KR20030081717A - Recovering method of styrene monomer from waste polystyrene - Google Patents

Recovering method of styrene monomer from waste polystyrene Download PDF

Info

Publication number
KR20030081717A
KR20030081717A KR1020020020074A KR20020020074A KR20030081717A KR 20030081717 A KR20030081717 A KR 20030081717A KR 1020020020074 A KR1020020020074 A KR 1020020020074A KR 20020020074 A KR20020020074 A KR 20020020074A KR 20030081717 A KR20030081717 A KR 20030081717A
Authority
KR
South Korea
Prior art keywords
oxide
catalyst
styrene monomer
styrene
basic
Prior art date
Application number
KR1020020020074A
Other languages
Korean (ko)
Other versions
KR100468047B1 (en
Inventor
최명재
김성보
이상봉
윤병태
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR10-2002-0020074A priority Critical patent/KR100468047B1/en
Publication of KR20030081717A publication Critical patent/KR20030081717A/en
Application granted granted Critical
Publication of KR100468047B1 publication Critical patent/KR100468047B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/22Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by depolymerisation to the original monomer, e.g. dicyclopentadiene to cyclopentadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/42Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic
    • C07C15/44Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic the hydrocarbon substituent containing a carbon-to-carbon double bond
    • C07C15/46Styrene; Ring-alkylated styrenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A method for recovering a styrene monomer form the waste polystyrene is provided, to improve the reaction velocity and to suppress the side reaction generating ethyl benzene, α-methyl styrene, benzene and toluene, thereby improving the production yield of a styrene monomer. CONSTITUTION: The method comprises the step of pyrolyzing the waste polystyrene in the presence of a catalyst at a temperature of 200-600 deg.C for 1-2 hours, wherein the catalyst is a dual-supported catalyst of a metal oxide and a basic oxide supported in a carrier (alumina or silica). Preferably the metal oxide is selected from the group consisting of iron oxide, copper oxide, manganese oxide and chromium oxide; and the basic oxide is barium oxide, calcium oxide and potassium oxide.

Description

폐폴리스티렌으로부터 스티렌모노머의 회수방법{Recovering method of styrene monomer from waste polystyrene}Recovery method of styrene monomer from waste polystyrene

본 발명은 폐폴리스티렌으로부터 스티렌모노머의 회수방법에 관한 것으로서, 더욱 상세하게는 금속산화물과 염기성산화물이 담체(알루미나 또는 실리카)에 담지되어 있는 이중담지촉매를 사용하여 200 ∼ 600 ℃에서 1 ∼ 2 시간 폐폴리스티렌을 열분해시켜 고수율로 스티렌모노머를 회수하는 방법에 관한 것이다.The present invention relates to a method for recovering styrene monomer from waste polystyrene, and more particularly, using a double supported catalyst in which a metal oxide and a basic oxide are supported on a carrier (alumina or silica) for 1 to 2 hours at 200 to 600 ° C. It relates to a method of pyrolyzing waste polystyrene to recover styrene monomer in high yield.

최근들어 우리나라는 매년 30만톤의 폐폴리스티렌이 발생되고 있으며, 이러한 폐폴리스티렌 중 일부는 재생수지제조, 경량콘크리트제조, 접착제제조 등에 재활용되고 있다. 그러나, 농수산물시장으로부터 배출되는 오염물질이 많이 묻어있는 다량의 폐폴리스티렌은 매립이나 소각 등에 의해 처리되어 환경문제를 야기하고 있다. 그러므로 이러한 폐기폴리스티렌을 화학적처리단계를 거치는 화학적 재활용(chemical recycling) 기술을 통하여 스티렌모노머 같은 원료로 회수 자원화함으로써 경제성 및 환경친화성을 크게 향상시킬 수 있다.In recent years, 300,000 tons of waste polystyrene is generated in Korea each year, and some of these waste polystyrenes are recycled to recycled resin, light concrete, and adhesive. However, a large amount of waste polystyrene containing a large amount of pollutants emitted from the agricultural and fishery market is treated by landfilling or incineration, causing environmental problems. Therefore, by recycling the waste polystyrene with raw materials such as styrene monomer through a chemical recycling technology through a chemical treatment step, economical and environmental friendliness can be greatly improved.

폴리스티렌으로부터 스티렌모노머의 회수기술은 1997년에 니시자키(Nishizaki) 등이 처음으로 시도하였으며 733K 온도에서 열분해에 의해 폴리스티렌으로부터 약 50%의 모노머로의 회수가 가능하다고 보고하였으며, 이러한 기술을 토대로 스티렌모노머의 수율을 증가시키기 위하여 많은 연구자들에 의해 여러 촉매의 영향이 검토되어 많은 촉매들이 개발되었다.The technique for recovering styrene monomer from polystyrene was first attempted in 1997 by Nishizaki et al. And reported that it is possible to recover about 50% of monomer from polystyrene by pyrolysis at 733K temperature. Many catalysts have been developed by many researchers to investigate the effects of various catalysts in order to increase the yield.

상기 촉매를 사용하여 스티렌모노머를 회수하는 방법으로는 산성이 큰 Co3O4, Fe2O3, Cr2O3, CuO 등의 금속산화물을 촉매로 사용하여 다음 반응식 1에 나타난 바와 같이 폴리스티렌의 C-C 결합의 절단에 의해 스티렌모노머와 다이머가 생성됨이 제안되어있다.As a method for recovering the styrene monomer using the catalyst, polystyrene of metals such as Co 3 O 4 , Fe 2 O 3 , Cr 2 O 3 , CuO, etc., which is highly acidic, is used as a catalyst. It is proposed that styrene monomer and dimer are produced by cleavage of a CC bond.

또한, BaO, K2O, MgO, ZnO, CaO 등의 염기성 촉매를 사용한 경우에는 오일의 생성이 증가하며 오일중에 함유된 스티렌의 수율이 크게 증가한다[반응식 2 참조]. 그 이유는 젤리넥(Jelinek)과 마르도스키(Mardorsky)가 제안한 바와 같이 염기성 촉매가 카르보음이온(carboanion)의 생성을 도와주기 때문이다.In addition, when basic catalysts such as BaO, K 2 O, MgO, ZnO, and CaO are used, the production of oil is increased and the yield of styrene contained in the oil is greatly increased (see Scheme 2). This is because basic catalysts help the production of carboanions, as suggested by Jelinek and Mardorsky.

그러나, 상기와 같이 금속산화물을 촉매로 사용하여 스티렌모노머를 회수하는 방법은 크랙킹이 일어나 반응성을 증가시켜 반응속도를 증가시키는 장점은 있으나 부산물인 에틸벤젠이나 알파메틸스티렌을 증가시켜 스티렌의 선택도를 저하시키는 단점을 가지는 문제가 있다. 그리고, 염기성 촉매를 사용하여 스티렌모노머를 회수하는 방법은 산촉매에 비해 반응성이 저하되어 반응시간이 길어지는 문제가 있다.However, the method of recovering the styrene monomer using the metal oxide as a catalyst as described above has the advantage of increasing the reaction rate by increasing the reactivity to cracking, but by increasing the by-product ethylbenzene or alpha methyl styrene to improve the selectivity of styrene There is a problem that has a disadvantage in reducing. In addition, the method for recovering the styrene monomer using a basic catalyst has a problem in that the reactivity is lowered and the reaction time is longer than that of the acid catalyst.

또한, 황산염을 촉매로 사용하여 폴리스티렌으로부터 스티렌모노머를 회수하는 방법이 개시된 대한민국 특허공개 제2001-87093호는 산촉매에서와 같이 부산물인 에틸벤젠이나 알파메틸스티렌이 증가하여 스티렌 수율이 감소하는 문제가 있다.In addition, Korean Patent Laid-Open Publication No. 2001-87093, which discloses a method of recovering styrene monomer from polystyrene using sulfate as a catalyst, has a problem in that styrene yield is decreased due to an increase in by-product ethylbenzene or alpha methyl styrene as in an acid catalyst. .

이에, 본 발명자들은 상기와 같은 문제를 해결하기 위하여 금속산화물과 염기성산화물이 동시에 담체(알루미나 또는 실리카)에 담지되어 있는 이중담지촉매를 사용하게되면 금속산화물과 염기성산화물이 각각 담지된 촉매와 비교하여 폐폴리스티렌의 열분해 반응에서 산촉매의 장점과 염기성촉매의 장점을 같이 나타내어 반응속도가 증가하며 스티렌의 선택도가 증가하는 시너지효과를 얻음을 알게됨으로써, 본 발명을 완성하였다.Thus, the inventors of the present invention compared to a catalyst having a metal oxide and a basic oxide supported by using a double supported catalyst having a metal oxide and a basic oxide simultaneously supported on a carrier (alumina or silica) to solve the above problems. In the pyrolysis of waste polystyrene, the present invention was completed by showing the advantages of the acid catalyst and the basic catalyst together to obtain a synergistic effect of increasing the reaction rate and increasing the selectivity of styrene.

따라서, 본 발명은 종래 스티렌모노머의 회수공정에서 부반응으로 생성되는 에틸벤젠, 알파메틸스티렌, 벤젠, 톨루엔 등의 생성을 억제시켜 고수율로 스티렌모노머를 회수하는 방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for recovering styrene monomer in a high yield by inhibiting the production of ethylbenzene, alphamethylstyrene, benzene, toluene, etc. generated by side reactions in the conventional recovery process of styrene monomer.

도 1은 본 발명에 따른 폐폴리스티렌을 열분해하여 스티렌모노머를 회수하는 공정을 개략적으로 나타낸 공정도이다.1 is a process diagram schematically showing a process of recovering styrene monomer by pyrolyzing waste polystyrene according to the present invention.

[도면의 부호에 대한 간단한 설명]Brief description of the symbols in the drawings

1: 원료투입기 2: 열분해장치1: raw material feeder 2: pyrolysis device

3: 냉각응축기 4: 분별증류기3: cooling condenser 4: fractional distillation

5: 스티렌저장탱크5: styrene storage tank

본 발명은 폐폴리스티렌을 촉매존재하에서 열분해하여 스티렌모노머를 회수하는 방법에 있어서, 상기 촉매로 금속산화물과 염기성산화물이 담체(알루미나 또는 실리카)에 담지되어 있는 이중담지촉매를 사용하고, 200 ∼ 600 ℃에서 1 ∼ 2 시간 열분해시키는 스티렌모노머 회수 방법을 그 특징으로 한다.The present invention is a method for recovering styrene monomer by thermal decomposition of waste polystyrene in the presence of a catalyst, using a double supported catalyst in which a metal oxide and a basic oxide are supported on a carrier (alumina or silica) as the catalyst, 200 ~ 600 ℃ It is characterized by a method for recovering styrene monomer which is pyrolyzed for 1 to 2 hours.

이와같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 폐폴리스티렌으로부터 스티렌모노머를 회수하는 촉매로 금속산화물과 염기성산화물이 비표면적이 큰 담체에 담지되어 있는 이중담지촉매를 사용하여 종래 스티렌모노머의 회수공정에서 부반응으로 생성되는 에틸벤젠, 알파메틸스티렌, 벤젠, 톨루엔 등의 생성을 억제시킴으로써 회수되는 스티렌모노머의 수율을 증가시키는데 그 특징이 있다.The present invention is a catalyst for recovering styrene monomer from waste polystyrene. Ethylbenzene and alphamethyl produced by side reactions in the conventional recovery process of styrene monomer using a double supported catalyst in which metal oxides and basic oxides are supported on a carrier having a large specific surface area. It is characterized by increasing the yield of styrene monomer recovered by inhibiting the production of styrene, benzene, toluene and the like.

도 1을 참조로 하여 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to FIG. 1.

도 1의 장치는 원료투입기(1), 열분해장치(2), 냉각응축기(3), 분별증류기(4) 및 스티렌저장탱크(5)로 구성된다. 이러한 장치 사용하여 스티렌모노머를 얻는 공정을 간단히 살펴보면, 폐폴리스티렌에 이중담지촉매를 첨가하여 200 ∼ 600 ℃에서 1 ∼ 2 시간 열분해시켜 분해된 열분해 기체는 응축기를 통해 액화시켜 오일을 얻고, 상기 수득된 오일을 감압증류시켜 고순도의 스티렌모노머를 얻는다. 이때, 열분해과정 중에 생성되는 스티렌 혼합물이 쉽게 배출되기 위하여 질소를 30 ml/min의 유량으로 열분해장치 내에 공급한다.The apparatus of FIG. 1 consists of a raw material feeder 1, a pyrolysis device 2, a cooling condenser 3, a fractional distillation machine 4 and a styrene storage tank 5. As shown in FIG. Briefly looking at the process for obtaining a styrene monomer using such a device, by adding a double supported catalyst to the waste polystyrene and pyrolyzed at 200 to 600 ℃ for 1 to 2 hours, the pyrolysis gas is liquefied through a condenser to obtain an oil, the obtained The oil is distilled under reduced pressure to obtain a high purity styrene monomer. At this time, in order to easily discharge the styrene mixture generated during the pyrolysis process, nitrogen is supplied into the pyrolysis apparatus at a flow rate of 30 ml / min.

특히, 본 발명은 폐폴리스티렌을 열분해시키기 위해 금속산화물과 염기성산화물이 비표면적이 큰 담체에 담지되어 있어 스티렌모노머의 회수효율이 높은 이중담지촉매를 사용하는데 그 특징이 있다. 상기 금속산화물로는 산화철, 산화구리, 산화망간 및 산화크롬과 같이 루이스산의 성질을 갖는 금속산화물 중에서 선택된 것을 사용할 수 있으며, 염기성산화물로는 산화바륨, 산화칼슘 및 산화칼륨과 같이 루이스 염기의 성질을 갖는 금속산화물 중에서 선택된 것을 사용할 수 있다. 또한, 담체의 종류는 내열성이 우수하고 비표면적이 커 가격이 저렴하고 효율이 우수한 알루미나 또는 실리카를 사용하고, 이러한 담체상에 촉매를 지지시키는 방법에 있어서는 특별한 제한이 없으며 침전법 및 공동침전법 등과 같은 공지의 방법을 사용할 수 있다. 그리고, 담체에 금속산화물과 염기성산화물을 담지시키는 량은 금속산화물은 담체 100 중량부에 대하여 1 ∼ 10 중량부, 염기성산화물은 금속산화물에 대해 30 ∼ 50 중량부가 바람직하다. 상기 금속산화물의 담지량이 1 중량부 미만이면 반응성이 크게 저하되는 문제가 있고, 10 중량부를 초과하면 반응성에 차이가 없어 촉매제조의 비용이 상승하는 문제가 있다. 그리고, 염기성산화물의 담지량이 30 중량부 미만이면 산도가 증가되어 시너지 효과가 나타나지 않으며, 50 중량부를 초과하면 염기성이 증가하여 수율의 저하를 보이는 문제가 있다.In particular, the present invention is characterized by using a double supported catalyst having high recovery efficiency of styrene monomer because metal oxides and basic oxides are supported on a carrier having a large specific surface area in order to pyrolyze waste polystyrene. The metal oxide may be selected from metal oxides having a Lewis acid property such as iron oxide, copper oxide, manganese oxide and chromium oxide, and the basic oxide may be a Lewis base such as barium oxide, calcium oxide, and potassium oxide. It may be used selected from metal oxides having a. In addition, the type of the carrier uses alumina or silica having excellent heat resistance, high specific surface area, low cost, and high efficiency, and there is no particular limitation in the method of supporting the catalyst on such a carrier. The same known method can be used. The amount of the metal oxide and the basic oxide supported on the support is preferably 1 to 10 parts by weight based on 100 parts by weight of the metal oxide, and 30 to 50 parts by weight based on the metal oxide of the basic oxide. If the supported amount of the metal oxide is less than 1 part by weight, there is a problem in that the reactivity is greatly reduced. In addition, when the amount of the basic oxide supported is less than 30 parts by weight, the acidity is increased and synergistic effects are not observed. When the amount of the basic oxide is more than 50 parts by weight, the basicity is increased to decrease the yield.

그리고, 본 발명에 있어서 상기와 같은 이중담지촉매의 첨가량은 폐폴리스티렌 100 중량부에 대하여 0.5 ∼ 20 중량부 첨가하는 것이 바람직하며, 만일 그 첨가량이 0.5 중량부 미만이면 충분한 기능이나 효과를 얻을 수 없으며, 20 중량부를 초과하면 비경제적인 문제가 있다. 특히, 본 발명은 상기와 같이 금속산화물과 염기성산화물이 동시에 담체(알루미나 또는 실리카)에 담지되어 있는 이중담지촉매를 사용하게되어 금속산화물과 염기성산화물이 각각 담지된 촉매와 비교하여 폐폴리스티렌의 열분해 반응에서 반응속도가 증가하며 스티렌 선택도가 동반 상승하는 효과를 얻는다.In the present invention, the amount of the double supported catalyst as described above is preferably added in an amount of 0.5 to 20 parts by weight based on 100 parts by weight of waste polystyrene, and if the amount is less than 0.5 parts by weight, sufficient functions and effects cannot be obtained. If it exceeds 20 parts by weight, there is an uneconomic problem. In particular, the present invention uses a double supported catalyst in which a metal oxide and a basic oxide are simultaneously supported on a carrier (alumina or silica) as described above. In this case, the reaction rate increases and styrene selectivity increases.

또한, 상기와 같은 이중담지촉매를 사용하여 열분해시키는 조건은 200 ∼ 600 ℃에서 1 ∼ 2 시간으로 하는 것이 바람직하며, 만일 열분해 온도가 200 ℃ 미만이면 열분해반응이 진행되지 않는 문제가 있고, 600 ℃를 초과하면 스티렌이 열분해되어 가스로 전환되어 스티렌선택도가 크게 저하되는 문제가 있으며, 열분해 시간이 1 시간 미만이면 반응시간이 충분하지 않아 스티렌모노모의 회수량이 적으며, 2 시간을 초과하면 에너지 소비를 크게 함으로 생산성이 저하되는 문제가 있다.In addition, the conditions for thermal decomposition using the double supported catalyst as described above is preferably 1 to 2 hours at 200 to 600 ℃, if the thermal decomposition temperature is less than 200 ℃ there is a problem that the thermal decomposition reaction does not proceed, 600 ℃ If it exceeds the styrene is pyrolyzed and converted to gas, the styrene selectivity is greatly reduced. If the pyrolysis time is less than 1 hour, the reaction time is not enough, the recovery amount of styrene monomo is less, and if more than 2 hours There is a problem that the productivity is reduced by increasing the consumption.

이와같이, 본 발명은 금속산화물과 염기성산화물이 담체에 담지된 이중담지촉매를 사용함으로써, 크랙킹이 증가하여 분자수가 증가하여 반응속도를 증가시키는 산촉매의 장점과 고분자로부터 스티렌의 분리를 촉진하여 스티렌의 수율을 증가시키는 염기성촉매의 장점을 혼합함으로써, 스티렌모노머의 회수율이 높은 장점은 가진다.As described above, the present invention uses a double supported catalyst in which a metal oxide and a basic oxide are supported on a carrier, thereby increasing the number of molecules by increasing the number of cracks and increasing the reaction rate, and promoting the separation of styrene from the polymer to promote the yield of styrene. By mixing the advantages of the basic catalyst to increase the styrene monomer has a high recovery of the styrene monomer.

이하, 본 발명을 실시예에 의거하여 더욱 상세하게 설명하겠는 바, 본 발명이 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by Examples.

실시예 1 ∼ 6 및 비교예 1 ∼ 2. 이중담지촉매의 제조Examples 1 to 6 and Comparative Examples 1 to 2. Preparation of Double Supported Catalyst

이중담지촉매는 다음 표 1에 나타낸 금속산화물과 실리카 또는 알루미나 담체(100 g), 물 500 g을 혼합한 후 격렬히 저어주면서 가열하여 물을 증발시켰다. 물의 증발이 완료된 후, 450 ℃에서 6시간 소성시켜 금속산화물이 담지된 촉매를얻었다. 금속산화물이 담지된 촉매에 다음 표 1의 염기성수화물을 넣고, 물 500 g을 가한 후 격렬히 저어주면서 가열하여 물을 증발시켰다. 물의 증발이 완료된 후, 450 ℃에서 6시간 소성시켜 이중담지촉매를 얻었다.The double supported catalyst was mixed with the metal oxide shown in Table 1, silica or alumina carrier (100 g), and 500 g of water, followed by heating with vigorous stirring to evaporate the water. After the evaporation of water was completed, the catalyst was calcined at 450 ° C. for 6 hours to obtain a metal oxide supported catalyst. The basic hydrate of Table 1 was added to the metal oxide-supported catalyst, and 500 g of water was added thereto, followed by heating with vigorous stirring to evaporate the water. After evaporation of water was completed, it was calcined at 450 ° C. for 6 hours to obtain a double supported catalyst.

금속산화물Metal oxide 염기성산화물Basic oxides 담체carrier 실시예 1Example 1 Fe2O3(5g)Fe 2 O 3 (5 g) K2O (2g)K 2 O (2 g) 알루미나Alumina 실시예 2Example 2 CuO (5g)CuO (5 g) BaO (2g)BaO (2 g) 알루미나Alumina 실시예 3Example 3 MnO (5g)MnO (5 g) CaO (2g)CaO (2 g) 알루미나Alumina 실시예 4Example 4 Cr2O3(10g)Cr 2 O 3 (10 g) K2O (4g)K 2 O (4 g) 실리카Silica 실시예 5Example 5 Fe2O3(10g)Fe 2 O 3 (10 g) BaO (4g)BaO (4 g) 실리카Silica 실시예 6Example 6 CuO (10g)CuO (10 g) CaO (4g)CaO (4 g) 실리카Silica 비교예 1Comparative Example 1 Fe2O3(10g)Fe 2 O 3 (10 g) 알루미나Alumina 비교예 2Comparative Example 2 K2O (10g)K 2 O (10 g) 알루미나Alumina

시험예 1 ∼ 11.Test Examples 1 to 11.

다음 표 2에 나타낸 바와 같은 촉매를 사용하여 다음과 같은 방법으로 폐폴리스티렌으로부터 스티렌모노머를 회수하였다.The styrene monomer was recovered from the waste polystyrene in the following manner using a catalyst as shown in Table 2 below.

본 발명에서 원료로 사용한 폐폴리스티렌은 가락동 농수산시장 중심에서 수거되는 감용 잉곳(Ingot)의 파쇄물을 사용하였다. 시료의 크기는 균일한 입자가 아니고 대략 3 cm 이내의 불규칙한 크기를 가지고 있었다.Waste polystyrene used as a raw material in the present invention was used for the crushed ingot (Ingot) collected in the center of the Garak-dong agricultural and fisheries market. The sample size was not uniform particles but had an irregular size within about 3 cm.

상기 파쇄된 폐폴리스티렌을 2 l 반응기에 600 g을 주입기를 통해 넣은 후 380 ℃의 반응온도까지 가열한 후, 여기에 촉매 6 g을 첨가하여 1 ∼ 2시간 동안 200 rpm의 회전속도로 반응물을 교반하며 반응을 연속하여 진행하였으며 원료의 주입은 생성되는 오일의 양과 일치하게 공급하였다. 상기 열분해 반응에 의하여 분해된 열분해 기체는 응축기를 통해서 액화시켜 오일로 얻었으며, 반응 중 생성되는 오일은 메스실린더를 사용하여 시간에 따른 부피를 측정하여 열분해정도를 관찰하였다. 그리고, 상기 방법에 의해 얻은 오일을 다음과 같은 조건에서 분석하여 그 결과를 다음 표 2에 나타내었다. 분석은 모세관 컬럼(capillary column, HP-5, 30m×0.32mm×1.0㎛, Crosslinked 5% PH ME Siloxane)이 장착된 GC/FID(DONAM Instrument)를 사용하였으며 반응생성물인 스티렌, 알파메틸스티렌, 에틸벤젠 등의 정량은 내부표준법을 사용하였다.The pulverized waste polystyrene was introduced into a 2 l reactor through 600 g of an injector, heated to a reaction temperature of 380 ° C., and 6 g of the catalyst was added thereto to stir the reaction at a rotational speed of 200 rpm for 1 to 2 hours. The reaction proceeded continuously and the injection of raw materials was supplied in accordance with the amount of oil produced. The pyrolysis gas decomposed by the pyrolysis reaction was liquefied through a condenser to obtain an oil, and the oil produced during the reaction was measured by measuring the volume with time using a measuring cylinder to observe the degree of pyrolysis. The oil obtained by the above method was analyzed under the following conditions, and the results are shown in Table 2 below. The analysis was performed using GC / FID (DONAM Instrument) equipped with a capillary column (HP-5, 30 m × 0.32 mm × 1.0 μm, Crosslinked 5% PH ME Siloxane) and reaction products styrene, alphamethylstyrene and ethyl. The quantification of benzene and the like used an internal standard method.

촉매catalyst 반응온도(℃)Reaction temperature (℃) 반응시간(hr)Response time (hr) 오일의 성분(중량%)Oil component (% by weight) 스티렌Styrene 벤젠benzene 톨루엔toluene 에틸벤젠Ethylbenzene 알파메틸스티렌Alphamethylstyrene 기타Etc 시험예 1Test Example 1 실시예 1Example 1 380380 1One 73.173.1 0.180.18 3.23.2 0.40.4 3.73.7 19.4219.42 시험예 2Test Example 2 실시예 2Example 2 380380 1One 73.473.4 0.100.10 3.13.1 0.70.7 5.15.1 17.617.6 시험예 3Test Example 3 실시예 3Example 3 380380 1One 75.975.9 0.120.12 3.33.3 0.60.6 5.25.2 14.8814.88 시험예 4Test Example 4 실시예 4Example 4 380380 1One 75.575.5 0.090.09 3.33.3 0.80.8 5.65.6 14.7114.71 시험예 5Test Example 5 실시예 5Example 5 380380 1One 76.476.4 0.020.02 3.93.9 0.20.2 6.46.4 13.0813.08 시험예 6Test Example 6 실시예 6Example 6 380380 1One 73.573.5 0.150.15 3.93.9 0.90.9 6.66.6 14.9514.95 시험예 7Test Example 7 비교예 1Comparative Example 1 380380 1One 67.367.3 0.160.16 4.34.3 0.90.9 8.88.8 18.5418.54 시험예 8Test Example 8 비교예 2Comparative Example 2 380380 1One 71.871.8 0.040.04 3.23.2 0.30.3 7.57.5 17.1617.16 시험예 9Test Example 9 촉매사용안함No catalyst 380380 1One 60.060.0 0.170.17 5.15.1 2.42.4 8.68.6 23.7323.73 시험예 10Test Example 10 Fe2O3 Fe 2 O 3 380380 1One 64.364.3 0.150.15 3.63.6 0.70.7 9.09.0 22.2522.25 시험예 11Test Example 11 알루미나Alumina 380380 1One 59.959.9 4.54.5 2.32.3 9.09.0 9.59.5 14.814.8 시험예 12Test Example 12 MgSO4 MgSO 4 380380 1One 60.460.4 0.230.23 8,88,8 8.38.3 12.312.3 9.979.97 시험예 13Test Example 13 BaSO4 BaSO 4 380380 1One 59.159.1 0.220.22 5.95.9 6.26.2 9.99.9 18.6818.68

상기 표 2에 나타난 바와 같이, 본 발명에 따른 금속산화물과 염기성산화물이 담체에 담지되어 있는 실시예 1 ∼ 6의 이중담지촉매를 사용하여 열분해시킨 시험예 1 ∼ 6은 회수되는 오일 중에 스티렌모노머의 함량이 높아 고수율로 스티렌모노머를 회수할 수 있음을 확인할 수 있었다.As shown in Table 2, Test Examples 1 to 6, which were thermally decomposed using the double supported catalysts of Examples 1 to 6, in which the metal oxide and the basic oxide according to the present invention were supported on a carrier, were used in the recovered oil. It was confirmed that the high content can recover the styrene monomer in a high yield.

상술한 바와 같이, 본 발명은 금속산화물과 염기성산화물이 담체에 담지된 이중담지촉매를 사용함으로써, 크랙킹에 의해 절단된 분자수가 증가하여 반응속도를 증가시키는 산촉매의 장점과 고분자로부터 스티렌의 분리를 촉진하여 스티렌의 수율을 증가시키는 염기성촉매의 장점을 혼합함으로써 반응속도를 증가시켜 반응성을 증가시키며 스티렌모노머의 회수공정에서 부반응으로 생성되는 에틸벤젠, 알파메틸스티렌, 벤젠, 톨루엔 등의 생성을 억제시켜 회수되는 스티렌모노머의 수율을 증가시키는 장점이 있다.As described above, the present invention facilitates the separation of styrene from the polymer and the advantage of the acid catalyst to increase the reaction rate by increasing the number of molecules cleaved by cracking by using a double supported catalyst, the metal oxide and basic oxide supported on the carrier By mixing the advantages of the basic catalyst to increase the yield of styrene to increase the reaction rate to increase the reactivity and recovery by inhibiting the production of ethylbenzene, alpha methyl styrene, benzene, toluene produced by side reactions in the recovery process of styrene monomer There is an advantage to increase the yield of the styrene monomer.

Claims (3)

폐폴리스티렌을 촉매존재하에서 열분해하여 스티렌모노머를 회수하는 방법에 있어서, 상기 촉매로 금속산화물과 염기성산화물이 담체(알루미나 또는 실리카)에 담지되어 있는 이중담지촉매를 사용하고, 200 ∼ 600 ℃에서 1 ∼ 2 시간 열분해시키는 것을 특징으로 하는 스티렌모노머 회수 방법.In the method for recovering styrene monomer by pyrolyzing waste polystyrene in the presence of a catalyst, a double supported catalyst in which a metal oxide and a basic oxide are supported on a carrier (alumina or silica) is used as the catalyst. A method for recovering styrene monomers, which is pyrolyzed for 2 hours. 제 1 항에 있어서, 상기 금속산화물은 산화철, 산화구리, 산화망간 및 산화크롬 중에서 선택된 것을 특징으로 하는 스티렌모노머 회수 방법.The method of claim 1, wherein the metal oxide is selected from iron oxide, copper oxide, manganese oxide, and chromium oxide. 제 1 항에 있어서, 상기 염기성산화물은 산화바륨, 산화칼슘 및 산화칼륨 중에서 선택된 것을 특징으로 하는 스티렌모노머 회수 방법.2. The method of claim 1, wherein the basic oxide is selected from barium oxide, calcium oxide and potassium oxide.
KR10-2002-0020074A 2002-04-12 2002-04-12 Recovering method of styrene monomer from waste polystyrene KR100468047B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0020074A KR100468047B1 (en) 2002-04-12 2002-04-12 Recovering method of styrene monomer from waste polystyrene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0020074A KR100468047B1 (en) 2002-04-12 2002-04-12 Recovering method of styrene monomer from waste polystyrene

Publications (2)

Publication Number Publication Date
KR20030081717A true KR20030081717A (en) 2003-10-22
KR100468047B1 KR100468047B1 (en) 2005-01-24

Family

ID=32378806

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0020074A KR100468047B1 (en) 2002-04-12 2002-04-12 Recovering method of styrene monomer from waste polystyrene

Country Status (1)

Country Link
KR (1) KR100468047B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220076184A (en) 2020-11-30 2022-06-08 롯데케미칼 주식회사 Catalyst and method for preparing of styrene monomer from polystyrene using the same
KR20220076183A (en) 2020-11-30 2022-06-08 롯데케미칼 주식회사 Catalyst and method for preparing of styrene monomer from polystyrene using the same
KR20220104262A (en) * 2017-11-20 2022-07-26 폴리스타이버트 인크. Processes for recycling polystyrene waste
WO2022220634A1 (en) 2021-04-16 2022-10-20 한국화학연구원 Method for recovering styrene monomers from waste polystyrene
KR20220143566A (en) 2021-04-16 2022-10-25 한국화학연구원 Method for Recovering Styrene Monomer from Waste Polystyrene
KR20230080202A (en) 2021-11-29 2023-06-07 롯데케미칼 주식회사 Catalyst for depolymerization of polystyrene and depolymerization process of polystyrene using the same
KR102551161B1 (en) 2022-04-18 2023-07-04 한국화학연구원 Method for Continuous Recovering Styrene Monomer from Waste Polystyrene

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100868236B1 (en) 2007-06-27 2008-11-11 한국화학연구원 Process method for adsorption agent from the pyrolysis residue of waste polystyrene
KR20230121317A (en) 2022-02-11 2023-08-18 한국화학연구원 Catalyst and method for pyrolyzing residual oil of pyrolyzed waste polystyrene

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4192961A (en) * 1977-10-04 1980-03-11 Gankin Viktor Y Method and catalyst for preparing styrene
DE4335972A1 (en) * 1993-10-21 1995-04-27 Basf Ag Process for the recovery of styrene from used polystyrene
US5705679A (en) * 1996-04-02 1998-01-06 Nicolau; Ioan Honeycomb catalyst for vinyl acetate synthesis
JP2001316303A (en) * 2000-03-01 2001-11-13 San Kaihatsu Kk Method for recovery of styrene monomer from polystyrene resin by catalytic method
JP2001288124A (en) * 2000-04-06 2001-10-16 San Kaihatsu Kk Method for recovering styrene monomer from impact- resistant polystyrene
JP2001335514A (en) * 2000-05-26 2001-12-04 Kobe Steel Ltd Method for decomposing polystyrene

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220104262A (en) * 2017-11-20 2022-07-26 폴리스타이버트 인크. Processes for recycling polystyrene waste
KR20220076184A (en) 2020-11-30 2022-06-08 롯데케미칼 주식회사 Catalyst and method for preparing of styrene monomer from polystyrene using the same
KR20220076183A (en) 2020-11-30 2022-06-08 롯데케미칼 주식회사 Catalyst and method for preparing of styrene monomer from polystyrene using the same
WO2022220634A1 (en) 2021-04-16 2022-10-20 한국화학연구원 Method for recovering styrene monomers from waste polystyrene
KR20220143566A (en) 2021-04-16 2022-10-25 한국화학연구원 Method for Recovering Styrene Monomer from Waste Polystyrene
KR20230080202A (en) 2021-11-29 2023-06-07 롯데케미칼 주식회사 Catalyst for depolymerization of polystyrene and depolymerization process of polystyrene using the same
KR102551161B1 (en) 2022-04-18 2023-07-04 한국화학연구원 Method for Continuous Recovering Styrene Monomer from Waste Polystyrene
WO2023204553A1 (en) * 2022-04-18 2023-10-26 한국화학연구원 Method for continuously recovering styrene monomer from waste polystyrene

Also Published As

Publication number Publication date
KR100468047B1 (en) 2005-01-24

Similar Documents

Publication Publication Date Title
Mimura et al. Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide
Yoshioka et al. Pyrolysis of poly (ethylene terephthalate) in a fluidised bed plant
US3366689A (en) Process for manufacturing ketenes
KR100468047B1 (en) Recovering method of styrene monomer from waste polystyrene
KR970010927A (en) Manufacturing method of gasoline, diesel and carbon black using waste rubber or waste plastics
JPS644815B2 (en)
CN1232491C (en) Process and apparatus for work-up by distillation of cleavage product mixtures produced in cleavage of alkylaryl hydroperoxides
CN1151108C (en) Phenol recovery from BPA process waste streams
RU96123848A (en) METHOD FOR PRODUCING ALKYL ACRYLATE
US3637889A (en) Process for separating a tertiary olefin
EP0068785A1 (en) Process for the decomposition of methyl-tert-butyl ether
RU2120433C1 (en) Method of processing phenolic resin obtained in phenol and acetone production by cumene method
JPH09176066A (en) Treatment of phenol tar
CN1046754C (en) Phenol tar waste reduction process
RU2255936C1 (en) Method for preparing 4,4-dimethyl-1,3-dioxane
Li et al. An efficient iodine-catalysed Knoevenagel condensation reaction in the presence of acetic anhydride
ATE292617T1 (en) PRODUCTION OF HYDROXYPROPIONITRIL
KR100541039B1 (en) Recovery method of styrene monomer from waste expanded polystyrene containing flame retarding agent
RU2258690C1 (en) Method for preparing isoprene
JP2007063159A (en) Manufacturing method of methylamines
KR102525838B1 (en) Method for Recovering Styrene Monomer from Waste Polystyrene
JP4209915B2 (en) Method for producing dimethyl phthalate from naphthalene chemicals
RU2248961C1 (en) Isoprene production process
RU2186764C1 (en) Method of synthesis of methylenecyclobutane carbonitrile
RU2079479C1 (en) Method of processing phenol tar

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110117

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee