KR20030057600A - Method for fabricating capacitor of DRAM - Google Patents

Method for fabricating capacitor of DRAM Download PDF

Info

Publication number
KR20030057600A
KR20030057600A KR1020010087673A KR20010087673A KR20030057600A KR 20030057600 A KR20030057600 A KR 20030057600A KR 1020010087673 A KR1020010087673 A KR 1020010087673A KR 20010087673 A KR20010087673 A KR 20010087673A KR 20030057600 A KR20030057600 A KR 20030057600A
Authority
KR
South Korea
Prior art keywords
oxide film
capacitor
etching
storage node
layer
Prior art date
Application number
KR1020010087673A
Other languages
Korean (ko)
Inventor
남정석
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020010087673A priority Critical patent/KR20030057600A/en
Publication of KR20030057600A publication Critical patent/KR20030057600A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/84Electrodes with an enlarged surface, e.g. formed by texturisation being a rough surface, e.g. using hemispherical grains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
    • H01L28/92Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions made by patterning layers, e.g. by etching conductive layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE: A method for manufacturing a DRAM capacitor is provided to simplify manufacturing processes, to increase capacitance and to prevent bridge between cells by using etch-back and wet-etching of an oxide layer for isolating cells. CONSTITUTION: An etch stop layer(33) and a capacitor oxide layer(35) are sequentially formed on a silicon substrate(31) having a plug. A storage node contact hole is formed to expose the plug. An amorphous silicon layer(36) and MPS(Metastable PolySilicon)(37) as a storage node are sequentially formed on the resultant structure including the storage node contact hole. Then, a cell isolation oxide layer(38) is filled into the storage node contact hole. After etch-back of the oxide layer(38), the MPS and the amorphous silicon layer deposited on the capacitor oxide layer(35) are removed by etch-back so as to isolate between storage nodes. The cell isolation oxide layer(38) filled in the storage node contact hole is then removed by wet-etching. At the time, USG(Undoped Silicate Glass) is used as the cell isolation oxide layer(38).

Description

디램 커패시터 제조방법{Method for fabricating capacitor of DRAM}Method for fabricating capacitor of DRAM

본 발명은 DRAM 커패시터 제조방법에 관한 것으로, 특히 산화막의 에치백 및 습식식각공정을 이용하여 공정을 단순화시키고 커패시터 용량을 증가시키며 불순물입자의 발생을 감소시키고 셀간 브릿지 발생을 방지할 수 있는 DRAM 커패시터 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a DRAM capacitor, in particular, by using an etch back and wet etching process of the oxide film to simplify the process, increase the capacity of the capacitor, reduce the generation of impurities particles, and prevent the generation of inter-cell bridges It is about a method.

종래의 실린더구조의 내부만을 이용하는 컵형태의 커패시터를 제조하는 일례를 도1a 내지 도 1b을 참조하여 설명하면 다음과 같다.An example of manufacturing a cup-shaped capacitor using only the inside of a conventional cylinder structure will be described with reference to FIGS. 1A to 1B.

먼저, 도1a에 나타낸 바와 같이 소정의 하부구조가 형성된 반도체기판(11)상에 층간절연막(12)을 형성하고, 식각저지층(13)으로서 SiN을 증착한다. 이어서 식각저지층(13)과 층간절연막(12)을 식각하여 반도체기판(11)의 표면일부를 노출시키는 스토리지노드콘택홀(도시 생략)을 형성한다.First, as shown in FIG. 1A, an interlayer insulating film 12 is formed on a semiconductor substrate 11 on which a predetermined substructure is formed, and SiN is deposited as an etch stop layer 13. Subsequently, the etch stop layer 13 and the interlayer insulating layer 12 are etched to form a storage node contact hole (not shown) exposing a part of the surface of the semiconductor substrate 11.

다음에, 스토리지노드콘택홀에 매립되면서 반도체기판(11)에 접속되는 스토리지노드콘택(14)을 형성한 후, 식각저지층(13)상에 커패시터 형성을 위한 커패시터 산화막(15)을 증착한다. 이때, 커패시터산화막(15)상에 폴리실리콘 하드마스크층을 증착할 수 있다.Next, after forming the storage node contact 14 which is buried in the storage node contact hole and connected to the semiconductor substrate 11, a capacitor oxide film 15 for forming a capacitor is deposited on the etch stop layer 13. In this case, a polysilicon hard mask layer may be deposited on the capacitor oxide layer 15.

다음에, 커패시터 산화막(15)을 먼저 식각하여 스토리지노드가 형성될 영역을 오픈시킨후, 식각저지층(13)을 추가로 식각한다.Next, the capacitor oxide layer 15 is first etched to open the region where the storage node is to be formed, and then the etch stop layer 13 is further etched.

이어서 결과물 전면에 스토리지노드 형성을 위한 비정질실리콘(16)을 증착한다음에 비정질실리콘(16) 표면에 MPS(17)를 성장시키고, 전면에 감광막(photoresist)(18)을 도포한다.Subsequently, the amorphous silicon 16 for forming the storage node is deposited on the entire surface of the resultant, and then the MPS 17 is grown on the surface of the amorphous silicon 16, and a photoresist 18 is coated on the entire surface.

도 1b에 도시된 바와 같이, 커패시터산화막(15)의 표면이 드러날때까지 CMP공정을 진행하여 셀별로 비정질실리콘층(16)을 분리한 다음, 습식식각에 의해 남아 있는 감광막(18)을 제거한다.As shown in FIG. 1B, the CMP process is performed until the surface of the capacitor oxide film 15 is exposed to separate the amorphous silicon layer 16 for each cell, and then the remaining photoresist film 18 is removed by wet etching. .

한편, 다른 방법으로는 감광막(18)을 에치백하여 스토리지노드가 형성될 영역에만 잔류시키고, 이 상태에서 커패시터산화막(15)상의 MPS(17)가 성장된 비정질실리콘(16)이 제거될때까지 에치백한 후, 감광막(18)을 스트립한다.Alternatively, the photoresist film 18 is etched back and remains only in the region where the storage node is to be formed. In this state, the amorphous silicon 16 on which the MPS 17 on the capacitor oxide film 15 is grown is removed. After the tooth whitening, the photosensitive film 18 is stripped.

다음에 MPS(17)가 성장된 비정질실리콘층(16), 즉 스토리지노드(16/17)상에 유전막(19)과 상부전극(20)을 형성한다.Next, the dielectric layer 19 and the upper electrode 20 are formed on the amorphous silicon layer 16 on which the MPS 17 is grown, that is, the storage node 16/17.

상기한 종래기술은 에치백 또는 CMP에 의해 셀간 분리를 행하므로 스토리지노드의 높이가 감소하여 커패시터 용량이 줄어드는 단점이 있으며, 에치백공정후 남게 되는 커패시터 산화막에 첨점이 발생한다는 문제가 있다.The above-described conventional technique has a disadvantage in that the separation of cells by etch back or CMP reduces the height of the storage node, thereby reducing the capacitor capacity, and there is a problem in that a peak occurs in the capacitor oxide film remaining after the etch back process.

또한, 산화막에 의한 CMP 불균일성을 유발하며, 실린더의 높이를 감소시켜 커패시터 용량이 줄어들뿐만 아니라, CMP공정시 MPS 입자가 이탈하여 셀간 브릿지를 발생시킬 수 있다.In addition, it causes CMP non-uniformity caused by the oxide film, reduces the capacitor capacity by reducing the height of the cylinder, as well as the separation of MPS particles during the CMP process can generate an inter-cell bridge.

본 발명은 상기 문제점을 해결하기 위한 것으로써, 산화막의 에치백 및 습식식각공정을 이용하여 공정을 단순화시키고 커패시터 용량을 증가시키며 불순물입자의 발생을 감소시키고 셀간 브릿지 발생을 방지할 수 있는 커패시터 제조방법을 제공하는데 목적이 있다.The present invention is to solve the above problems, using a etch back and wet etching process of the oxide film to simplify the process, increase the capacitor capacity, reduce the generation of impurity particles and prevent the formation of inter-cell bridges The purpose is to provide.

도1a 내지 도1b는 종래기술에 의한 DRAM 커패시터 제조방법을 나타낸 공정 단면도,1A to 1B are cross-sectional views illustrating a method of manufacturing a DRAM capacitor according to the prior art;

도2a 내지 도2c는 본 발명의 실시예에 따른 DRAM 커패시터 제조방법을 나타낸 공정 단면도.2A through 2C are cross-sectional views illustrating a method of manufacturing a DRAM capacitor according to an exemplary embodiment of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

31 : 반도체기판 32 : 층간절연막31 semiconductor substrate 32 interlayer insulating film

33 : 식각저지층 34 : 스토리지노드콘택33: etch stop layer 34: storage node contact

35 : 커패시터산화막 36 : 비정질실리콘층35 capacitor oxide film 36 amorphous silicon layer

37 : MPS 38 : USG37: MPS 38: USG

39 : 유전막 40 : 상부전극39 dielectric layer 40 upper electrode

상기 목적을 달성하기 위한 본 발명은, 소정의 하부구조가 형성된 반도체기판상에 층간절연막과, 식각저지층, 커패시터 산화막 및 하드마스크층을 차례로 형성하는 단계와, 커패시터 스토리지노드 형성영역을 정의하기 위한 포토마스크를 이용하여 상기 하드마스크층 및 커패시터 산화막을 식각하는 단계, 남아 있는 하드마스크층을 에치백하고 식각저지층을 식각하는 단계, 상기 식각저지층을 식각함에 따라 노출되는 층간절연막을 과도식각하여 실린더 구조를 형성하는 단계, 상기와 같이 형성된 실린더 구조의 전면에 스토리지노드 형성을 위한 비정질실리콘과 MPS를 차례로 증착하는 단계, 기판 전면에 셀 분리용 산화막을 증착하는 단계, 상기 셀 분리용 산화막을 에치백하고, 이에 따라 노출되는 커패시터 산화막 상부에 증착된 MPS 및 비정질실리콘을 에치백하여 셀별로 스토리지노드를 분리시키는 단계 및 상기 남아 있는 셀 분리용 산화막을 습식식각에 의해 제거하는 단계를 포함하여 구성된 것을 특징으로 한다.According to an aspect of the present invention, there is provided a method of forming an interlayer insulating film, an etch stop layer, a capacitor oxide film, and a hard mask layer on a semiconductor substrate on which a predetermined substructure is formed, and to define a capacitor storage node forming region. Etching the hard mask layer and the capacitor oxide layer using a photomask, etching back the remaining hard mask layer and etching the etch stop layer, and excessively etching the interlayer insulating layer exposed by etching the etch stop layer. Forming a cylinder structure, depositing amorphous silicon and MPS in order to form a storage node on the entire surface of the cylinder structure formed as described above, depositing an oxide film for cell separation on the entire surface of the substrate, and depositing the oxide film for cell separation. MPS and amorphous silicon deposited on top of the capacitor oxide film, which is then exposed and thus exposed. And etching back the oxide film to the stage and for cell separation in the left to separate the storage nodes for each cell characterized in that configured to include a step of removing by wet etching.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부된 도면을 참조하여 설명하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. do.

도 2a 내지 도 2c에 본 발명에 의한 DRAM 커패시터 제조방법을 공정순서에 따라 나타내었다.2A to 2C illustrate a method of manufacturing a DRAM capacitor according to the present invention according to the process sequence.

먼저, 도2a에 나타낸 바와 같이 소정의 하부구조가 형성된 반도체기판(31)상에 층간절연막(32)을 형성하고, 식각저지층(33)으로서 SiN을 증착한다. 이어서 식각저지층(33)과 층간절연막(32)을 식각하여 반도체기판(31)의 표면일부를 노출시키는 스토리지노드콘택홀(도시 생략)을 형성한다.First, as shown in FIG. 2A, an interlayer insulating film 32 is formed on a semiconductor substrate 31 on which a predetermined substructure is formed, and SiN is deposited as an etch stop layer 33. As shown in FIG. Subsequently, the etch stop layer 33 and the interlayer insulating layer 32 are etched to form a storage node contact hole (not shown) that exposes a portion of the surface of the semiconductor substrate 31.

다음에, 스토리지노드콘택홀에 매립되면서 반도체기판(31)에 접속되는 스토리지노드콘택(34)을 형성한 후, 식각저지층(33)상에 커패시터 형성을 위한 커패시터 산화막(35)을 증착한다. 이때, 커패시터산화막(35)상에 폴리실리콘 하드마스크층을 증착할 수 있는데, 이처럼 하드마스크층을 증착하면 감광막마스크만으로 커패시터산화막(35)을 식각하기가 어렵기 때문이다.Next, after forming the storage node contact 34 buried in the storage node contact hole and connected to the semiconductor substrate 31, a capacitor oxide layer 35 for forming a capacitor is deposited on the etch stop layer 33. In this case, the polysilicon hard mask layer may be deposited on the capacitor oxide film 35. This is because when the hard mask layer is deposited, it is difficult to etch the capacitor oxide film 35 using only the photoresist mask.

다음에, 커패시터 산화막(35)을 먼저 식각하여 스토리지노드가 형성될 영역을 오픈시킨후, 식각저지층(33)을 추가로 식각한다. 이때, 식각저지층(33) 하부의 층간절연막(32)이 소정 두께 과도식각될 수 있다.Next, the capacitor oxide layer 35 is first etched to open the region where the storage node is to be formed, and then the etch stop layer 33 is further etched. In this case, the interlayer insulating layer 32 under the etch stop layer 33 may be excessively etched to a predetermined thickness.

이어서 결과물 전면에 스토리지노드 형성을 위한 비정질실리콘(36)을 증착한다음에 비정질실리콘(36) 표면에 MPS(37)를 성장시키고, 전면에 USG(Undoped Silicate Glass)(38) 또는 SOG(Spin On Glass)을 증착한다.Subsequently, amorphous silicon 36 is deposited on the entire surface of the resultant to form a storage node, and then MPS 37 is grown on the surface of the amorphous silicon 36, and USG (Undoped Silicate Glass) 38 or spin on glass (SOG) is formed on the front surface. Deposit.

이어서 USG(38)을 에치백하여 스토리지노드가 형성될 영역에만 잔류시킨다.USG 38 is then etched back leaving only the region where the storage node is to be formed.

도 2b에 도시된 바와 같이, 에치백된 USG(38)을 마스크로 비정질실리콘(36)을 에치백하여 스토리지노드가 형성될 영역에만 잔류시킨다. 결국, 이웃한 스토리지노드간 격리가 이루어진다. 이하, MPS(37)가 성장된 비정질실리콘(36)을 스토리지노드(36/37)라 약칭한다.As shown in FIG. 2B, the amorphous silicon 36 is etched back using the etched USG 38 as a mask, leaving only the region where the storage node is to be formed. As a result, isolation between neighboring storage nodes is achieved. Hereinafter, the amorphous silicon 36 in which the MPS 37 is grown is abbreviated as a storage node 36/37.

한편, 에치백공정시 실린더 구조의 스토리지노드(36/37)의 높이가 감소하지않도록 셀간 분리를 확실히 되면서 스토리지노드(36/37)의 높이의 손실은 줄일 수 있도록 식각 타겟을 설정한다.On the other hand, during the etch back process, the etch target is set to reduce the height loss of the storage node 36/37 while ensuring separation between cells so that the height of the storage node 36/37 of the cylinder structure does not decrease.

도 2c에 도시된 바와 같이, 스토리지노드(36/37)의 내벽에 잔류하는 USG(38)을 습식식각으로 제거한다. 이때, 스토리지노드(36/37)를 지지하고 있는 커패시터산화막(35)이 일부분 식각되어, 스토리지노드(36/37)의 상측 측벽의 일부분을 노출시킨다.As shown in FIG. 2C, the USG 38 remaining on the inner wall of the storage node 36/37 is wet-etched. At this time, the capacitor oxide layer 35 supporting the storage node 36/37 is partially etched to expose a portion of the upper sidewall of the storage node 36/37.

즉, USG(38)과 커패시터산화막(35)의 막질 차이에 의한 식각속도 차이를 이용하여 실린더 내부의 USG(38)은 완전히 제거하고 커패시터산화막(35)은 절반 정도만 제거되도록 조정하여 하프 실린더(half cylinder)구조의 스토리지노드(36/37)를 형성한다.That is, the USG 38 inside the cylinder is completely removed and the capacitor oxide film 35 is half removed by using the difference in etching speed due to the film quality difference between the USG 38 and the capacitor oxide film 35. A storage node 36/37 having a cylinder structure is formed.

상기한 본 발명에 의한 커패시터 제조공정에 있어서는 USG막의 식각시 USG막과 커패시터 산화막의 막질 차이에 의한 커패시터 산화막의 손실로 인해 하프 실린더(half cylinder)형의 커패시터의 구현이 가능하게 되며, MPS를 증착한 후에 스토리지노드를 셀별로 분리하므로 MPS입자의 이동으로 인한 셀간 브릿지 발생을 방지할 수 있다. 또한, 확보된 비정질실리콘층 측벽을 이용하여 커패시터 용량을 충분히 확보할 수 있다.In the capacitor manufacturing process according to the present invention described above, due to the loss of the capacitor oxide film due to the difference in film quality between the USG film and the capacitor oxide film during etching of the USG film, it is possible to realize a half cylinder type capacitor, and to deposit MPS. After the storage node is separated by cells, inter-cell bridges due to movement of MPS particles can be prevented. In addition, the capacitor capacity can be sufficiently secured by using the secured sidewalls of the amorphous silicon layer.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

본 발명은 MPS를 증착한 후 산화막을 증착하고 에치백하여 셀간 분리를 행한 다음 산화막을 습식식각하므로 MPS 입자의 이탈에 의한 불순물 발생을 감소시켜 셀간 브릿지 생성을 방지할 수 있다. 또한, 막질차에 의한 식각속도 차이를 이용하여 하프 실린더 구조를 구현할 수 있어 커패시터 용량 증대효과를 얻을 수 있다. 또한, 산화막의 에치백공정후 습식식각을 통해 인접한 커패시터간에 충분한 공간을 확보할 수 있어 이 또한 셀간 브릿지 발생을 방지하는데 기여할 수 있다.According to the present invention, after depositing the MPS, the oxide film is deposited, etched back to perform cell-to-cell separation, and the oxide film is wet-etched to reduce the generation of impurities due to the separation of the MPS particles, thereby preventing the formation of the inter-cell bridge. In addition, it is possible to implement a half-cylinder structure by using the difference in the etching rate due to the film quality difference, it is possible to obtain the capacitor capacity increase effect. In addition, wet etching after the etch back process of the oxide layer may secure sufficient space between adjacent capacitors, which may also contribute to preventing inter-cell bridges.

Claims (5)

소정의 하부구조가 형성된 반도체기판상에 층간절연막과, 식각저지층, 커패시터 산화막 및 하드마스크층을 차례로 형성하는 단계와,Sequentially forming an interlayer insulating film, an etch stop layer, a capacitor oxide film, and a hard mask layer on a semiconductor substrate on which a predetermined substructure is formed; 커패시터 스토리지노드 형성영역을 정의하기 위한 포토마스크를 이용하여 상기 하드마스크층 및 커패시터 산화막을 식각하는 단계,Etching the hard mask layer and the capacitor oxide layer using a photomask for defining a capacitor storage node formation region, 남아 있는 하드마스크층을 에치백하고 식각저지층을 식각하는 단계,Etching back the remaining hard mask layer and etching the etch stop layer, 상기 식각저지층을 식각함에 따라 노출되는 층간절연막을 과도식각하여 실린더 구조를 형성하는 단계,Forming a cylinder structure by over-etching the interlayer insulating layer exposed by etching the etch stop layer; 상기와 같이 형성된 실린더 구조의 전면에 스토리지노드 형성을 위한 비정질실리콘과 MPS를 차례로 증착하는 단계,Depositing amorphous silicon and MPS in order to form a storage node on the front surface of the formed cylinder structure; 기판 전면에 셀 분리용 산화막을 증착하는 단계,Depositing an oxide film for cell separation on the entire surface of the substrate; 상기 셀 분리용 산화막을 에치백하고, 이에 따라 노출되는 커패시터 산화막 상부에 증착된 MPS 및 비정질실리콘을 에치백하여 셀별로 스토리지노드를 분리시키는 단계, 및Etching back the cell separation oxide film, and etching back MPS and amorphous silicon deposited on the exposed capacitor oxide film to separate storage nodes for each cell, and 상기 남아 있는 셀 분리용 산화막을 습식식각에 의해 제거하는 단계를 포함하여 구성된 커패시터 제조방법.And removing the remaining cell separation oxide film by wet etching. 제1항에 있어서,The method of claim 1, 상기 셀 분리용 산화막으로 USG 또는 SOG를 사용하는 것을 특징으로 하는 커패시터 제조방법.Capacitor manufacturing method characterized in that using USG or SOG as the oxide film for cell separation. 제1항에 있어서,The method of claim 1, 상기 셀 분리용 산화막을 습식식각에 의해 제거하는 단계에서 셀 분리용 산화막과 상기 커패시터산화막의 막질 차이에 의한 식각속도 차이를 이용하여 실린더 내부에 남아 있는 셀 분리용 산화막은 완전히 제거하고 커패시터산화막은 절반 정도만 제거되도록 습식식각을 행하는 것을 특징으로 하는 커패시터 제조방법.In the step of removing the cell separation oxide film by wet etching, the cell separation oxide film remaining inside the cylinder is completely removed by using the difference in the etching rate due to the film quality difference between the cell separation oxide film and the capacitor oxide film. Capacitor manufacturing method characterized in that the wet etching to remove only the degree. 제1항에 있어서,The method of claim 1, 상기 실린더 구조를 형성하는 단계후에 습식식각을 진행하여 실린더 내부 면적을 넓히는 단계가 더 포함되는 것을 특징으로 하는 커패시터 제조방법.After the step of forming the cylinder structure by the wet etching process further comprising the step of expanding the inner cylinder area. 제1항에 있어서,The method of claim 1, 상기 셀 분리용 산화막의 에치백공정시 셀간 분리는 확실히 되면서 스토리지노드 높이의 손실은 최소로 할 수 있는 식각 타겟을 설정하여 에치백을 행하는 것을 특징으로 하는 커패시터 제조방법.The method of manufacturing a capacitor according to claim 1, wherein the separation between the cells during the etch back process of the oxide film for separation of the cells is performed while the etch back is set to minimize the loss of the storage node height.
KR1020010087673A 2001-12-29 2001-12-29 Method for fabricating capacitor of DRAM KR20030057600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010087673A KR20030057600A (en) 2001-12-29 2001-12-29 Method for fabricating capacitor of DRAM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010087673A KR20030057600A (en) 2001-12-29 2001-12-29 Method for fabricating capacitor of DRAM

Publications (1)

Publication Number Publication Date
KR20030057600A true KR20030057600A (en) 2003-07-07

Family

ID=32215374

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010087673A KR20030057600A (en) 2001-12-29 2001-12-29 Method for fabricating capacitor of DRAM

Country Status (1)

Country Link
KR (1) KR20030057600A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7563688B2 (en) 2006-02-24 2009-07-21 Hynix Semiconductor Inc. Method for fabricating capacitor in semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7563688B2 (en) 2006-02-24 2009-07-21 Hynix Semiconductor Inc. Method for fabricating capacitor in semiconductor device

Similar Documents

Publication Publication Date Title
KR950012554B1 (en) Method of manufacturing a storage node of vlsi semiconductor device
KR0126799B1 (en) Manufacturing method of capacitor of semiconductor device
JPH08213568A (en) Semiconductor memory device and its manufacture
JPH11284135A (en) Manufacture of cylindrical stack electrode
KR100433848B1 (en) Method for orming storage node
US6136661A (en) Method to fabricate capacitor structures with very narrow features using silyated photoresist
KR20030057600A (en) Method for fabricating capacitor of DRAM
KR100226765B1 (en) Method of manufacturing semiconductor device
KR100250736B1 (en) Method for fabricating a storage node of capacitor
KR100384859B1 (en) Method of fabricating capacitor
US6238970B1 (en) Method for fabricating a DRAM cell capacitor including etching upper conductive layer with etching byproduct forming an etch barrier on the conductive pattern
KR100454072B1 (en) Semiconductor device and method for fabricating the same
US6867095B2 (en) Method for the fabrication of a semiconductor device utilizing simultaneous formation of contact plugs
KR0161196B1 (en) Fabricating method of capacitor storage node
KR20040008419A (en) A method for forming a storage node of a semiconductor device
KR100866127B1 (en) Method for forming capacitor of semiconductor device
KR100223286B1 (en) Method for manufacturing charge storage node of capacitor
KR100419748B1 (en) Method for fabricating semiconductor device
KR100449179B1 (en) Method for fabricating capacitor of semiconductor device to increase surface area of capacitor and avoid loss of oxide layer under capacitor
KR100269621B1 (en) Method of fabricating capacitor
KR20010086510A (en) Method OF FORMING CAPACITOR IN SEMICONDUCTOR DEVICE
KR20040052326A (en) Method of manufacturing capacitor for semiconductor device
KR100374545B1 (en) Method for manufacturing semiconductor memory device
KR100232204B1 (en) Capacitor structure and its fabricating method
KR100668835B1 (en) Method for fabricating capacitor

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination