KR20040003941A - Image sensor with improved charge capacity and fabricating method of the same - Google Patents

Image sensor with improved charge capacity and fabricating method of the same Download PDF

Info

Publication number
KR20040003941A
KR20040003941A KR1020020038971A KR20020038971A KR20040003941A KR 20040003941 A KR20040003941 A KR 20040003941A KR 1020020038971 A KR1020020038971 A KR 1020020038971A KR 20020038971 A KR20020038971 A KR 20020038971A KR 20040003941 A KR20040003941 A KR 20040003941A
Authority
KR
South Korea
Prior art keywords
insulating film
impurity region
semiconductor layer
image sensor
photodiode
Prior art date
Application number
KR1020020038971A
Other languages
Korean (ko)
Other versions
KR100873812B1 (en
Inventor
박재영
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020020038971A priority Critical patent/KR100873812B1/en
Publication of KR20040003941A publication Critical patent/KR20040003941A/en
Application granted granted Critical
Publication of KR100873812B1 publication Critical patent/KR100873812B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area

Abstract

PURPOSE: An image sensor and a method for manufacturing the same are provided to enhance charge capacity of a photodiode in a unit pixel without using an additional process. CONSTITUTION: The first impurity region(n-) is formed on a semiconductor layer(30). The first impurity region(n-) has the first convex-concave shape(34a,34b) at the contact interface with the semiconductor layer(30). The second impurity region(p0) is formed on the first impurity region(n-). Also, the second impurity region(p0) has the second convex-concave shape(38a,38b) at the contact interface with the first impurity region.

Description

전하용량을 향상시키기 위한 이미지센서 및 그 제조 방법{Image sensor with improved charge capacity and fabricating method of the same}Image sensor with improved charge capacity and fabricating method of the same}

본 발명은 이미지센서에 관한 것으로 특히, 포토다이오드의 전하용량(Charge capacity)을 향상시킬 수 있는 이미지센서 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image sensor, and more particularly, to an image sensor capable of improving a charge capacity of a photodiode and a manufacturing method thereof.

일반적으로, 이미지센서라 함은 광학 영상(Optical image)을 전기 신호로 변환시키는 반도체소자로서, 이중 전하결합소자(CCD : Charge Coupled Device)는 개개의 MOS(Metal-Oxide-Silicon) 커패시터가 서로 매우 근접한 위치에 있으면서 전하 캐리어가 커패시터에 저장되고 이송되는 소자이며, CMOS(Complementary MOS; 이하 CMOS) 이미지센서는 제어회로(Control circuit) 및 신호처리회로(Signal processing circuit)를 주변회로로 사용하는 CMOS 기술을 이용하여 화소수만큼 MOS트랜지스터를 만들고 이것을 이용하여 차례차례 출력(Output)을 검출하는 스위칭 방식을 채용하는 소자이다.In general, an image sensor is a semiconductor device that converts an optical image into an electrical signal. In a double charge coupled device (CCD), individual metal-oxide-silicon (MOS) capacitors are very different from each other. A device in which charge carriers are stored and transported in a capacitor while being located in close proximity, and CMOS (Complementary MOS) image sensor is a CMOS technology that uses a control circuit and a signal processing circuit as peripheral circuits. Is a device that employs a switching method that creates MOS transistors by the number of pixels and sequentially detects the output using them.

이러한 다양한 이미지센서를 제조함에 있어서, 이미지센서의 감광도(Photo sensitivity)를 증가시키기 위한 노력들이 진행되고 있는 바, 그 중 하나가 집광기술이다. 예컨대, CMOS 이미지센서는 빛을 감지하는 포토다이오드와 감지된 빛을 전기적 신호로 처리하여 데이터화하는 CMOS 로직회로부분으로 구성되어 있는 바, 광감도를 높이기 위해서는 전체 이미지센서 면적에서 포토다이오드의 면적이 차지하는 비율(이를 통상 Fill Factor"라 한다)을 크게 하려는 노력이 진행되고 있다.In the manufacture of such various image sensors, efforts are being made to increase the photo sensitivity of the image sensor, one of which is a condensing technology. For example, a CMOS image sensor is composed of a photodiode for detecting light and a portion of a CMOS logic circuit for processing the detected light into an electrical signal to make data. To increase light sensitivity, the ratio of the photodiode to the total image sensor area is increased. Efforts have been made to increase (usually referred to as Fill Factor).

도 1은 통상적인 CMOS 이미지센서의 단위 화소(Unit Pixer) 회로도로서, 광감도(Sensitivity)를 높이고, 단위 화소간의 크로스 토크 효과를 줄이기 위하여 서브미크론 CMOS 에피(Epi) 공정을 적용하였다.FIG. 1 is a circuit diagram of a unit pixel of a conventional CMOS image sensor, and a submicron CMOS epi process is applied to increase sensitivity and reduce cross talk effect between unit pixels.

단위 화소 내에는 1개의 저전압 베리드 포토 다이오드(Buried Photodiode)와 4개의 NMOS 트랜지스터로 구성되어 있는데, 저전압 베리드 포토 다이오드 구조는 기존의 포토 게이트 구조와 달리 광감지 영역(Light Sensing Region)이 폴리실리콘으로 덮여있지 않아 단파장의 청색광에 대한 광감도가 우수할 뿐 만아니라 광감지영역에서의 공핍층 깊이(Depletion Depth)를 증가시킬 수 있어 장파장의 적색광 또는 적외선에 대한 광감도 또한 우수한 특성을 갖는다. 한편, 저전압 베리드 포토 다이오드 구조를 사용하면 광감지영역에 모인 광전하(Photogenerated Charge)를 플로팅 센싱 노드(Floating Sensing Node)로 완전히 운송할 수 있어서 전하 운송 효율(Charge Transfer Efficiency)을 현저하게 증가시킬 수 있는 장점이 있다.The unit pixel is composed of one low voltage buried photodiode and four NMOS transistors. Unlike the conventional photo gate structure, the low voltage buried photodiode has a polysilicon with a light sensing region. Not only is it covered, it has excellent light sensitivity for short wavelength blue light as well as increase the depth of depletion in the light sensing area, so the light sensitivity for long wavelength red or infrared light is also excellent. On the other hand, the low-voltage buried photodiode structure allows photogenerated charges in the photosensitive area to be completely transported to the Floating Sensing Node, which significantly increases the charge transfer efficiency. There are advantages to it.

그리고 4개의 트랜지스터 중에서 광전하를 운송하는 역할을 하는 트랜스퍼 게이트(Transfer Gate, Tx) 즉, 게이트전극과 리셋 게이트(Reset Gate, Rx)는 양의 문턱 전압(Positive Threshold Voltage)으로 인한 전압 강하로 전자가 손실되어 전하 운송 효율이 저하되는 현상을 방지하기 위하여 음의 문턱 전압을 갖는 Native NMOS 트랜지스터로 구성하며 아울러 이와같이 하면 N-LDD 이온 주입을 생략함으로써 게이트전극 및 리셋 게이트와 플로팅 센싱 노드와의 오버랩 캐패시턴스(Overlap Capacitance)를 저하시킬 수 있어 운송되는 전하량에 따른 플로팅 센싱 노드의 전위 변화량을 증폭시킬 수 있다.(△ V-△Q/C)In addition, the transfer gate (Tx), that is, the gate electrode and the reset gate (Rx), which transfer photocharges among the four transistors, is caused by a voltage drop due to a positive threshold voltage. In order to prevent the loss of charge transport efficiency, the NMOS transistor has a negative threshold voltage. In this case, the N-LDD ion implantation is omitted so that the overlap capacitance between the gate electrode and the reset gate and the floating sensing node is reduced. (Overlap Capacitance) can be lowered, so that the potential change of the floating sensing node can be amplified according to the amount of charge carried. (△ V-ΔQ / C)

한편, 소스 팔로워(Source Follower) 역할을 하는 드라이브 게이트(DriveGate, Sx)는 일반적인 서브미크론 NMOS 트랜지스터로 이루어져 있다. 이와같은 구조는 서브미크론 CMOS Epi 공정을 최소한으로 바꾸면서 구성되었고, 특히 열공정(Thermal Cycle)은 전혀 변화가 없도록 고안되었다. 한편, 칼라 이미지 구현을 위해서 이와같은 단위 화소 배열(Unit Pixel Array)위에 레드(Red), 그린(Green), 블루(Blue) 또는 엘로우(Yellow), 마젠타(Magenta), Cyan등으로 구성된 칼라 필터 배열(Color Filter Array) 형성 공정을 진행한다.On the other hand, the drive gate (DriveGate, Sx) that serves as a source follower is composed of a general submicron NMOS transistor. This structure was constructed with minimal changes to the submicron CMOS Epi process, and the thermal cycle was designed to be completely unchanged. On the other hand, a color filter array composed of red, green, blue, or yellow, magenta, cyan, and the like on a unit pixel array for implementing a color image. (Color Filter Array) The process of forming.

이러한 단위 화소로부터 출력을 얻어내는 동작원리를 살펴보면 다음과 같다.The operation principle of obtaining an output from such a unit pixel is as follows.

가. Tx, Rx, Sx를 오프 시킨다. 이때 저전압 베리드 포토 다이오드는 완전한 공핍(Fully depletion) 상태이다.end. Turn off Tx, Rx, Sx. The low voltage buried photodiode is then fully depletion.

나. 광전하(Photogenerated Charge)를 저전압 Buried 포토 다이오드에 모은다.I. Photogenerated charge is collected in a low voltage buried photo diode.

다. 적정 인터그레이션(Integration) 시간후에 Rx를 온시켜 플로팅 센싱 노드(Floating Sensing Node)를 1차 리셋(Reset) 시킨다.All. After a proper integration time, the Rx is turned on to reset the floating sensing node first.

라. Sx를 온시켜 단위 화소를 온시킨다.la. The unit pixel is turned on by turning on Sx.

마. 소스 팔로워 버퍼(Source Follower Buffer)의 출력전압(V1)을 측정한다. 이 값은 단지 플로팅 센싱 노드(Floating Sensing Node; 이하 FD라 함)의 직류 전위 변화(CD level shift)를 의미한다.hemp. Measure the output voltage (V1) of the source follower buffer. This value simply means the CD level shift of the Floating Sensing Node (FD).

바. Tx를 온 시킨다.bar. Turn on Tx.

사. 모든 광전하(Photogenerated Charge)는 FD로 운송된다.four. All photogenerated charges are shipped in FD.

아. Tx를 오프 시킨다.Ah. Turn off Tx.

자. 소스 팔로워 버퍼(Source Follower Buffer)의 출력전압(V2)을 측정한다.character. Measure the output voltage (V2) of the source follower buffer.

차. 출력신호(V1-V2)는 V1과 V2 사이의 차이에서 얻어진 광전하 운송의 결과이며, 이느 노이즈(Noise)가 배제된 순수 시그날 값이 된다. 이러한 방법을 CDS(Corelated Double Sampling)라고 한다.car. The output signals V1-V2 are the result of the photocharge transport resulting from the difference between V1 and V2 and are pure signal values without noise. This method is called CDS (Corelated Double Sampling).

카. '가' ∼ '차' 과정을 반복한다. 단, 저전압 베리드 포토 다이오드는 '사' 과정에서 완전한 공핍상태(Fully Depletion)로 되어 있다.Ka. Repeat the process of 'a' to 'tea'. However, the low voltage buried photodiode is fully depleted during the 'dead' process.

도 2는 종래기술에 따른 이미지센서를 도시한 단면도이다.2 is a cross-sectional view showing an image sensor according to the prior art.

도 2를 참조하면, 반도체층(10) 내부에 포토다이오드용 P형 불순물영역(P0)과 N형불순물영역(n-)을 포함하는 포토다이오드(Photo Diode; 이하 PD라 함)가 이온주입 등의 공정을 통해 형성되어 있으며, 이러한 이웃하는 PD간의 데이타 간섭에 따른 크로스 토크를 방지하기 위한 P형의 채널스탑영역(Channel STop; 이하 CST라 함)이 형성되어 있는 바, CST는 통상적으로 P형 불순물 이온주입을 통하여 필드절연막(Fox) 하부에 형성된다. 또한, PD와 일측이 접하는 반도체층(10) 상에 트랜스퍼 게이트(이하 Tx라 함)가 형성되어 있으며, Tx의 타측에 접하는 FD가 형성되어 있다.Referring to FIG. 2, a photodiode including a P-type impurity region P0 and a N-type impurity region n− for a photodiode in the semiconductor layer 10 is referred to as ion implantation or the like. The P-type channel stop region (hereinafter referred to as CST) is formed to prevent cross talk due to data interference between neighboring PDs. Impurity ions are implanted into the bottom of the field insulating film Fox. In addition, a transfer gate (hereinafter referred to as Tx) is formed on the semiconductor layer 10 in which one side is in contact with the PD, and an FD is formed in contact with the other side of the Tx.

여기서, 반도체층(10)은 고농도인 P++ 층 및 P형 에피층 즉, P-Epi층이 적층된 것을 이용하며, P-Epi층은 주지된 바와 같이 크로스토크 감소와 감광특성의 향상을 위해 사용한다.Here, the semiconductor layer 10 uses a high concentration of a P + + layer and a P-type epi layer, that is, a P-Epi layer is laminated, and the P-Epi layer is used for reducing crosstalk and improving photosensitive characteristics as is well known. do.

부연하자면, 전술한 이미지센서의 포토다이오드는 외부의 광신호를 전기적인 신호로 변환시키는 역할을 수행하며, 포토다이오드 자체에 수용될 수 있는 최대 전하용량은 포토다이오드 자체의 사이즈와 접합(Junction) 형성을 위한 이온주입 조건과 관련을 갖는다. 즉, 반도체층에 평판 캐패시터 형태의 구성을 가지기 때문에 화소의 사이즈가 감소함에 따라 포토다이오드 자체의 면적이 비례적으로 감소되는 특성 때문에 선폭(Line width)이 감소함에 따라 이미지센서의 기본적인 동적영역(Dynamic range)의 감소와 포화(Saturation) 특성을 열화시키는 문제가 발생한다. 또한, 이러한 문제의 해결을 위하여 포토다이오드 형성을 위한 이온주입 공정을 조정(Tuning)하는 방법이 있을 수 있으나, 이는 전하운송효율(Charge transfer efficiency)과 암신호(Dark signal) 특성 등 다른 변수 들과 트레이드-오프(Trade-off) 관계에 있으므로, 그 한계가 드러나고 있는 실정이다.In other words, the photodiode of the image sensor described above plays a role of converting an external optical signal into an electrical signal, and the maximum charge capacity that can be accommodated in the photodiode itself is the size and junction of the photodiode itself. It is related to ion implantation conditions for That is, since the semiconductor layer has a flat capacitor configuration, the area of the photodiode itself decreases proportionally as the size of the pixel decreases, so that the line width decreases, so that the basic dynamic area of the image sensor is reduced. There is a problem of reducing the range and deteriorating the saturation characteristic. In addition, there may be a method of tuning the ion implantation process for forming a photodiode to solve this problem, but it is different from other variables such as charge transfer efficiency and dark signal characteristics. Since the trade-off relationship, the limit is being revealed.

즉, 전술한 동적영역을 확보하게 위해서는 포토다이오드의 전하용량을 증가하거나 센싱확산영역의 용량을 감소시켜야한다.That is, in order to secure the above-mentioned dynamic region, the charge capacity of the photodiode should be increased or the capacity of the sensing diffusion region should be reduced.

또한, 기존의 공정에서 포토다이오드의 N형 불순물영역을 크게하기 위해 고에너지를 이용하고, 이 때 Tx의 두께가 얇으면 Tx의 채널 아래에까지 도핑이 되어 채널링(Channeling) 문제가 발생하므로, 현재는 캡핑(Capping) TEOS(Tetra Ethyl Ortho Silicate)막을 Tx위에 추가로 형성하여 이러한 채널링을 방지하기도 한다.In addition, in the conventional process, high energy is used to increase the N-type impurity region of the photodiode. At this time, if the thickness of Tx is thin, the doping is caused under the channel of Tx, which causes channeling problem. Capping A further Tetra Ethyl Ortho Silicate (TEOS) film is formed on Tx to prevent this channeling.

이러한 TEOS막 등을 사용하게 되면, 증착 공정의 추가 뿐만아니라 Tㅌ 식각공정에서 TEIS막을 먼저 제거한 후 게이트를 제거하게 되어 공정이 복잡해지고 공정을 제어하는 것 자체가 어려워지는 문제점이 있다.When using such a TEOS film, as well as the addition of the deposition process, the TEIS film is first removed after removing the gate in the T 를 etching process, there is a problem that the process is complicated and difficult to control the process itself.

상기와 같은 종래 기술의 문제점을 해결하기 위해 제안된 본 발명은, 별도의 추가 공정없이 단위 화소에서의 포토다이오드의 전하용량을 증가시켜 동적영역을 증가시킬 수 있는 이미지센서 및 그 제조방법을 제공하는데 그 목적이 있다.The present invention proposed to solve the problems of the prior art as described above, to provide an image sensor and a manufacturing method that can increase the dynamic range by increasing the charge capacity of the photodiode in the unit pixel without additional processing The purpose is.

도 1은 통상적인 CMOS 이미지센서의 단위 화소 회로도,1 is a unit pixel circuit diagram of a conventional CMOS image sensor;

도 2는 종래기술에 따른 이미지센서를 도시한 단면도,2 is a cross-sectional view showing an image sensor according to the prior art,

도 3a 내지 도 3c는 본 발명의 일실시예에 따른 이미지센서 제조 공정을 도시한 단면도,3A to 3C are cross-sectional views illustrating an image sensor manufacturing process according to an embodiment of the present invention;

도 4는 본 발명의 이미지센서를 도시한 단면도,4 is a cross-sectional view showing an image sensor of the present invention;

도 5a 내지 도 5c는 본 발명의 절연막 패턴 형성을 위한 마스크를 도시한 평면도.5A to 5C are plan views showing masks for forming an insulating film pattern of the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

30 : 반도체층31 : 필드절연막30 semiconductor layer 31 field insulating film

32 : 게이트절연막33 : 게이트전극용 전도막32: gate insulating film 33: gate electrode conductive film

34 : n-영역36 : 스페이서34: n-region 36: spacer

38 : P0영역34a,34b,38a,38b : 요철38: P0 region 34a, 34b, 38a, 38b: unevenness

39 : 센싱확산영역39: sensing diffusion area

상기 목적을 달성하기 위하여 본 발명은, 제1도전형의 반도체층; 상기 반도체층 하부에 형성되며, 반도체층과의 접촉계면에서 제1요철을 갖는 제2도전형의 포토다이오드용 제1불순물영역; 및 상기 제1불순물영역 상부의 상기 반도체층 표면에 형성되며, 상기 제1불순물영역과의 접촉 계면에서 제2요철을 갖는 제1도전형의 포토다이오드용 제2불순물영역을 포함하는 이미지센서를 제공한다.In order to achieve the above object, the present invention, the first conductive semiconductor layer; A first impurity region formed under the semiconductor layer and having a second conductivity type in the contact interface with the semiconductor layer; And a second impurity region for a photodiode of a first conductivity type formed on a surface of the semiconductor layer above the first impurity region and having a second unevenness at a contact interface with the first impurity region. do.

또한, 상기 목적을 달성하기 위하여 본 발명은, 제1도전형의 반도체층 상에 게이트전극을 형성하는 단계; 상기 게이트전극이 형성된 전체 프로파일을 따라 절연막을 형성하는 단계; 상기 절연막을 선택적으로 식각하여 포토다이오드가 형성될 상기 반도체층과 상기 게이트전극 상부에 국부적으로 상기 절연막을 잔류시키는 절연막패턴을 형성하는 단계; 상기 게이트전극의 일측에 얼라인되는 상기 반도체층 내에 제2도전형의 포토다이오드용 제1불순물영역을 형성하기 위한 이온주입을 실시하되, 상기 절연막패턴의 프로파일이 전사되어 상기 제1불순물영역과의 계면이 요철지도록 하는 단계; 및 상기 제1불순물영역에 제1도전형의 포토다이오드용 제2불순물영역을 형성하기 위한 이온주입을 실시하되, 상기 절연막패턴의 프로파일이 전사되어 상기 제1불순물영역과의 계면이 요철지도록 하는 단계를 포함하는 이미지센서 제조방법을 제공한다.In addition, to achieve the above object, the present invention comprises the steps of forming a gate electrode on the first conductive semiconductor layer; Forming an insulating film along the entire profile where the gate electrode is formed; Selectively etching the insulating film to form an insulating film pattern in which the insulating film is locally left on the semiconductor layer where the photodiode is to be formed and the gate electrode; Ion implantation is performed to form a first impurity region for a photodiode of a second conductivity type in the semiconductor layer aligned on one side of the gate electrode, and the profile of the insulating film pattern is transferred to the first impurity region. Allowing the interface to be uneven; And implanting ions into the first impurity region to form a second impurity region for a photodiode of a first conductivity type, wherein the profile of the insulating film pattern is transferred so that the interface with the first impurity region is uneven. It provides an image sensor manufacturing method comprising a.

본 발명은, 포토다이오드(저전압 베리드 포토다이오드)의 n-영역 및 P0영역을 형성시 절연막을 이용하여 도핑영역을 요철지도록 형성하여 포토다이오드의 면적 및 에지 용량 증가에 따른 전하용량을 증가시켜 이미지센서의 동적영역을 확보하는 동시에 포토다이오드의 고집적화에 따른 포화신호의 저하를 방지하며, 이 때, 게이트전극위에 절연막을 남겨놓아 N형 불순물 이온주입시 게이트전극을 통한 채널링을 방지할 수 있어 추가의 캡핑 TEOS막 형성 공정을 생략할 수 있도록 한다.According to the present invention, when the n-region and the P0 region of the photodiode (low voltage buried photodiode) are formed, the doped region is formed by using an insulating film to increase the charge capacity according to the increase of the area and edge capacity of the photodiode. It prevents the saturation signal from deteriorating due to the high integration of the photodiode while ensuring the dynamic area of the sensor.In this case, an insulating film is left on the gate electrode to prevent channeling through the gate electrode when N-type impurity ions are injected. Capping TEOS film formation process can be omitted.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부한 도면을 참조하여 설명하는 바, 도 3a 내지 도 3c는 본 발명의 일실시예에 따른 이미지센서 제조 공정을 도시한 단면도이며, 도 4는 최종 완성된 본 발명의 이미지센서를 도시한 단면도이며, 도 5a 내지 도 5c는 본 발명의 절연막 패턴 형성을 위한 마스크를 도시한 평면도이다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. 3A to 3C are cross-sectional views illustrating a manufacturing process of an image sensor according to an embodiment of the present invention, FIG. 4 is a cross-sectional view illustrating an image sensor of the present invention, and FIGS. 5A to 5C are views of the present invention. Is a plan view showing a mask for forming an insulating film pattern.

도 4를 참조하면, 본 발명의 이미지센서는 고농도의 P++ 기판과 P에피층이 적층된 P형의 반도체층(30)과, 반도체층(30)에 국부적으로 형성된 필드절연막(31)과, 필드절연막(31)과 떨어진 반도체층(30) 상에 형성되며 게이트절연막(32)과 게이트전극용 전도막(33)과 그 측벽에 형성된 스페이서(36)를 포함하는 게이트전극 예컨대, 트랜스퍼 게이트와, 반도체층(30) 하부에 형성되며, 반도체층(30)과의 접촉계면에서 요철(34a, 34b)을 갖는 N형의 포토다이오드용 불순물영역(34, 이하 n-영역이라 함)과, n-영역(34) 상부의 반도체층(30) 표면에 형성된 P형 불순물영역(38, 이하 P0영역이라 함)과 고농도의 N형 불순물영역인 센싱확산영역(39, 이하 n+영역이라 함)을 구비하여, P0영역(38)이 n-영역(34)과의 접촉 계면에서 요철(38a, 38b)을 갖아 요철(38a, 38b)에 의해 포토다이오드(PD)의 면적이 증가하며, 용량을 증가시킬 수 있는 구조이다.Referring to FIG. 4, the image sensor of the present invention includes a P-type semiconductor layer 30 in which a high concentration P ++ substrate and a P epi layer are stacked, a field insulating film 31 locally formed on the semiconductor layer 30, and a field. A gate electrode formed on the semiconductor layer 30 separated from the insulating film 31 and including a gate insulating film 32, a conductive film 33 for a gate electrode, and a spacer 36 formed on a sidewall thereof, for example, a transfer gate, and a semiconductor; An n-type impurity region (hereinafter referred to as n-region) for an n-type photodiode formed under the layer 30 and having concave-convexities 34a and 34b in contact with the semiconductor layer 30, and n-region. (34) P-type impurity regions (38, hereinafter referred to as P0 regions) formed on the upper surface of the semiconductor layer 30, and sensing diffusion regions (39, hereinafter referred to as n + regions), which are high concentration N-type impurity regions, are provided. The area of the photodiode PD is formed by the unevenness 38a and 38b because the P0 region 38 has unevenness 38a and 38b at the contact interface with the n-region 34. This increases, and is a structure that can increase the capacity.

전술한 바와 같이 본 발명은 제한된 화소영역 내에서 평탄형 포토다이오드에 비해 그 면적 및 전하 용량을 증대시켜 이미지센서의 동적영역을 확보할 수 있으며, 고집적화로 인한 포토다이오드의 면적 감소에 따른 포화신호의 저하를 방지할 수 있다.As described above, the present invention can secure the dynamic area of the image sensor by increasing its area and charge capacity as compared to the planar photodiode in the limited pixel area, and the saturation signal due to the reduction of the area of the photodiode due to high integration The fall can be prevented.

전술한 이미지센서의 제조 공정을 도 3a 내지 도 3c를 참조하여 후술한다.The manufacturing process of the above-described image sensor will be described later with reference to FIGS. 3A to 3C.

먼저, 도 3a에 도시된 바와 같이 P형의 반도체층(30)에 국부적으로 STI(Shallow Trench Isolation) 또는 LOCOS(LOCal Oxidation of Silicon) 구조의 필드절연막(31)을 형성하는 바, 여기서 반도체층(30)은 고농도인 P++층 및 P-에피층이 적층된 것을 이용하는 바, 도면의 간략화를 위해 반도체층(30)으로 약칭한다.First, as shown in FIG. 3A, a field insulating film 31 having a shallow trench isolation (STI) or a local oxide of silicon (LOCOS) structure is formed locally on the P-type semiconductor layer 30. 30) is a layer in which a high concentration of the P + + layer and the P- epi layer is laminated, abbreviated as a semiconductor layer 30 for the sake of simplicity of the drawings.

이어서, 반도체층(30) 상에 게이트절연막(32)과 게이트전도막(33)을 구비하는 게이트전극을 형성한다.Subsequently, a gate electrode including the gate insulating film 32 and the gate conductive film 33 is formed on the semiconductor layer 30.

계속해서, 게이트전극이 형성된 프로파일을 따라 절연막(40a)을 형성하는 바, 1000Å ∼ 1500Å의 두께가 되도록 한다.Subsequently, the insulating film 40a is formed along the profile in which the gate electrode is formed so as to have a thickness of 1000 GPa to 1500 GPa.

절연막(40a)은 산화막을 포함하는 절연성 물질을 이용하는 것이 바람직하며,후속 포토다이오드용 N형 및 P 형 불순물영역 형성시 그 패턴에 의해 전사된 요철부를 갖도록 하는 중요한 역할을 하게 된다.It is preferable to use an insulating material including an oxide film as the insulating film 40a, and to form an N-type and a P-type impurity region for a subsequent photodiode to play an important role of having the uneven portion transferred by the pattern.

다음으로, 도 3b에 도시된 바와 같이 절연막(40a) 상에 포토레지스트를 도포한 다음, 절연막(40a) 식각을 위한 마스크(도시하지 않음)를 이용한 노광 및 현상 공정을 통해 포토다이오드 형성 영역(41) 상부와 게이트전극 상부에서 절연막(40a)을 국부적으로 노출시키는 포토레지스트 패턴(42)을 형성한 다음, 포토레지스트 패턴(42)을 식각마스크로 하여 절연막(36)을 선택적으로 식각하여 반도체층(30) 표면을 노출시키는 절연막 패턴(40b)을 형성한다.Next, as shown in FIG. 3B, a photoresist is applied on the insulating film 40a, and then the photodiode forming region 41 is subjected to an exposure and development process using a mask (not shown) for etching the insulating film 40a. A photoresist pattern 42 for locally exposing the insulating film 40a is formed on the top and the gate electrode, and then the insulating film 36 is selectively etched using the photoresist pattern 42 as an etching mask. 30) An insulating film pattern 40b exposing the surface is formed.

여기서, 절연막 패턴(40b)은 포토다이오드 형성 영역(41)에서 이온주입시 그 굴곡을 하부에 전사시키는 역할을 할 뿐만아니라, 게이트전극 상부에서 N형 불순물영역 형성을 위한 고에너지의 이온주입시 채널링을 방지하는 역할을 한다.Here, the insulating layer pattern 40b not only transfers the bend to the lower portion when the ion is implanted in the photodiode formation region 41, but also channeling the ion implantation of high energy to form an N-type impurity region on the gate electrode. Serves to prevent.

여기서, 전술한 마스크는 도 5a 내지 도 5c에 도시된 줄무늬 모양 또는 격자 모양 등을 이용하는 바, 도면부호 '가'는 절연막(40a)이 잔류하여 절연막 패턴(40b)이 형성되는 부분이며, 도면부호 '나'는 절연막(36)이 제거되는 부분이다.Here, the aforementioned mask uses a stripe shape or a lattice shape shown in FIGS. 5A to 5C, and the reference numeral 'low' denotes a portion where the insulating film 40a is left to form the insulating film pattern 40b. 'I' is a portion where the insulating film 36 is removed.

다음으로, 도 3c에 도시된 바와 같이 포토레지스트 패턴(42)을 제거함으로써 포토다이오드 형성 영역(41) 상부의 반도체층(30) 상부에 게이트전극 상부에 잔류하는 절연막패턴(40b)을 형성한 다음, 이온주입 마스크(43)를 형성한다. 이어서, 이온주입 마스크를 이용하여 게이트전극에 얼라인되며 필드절연막(31)에 접하는 포토다이오드용 n-영역(34)을 형성한다. 이 때, 절연막 패턴(40b)의 프로파일이 반도체층(30) 하부에 전사되어 하부 반도체층(30)과의 접촉계면에서 요철(34a, 34b)을 갖도록 즉, 반도체층(34)과의 계면이 요철지도록 형성한다. 이 때, 게이트전극 상부의 절연막 패턴(40b)에 의해 게이트전극을 통한 채널링은 발생하지 않는다.Next, as shown in FIG. 3C, the insulating layer pattern 40b remaining on the gate electrode is formed on the semiconductor layer 30 on the photodiode forming region 41 by removing the photoresist pattern 42. The ion implantation mask 43 is formed. Subsequently, an n-region 34 for photodiode aligned with the gate electrode and in contact with the field insulating film 31 is formed using an ion implantation mask. At this time, the profile of the insulating film pattern 40b is transferred to the lower portion of the semiconductor layer 30 to have the unevenness 34a and 34b at the contact interface with the lower semiconductor layer 30, that is, the interface with the semiconductor layer 34 Form to be uneven. At this time, channeling through the gate electrode does not occur by the insulating film pattern 40b on the gate electrode.

계속해서, n-영역(34) 상부의 반도체층(30) 표면에 P0영역(38)을 형성하기 위한 이온주입을 실시하여, 절연막 패턴(40b)의 프로파일이 반도체층(30) 하부에 전사되어 P0영역(38)과 n-영역(34)의 계면이 요철지도록 즉, 요철(38a, 38b)을 갖도록 형성하는 바, 고농도 저에너지를 이용하는 것이 바람직하다.Subsequently, ion implantation is performed to form the P0 region 38 on the surface of the semiconductor layer 30 above the n-region 34 so that the profile of the insulating film pattern 40b is transferred to the lower portion of the semiconductor layer 30. The interface between the P0 region 38 and the n-region 34 is formed so as to have unevenness, that is, having unevenness 38a, 38b. Therefore, it is preferable to use high concentration and low energy.

전술한 바와 같이 n-영역(34)과 P0영역(38)은 모두 동일한 절연막 패턴(40b)의 전사를 통해 이루어지므로 오버랩되도록 형성된다.As described above, the n-region 34 and the P0 region 38 are formed by overlapping the same insulating layer pattern 40b.

다음으로, 이온주입 마스크(43)와 절연막 패턴(40b)을 제거한 후 고농도의 N형 센싱확산영역(39, n+)를 형성함으로써, 도 4와 같은 이미지센서가 완료된다.Next, after removing the ion implantation mask 43 and the insulating film pattern 40b, the high concentration N-type sensing diffusion regions 39 and n + are formed, thereby completing the image sensor shown in FIG. 4.

전술한 본 발명은, 포토다이오드의 P0영역과 n-영역의 계면 및 n-영역과 반도체층의 계면이 요철지도록 함으로써, 포토다이오드의 표면적을 증가시켜 고집적화에 따른 포화신호의 감소를 방지하며, 전하용량을 증가시켜 동적영역을 확보할 수 있으며, n-영역 형성을 위한 이온주입시 게이트를 통한 채널링을 별도의 TEOS막 형성 공정없이 방지할 수 있음을 실시예를 통해 알아 보았다.According to the present invention, the interface between the P0 region and the n-region of the photodiode and the interface of the n-region and the semiconductor layer are uneven, thereby increasing the surface area of the photodiode and preventing the reduction of the saturation signal due to the high integration, and the charge The embodiment has been found that the dynamic area can be secured by increasing the capacity, and the channeling through the gate can be prevented without a separate TEOS film formation process during the ion implantation for forming the n-region.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

상술한 본 발명은, 단위화소 내에서 차지하는 포토다이오드의 표면적을 넓힘으로써 이미지센서의 포화신호 특성 및 동적영역을 향상시킬 수 있으며 게이트전극의 채널링을 방지할 수 있어, 궁극적으로 이미지센서의 성능을 크게 향상시킬 수 있는 탁월한 효과를 기대할 수 있다.The present invention described above can improve the saturation signal characteristics and dynamic region of the image sensor by widening the surface area of the photodiode occupied in the unit pixel, and can prevent channeling of the gate electrode, thereby ultimately increasing the performance of the image sensor. You can expect an excellent effect that can be improved.

Claims (11)

제1도전형의 반도체층;A first conductive semiconductor layer; 상기 반도체층 하부에 형성되며, 반도체층과의 접촉계면에서 제1요철을 갖는 제2도전형의 포토다이오드용 제1불순물영역; 및A first impurity region formed under the semiconductor layer and having a second conductivity type in the contact interface with the semiconductor layer; And 상기 제1불순물영역 상부의 상기 반도체층 표면에 형성되며, 상기 제1불순물영역과의 접촉 계면에서 제2요철을 갖는 제1도전형의 포토다이오드용 제2불순물영역A second impurity region for a photodiode of a first conductivity type formed on a surface of the semiconductor layer above the first impurity region and having a second unevenness at a contact interface with the first impurity region; 을 포함하는 이미지센서.Image sensor comprising a. 제 1 항에 있어서,The method of claim 1, 상기 제1요철과 상기 제2요철은 오버랩되도록 형성된 것을 특징으로 하는 이미지센서.And the first unevenness and the second unevenness are formed to overlap each other. 제 1 항에 있어서,The method of claim 1, 상기 제1불순물영역에 접하며 상기 반도체층 상에 형성된 게이트전극을 더 포함하는 것을 특징으로 하는 이미지센서.And a gate electrode formed on the semiconductor layer in contact with the first impurity region. 제 1 항에 있어서,The method of claim 1, 상기 반도체층은,The semiconductor layer, 제1도전형의 기판; 및A first conductive substrate; And 상기 기판 상부의 제1도전형의 에피층Epi layer of the first conductivity type on the substrate 을 포함하는 것을 특징으로 하는 이미지센서.Image sensor comprising a. 제 1 항 또는 제 4 항에 있어서,The method according to claim 1 or 4, 상기 제1도전형은 P형이며, 상기 제2도전형은 N형인 것을 특징으로 하는 이미지센서 제조 방법.The first conductive type is a P-type, the second conductive type is an image sensor manufacturing method, characterized in that the N-type. 제1도전형의 반도체층 상에 게이트전극을 형성하는 단계;Forming a gate electrode on the first conductive semiconductor layer; 상기 게이트전극이 형성된 전체 프로파일을 따라 절연막을 형성하는 단계;Forming an insulating film along the entire profile where the gate electrode is formed; 상기 절연막을 선택적으로 식각하여 포토다이오드가 형성될 상기 반도체층과 상기 게이트전극 상부에 국부적으로 상기 절연막을 잔류시키는 절연막패턴을 형성하는 단계;Selectively etching the insulating film to form an insulating film pattern in which the insulating film is locally left on the semiconductor layer where the photodiode is to be formed and the gate electrode; 상기 게이트전극의 일측에 얼라인되는 상기 반도체층 내에 제2도전형의 포토다이오드용 제1불순물영역을 형성하기 위한 이온주입을 실시하되, 상기 절연막패턴의 프로파일이 전사되어 상기 제1불순물영역과의 계면이 요철지도록 하는 단계; 및Ion implantation is performed to form a first impurity region for a photodiode of a second conductivity type in the semiconductor layer aligned on one side of the gate electrode, and the profile of the insulating film pattern is transferred to the first impurity region. Allowing the interface to be uneven; And 상기 제1불순물영역에 제1도전형의 포토다이오드용 제2불순물영역을 형성하기 위한 이온주입을 실시하되, 상기 절연막패턴의 프로파일이 전사되어 상기 제1불순물영역과의 계면이 요철지도록 하는 단계Ion implantation is performed to form a second impurity region for a photodiode of a first conductivity type in the first impurity region, and the profile of the insulating film pattern is transferred so that the interface with the first impurity region is uneven 를 포함하는 이미지센서 제조방법.Image sensor manufacturing method comprising a. 제 6 항에 있어서,0The method of claim 6, wherein 상기 절연막은 산화막을 포함하는 것을 특징으로 하는 이미지센서 제조 방법.And the insulating film comprises an oxide film. 제 7 항에 있어서,The method of claim 7, wherein 상기 절연막을 1000Å 내지 1500Å의 두께로 형성하는 것을 특징으로 하는 이미지센서 제조 방법.The insulating film is manufactured to an image sensor of claim 1000 to 1500 두께 thickness. 제 6 항에 있어서,The method of claim 6, 상기 절연막패턴을 형성하는 단계는,Forming the insulating film pattern, 상기 절연막 상에 포토레지스트를 도포하는 단계;Applying a photoresist on the insulating film; 마스크를 이용한 노광 및 형상 공정을 통해 상기 제1불순물영역 상부의 상기 절연막 상에 상기 절연막을 국부적으로 노출시키는 포토레지스트 패턴을 형성하는 단계;Forming a photoresist pattern locally exposing the insulating film on the insulating film over the first impurity region through an exposure and shape process using a mask; 상기 포토레지스트 패턴을 식각마스크로 하여 상기 절연막을 식각하여 상기 반도체층 표면을 노출시키는 단계; 및Etching the insulating layer using the photoresist pattern as an etching mask to expose a surface of the semiconductor layer; And 상기 포토레지스트 패턴을 제거하는 단계Removing the photoresist pattern 를 포함하는 것을 특징으로 하는 이미지센서 제조 방법.Image sensor manufacturing method comprising a. 제 9 항에 있어서,The method of claim 9, 상기 마스크는 격자 모양 또는 줄무늬 모양을 포함하는 것을 특징으로 하는 이미지센서 제조 방법.The mask is an image sensor manufacturing method comprising a grid or stripe. 제 6 항에 있어서,The method of claim 6, 상기 제1도전형은 P형이며, 상기 제2도전형은 N형인 것을 특징으로 하는 이미지센서 제조 방법.The first conductive type is a P-type, the second conductive type is an image sensor manufacturing method, characterized in that the N-type.
KR1020020038971A 2002-07-05 2002-07-05 Image sensor with improved charge capacity and fabricating method of the same KR100873812B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020038971A KR100873812B1 (en) 2002-07-05 2002-07-05 Image sensor with improved charge capacity and fabricating method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020038971A KR100873812B1 (en) 2002-07-05 2002-07-05 Image sensor with improved charge capacity and fabricating method of the same

Publications (2)

Publication Number Publication Date
KR20040003941A true KR20040003941A (en) 2004-01-13
KR100873812B1 KR100873812B1 (en) 2008-12-11

Family

ID=37323742

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020038971A KR100873812B1 (en) 2002-07-05 2002-07-05 Image sensor with improved charge capacity and fabricating method of the same

Country Status (1)

Country Link
KR (1) KR100873812B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778858B1 (en) * 2005-10-12 2007-11-22 동부일렉트로닉스 주식회사 CMOS image sensor and method for manufacturing the same
KR100880287B1 (en) 2007-12-27 2009-01-23 주식회사 동부하이텍 Image sensor and method for manufacturing thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100318447B1 (en) * 1998-12-22 2002-02-19 박종섭 pinned photodiode in image sensor and method for fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778858B1 (en) * 2005-10-12 2007-11-22 동부일렉트로닉스 주식회사 CMOS image sensor and method for manufacturing the same
KR100880287B1 (en) 2007-12-27 2009-01-23 주식회사 동부하이텍 Image sensor and method for manufacturing thereof

Also Published As

Publication number Publication date
KR100873812B1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP4224036B2 (en) Image sensor with embedded photodiode region and method of manufacturing the same
US6180969B1 (en) CMOS image sensor with equivalent potential diode
KR100494030B1 (en) Image sensor and method for fabricating the same
JP4870656B2 (en) Seamos image sensor and manufacturing method thereof
KR100384836B1 (en) Image sensor and method for fabricating the same
KR100873812B1 (en) Image sensor with improved charge capacity and fabricating method of the same
KR100535911B1 (en) CMOS image sensor and its fabricating method
KR20030056060A (en) Image sensor with improved charge capacity and fabricating method of the same
KR100776151B1 (en) A fabricating method of image sensor with improved high intergation
KR20030000654A (en) A fabricating method of image sensor
KR20040003981A (en) Imase sensor with improved capability of protection against crosstalk and method for fabricating thereof
KR100440775B1 (en) Image sensor and fabricating method of the same
KR100748314B1 (en) Image sensor and fabricating method of the same
KR20010004105A (en) Image sensor and method for fabricating the same
KR20010004106A (en) Image sensor and method for fabricating the same
KR100790287B1 (en) Fabricating method of Image sensor
KR100813801B1 (en) Image sensor with improved light sensitivity and fabricating method of the same
KR20030057677A (en) Image sensor with improved charge capacity and fabricating method of the same
KR100851497B1 (en) Imase sensor with improved capability of low light level and method for fabricating thereof
KR100748345B1 (en) Image sensor with improved light sensitivityy and fabricating method of the same
KR100790229B1 (en) Image sensor and fabricating method of the same
KR100714604B1 (en) Image sensor and method for manufacturing the same
KR100790286B1 (en) Fabricating method of image sensor
KR20060127498A (en) Method of fabricating cmos image sensor to reduce the dark current
KR20030057710A (en) CMOS Image sensor for sensitivity improvement and method for fabricating the same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111129

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee