JP2001335514A - Method for decomposing polystyrene - Google Patents

Method for decomposing polystyrene

Info

Publication number
JP2001335514A
JP2001335514A JP2000157048A JP2000157048A JP2001335514A JP 2001335514 A JP2001335514 A JP 2001335514A JP 2000157048 A JP2000157048 A JP 2000157048A JP 2000157048 A JP2000157048 A JP 2000157048A JP 2001335514 A JP2001335514 A JP 2001335514A
Authority
JP
Japan
Prior art keywords
temperature
polystyrene
reactor
decomposition
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000157048A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Nagase
佳之 長瀬
Ryuichi Fukusato
隆一 福里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000157048A priority Critical patent/JP2001335514A/en
Publication of JP2001335514A publication Critical patent/JP2001335514A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the recovery ratio of styrene monomer by raising the decomposition ratio and suppressing the side reactions of the styrene monomer when polystyrene is decomposed in high-temperature and high-pressure water. SOLUTION: This method is to decompose the polystyrene in the high- temperature and high-pressure water in a reactor. The temperature of the high- temperature and high-pressure water is 250-550 deg.C and the pressure thereof is the saturated steam pressure or above or the critical pressure or above at the temperature. An aqueous solution in which low-molecular compound components produced by the decomposition are dissolved therein is continuously led out to a region under conditions of a lower temperature than that in a decomposition reaction region while continuously feeding the high-temperature and high-pressure water to the reactor. Thereby, the time for the low-molecular compound component to stay in the decomposition reaction region is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温・高圧の水を
利用してポリスチレンを分解する方法に関し、詳細に
は、ポリスチレンの分解物、特にスチレンモノマーを高
収率に回収するための分解方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing polystyrene using high-temperature and high-pressure water, and more particularly, to a decomposition method for recovering a decomposed product of polystyrene, particularly a styrene monomer in a high yield. It is about.

【0002】[0002]

【従来の技術】ポリスチレンを気相中で熱分解する技術
は古くから知られているが、この熱分解反応生成物は、
スチレンモノマー、ダイマー、トリマー以外に、トルエ
ン、エチルベンゼン、α−メチルスチレン等、様々な化
合物の混合物となる。また、気相中でのポリスチレンの
熱分解には、長時間を要する等の問題がある。
2. Description of the Related Art A technique for pyrolyzing polystyrene in a gas phase has been known for a long time.
A mixture of various compounds such as toluene, ethylbenzene, α-methylstyrene, etc. besides styrene monomer, dimer and trimer. Further, the thermal decomposition of polystyrene in the gas phase has a problem that it takes a long time.

【0003】一方、本願出願人は、特開2000−10
3901号において、亜臨界状態または超臨界状態の水
でポリスチレンを分解する方法を既に開示した。しか
し、この発明においては、ポリスチレンを分解すること
のみに終始し、分解生成物からスチレンモノマーを高収
率に回収するには至っていない。
On the other hand, the applicant of the present application has disclosed Japanese Patent Application Laid-Open No. 2000-10
No. 3901 has already disclosed a method for decomposing polystyrene with subcritical or supercritical water. However, in the present invention, polystyrene is only decomposed, and styrene monomer is not recovered from the decomposition product in high yield.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明において
は、ポリスチレンを高温・高圧水によって熱分解するに
当たり、スチレンモノマーの収率を高めるための最適な
反応条件を見出すことを課題として掲げた。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to find the optimum reaction conditions for increasing the yield of a styrene monomer when pyrolyzing polystyrene with high-temperature and high-pressure water.

【0005】[0005]

【課題を解決するための手段】本発明は、反応器内で、
高温・高圧水とポリスチレンとを接触させることによ
り、ポリスチレンを熱分解する方法であって、高温・高
圧水の温度を250〜550℃、圧力を当該温度におけ
る飽和蒸気圧以上または臨界圧力以上とし、この高温・
高圧水を反応器へ連続的に供給しながら、分解によって
生成した低分子化合物成分が溶解した水溶液を、分解反
応領域よりも低温条件下の領域へ連続的に導出すること
によって、低分子化合物成分が分解反応領域に滞留して
いる時間を制御するところに要旨を有する。
SUMMARY OF THE INVENTION The present invention is directed to a reactor comprising:
A method of thermally decomposing polystyrene by contacting high-temperature and high-pressure water with polystyrene, wherein the temperature of the high-temperature and high-pressure water is 250 to 550 ° C., and the pressure is equal to or higher than the saturated vapor pressure or the critical pressure at the temperature, This high temperature
While continuously supplying high-pressure water to the reactor, an aqueous solution in which the low-molecular-weight compound components generated by the decomposition are dissolved is continuously led to a region under a lower temperature condition than the decomposition reaction region, so that the low-molecular-weight compound components are Has a gist in controlling the time during which it stays in the decomposition reaction zone.

【0006】ポリスチレンの分解によって生成したスチ
レンモノマー、ダイマー、トリマー等の低分子化合物成
分は高温・高圧水に溶解して低温領域へ導出されていく
ので、高温・高圧水中に滞留している時間の制御によっ
てスチレンモノマーの二次反応を抑制することができ、
高収率で回収できるようになった。また、分解されてい
ないポリスチレンはほとんど高温・高圧水に溶解せず、
高温・高圧水に溶けることができるような分子量に分解
されるまでは、高温・高圧の加水分解反応領域に留まる
ため、ポリマーの分解効率も向上させることができた。
[0006] Low molecular compound components such as styrene monomer, dimer, and trimer formed by the decomposition of polystyrene are dissolved in high-temperature and high-pressure water and led to a low-temperature region. Secondary control of styrene monomer can be suppressed by control,
It can be recovered in high yield. Undecomposed polystyrene hardly dissolves in high-temperature, high-pressure water,
Until it is decomposed to a molecular weight that can be dissolved in high-temperature and high-pressure water, it stays in the high-temperature and high-pressure hydrolysis reaction region, so that the decomposition efficiency of the polymer can be improved.

【0007】上記効果を高めるために、特に、低分子化
合物成分が分解反応領域に滞留している時間(滞留時
間)を0.1〜60分に制御することが好ましい。スチ
レンモノマーがトルエン等への転化や再重合等の二次反
応をより効果的に抑制することができる。なお、高温・
高圧水のみならず、ポリスチレンを溶融状態またはスラ
リー状態で、反応器へ連続的に供給することが好まし
く、分散性の向上等により、大量のポリスチレンを効率
よく連続的に分解することが可能となる。
In order to enhance the above effects, it is particularly preferable to control the time (residence time) during which the low molecular weight compound component remains in the decomposition reaction zone to 0.1 to 60 minutes. Secondary reactions such as conversion of the styrene monomer to toluene or the like and repolymerization can be more effectively suppressed. In addition, high temperature
It is preferable to continuously supply not only high-pressure water but also polystyrene in a molten state or a slurry state to the reactor, and it is possible to efficiently and continuously decompose a large amount of polystyrene by improving dispersibility and the like. .

【0008】[0008]

【発明の実施の形態】本発明の分解方法は、ポリスチレ
ンを熱的に分解するに当たり、熱媒体として高温・高圧
水を用い、スチレンモノマーを高収率に回収するための
ものである。
BEST MODE FOR CARRYING OUT THE INVENTION The decomposition method of the present invention is for recovering styrene monomer in high yield by using high-temperature and high-pressure water as a heat medium when thermally decomposing polystyrene.

【0009】まず、本発明者等は、反応器にポリスチレ
ンと水を一括で仕込むバッチ式において、ポリスチレン
を高温・高圧水で分解して、どのような分解物が得られ
るかを予備的に検討した。
First, the present inventors preliminarily examined what decomposition product can be obtained by decomposing polystyrene with high-temperature and high-pressure water in a batch system in which polystyrene and water are charged into a reactor at once. did.

【0010】350℃、30MPaの高温・高圧水の場
合、分解時間22分の分解生成物には、スチレンモノマ
ー、ダイマー、トリマーがほぼ同量ずつ含まれていて、
その他の化合物は少ないこと、分解時間が60分に増え
るとトリマーが減少し、ダイマーはあまり変わらず、モ
ノマーは増加することが分かった。
In the case of high-temperature and high-pressure water at 350 ° C. and 30 MPa, the decomposition product of decomposition time 22 minutes contains almost the same amount of styrene monomer, dimer and trimer.
It was found that the amount of other compounds was small, and that when the decomposition time was increased to 60 minutes, the trimer decreased, the dimer did not change much, and the monomer increased.

【0011】また、400℃、30MPaの高温・高圧
水の場合、分解時間33分の分解生成物には、トルエ
ン、エチルベンゼン、スチレンモノマーがそれぞれ20
質量%前後、ダイマーが15質量%程度、エチルベンゼ
ンとα−メチルスチレンが10質量%弱が含まれてお
り、多種の化合物の混合物となった。この条件で分解時
間が74分になると、トルエン、エチルベンゼン、エチ
ルトルエンが増大し、スチレンモノマーは5質量%程度
に減少した。
In the case of high-temperature and high-pressure water at 400 ° C. and 30 MPa, toluene, ethylbenzene and styrene monomer are used as decomposition products for a decomposition time of 33 minutes, respectively.
About 15% by mass, about 15% by mass of a dimer, and less than 10% by mass of ethylbenzene and α-methylstyrene were obtained, and a mixture of various compounds was obtained. When the decomposition time reached 74 minutes under these conditions, toluene, ethylbenzene and ethyltoluene increased, and the amount of styrene monomer decreased to about 5% by mass.

【0012】さらに、500℃、30MPaの高温・高
圧水の場合、分解時間40分の分解生成物の組成は、ト
ルエンとエチルベンゼンがほぼ同量で合計90質量%程
度を占め、残りの大部分がエチルトルエンとなり、スチ
レンモノマー、ダイマー、トリマーは、ほとんど含まれ
ていなかった。
Further, in the case of high-temperature and high-pressure water at 500 ° C. and 30 MPa, the composition of the decomposition product in which the decomposition time is 40 minutes is such that toluene and ethylbenzene account for about 90% by mass in a total amount of about the same amount, and most of the rest It became ethyltoluene and contained almost no styrene monomer, dimer, or trimer.

【0013】これらの検討結果から、熱媒体である高温
・高圧水の温度が高く、高温・高圧水に曝されている時
間が長いと、スチレンモノマーが一旦生成しても、スチ
レンの二重結合が開裂し、トルエン、エチルベンゼン、
エチルトルエン等に転化するか、再重合等の二次反応が
起きてしまうと考えられる。
From the results of these studies, it can be seen that if the temperature of the high-temperature / high-pressure water as the heat medium is high and the time of exposure to the high-temperature / high-pressure water is long, even if the styrene monomer is once formed, the double bond of styrene Is cleaved, toluene, ethylbenzene,
It is considered that conversion to ethyl toluene or the like or secondary reaction such as repolymerization occurs.

【0014】そこで、本発明の分解方法では、分解に供
する高温・高圧水の温度を250〜550℃とする。高
温・高圧水の温度が高すぎると、スチレンモノマーの転
化反応を抑制することができない。一方、高温・高圧水
の温度が低すぎるとポリスチレンの分解率そのものが低
くなって、得られるモノマー量が少なくなる。より好ま
しい温度の下限は300℃、上限は450℃である。
Therefore, in the decomposition method of the present invention, the temperature of the high-temperature and high-pressure water used for the decomposition is set to 250 to 550 ° C. If the temperature of the high temperature / high pressure water is too high, the conversion reaction of the styrene monomer cannot be suppressed. On the other hand, if the temperature of the high-temperature and high-pressure water is too low, the decomposition rate of polystyrene itself becomes low, and the amount of the obtained monomer decreases. More preferably, the lower limit of the temperature is 300 ° C and the upper limit is 450 ° C.

【0015】反応器内に分解物が滞留している時間(滞
留時間:高温・高圧条件に曝されている時間)は0.1
〜60分とすることが好ましい。滞留時間が長すぎる
と、スチレンモノマーの二次反応が進行し、回収率が低
下する恐れがある。より好ましい滞留時間の下限は3分
である。より好ましい上限は30分であり、さらに好ま
しい上限は10分である。
The time during which the decomposition product remains in the reactor (residence time: the time during which the decomposition product is exposed to high temperature and high pressure conditions) is 0.1
It is preferably set to 60 minutes. If the residence time is too long, the secondary reaction of the styrene monomer may proceed, and the recovery rate may decrease. A more preferred lower limit of the residence time is 3 minutes. A more preferred upper limit is 30 minutes, and a still more preferred upper limit is 10 minutes.

【0016】高温・高圧水の圧力は、水が液状を保ち得
る飽和蒸気圧以上または臨界圧力以上とする。25MP
a以上がより好ましく、30MPa前後が最も好まし
い。圧力の上限は特に限定されないが、あまり圧力が高
すぎると、高圧を維持し得る反応器が必要となるため、
40MPa以下が好ましい。
The pressure of the high-temperature high-pressure water is equal to or higher than a saturated vapor pressure or a critical pressure at which the water can maintain a liquid state. 25MP
a is more preferable, and about 30 MPa is most preferable. The upper limit of the pressure is not particularly limited, but if the pressure is too high, a reactor capable of maintaining a high pressure is required,
40 MPa or less is preferable.

【0017】また、本発明の分解方法では、反応器へ高
温・高圧水を連続的に供給する必要がある。ポリスチレ
ンはほとんど高温・高圧水に溶解しないが、分解によっ
て生じたスチレンモノマー等の低分子化合物成分は高温
・高圧水に溶解する。従って、高温・高圧水を反応器へ
連続供給することによって、これらの低分子化合物成分
が溶解した水溶液を反応器外の低温領域へ連続的に移す
ことができ、スチレンモノマーの二次反応を抑制するこ
とができる。この構成の採用によって、分解によって生
じた低分子化合物成分中に含まれるスチレンモノマーの
割合が非常に高くなる。
Further, in the decomposition method of the present invention, it is necessary to continuously supply high-temperature and high-pressure water to the reactor. Polystyrene hardly dissolves in high-temperature and high-pressure water, but low-molecular-weight compounds such as styrene monomers generated by decomposition dissolve in high-temperature and high-pressure water. Therefore, by continuously supplying high-temperature and high-pressure water to the reactor, the aqueous solution in which these low-molecular-weight compound components are dissolved can be continuously transferred to the low-temperature region outside the reactor, and the secondary reaction of the styrene monomer is suppressed. can do. By adopting this configuration, the ratio of the styrene monomer contained in the low molecular weight compound component generated by the decomposition becomes extremely high.

【0018】ポリスチレンは、上記条件の高温・高圧水
にほとんど溶解せず、溶融状態で高温・高圧水中に分散
・沈降しており、反応器外の低温領域へ低分子化合物成
分を含む水溶液を導出しても、随伴してこない。この結
果、高温・高圧水に溶解し得る低分子化合物成分に分解
されるまでは、未分解のポリスチレンが高温・高圧水中
に留まるため、ポリスチレンの分解率が向上する。本発
明では、これらが総合された結果、ポリスチレンからの
スチレンモノマーの回収率を高くすることができた。
Polystyrene is hardly dissolved in high-temperature, high-pressure water under the above conditions, but is dispersed and settled in high-temperature, high-pressure water in a molten state, and an aqueous solution containing a low-molecular-weight compound component is led to a low-temperature region outside the reactor. Even so, it does not accompany. As a result, the undecomposed polystyrene remains in the high-temperature and high-pressure water until it is decomposed into low-molecular-weight compound components that can be dissolved in high-temperature and high-pressure water, so that the decomposition rate of polystyrene is improved. In the present invention, as a result of all these factors, the recovery rate of styrene monomer from polystyrene was able to be increased.

【0019】なお、ポリスチレンは、反応器に一括で仕
込む方法、連続的に仕込む方法いずれも採用可能であ
る。加熱溶融状態、スラリー状態等で連続的に反応器に
供給すれば、高温・高圧水中でのポリスチレンの分散性
がよくなって分解効率が向上すると共に、長時間の連続
分解が可能となることから、実操業上は、この構成の方
が好ましい。
The polystyrene can be charged to the reactor all at once or continuously. If continuously supplied to the reactor in a heated molten state, slurry state, etc., the dispersibility of polystyrene in high-temperature, high-pressure water will be improved, and the decomposition efficiency will be improved, and long-term continuous decomposition will be possible. In actual operation, this configuration is preferable.

【0020】高温・高圧水が反応器内へ供給されてか
ら、低分子化合物成分が溶解した水溶液が反応器外の低
温領域へと排出されるまでの時間が滞留時間となる。反
応器外では冷却手段で冷却するか、減圧に伴う冷却によ
って、反応器内の温度よりも低温の領域とし、スチレン
モノマーの二次反応を抑制する。滞留時間は、反応器の
大きさと高温・高圧水の供給(流通)速度によって制御
することができる。低分子化合物成分とは、スチレンモ
ノマーの他、前記予備実験の時に検出されたスチレンダ
イマー、トリマー、トルエン、エチルベンゼン、エチル
トルエン、α−メチルスチレン等を指す。
[0020] The residence time is the time from when the high-temperature and high-pressure water is supplied into the reactor to when the aqueous solution in which the low-molecular-weight compound component is dissolved is discharged to the low-temperature region outside the reactor. Outside the reactor, the secondary reaction of the styrene monomer is suppressed by cooling with a cooling means or cooling with decompression to make the temperature lower than the temperature inside the reactor. The residence time can be controlled by the size of the reactor and the supply (flow) rate of high-temperature and high-pressure water. The low molecular compound component refers to styrene monomer, styrene dimer, trimer, toluene, ethylbenzene, ethyltoluene, α-methylstyrene, etc. detected in the preliminary experiment.

【0021】本発明法では、1つの反応器において、入
口側を高温・高圧条件の分解反応領域とし、反応器の出
口側に分解反応領域よりも低温条件下の領域とすること
もできる。この場合は、反応器へ供給されてから低温領
域へ達するまでの時間が滞留時間となる。この場合は、
反応器へ供給されてから低温領域へ達するまでの時間が
滞留時間となる。1つの反応器に低温領域と加水分解反
応領域を設けると、条件設定によって低温の水に溶けて
いることができなくなったオリゴマーが水から分離して
くるので、このオリゴマーが再び加水分解反応領域へと
沈降し、加水分解効率が向上する。
In the method of the present invention, in one reactor, the inlet side may be a decomposition reaction zone under high-temperature and high-pressure conditions, and the outlet side of the reactor may be a lower-temperature zone than the decomposition reaction zone. In this case, the time from supply to the reactor to reaching the low temperature region is the residence time. in this case,
The time from the supply to the reactor to the arrival at the low temperature region is the residence time. When a low-temperature region and a hydrolysis reaction region are provided in one reactor, oligomers which cannot be dissolved in low-temperature water due to the setting of conditions are separated from the water, and this oligomer is returned to the hydrolysis reaction region. , And the hydrolysis efficiency is improved.

【0022】ポリスチレンと高温・高圧水の比率(加水
比)としては、ポリスチレンに対し、0.1〜200質
量倍の高温・高圧水を接触させることが好ましい。20
0質量倍を超えると、高温・高圧水を得るためのエネル
ギーコストや、低分子化合物成分と水とを分離するとき
の分離手段におけるエネルギーコストが膨大となり、さ
らに、反応器・脱水設備を大規模にしなければならない
というデメリットが生じるため、好ましくない。より好
ましい加水比は、1〜50倍(質量比)である。
The ratio of polystyrene to high-temperature / high-pressure water (water ratio) is preferably 0.1 to 200 times by mass of high-temperature / high-pressure water to polystyrene. 20
If it exceeds 0 mass times, the energy cost for obtaining high-temperature and high-pressure water and the energy cost for the separation means when separating low-molecular-weight compound components from water become enormous, and the reactor and dehydration equipment become large-scale. It is not preferable because it has a disadvantage that it must be performed. A more preferred water addition ratio is 1 to 50 times (mass ratio).

【0023】分解反応を受け、高温・高圧水と共に分解
反応領域外へ排出されたスチレンモノマー含有水溶液
は、スチレンモノマー回収手段へ移送することが好まし
い。回収手段としては、特に限定されないが、スチレン
モノマー等の低分子化合物成分と水とを分離し、さらに
蒸留等を行って、スチレンモノマーと他の低分子化合物
類とを分離すればよい。分解生成物である低分子化合物
成分と水との分離方法としては、セトラー等での重力分
離法、サイクロン等の比重差を利用した遠心分離、蒸
留、抽出方法等が採用可能である。蒸留を行うときは、
スチレンモノマーの熱重合を防止するために、減圧蒸留
を行うことが好ましい。
The styrene monomer-containing aqueous solution which has been subjected to the decomposition reaction and discharged out of the decomposition reaction region together with the high-temperature and high-pressure water is preferably transferred to a styrene monomer recovery means. The recovery means is not particularly limited, but may be a method in which a low-molecular compound component such as a styrene monomer and the like are separated from water, and distillation is performed to separate the styrene monomer and other low-molecular compounds. As a method of separating the low-molecular compound component, which is a decomposition product, from water, a gravity separation method using a settler or the like, a centrifugal separation method utilizing a specific gravity difference of a cyclone or the like, a distillation method, an extraction method, or the like can be adopted. When performing distillation,
In order to prevent thermal polymerization of the styrene monomer, vacuum distillation is preferably performed.

【0024】次に、本発明法の加水分解方法を実施する
ための設備例を図1を参照しながら説明する。1が反応
器である。反応器1は、水を高温高圧状態で保持できる
ものを用いる。加熱器を有する反応器を用いてもよい。
また、複数の反応器を並列させた構成であってもよい。
Next, an example of equipment for carrying out the hydrolysis method of the present invention will be described with reference to FIG. 1 is a reactor. As the reactor 1, a reactor capable of holding water at a high temperature and a high pressure is used. A reactor having a heater may be used.
Further, a configuration in which a plurality of reactors are arranged in parallel may be used.

【0025】分解対象物であるポリスチレンは、加熱タ
ンク2で加熱溶融させた後、ポンプ3で、反応器1へと
連続的に供給される。ポンプに代えてスクリュー型押出
機等の供給手段を用いてもよい。また、反応前に反応器
1へポリスチレンを仕込んでおいても良い(半連続)。
水タンク4の方へ粉砕したポリスチレンを加え、スラリ
ー状で反応器1へ供給することも可能である。
The polystyrene to be decomposed is heated and melted in the heating tank 2 and then continuously supplied to the reactor 1 by the pump 3. Supply means such as a screw type extruder may be used instead of the pump. Further, polystyrene may be charged into the reactor 1 before the reaction (semi-continuous).
It is also possible to add the pulverized polystyrene to the water tank 4 and supply it to the reactor 1 in a slurry form.

【0026】一方、水は、水タンク4から、ポンプ5に
よって高圧状態とされ、加熱器6によって高温状態とさ
れて、反応器1へ連続的に供給される。図1の例では、
反応器1のすぐ上流で、ポリスチレンと高温・高圧水を
合流させてから、反応器1へ導入しているが、別々の供
給路で導入してもよい。滞留時間の制御は、高温・高圧
水の供給速度でコントロールすることができる。
On the other hand, water is brought into a high pressure state by a pump 5 from a water tank 4, brought into a high temperature state by a heater 6, and is continuously supplied to the reactor 1. In the example of FIG.
Immediately upstream of the reactor 1, polystyrene and high-temperature / high-pressure water are combined and then introduced into the reactor 1, but they may be introduced through separate supply paths. The control of the residence time can be controlled by the supply speed of high-temperature and high-pressure water.

【0027】反応器1内でポリスチレンと高温・高圧水
が接触することにより、ポリスチレンの分解反応が起こ
る。供給速度に応じた速度で、高温・高圧水は反応器1
の下方から上方へと移動する。ポリスチレンの分解によ
ってまずオリゴマーが生じ、高温・高圧水に溶解するレ
ベルの分子量のオリゴマーは高温・高圧水に溶解して反
応器の上方へと移動しながら、スチレンモノマーへと分
解していく。スチレンモノマーやトルエン等の低分子化
合物成分を含む水溶液が、反応器1の塔頂から排出され
ることにより、低分子化合物成分の滞留が終了する。反
応器1から排出された水は冷却手段8によって、または
冷却手段8がなくても圧力調整弁7による大気圧等への
減圧によって、例えば100℃程度に冷却されるので、
スチレンモノマーの二次反応はもはや起こらなくなる。
なお、反応器1から、溶融分散状態のポリスチレンが高
温・高圧水に随伴して導出されてしまうのを防止するた
めに、反応器1の出口にフィルター等を取り付けても良
い。
The contact between the polystyrene and the high-temperature and high-pressure water in the reactor 1 causes a decomposition reaction of the polystyrene. High-temperature, high-pressure water is supplied to the reactor 1 at a speed corresponding to the feed rate.
Move from below to above. Oligomer is first generated by the decomposition of polystyrene, and the oligomer having a molecular weight that is soluble in high-temperature and high-pressure water is dissolved in high-temperature and high-pressure water and decomposed into styrene monomer while moving upward in the reactor. When the aqueous solution containing the styrene monomer and the low-molecular compound component such as toluene is discharged from the top of the reactor 1, the retention of the low-molecular compound component ends. The water discharged from the reactor 1 is cooled to, for example, about 100 ° C. by the cooling means 8 or by reducing the pressure to the atmospheric pressure or the like by the pressure regulating valve 7 without the cooling means 8.
Secondary reactions of the styrene monomer no longer occur.
In addition, a filter or the like may be attached to the outlet of the reactor 1 in order to prevent the polystyrene in a molten and dispersed state from being taken out of the reactor 1 accompanying high-temperature and high-pressure water.

【0028】反応器1の塔頂から排出された低分子化合
物成分含有水溶液は、圧力調整弁7によって、例えば大
気圧に減圧され、さらに冷却手段8を経て適宜冷却され
て、低分子化合物成分と水との分離装置9へと送られ
る。分離装置9としては、セトラー等での重力分離法、
サイクロン等の比重差を利用した遠心分離、蒸留、抽出
方法等を利用して液液分離を行うことのできる各種装置
が好ましい。分離された水は、流路10を介して水タン
ク4へと戻し、循環使用することが好ましい。
The aqueous solution containing the low-molecular-weight compound component discharged from the top of the reactor 1 is reduced in pressure to, for example, the atmospheric pressure by the pressure regulating valve 7, and is appropriately cooled through the cooling means 8, so that the low-molecular-weight compound component is removed. It is sent to the water separation device 9. The separation device 9 includes a gravity separation method using a settler or the like,
Various devices capable of performing liquid-liquid separation using centrifugation, distillation, extraction methods and the like utilizing the specific gravity difference of a cyclone or the like are preferable. It is preferable that the separated water is returned to the water tank 4 through the flow path 10 and is circulated.

【0029】水と分離された低分子化合物成分はスチレ
ンモノマー回収手段11へと送られる。図例では、スチ
レンモノマー回収手段11は、蒸留塔12である。低分
子化合物成分にはスチレンモノマーと他の低分子化合物
(トルエン、エチルベンゼン等)が含まれている可能性
があるので、蒸留塔を複数配置して、各種成分を分取し
ても良い。
The low molecular weight compound component separated from water is sent to the styrene monomer recovery means 11. In the illustrated example, the styrene monomer recovery means 11 is a distillation column 12. Since the low molecular weight compound component may contain a styrene monomer and other low molecular weight compounds (toluene, ethylbenzene, etc.), a plurality of distillation columns may be arranged to separate various components.

【0030】低分子化合物成分には、高温・高圧水に溶
解し得るオリゴマーが含まれている可能性がある。オリ
ゴマーは、スチレントリマーよりも分子量が大きいもの
を指すが、高温・高圧水に対する溶解度はスチレントリ
マーよりも低い。従って、反応器1から排出された低分
子化合物成分含有水溶液の温度・圧力条件をオリゴマー
のみを沈殿させることができる条件にすることにより、
水分離手段9の上流の図示しない固液分離手段でオリゴ
マーを分離できる。分離されたオリゴマーは、反応器1
の中央部近傍に戻すことが好ましい。反応器1から溶液
状態で排出されたオリゴマーは、既に一部分解を受けて
いるので、反応器1の中央部近傍へ導入することによ
り、滞留時間を短くして、スチレンモノマーの二次反応
を抑制することができる。
The low molecular weight compound component may contain an oligomer soluble in high-temperature and high-pressure water. Oligomers are those having a higher molecular weight than styrene trimers, but have lower solubility in high-temperature and high-pressure water than styrene trimers. Therefore, by setting the temperature and pressure conditions of the low molecular compound component-containing aqueous solution discharged from the reactor 1 to conditions under which only the oligomer can be precipitated,
The oligomer can be separated by a solid-liquid separation means (not shown) upstream of the water separation means 9. The separated oligomer is supplied to the reactor 1
It is preferable to return to the vicinity of the central portion. Since the oligomer discharged in a solution state from the reactor 1 has already been partially decomposed, it is introduced near the center of the reactor 1 to shorten the residence time and suppress the secondary reaction of the styrene monomer. can do.

【0031】以上、本発明法を実施する際に用いること
のできる設備を図1によって説明したが、本発明法の趣
旨を逸脱しない範囲で変更された設備において、本発明
の実施が可能であることは言うまでもない。
As described above, the equipment that can be used in carrying out the method of the present invention has been described with reference to FIG. 1. However, the present invention can be implemented in equipment modified without departing from the spirit of the present invention. Needless to say.

【0032】[0032]

【実施例】以下実施例によって本発明をさらに詳述する
が、下記実施例は本発明を制限するものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which do not limit the present invention.

【0033】実験例1 ポリスチレンの分解実験を、バッチ方式と本発明方式で
行った。分解対象物は、数平均分子量(Mn)が数万程
度の市販のポリスチレンである。バッチ方式では、ポリ
スチレンがほぼ100%分解する条件として、分解時間
を33分とした。加熱器を備えた反応器に、上記ポリス
チレンを1g、水を10gを一括で仕込み、350℃、
30MPaにしてから、33分間分解反応を行った。反
応終了後、冷却して、常圧に戻した。反応器内にはポリ
スチレンが残存しておらず、全て分解したことが確認さ
れた。反応生成物の組成をガスクロマトグラフィーで分
析した。結果を表1に示した。
EXPERIMENTAL EXAMPLE 1 Decomposition experiments of polystyrene were carried out by the batch method and the method of the present invention. The decomposition target is a commercially available polystyrene having a number average molecular weight (Mn) of about tens of thousands. In the batch method, the decomposition time was set to 33 minutes as a condition under which the polystyrene decomposes almost 100%. A reactor equipped with a heater was charged with 1 g of the above polystyrene and 10 g of water at a time, and was heated at 350 ° C.
After 30 MPa, the decomposition reaction was performed for 33 minutes. After the completion of the reaction, the mixture was cooled and returned to normal pressure. No polystyrene remained in the reactor, and it was confirmed that all of the polystyrene had been decomposed. The composition of the reaction product was analyzed by gas chromatography. The results are shown in Table 1.

【0034】本発明方式では、図1に示したものと同様
の実験用反応器を用い、ポリスチレン1gを反応器に仕
込んだ。350℃、30MPaの水を、滞留時間が5分
となるように供給速度を調整し、反応器へ連続的に供給
した。塔頂から低分子化合物含有水溶液を導出し、減圧
すると共に、冷却した。この実験を60分間にわたって
行った。実験終了後、反応器内にポリスチレンは認めら
れなかったことから、全て分解したことが確認された。
分解生成物をガスクロマトグラフィーで分析し、結果を
表1に示した。表1の収率(質量%)は、仕込みポリス
チレンの質量に対する各種成分の割合である。
In the method of the present invention, 1 g of polystyrene was charged into an experimental reactor similar to that shown in FIG. The feed rate of water at 350 ° C. and 30 MPa was adjusted so that the residence time was 5 minutes, and was continuously supplied to the reactor. An aqueous solution containing the low-molecular compound was led out from the top of the tower, and the pressure was reduced and cooled. This experiment was performed for 60 minutes. After the end of the experiment, no polystyrene was found in the reactor, confirming that all polystyrene had been decomposed.
The decomposition products were analyzed by gas chromatography, and the results are shown in Table 1. The yields (% by mass) in Table 1 are the ratios of various components to the mass of the charged polystyrene.

【0035】[0035]

【表1】 [Table 1]

【0036】表1から明らかなように、本発明方式で
は、反応生成物中、スチレンモノマーが65%も存在し
ていたのに対し、バッチ式の場合は26%弱と少なく、
本発明方式の優位性が確認できた。本発明方式では、分
解によって生成したスチレンモノマーが速やかに反応器
外へ導出されて、トルエン等への転化や再重合等の二次
反応を受けにくいためである。また、未分解のポリスチ
レンが、分解するまで反応器内に留まるので、これらが
総合された結果、バッチ式に比べて、スチレンモノマー
の回収率が向上した。
As apparent from Table 1, in the system of the present invention, the reaction product contained as much as 65% of the styrene monomer, whereas in the case of the batch system, the styrene monomer was as small as less than 26%.
The superiority of the method of the present invention was confirmed. This is because, in the method of the present invention, the styrene monomer generated by the decomposition is quickly led out of the reactor, and is less likely to undergo secondary reactions such as conversion to toluene and the like and repolymerization. In addition, since the undecomposed polystyrene stays in the reactor until it is decomposed, as a result of combining them, the recovery rate of the styrene monomer was improved as compared with the batch type.

【0037】[0037]

【発明の効果】本発明では、ポリスチレンを分解する当
たり、スチレンモノマーの転化反応を抑制することので
きる最適反応条件・方法を見出した。このため、トルエ
ンやエチルベンゼン等へ転化させることなく、高収率に
スチレンを回収することができるようになった。また、
ポリスチレンが溶解しない高温・高圧条件を選択し、水
溶液のみを連続的に排出する構成を採用したので、未分
解のポリスチレンは分解反応領域に留まるため、分解率
も向上させることができた。従って、ポリスチレンの分
解率向上と、スチレンモノマーの回収率向上を両立させ
ることができた。
According to the present invention, an optimum reaction condition / method capable of suppressing the conversion reaction of styrene monomer when decomposing polystyrene has been found. Therefore, styrene can be recovered in high yield without conversion to toluene, ethylbenzene, or the like. Also,
Since a high temperature and high pressure condition in which the polystyrene was not dissolved was selected and only the aqueous solution was continuously discharged, the undecomposed polystyrene stayed in the decomposition reaction zone, so that the decomposition rate could be improved. Therefore, it was possible to achieve both an improvement in the decomposition rate of polystyrene and an improvement in the recovery rate of the styrene monomer.

【0038】本発明法は、ポリスチレンの工業的なリサ
イクル法として有用であり、ポリスチレン製の容器、フ
ィルム、食器類、電気製品のハウジング、各種家具、緩
衝材、その他各種成形品を製造するときに発生する不良
品、あるいは製品として市場に流通した後の廃プラの処
理に有用である。
The method of the present invention is useful as an industrial recycling method for polystyrene, and is useful for producing polystyrene containers, films, tableware, housing for electric appliances, various furniture, cushioning materials, and other various molded products. It is useful for processing of generated defective products or waste plastics after they are distributed to the market as products.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の分解方法を実施するための設備の概略
説明図である。
FIG. 1 is a schematic explanatory view of equipment for carrying out a decomposition method of the present invention.

【符号の説明】[Explanation of symbols]

1 反応器 2 ポリスチレン用加熱タンク 3 ポリスチレン供給用ポンプ 4 水タンク 5 水供給用ポンプ 6 加熱器 7 圧力調整弁 8、8’ 冷却器 9 分離装置 10 流路 11 回収装置 12 蒸留塔 DESCRIPTION OF SYMBOLS 1 Reactor 2 Heating tank for polystyrene 3 Pump for supplying polystyrene 4 Water tank 5 Pump for supplying water 6 Heater 7 Pressure control valve 8, 8 'Cooler 9 Separation device 10 Flow path 11 Recovery device 12 Distillation tower

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F301 AA15 CA09 CA24 CA43 CA62 CA72 CA73 4H006 AA02 AC91 BB31 BC10 BC11 BC19 BD10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F301 AA15 CA09 CA24 CA43 CA62 CA72 CA73 4H006 AA02 AC91 BB31 BC10 BC11 BC19 BD10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 反応器内で、高温・高圧水とポリスチレ
ンとを接触させることにより、ポリスチレンを熱分解す
る方法であって、高温・高圧水の温度を250〜550
℃、圧力を当該温度における飽和蒸気圧以上または臨界
圧力以上とし、この高温・高圧水を反応器へ連続的に供
給しながら、分解によって生成した低分子化合物成分が
溶解した水溶液を、分解反応領域よりも低温条件下の領
域へ連続的に導出することによって、低分子化合物成分
が分解反応領域に滞留している時間を制御することを特
徴とするポリスチレンの分解方法。
1. A method for thermally decomposing polystyrene by bringing high-temperature / high-pressure water into contact with polystyrene in a reactor, wherein the temperature of the high-temperature / high-pressure water is from 250 to 550.
℃, the pressure is equal to or higher than the saturated vapor pressure or the critical pressure at the temperature. While continuously supplying the high-temperature and high-pressure water to the reactor, the aqueous solution in which the low-molecular-weight compound component generated by the decomposition is dissolved is subjected to the decomposition reaction zone. A method for decomposing polystyrene, comprising controlling the time during which a low-molecular-weight compound component stays in a decomposition reaction zone by continuously leading out to a zone under a lower temperature condition.
【請求項2】 上記低分子化合物成分が分解反応領域に
滞留している時間を0.1〜60分に制御するものであ
る請求項1に記載のポリスチレンの分解方法。
2. The method for decomposing polystyrene according to claim 1, wherein the time during which the low molecular compound component remains in the decomposition reaction zone is controlled to 0.1 to 60 minutes.
【請求項3】 ポリスチレンを溶融状態またはスラリー
状態で、反応器へ連続的に供給するものである請求項1
または2に記載の分解方法。
3. The method according to claim 1, wherein the polystyrene is continuously supplied to the reactor in a molten state or a slurry state.
Or the decomposition method according to 2.
JP2000157048A 2000-05-26 2000-05-26 Method for decomposing polystyrene Withdrawn JP2001335514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000157048A JP2001335514A (en) 2000-05-26 2000-05-26 Method for decomposing polystyrene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000157048A JP2001335514A (en) 2000-05-26 2000-05-26 Method for decomposing polystyrene

Publications (1)

Publication Number Publication Date
JP2001335514A true JP2001335514A (en) 2001-12-04

Family

ID=18661747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000157048A Withdrawn JP2001335514A (en) 2000-05-26 2000-05-26 Method for decomposing polystyrene

Country Status (1)

Country Link
JP (1) JP2001335514A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468047B1 (en) * 2002-04-12 2005-01-24 한국화학연구원 Recovering method of styrene monomer from waste polystyrene
KR100868236B1 (en) 2007-06-27 2008-11-11 한국화학연구원 Process method for adsorption agent from the pyrolysis residue of waste polystyrene
CN115572410A (en) * 2022-09-08 2023-01-06 吉林大学 Method for recycling waste polystyrene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468047B1 (en) * 2002-04-12 2005-01-24 한국화학연구원 Recovering method of styrene monomer from waste polystyrene
KR100868236B1 (en) 2007-06-27 2008-11-11 한국화학연구원 Process method for adsorption agent from the pyrolysis residue of waste polystyrene
CN115572410A (en) * 2022-09-08 2023-01-06 吉林大学 Method for recycling waste polystyrene

Similar Documents

Publication Publication Date Title
US7288620B2 (en) Process and device for manufacturing an aromatic alkylene polymer
EP3765559A1 (en) Method of obtaining terephthalic acid from waste polyethylene terephthalate
JPWO2018189969A1 (en) Method for distilling dimethyl sulfoxide, and multi-stage distillation column
AU695881B2 (en) Method for removing catalyst from an oligomer product
JP4147185B2 (en) Optimization of heat removal in gas phase fluidized bed process
JPH04316541A (en) Recovery of methyl ester of aromatic acid and glycol from thermoplastic polyester scrap
JP2001335514A (en) Method for decomposing polystyrene
JPH08333472A (en) Method for recovering bf3 from olefin oligomer catalyzed with bf3
KR102520447B1 (en) Solvent recovery method and solvent recovery apparatus
JP2001335518A (en) Method for hydrolyzing polyethylene terephthalate
US3952052A (en) Process for producing alkali metal salts of aromatic polycarboxylic acids
JP2004514648A5 (en)
US3254962A (en) Apparatus for oxidizing hydrocarbons
CN116056853A (en) High temperature pyrolysis of plastics to monomers at high gas velocities
US4490553A (en) Process for production of ethyl acrylate
US4313819A (en) Process for recovering deashing solvent from insoluble coal products
US2456260A (en) Process for recovering olefins from a hydrocarbon stream
CN114082210B (en) Recovery method and recovery system for waste gas and waste liquid in hydroformylation device
RU2792727C2 (en) Method for obtaining terephthalic acid from spent polyethylene terephthalate
JPH11217425A (en) Method and apparatus for continuous preparation of lactide
JPH0782569A (en) Method and apparatus for thermal liquefaction
JPS59137428A (en) Chloroprene improved manufacture
CN116477633A (en) Hydrogen recovery system and method in trichlorosilane production
WO2022171307A1 (en) Method and device for the production of polyamide 6 pellets
CN113292450A (en) Refining and purifying method of cyclohexanone oxime

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807