은 조사되는 방사에너지의 파장의 제곱근에 비례하여 침투력이 결정된다는 것으로서 짧은 파장의 원적외선은 긴파장의 원적외선에 비하여 침투력이 떨어지게 된다.Resonance absorption action refers to the action that the vibration absorbs far-infrared radiation energy when the frequency of the radiation energy and the frequency of the molecule when irradiating the far infrared rays on the material becomes more intense, the kinetic energy due to the resonance absorption action Part of is converted into active energy and molecular motion is activated. Radiation refers to the transmission of far-infrared rays emitted from an object, and heart calendar means penetrating power is determined in proportion to the square root of the wavelength of irradiated radiation energy. Short-range far infrared rays are compared to long-wave far infrared rays. Penetration will drop.

상기와 같은 원적외선의 특징으로 인하여 원적외선이 신체 깊숙한 곳까지 침투하여 체내의 분자나 원자를 활성화시키게 되고, 이로 인하여 체내의 각종 노폐물을 배출하고 신진대사를 촉진시켜 세포재생과 피로회복 등의 신체건강 리듬을 살려주게 된다.Far-infrared rays penetrate deep into the body and activate molecules or atoms in the body due to the characteristics of the far-infrared rays, thereby releasing various wastes in the body and promoting metabolism to promote physical health rhythms such as cell regeneration and fatigue recovery. Will save you.

한편, 음이온 방출물질은 토륨함유 결정을 포함하고 있어 결정의 양단에 양전극과 음전극이 형성되며, 상기 음전극에서는 양전극으로 향하는 전자가 발생한다.On the other hand, the anion-emitting material contains a thorium-containing crystal, and the positive electrode and the negative electrode are formed at both ends of the crystal, the electrons are directed to the positive electrode.

음전극에서 발생된 전자는 다른 원자와 결합하여 음이온을 형성하며, 상기 음이온은 양전극의 전기력선을 따라 튀어나가 영구적인 전기의 흐름이 되는데, 이 전류는 0.06mA정도의 미세 전류로서 인간의 신체기능 활성화에 가장 적합한 전류이다.Electrons generated from the negative electrode combine with other atoms to form negative ions, and the negative ions stick out along the electric line of the positive electrode to form a permanent flow of electricity. It is the most suitable current.

전술한 음이온 발생물질이 수분에 닿으면 순간적으로 방전되어 물분자(H2O)를 수소이온(H+)과 수산화이온(OH-)으로 전기분해 하게 되는데, 이때 수소이온(H+)은 음전극에서 방출되는 전자에 의해 수소가스(H2)로 환원되어 증발되고, 따라서 물은 알칼리 이온화되게 된다. 또한 수산화이온(OH-)은 산성화된 인체를 환원시키는 역할을 하며, 물을 약 알칼리화 시킴으로서 면역기능(살균능력, 항균능력)을 높이고, 혈액을 정화하며, 자율신경을 자극하여 교감신경의 흥분을 억제하게 된다.When the above-mentioned anion generating material comes into contact with moisture, it is instantaneously discharged to electrolyze water molecules (H2O) into hydrogen ions (H +) and hydroxide ions (OH-), where hydrogen ions (H +) are electrons emitted from the negative electrode. Is reduced to hydrogen gas (H2) and evaporated, so that the water is alkali ionized. In addition, hydroxide ions (OH-) reduce the acidified human body, and by weakly alkalizing water, enhances immune function (sterilization ability, antibacterial ability), cleanses blood, stimulates autonomic nerves and stimulates sympathetic nerves. Will be suppressed.

상술한 원적외선 방사물질과 음이온 방출물질의 효능으로 인하여 최근 그 특성을 이용하여 일상생활의 건강제품으로 활용하려는 연구가 다양하게 시도되고 있으나, 기존 원적외선 방사체의 경우 점토나 원석등의 소지를 그대로 활용함에 따라 원적외선 방사율이 낮을 뿐만 아니라 음이온 방출량도 적다는 단점이 있다.Due to the efficacy of the above-mentioned far-infrared radiation and anion-emitting materials, various studies have recently been attempted to utilize them as health products for everyday life. However, existing far-infrared radiators utilize the same materials as clay or gemstones. Therefore, there is a disadvantage that not only the far-infrared emissivity is low but also the amount of negative ions emitted.

따라서, 본 발명은 높은 방사율로 원적외선을 방사함과 동시에 음이온 방출량도 높아 인체에 유익하게 활용될 수 있도록 한 음이온 방사체를 연구한 끝에 본 발명을 완성하기에 이르렀다.Therefore, the present invention has completed the present invention after studying an anion emitter which emits far infrared rays with high emissivity and at the same time has a high amount of negative ions.

이에 본 발명은 높은 방사율로 원적외선을 방출함과 동시에 다량의 음이온을 동시에 방출할 수 있어 인체 건강증진에 유용하게 활용될 수 있도록 한 음이온 방사체 및 그 제조방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide an anion emitter and a method of manufacturing the same, which can be used for improving human health by simultaneously emitting far infrared rays with high emissivity and simultaneously emitting a large amount of anions.

상기한 목적을 달성하기 위하여 본 발명은The present invention to achieve the above object

규석 38∼43중량부, 초산카리 2~4중량부, 알루미나 2~5중량부, 붕산 20∼25중량, 소다회 14∼27중량부 및 탄산칼슘 5~11중량을 용기에 넣고 30∼60분간 혼합한 다음, 상기 혼합물을 1200∼1400℃의 용해로에 투입하여 1∼3시간 소성한 후 급냉시키고 분쇄한 다음, 상기 분쇄물에 모나자이트계 희토류광물 1∼20중량부 첨가하여 분쇄하는 것을 특징으로 하는 음이온 방사체의 제조방법을 제공함으로서 달성할 수 있다.38 to 43 parts by weight of silica, 2 to 4 parts by weight of acetic acid, 2 to 5 parts by weight of alumina, 20 to 25 parts by weight of boric acid, 14 to 27 parts by weight of soda ash and 5 to 11 parts of calcium carbonate are mixed in a container and mixed for 30 to 60 minutes. Then, the mixture was introduced into a melting furnace at 1200 to 1400 ° C., calcined for 1 to 3 hours, quenched and pulverized, and then pulverized by adding 1 to 20 parts by weight of a monazite rare earth mineral to the pulverized product. It can be achieved by providing a method for producing the radiator.

또한 본 발명은 상기한 제조방법에 의해 제조된 음이온 방사체를 제공한다.In another aspect, the present invention provides an anion emitter produced by the above production method.

이하 본 발명을 보다 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

음이온 방사체를 제조하기 위하여 본 발명에서는 먼저 규석 38∼43중량부, 초산카리 2~4중량부, 알루미나 2∼5중량부, 붕산 20∼35중량, 소다회 14∼27중량부 및 탄산칼슘 5~11중량을 용기에 넣고 30∼60분간 혼합하게 된다.In order to prepare an anion emitter, in the present invention, 38 to 43 parts by weight of silica, 2 to 4 parts by weight of acetic acid, 2 to 5 parts by weight of alumina, 20 to 35 parts of boric acid, 14 to 27 parts by weight of soda ash and 5 to 11 calcium carbonate The weight is placed in a container and mixed for 30 to 60 minutes.

상기에서 규석는 원적외선 방사효율이 뛰어나 원적외선 방사체 제조시 일반적으로 사용되고 있는 재료이며, 본 발명에서는 규석의 함량을 통상의 사용범위 내인 38∼43중량부를 사용하였다.The silica is a material that is generally used in the production of far-infrared radiator with excellent far-infrared radiation efficiency, and in the present invention, the content of silica is used in the range of 38 to 43 parts by weight.

원적외선 방사율이 높은 원적외선 방사체를 제조하기 위해서는 상기 규석를 고온에서 소성시키는 것을 필요로 하나, 너무 고온에서 소성할 경우 용융기의 부식으로 인한 장비의 손상 및 불순물의 혼입을 초래하여 오히려 원적외선 방사율을 저하시키게 되는 단점이 있다.In order to manufacture a far-infrared radiator with a high far-infrared emissivity, the silica needs to be calcined at a high temperature, but when it is fired at a too high temperature, it causes damage to equipment and incorporation of impurities due to corrosion of the melter, which lowers the far-infrared emissivity. There are disadvantages.

이러한 단점을 해결하기 위하여 규석의 용융온도를 낮추는 것이 필요하며, 본 발명에서는 용융온도를 낮추기 위하여 규석 함량의 일부를 붕산와 알루미나로 대체하여 사용하였다.In order to solve this drawback, it is necessary to lower the melting temperature of the silica, and in the present invention, a part of the silica content was replaced by boric acid and alumina in order to lower the melting temperature.

상기에서 붕산와 알루미나의 첨가량은 각 물질의 규석에 대한 고용량에 따라 결정되는데, 본 발명에서는 알루미나 2∼5중량부, 붕산 20∼35중량부를 사용하였다.In the above, the addition amount of boric acid and alumina is determined according to the high capacity for the silica of each material. In the present invention, 2 to 5 parts by weight of alumina and 20 to 35 parts by weight of boric acid were used.

이때, 알루미나는 고온에서 규석와 치환과정을 통해 규석의 구조를 느슨하게 하여 규석의 용융온도를 낮추는 역할을 하는 것으로, 2중량부 미만으로 첨가될 경우 용융온도를 낮추는 충분한 효과가 나타나지 않으며, 그 첨가량이 5중량부를 초과할 경우 규석에 대한 알루미나의 치환한도가 초과하여 용융온도가 오히려 증가하는 문제점이 있으므로 알루미나는 2∼5중량부 첨가하는 것이 바람직하다.At this time, the alumina is to act to lower the temperature of the silica by loosening the structure of the silica through the process of silica and substitution at a high temperature, and when added to less than 2 parts by weight does not exhibit a sufficient effect of lowering the melting temperature, the addition amount of 5 When it exceeds the weight part, the melting temperature increases rather than the limit of substitution of alumina for silica, so it is preferable to add 2 to 5 parts by weight of alumina.

또, 붕산는 고온에서 규석와 치환과정을 통해 규석의 구조를 느슨하게 하여 규석의 용융온도를 낮추는 역할을 하는 것으로, 그 첨가량이 20중량부 미만일 경우 용융온도의 충분한 낮춤효과를 얻을 수 없으며, 그 첨가량이 35중량부를 초과할 경우 규석의 구조가 너무 느슨해져 제조된 방사체가 취약해지는 문제점이 발생하므로 붕산는 20∼35중량부 첨가하는 것이 바람직하다.In addition, boric acid loosens the structure of silica by changing the process with silica at high temperature, thereby lowering the temperature of melting the silica, and if the amount is less than 20 parts by weight, sufficient lowering of the melting temperature cannot be obtained. When exceeding the weight part, the structure of the silica is too loose, so that the problem is that the produced radiator is weak, it is preferable to add 20 to 35 parts by weight of boric acid.

본 발명에 따르면 소성온도를 낮춤과 동시에 원적외선 방사율을 높이기 위하여 초산카리와 소다회 및 탄산칼슘을 추가로 투입하게 되는데, 이와 같이 소다회 및 초산카리을 추가로 투입하게 되면 규석의 원자간 결합을 절단하는 작용을 통해 소성온도를 낮출 수 있음과 동시에 제조된 원적외선 방사체의 원자구조가 랜덤하게 되어 전체적인 원자결합이 느슨해지게 되며, 이러한 변화로 인해 인체에 유익한 단파장 영역의 원적외선 방사율이 높아지게 된다.According to the present invention, in order to lower the firing temperature and increase the far-infrared emissivity, additionally adds acetic acid and soda ash and calcium carbonate. In addition, the firing temperature can be lowered, and the atomic structure of the manufactured far infrared emitter becomes random, resulting in loosening of the overall atomic bond. This change increases the far-infrared emissivity of the short wavelength region, which is beneficial to the human body.

상기에서 초산카리의 첨가량이 2중량부 미만으로 첨가될 경우 소성온도를 낮추는 효과를 충분히 얻을 수 없으며, 그 첨가량이 4중량부를 초과할 경우 초산카리가 추후에 용출이 되어 백화현상을 나타내는 문제점이 발생하게 되므로, 상기 초산카리의 첨가량은 2∼4중량부 첨가하는 것이 바람직하다.If the added amount of the carry acetate is less than 2 parts by weight, the effect of lowering the firing temperature is not sufficiently obtained, if the added amount exceeds 4 parts by weight, the acetate acetate is eluted later, causing a problem of whitening phenomenon Therefore, it is preferable to add 2 to 4 parts by weight of the above-mentioned amount of the carry acetate.

또, 소다회의 첨가량이 14중량부 미만일 경우 소성온도를 낮추는 효과를 충분히 얻을 수 없으며, 그 첨가량이 27중량부를 초과할 경우 소다회가 추후에 용출이 되는 문제점이 발생하게 되므로, 소다회의 첨가량은 14∼27중량부 첨가하는 것이 바라직하다.If the amount of soda ash is less than 14 parts by weight, the effect of lowering the firing temperature cannot be sufficiently obtained. If the amount of the soda ash is more than 27 parts by weight, soda ash is eluted later. It is desirable to add 27 parts by weight.

이와 같이 초산카리와 소다회을 투입하게 되면 이들은 수분과 접촉하여 소량이 이온상태로 용출되어 백화현상을 일으키게 되는데, 본 발명에서는 이를 방지하기 위하여 탄산칼슘 5∼11중량부를 첨가하였다.In this way, when the sodium acetate and soda ash is added, they are in contact with water, and a small amount of the eluted ions causes whitening. In the present invention, 5 to 11 parts by weight of calcium carbonate was added.

탄산칼슘을 첨가하게 되면 칼슘이온은 칼륨 및 나트륨 등의 알칼리 이온들과 혼합되면서 칼륨 및 나트륨이온의 용출을 방해하는 동시에 재료의 인성을 증대시키게 된다.When calcium carbonate is added, calcium ions are mixed with alkali ions such as potassium and sodium while preventing the elution of potassium and sodium ions and increasing the toughness of the material.

상술한 범위 내에서 규석, 초산카리, 알루미나, 붕산, 소다회 및 탄산칼슘을 용기에 넣고 모나자이트계 희토류광석 1∼20중량부 첨가하여 30∼60분간 혼합한 다음, 상기 혼합물을 1200∼1400℃의 용해로에 투입하여 11∼13시간 소성한 후 급냉시켜 분쇄하게 된다.Within the above-mentioned range, silica, carry acetate, alumina, boric acid, soda ash and calcium carbonate are placed in a container, 1-20 parts by weight of monazite rare earth ore is added and mixed for 30 to 60 minutes, and then the mixture is melted at 1200 to 1400 ° C. The mixture was fired in a blast furnace for 11 to 13 hours, then quenched and ground.

이때, 소성온도가 1200℃ 미만일 경우 첨가재료들이 충분히 용융혼합되지 않아 제조된 원적외선 방사체의 균일한 특성이 나타나지 않는 문제점이 있으며, 소성온도가 1400℃를 초과할 경우 용융기의 부식으로 인한 불순물의 혼입을 초래하여 원적외선 방사율을 저하시키는 문제점이 발생하게 되므로 상기 범위내의 온도에서 소성하는 것이 바람직하다.At this time, when the firing temperature is less than 1200 ℃ there is a problem that the additive material is not sufficiently melt mixed and the uniform characteristics of the far-infrared radiator produced, do not appear, and if the firing temperature exceeds 1400 ℃ mixed with impurities due to corrosion of the melter Since it causes a problem of lowering the far-infrared emissivity, it is preferable to fire at a temperature within the above range.

또한 소성 후 용융물을 서서히 냉각시킬 경우 용융물의 결정화로 인해 원적외선 방사효율이 감소되므로 이를 방지하기 위해서 본 발명에서는 용융물을 급냉시켰으며, 급냉은 상온의 물을 이용하여 실시하였다.In addition, when the melt is slowly cooled after firing, the far-infrared radiation efficiency decreases due to the crystallization of the melt. In order to prevent this, the melt was quenched, and quenching was performed using water at room temperature.

급냉 후에는 이를 분쇄하게 되는데, 분쇄 입도는 제조된 방사체의 용도에 따라 적절히 조절하여 분쇄할 수 있다.After quenching, it is pulverized, and the pulverized particle size can be pulverized by appropriately adjusting according to the use of the produced radiator.

상기 모나자이트계 희토류 광석은 음이온 방출효과를 얻기 위하여 첨가하는 것으로 그 첨가량이 1중량부 미만으로 첨가될 경우 충분한 음이온 방출효과를 얻을 수 없으며, 그 첨가량이 5중량부를 초과할 경우 음이온 방사체에서의 원적외선 방사량이 줄어드는 문제점이 있으므로 상기 범위 내에서 모나자이트계 희토류 광석을 첨가하는 것이 바람직하다.The monazite rare earth ore is added to obtain an anion release effect, and when the addition amount is less than 1 part by weight, sufficient anion release effect cannot be obtained, and when the addition amount is more than 5 parts by weight, the far-infrared radiation dose from the anion emitter It is preferable to add a monazite rare earth ore within the above range because of this problem of decreasing.

이와 같이 제조된 본 발명에 따른 음이온 방사체는 5∼20μm의 파장대에서 최대파장을 나타내며, 원적외선 방사율은 0.94 정도로 매우 높아 원적외선 방사에 의한 효능을 극대화시킬 수 있으며, 음이온 방출량도 매우 높아 인체의 건강증진에 유용하게 활용될 수 있다.The anion emitter according to the present invention prepared in this way shows a maximum wavelength in the wavelength range of 5 ~ 20μm, the far-infrared emissivity is very high as 0.94 can maximize the efficacy by far-infrared radiation, the anion emission is also very high to promote the health of the human body It can be useful.

특히, 본 발명에 따라 제조된 음이온 방사체는 높은 방사율로 원적외선을 방사함과 동시에 음이온 방출량이 높아 건강증진을 위한 다양한 용도로 사용될 수 있으며, 이렇게 제조된 음이온 방사체는 사용용도에 따라 적절하게 후처리 가공을 거칠 수도 있다.In particular, the anion emitter prepared according to the present invention can be used for various purposes for health promotion while emitting far infrared rays with high emissivity and high anion emission amount, the anion emitter thus prepared is appropriately post-processed according to the intended use It may be rough.

이하 본 발명을 하기한 실시예를 통하여 보다 상세하게 설명하기로 하나 이는 본 발명의 이해를 돕기 위하여 제시된 것일 뿐 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, which are presented to aid the understanding of the present invention, but the present invention is not limited thereto.

<실시예 1><Example 1>

규석 1920g, 초산카리 200g, 알루미나 180g, 붕산 1050g, 소다회 800g 및 탄산칼슘 400g을 용기에 넣고 30분간 혼합한 다음, 상기 혼합물을 1300℃의 용해로에 투입하여 2시간 소성한 후 급냉시키고 200메쉬로 분쇄한 다음, 상기 분쇄물에 전기석 450g을 첨가하고 200메쉬로 분쇄하여 음이온 방사체를 제조하였다.1920 g of silica, 200 g of acetonitrile, 180 g of alumina, 1050 g of boric acid, 800 g of soda ash, and 400 g of calcium carbonate were mixed in a container and mixed for 30 minutes.The mixture was put into a melting furnace at 1300 ° C., fired for 2 hours, quenched and crushed into 200 mesh. Then, 450 g of tourmaline was added to the pulverized product and pulverized with 200 mesh to prepare an anion emitter.

상기 제조된 음이온 방사체 분말을 50℃로 가열한 후 FT-IR(미국 MIDAC사, M 2400-C)을 이용하여 5∼20㎛의 원적외선 방사율과 방사에너지를 측정하였으며, 또한 제조된 음이온 방사체 분말을 초고감도 미약전류 측정장치(신호전자주식회사(일본), 제품명 KST900)를 이용하여 음이온농도를 측정하고, 상기 원적외선 방사율과 방사에너지 및 음이온농도 측정결과를 하기 표 1에 나타내었다.After heating the prepared anion emitter powder to 50 ℃ was measured far-infrared emissivity and radiation energy of 5 ~ 20㎛ using FT-IR (M 2400-C, USA MIDAC Co., Ltd.), the prepared anion emitter powder Anion concentration was measured using an ultra-sensitivity weak current measuring device (Signal Electronics Co., Ltd. (Japan), product name KST900), and the far-infrared emissivity, radiation energy and anion concentration measurement results are shown in Table 1 below.

<실시예 2><Example 2>

규석 1800g, 초산카리 200g, 알루미나 150g, 붕산 1100g, 소다회 830g 및 탄산칼슘 400g을 용기에 넣고 30분간 혼합한 다음, 상기 혼합물을 1400℃의 용해로에 투입하여 2시간 소성한 후 급냉시키고 200메쉬로 분쇄한 다음, 상기 분쇄물에 전기석 450g을 첨가하고 200메쉬로 분쇄하여 음이온 방사체를 제조하였다.1800 g of silica, 200 g of acetonitrile, 150 g of alumina, 1100 g of boric acid, 830 g of soda ash, and 400 g of calcium carbonate were mixed in a container for 30 minutes, and then the mixture was put in a melting furnace at 1400 ° C., fired for 2 hours, quenched and crushed into 200 mesh. Then, 450 g of tourmaline was added to the pulverized product and pulverized with 200 mesh to prepare an anion emitter.

상기 제조된 음이온 방사체를 상기 실시예 1과 동일한 방법으로 원적외선 방사율과 방사에너지 및 음이온농도를 측정하고 그 결과를 하기 표 1에 나타내었다.Far-infrared emissivity, radiation energy and anion concentration were measured in the same manner as in Example 1, and the results are shown in Table 1 below.

<비교예 1>Comparative Example 1

산화규소 53.56%, 알루미나 30.67%, 산화철 1.16%, 산화칼슘 0.20%, 산화마그네슘 0.22% 산화티탄 0.95%, 산화칼륨 1.07% 및 기타 감열감량이 12.17%의 조성을 갖는 기부시 점토 2kg을 1400℃의 용해로에 투입하여 2시간 소성한 후 급냉시키고 200메쉬로 분쇄하여 음이온 방사체를 제조하였다.2 kg of clay at the base of the composition of 53.56% silicon oxide, 30.67% alumina, 1.16% iron oxide, 0.20% calcium oxide, 0.22% magnesium oxide, 0.95% titanium oxide, 1.07% potassium oxide and 12.17% other thermal loss It was calcined for 2 hours and then quenched and crushed into 200 mesh to prepare an anion emitter.

상기 제조된 음이온 방사체를 상기 실시예 1과 동일한 방법으로 원적외선 방사율과 방사에너지 및 음이온농도를 측정하고 그 결과를 하기 표 1에 나타내었다.Far-infrared emissivity, radiation energy and anion concentration were measured in the same manner as in Example 1, and the results are shown in Table 1 below.

구분division 원적외선 방사율Far Infrared Emissivity 방사에너지(W/㎡·㎛)Radiation energy (W / ㎡ · ㎛) 음이온농도(개/㎖)Anion concentration (pieces / ml) 실시예 1Example 1 0.940.94 4.4×1024.4 × 102 15001500 실시예 2Example 2 0.930.93 4.4×1024.4 × 102 30003000 비교예 1Comparative Example 1 0.890.89 3.9×1023.9 × 102 3030

상기 표 1에서 보는 바와 같이 본 발명에 따라 음이온 방사체를 제조한 실시예 1 및 실시예 2의 경우 기존의 방법에 따라 제조된 음이온 방사체에 비하여 원적외선 방사율이 매우 높고, 음이온농도 또한 매우 높게 나타난 것을 확인할 수 있다.As shown in Table 1, Example 1 and Example 2 prepared an anion emitter according to the present invention was confirmed that the far-infrared emissivity is very high, anion concentration is also very high compared to the anion emitter prepared according to the conventional method Can be.

따라서 본 발명에 따라 제조된 음이온 방사체의 경우 원적외선 방사로 인한 효능과 음이온 발생에 따른 효능을 함께 얻을 수 있어 인체의 건강증진에 매우 유용하게 활용될 수 있음을 알 수 있다.Therefore, in the case of the anion emitter prepared according to the present invention it can be seen that it can be very useful for promoting the health of the human body can be obtained with the efficacy of the far infrared radiation and the effect of generating anion.

상기에서 설명한 바와 같이 본 발명은 높은 방사율로 원적외선을 방출함과 동시에 다량의 음이온을 동시에 방출할 수 있어 인체 건강증진에 유용하게 활용될 수 있도록 한 음이온 방사체 및 그 제조방법을 제공하는 유용한 발명이다.As described above, the present invention is a useful invention that provides an anion emitter and a method of manufacturing the same, which can emit a large amount of negative ions at the same time and emit a large amount of negative ions at the same time, which can be usefully used for the promotion of human health.

Claims (2)

규석 38∼43중량부, 초산카리 2∼4중량부, 알루미나 2∼5중량부, 붕산 20∼35중량부, 소다회 14∼27중량부 및 탄산칼슘 5∼11중량부을 용기에 넣고 30∼60분간 혼합한 다음, 상기 혼합물을 1200∼1400℃의 용해로에 투입하여 1∼3시간 소성한 후 급냉시키고 분쇄한 다음, 상기 분쇄물에 모나자이트계 희토류 광석 1∼20중량부 첨가하여 분쇄하는 것을 특징으로 하는 음이온 방사체의 제조방법.38 to 43 parts by weight of silica, 2 to 4 parts by weight of acetic acid, 2 to 5 parts by weight of alumina, 20 to 35 parts by weight of boric acid, 14 to 27 parts by weight of soda ash and 5 to 11 parts by weight of calcium carbonate are placed in a container for 30 to 60 minutes. After mixing, the mixture was put into a melting furnace at 1200 to 1400 ° C., calcined for 1 to 3 hours, quenched and pulverized, and then pulverized by adding 1 to 20 parts by weight of a monazite rare earth ore to the pulverized product. Method for producing an anion emitter. 상기 청구항 1의 제조방법에 의해 제조됨을 특징으로 하는 음이온 방사체.Anion emitter, characterized in that produced by the manufacturing method of claim 1.
KR1020020054403A 2002-09-10 2002-09-10 Minus ions radiator and manufacturing method of the radiator KR20040022838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020054403A KR20040022838A (en) 2002-09-10 2002-09-10 Minus ions radiator and manufacturing method of the radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020054403A KR20040022838A (en) 2002-09-10 2002-09-10 Minus ions radiator and manufacturing method of the radiator

Publications (1)

Publication Number Publication Date
KR20040022838A true KR20040022838A (en) 2004-03-18

Family

ID=37326552

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020054403A KR20040022838A (en) 2002-09-10 2002-09-10 Minus ions radiator and manufacturing method of the radiator

Country Status (1)

Country Link
KR (1) KR20040022838A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180118909A (en) 2017-04-24 2018-11-01 김민호 Composition for radiating negative ions and far infrared rays

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970007085A (en) * 1995-07-26 1997-02-21 배순훈 Hooded microwave oven stirrer fan structure
JPH11335157A (en) * 1998-05-26 1999-12-07 Akitoshi One Production of infrared rays irradiation material
KR100344944B1 (en) * 2002-01-21 2002-07-22 Hanil Medical Company Ltd Far infrared ray radiator and preparation method thereof
KR20020064265A (en) * 2002-07-18 2002-08-07 김기태 Ceramic composition emitting anion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970007085A (en) * 1995-07-26 1997-02-21 배순훈 Hooded microwave oven stirrer fan structure
JPH11335157A (en) * 1998-05-26 1999-12-07 Akitoshi One Production of infrared rays irradiation material
KR100344944B1 (en) * 2002-01-21 2002-07-22 Hanil Medical Company Ltd Far infrared ray radiator and preparation method thereof
KR20020064265A (en) * 2002-07-18 2002-08-07 김기태 Ceramic composition emitting anion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180118909A (en) 2017-04-24 2018-11-01 김민호 Composition for radiating negative ions and far infrared rays

Similar Documents

Publication Publication Date Title
CN101851400B (en) Tourmaline antibacterial sponge and preparation method thereof
KR101845874B1 (en) Silicon bracelet for sending out far-infrared radiation and anion
CA2382364C (en) Far-infrared ray radiator and method for manufacturing the same
KR100309182B1 (en) Magnetized versatile plastic ceramic having activation(active function) and a method of preparing powder thereof
CN105110778A (en) Beer mate ceramic ball
KR20040022838A (en) Minus ions radiator and manufacturing method of the radiator
CN105413628A (en) Healthcare type negative ion far infrared particles as well as preparation raw materials, preparation method and application thereof
KR20140110380A (en) Far infrared ray materials and method of the same
KR20040022837A (en) Far infrared ray and minus ion radiator and manufacturing method of the radiator
KR20040022836A (en) Far infrared ray radiator and manufacturing method of the radiator
KR100577926B1 (en) Anion-infrared releasable tape for keeping health
KR101878897B1 (en) High efficiency far infrared ray and anion radiator and producing method thereof
KR100702527B1 (en) The method for manufacturing the powder irradiating a far-infrared radiation and anion
KR20030084255A (en) Bio-ceramic that can be used for many purposes and its manufacturing method
KR20080048270A (en) Long-infrared ray emission thermal plastic composition and the manufacturing method
KR20040031360A (en) Composition radiating for-infrared and anion
KR200365501Y1 (en) Anion releasable functional tape
KR100894614B1 (en) Method for manufacturing of tending diansbo pu heating instrument using mineral mixtures and ceramic plate and heating instrument manufacturing by the method
CN108998027A (en) A kind of environmentally protective medium wave ultraviolet fluorescence powder
MY122868A (en) Far-infrared ray radiator and method for manufacturing the same
KR101982537B1 (en) Composition for radiating negative ions and far infrared rays
KR101832615B1 (en) Infrared ray generation Equipment and the manufacture Method making wave water creative negative ion and harmful substances removal
JPH11335157A (en) Production of infrared rays irradiation material
KR102231527B1 (en) Far infrared ray ceramic sintered body and manufacturing method of ceramic jewelry using the sintered body
CN101513537A (en) Tourmaline indoor air modifying agent (paint partner) and manufacture method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application