KR20020083455A - Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same - Google Patents

Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same Download PDF

Info

Publication number
KR20020083455A
KR20020083455A KR1020020022687A KR20020022687A KR20020083455A KR 20020083455 A KR20020083455 A KR 20020083455A KR 1020020022687 A KR1020020022687 A KR 1020020022687A KR 20020022687 A KR20020022687 A KR 20020022687A KR 20020083455 A KR20020083455 A KR 20020083455A
Authority
KR
South Korea
Prior art keywords
photocatalyst
sol
photocatalyst coating
weight
coating
Prior art date
Application number
KR1020020022687A
Other languages
Korean (ko)
Other versions
KR100518956B1 (en
Inventor
이태규
윤영진
윤우석
Original Assignee
(주) 나노팩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 나노팩 filed Critical (주) 나노팩
Publication of KR20020083455A publication Critical patent/KR20020083455A/en
Application granted granted Critical
Publication of KR100518956B1 publication Critical patent/KR100518956B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: Provided are a sol for photocatalyst coating having high adsorption, which can prevent the isolation of secondary contaminant generated due to momentary photocatalytic reaction, and which has high photocatalytic activity, and a method for producing the same. CONSTITUTION: The sol consists of 0.1-20 wt% of photocatalyst, 0.1-10 wt% of inorganic adsorbent, 1-20 wt% of inorganic binder, and 55-95 wt% of organic solvent. The sol further comprises 0.1-10 wt% of metal compound. The metal compound is any one of copper compound, silver compound, bengala, vermilion, cadmium red, loess, cadmium yellow, emerald green, chromium oxide green, prussian blue, cobalt blue, manganese or carbon black. The photocatalyst is selected from TiO2, ZnO2, ZnO, CaTiO, WO3, SnO2, MoO3, Fe2O3, InP, GaAs, BaTiO3, KNbO3, Fe2O3 or Ta2O5.

Description

광촉매활성과 고흡착성을 동시에 가지는 광촉매 코팅용 졸{Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same}Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same}

본 발명은 광촉매 코팅용 졸 및 그 제조방법에 관한 것으로, 더욱 상세하게는 무기바인더를 이용하여 높은 흡착성과 광촉매 활성을 동시에 나타내는 광촉매 코팅용 졸을 스테인레스 스틸과 같은 금속 등의 메쉬류, 알루미늄과 같은 비철금속, 부직포, 세라믹 필터 및 폴리에틸렌(PE) 필터와 같은 플라스틱류에 상온에서 스프레이법, 담금법(dipping method) 등으로 코팅하여 환경정화 시스템에 적용할 수 있는 것에 관한 것이다.The present invention relates to a photocatalyst coating sol and a method for manufacturing the same, and more particularly, to a photocatalyst coating sol which simultaneously exhibits high adsorption and photocatalytic activity using an inorganic binder, such as meshes such as metals such as stainless steel, and aluminum Plastics such as non-ferrous metals, non-woven fabrics, ceramic filters and polyethylene (PE) filter is applied to the environmental purification system by coating at room temperature with a spray method, dipping method and the like.

종래의 환경오염물질 처리방법으로는 물리·화학적 방법으로 흡착법, 냉각응축법, 약액세정법, 촉매산화법 및 생물학적 처리법 등이 사용되어 왔다. 그러나 흡착법 및 냉각응축법은 오염물질 처리를 근본적으로 해결하지 못하여 사용시 제한이 따르며, 약액세정법은 오염물질과 화학약품의 중화반응을 통한 화학적인 탈취방법으로서 한정된 공간에서는 높은 오염물질 제거율을 나타낸다. 그러나 오염물질발생원이 광범위한 지역에서는 약품과 오염물질이 효과적으로 반응하도록 약품을 분사하는 추가장치 등이 필요하고, 고농도의 오염물질을 대량 발생하는 오염물질 발생원에서는 중화반응을 시키기 위해서 많은 양의 화학약품을 사용해야 하는 단점이 있다. 한편, 직접 연소법 및 촉매산화법은 오염을 유발하는 물질을 산화시켜 제거하는 방법으로 제거율은 높으나 NOx, SOx와 같은 2차 오염물질을 발생시키고, 비용이 고가라는 문제점이 있다.As a conventional method for treating environmental pollutants, adsorption, cooling, condensation, chemical cleaning, catalytic oxidation, and biological treatment have been used as physical and chemical methods. However, the adsorption and cooling condensation methods do not solve the contaminant treatment fundamentally, and they are subject to limitations. The chemical liquid cleaning method is a chemical deodorization method through neutralization of contaminants and chemicals. However, in areas with a wide range of pollutant sources, additional equipment is needed to spray the chemicals to effectively react the chemicals and pollutants.In the case of pollutant sources that generate large concentrations of pollutants, a large amount of chemicals are used to neutralize the reaction. There are drawbacks to using. On the other hand, the direct combustion method and the catalytic oxidation method is a method of oxidizing and removing a substance causing pollution, but the removal rate is high, but generates secondary pollutants such as NO x and SO x, and there is a problem that the cost is high.

초기 투자비와 유지비가 저렴하여 근래에 폭 넓게 사용되고 있는 미생물을 이용한 생물학적 오염물질 제거방법은 유럽 및 북미 등 선진국을 중심으로 활발히 연구되어 실용화 단계에 이르고 있다. 이 방법은 오염물질 제거에 관여하는 다양한 미생물을 담체에 고정화시켜 오염물질 제거율을 높이면서도 장치를 소형화할 수 있는 장점이 있다. 그러나, 실질적인 오염물질 제거반응이 일어나는 반응기 내부에 미생물의 성장에 필요한 영양분으로 작용하는 오염물질을 연속적으로 주입하여야 하고, 주기적으로 담체를 세척하여야 하며, 미생물의 관리가 어렵고 운전의 연속성 등의 기술적 문제점들이 있다.Due to the low initial investment and maintenance costs, biological contaminant removal methods using microorganisms, which are widely used in recent years, have been actively studied in advanced countries such as Europe and North America, and are reaching practical use. This method has the advantage of miniaturizing the device while increasing the pollutant removal rate by immobilizing various microorganisms involved in the pollutant removal to the carrier. However, it is necessary to continuously inject contaminants that act as nutrients necessary for the growth of microorganisms in the reactor where substantial contaminant removal reactions occur, periodically wash the carriers, manage microorganisms, and technical problems such as continuity of operation. There is.

최근 들어, 상술한 문제점들을 해결하기 위하여 고급산화기술 중의 한 방법인 광촉매를 이용한 오염물질 및 악취 물질을 제거하는 방법에 대한 관심이 높아지고 있다. 특히, 대한민국특허출원 제 1999-0052838호는 부직포, 활성탄, 제올라이트 등의 필터에 이산화티타늄(TiO2), 산화아연(ZnO) 및 은 등으로 코팅된 광촉매를 이용한 필터가 소개되어 있으며, 대한민국특허출원 제 2000-0034908호는 광촉매를이용하여 휘발성 유기화합물을 처리하는 방법이 기술되어 있고, 대한민국 실용신안등록출원 제 2000-0029990호에는 산화티타늄을 이용한 수처리장치가 소개되어 있다.Recently, in order to solve the above-mentioned problems, there is increasing interest in a method for removing contaminants and odorous substances using a photocatalyst, which is one of advanced oxidation techniques. In particular, Korean Patent Application No. 1999-0052838 discloses a filter using a photocatalyst coated with titanium dioxide (TiO 2 ), zinc oxide (ZnO), silver, and the like on a filter such as nonwoven fabric, activated carbon, and zeolite. No. 2000-0034908 discloses a method for treating volatile organic compounds using a photocatalyst, and the Korean Utility Model Registration Application No. 2000-0029990 discloses a water treatment apparatus using titanium oxide.

광촉매 산화반응은 띠 간격에너지(band gap energy) 이상의 빛 에너지를 광촉매에 조사하였을 때 전자와 정공이 발생하고, 정공에 의해 생성되는 수산화라디칼(·OH)의 강력한 산화력으로 광촉매 표면에 흡착된 기상 또는 액상의 유기물이 분해되는 반응을 일컫는다.The photocatalytic oxidation reaction generates electrons and holes when light energy above band gap energy is irradiated to the photocatalyst, and is a gas or adsorbed on the surface of the photocatalyst due to the strong oxidation power of radicals (· OH) produced by the holes. It refers to a reaction in which a liquid organic matter is decomposed.

즉, 광촉매는 빛 에너지를 흡수함으로써 촉매활성을 나타내게 되는데, 이때 발생하는 강력한 산화력으로 환경오염물질을 산화분해하는 것이다. 상기 광촉매 반응을 유도하는 물질로는 TiO2, ZnO2, ZnO, SrTiO3, CdS, GaP, InP, GaAs, BaTiO3, KNbO3, Fe2O3, Ta2O5, WO3, SnO2, Bi2O3, NiO, Cu2O, SiO, SiO2, MoS2, InPb, RuO2, CeO2등이 사용되고 있으며, 상기 광촉매에 Pt, Rh, Ag, Cu, Sn, Ni, Fe 등의 금속 및 이들의 금속산화물을 첨가하여 사용할 수도 있다. 이중에서도 이산화티타늄(TiO2)은 인체에 무해하고 광촉매활성이 탁월하며, 내광부식성이 우수하고 가격이 저렴하여 가장 많이 사용되고 있다.That is, the photocatalyst exhibits catalytic activity by absorbing light energy, and oxidatively decomposes environmental pollutants with the strong oxidizing power generated at this time. Materials for inducing the photocatalytic reaction include TiO 2 , ZnO 2 , ZnO, SrTiO 3 , CdS, GaP, InP, GaAs, BaTiO 3 , KNbO 3 , Fe 2 O 3 , Ta 2 O 5 , WO 3 , SnO 2 , Bi 2 O 3 , NiO, Cu 2 O, SiO, SiO 2 , MoS 2 , InPb, RuO 2 , CeO 2, etc. are used, and metals such as Pt, Rh, Ag, Cu, Sn, Ni, Fe, etc. are used for the photocatalyst. And these metal oxides can also be added and used. Among them, titanium dioxide (TiO 2 ) is harmless to the human body, has excellent photocatalytic activity, has excellent light corrosion resistance, and is inexpensive.

상기 이산화티타늄은 388㎚ 이하의 자외선을 흡수하여 반응함으로써 전자(전도대)와 정공(가전자대)이 생성되는데, 이때 광원으로 사용되는 자외선은 태양에너지 외에 램프, 백열전등, 수은램프 등의 인공조명 등이 사용될 수 있다. 상기 반응에서 생성된 전자와 정공은 10-12내지 10-9초만에 재결합하지만, 재결합하기 전에 오염물질 등이 표면에 흡착하게 되면 상기 전자와 정공에 의해 분해된다. 이러한 광촉매의 반응 기전을 나타낸 것이 다음의 반응식 1 내지 5이다.The titanium dioxide absorbs and reacts with ultraviolet rays of 388 nm or less to generate electrons (conducting bands) and holes (gap bands). In this case, the ultraviolet rays used as light sources are artificial lights such as lamps, incandescent lamps, and mercury lamps. This can be used. The electrons and holes generated in the reaction recombine in 10 -12 to 10 -9 seconds, but are decomposed by the electrons and holes if contaminants or the like adsorb to the surface before recombination. The reaction mechanism of this photocatalyst is shown in the following reaction schemes 1 to 5.

TiO2+ hν→ e-+ h+ TiO 2 + hν → e - + h +

e-+ O2→ O2 -라디칼 e - + O 2 → O 2 - radical

h++ -OH → -OH 라디칼h + + -OH → -OH radical

O2 -라디칼 + A(유기물, 균, 오염물질) → A'O 2 - radical + A (organic, bacteria, pollutant) → A '

-OH 라디칼 + B(유기물, 균, 오염물질) → B'-OH radical + B (organic, bacteria, pollutant) → B '

이와 같이 오염물질을 흡착·분해시킬 수 있는 광촉매의 반응특성을 지닌 코팅물을 제공하기 위하여 광촉매(이산화티타늄)를 함유한 코팅용 졸의 개발을 위한 연구가 활발히 진행되어 왔다. 특히 광촉매 층을 거울, 렌즈 및 판유리 등의 투명기재에 코팅시켜 기재가 뿌옇게 되거나 물방울이 형성되는 것을 방지하는안티포깅(antifogging)에 관한 기술이 국제특허공개공보 제WO96/029375호에 개시되어 있다.In order to provide a coating having a reaction characteristic of a photocatalyst capable of adsorbing and decomposing contaminants, research has been actively conducted to develop a coating sol containing a photocatalyst (titanium dioxide). In particular, a technique related to antifogging for coating a photocatalyst layer on a transparent substrate such as a mirror, a lens, and a plate glass to prevent the substrate from becoming cloudy or water droplets is disclosed in WO96 / 029375.

또한, 이산화티타늄을 광촉매로 사용하여 악취성분(담배연기)을 탈취하는 공기청정기용 필터, 수중 또는 공기중의 항균을 위한 필터, 유리와 타일 등의 방오 분야에서 실용화되고 있다. 그리고 광촉매가 코팅된 필터는 휘발성 유기화합물을 분해하기 위한 광촉매 시스템에도 적용 가능하다. 그러나 광촉매 반응은 표면반응이기 때문에 광촉매 표면에 유기오염물질 또는 악취물질이 다량 흡착시킬 수 있는 기술에 대한 연구 개발이 필요한 실정이다.In addition, it has been put to practical use in antifouling fields such as filters for air cleaners that deodorize odor components (tobacco smoke) using titanium dioxide as a photocatalyst, filters for antibacterial in water or in the air, and glass and tiles. The photocatalyst coated filter is also applicable to photocatalyst systems for decomposing volatile organic compounds. However, since photocatalytic reaction is a surface reaction, research and development on a technology capable of adsorbing a large amount of organic pollutants or odorous substances on the surface of the photocatalyst is required.

현재 통상적으로 많이 사용되고 있는 액상을 경유한 광촉매 코팅방법으로는 티탄 알콕사이드를 출발물질로 하여 졸을 만든 다음 담체에 코팅하는 방법이지만(일본특허공개공보 평5-253544호), 상기 방법은 코팅한 후 담체 상에서의 광촉매 입자를 생성시키는 단계, 광촉매 활성이 큰 아나타스(anatase)형 결정화 단계 및 담체와의 접착성을 부여하기 위하여 400 내지 600℃에서 소성시키는 단계로 이루어져 있으므로 제조공정이 복잡하고 제조비용이 매우 높다는 단점이 있다.Currently, the photocatalyst coating method through the liquid phase commonly used is a method of making a sol with a titanium alkoxide as a starting material and then coating it on a carrier (Japanese Patent Laid-Open Publication No. H5-253544). The production process is complicated and the production cost is composed of the steps of producing the photocatalytic particles on the carrier, the anatase crystallization step having a high photocatalytic activity, and calcining at 400 to 600 ° C. to give adhesion to the carrier. This is very high disadvantage.

또한 상기 방법을 사용할 경우, 내열성에 약한 플라스틱류 등의 고분자물질에 코팅하기에는 많은 제약이 따른다. 더 나아가서 내열성이 우수한 타일, 세라믹류에 광촉매를 코팅하여 고온에서 열처리를 행한다하더라도 전력소비가 크다는 문제점이 있다.In addition, when using the above method, there are a lot of restrictions to the coating on polymer materials such as plastics that are weak in heat resistance. Furthermore, there is a problem in that power consumption is high even when heat treatment is performed at a high temperature by coating a photocatalyst on tiles and ceramics having excellent heat resistance.

한편, 광촉매 코팅용 졸을 사용하지 않고 기상을 경유한 광촉매 코팅방법으로는 일본특허공개공보 소60-44053호에 개시된 스패터링법 또는 화학적 증착법이있다. 그러나, 이 경우에도 초기투자비, 즉 제조설비가 고가라는 단점이 있으며 코팅두께를 증가시킬 경우 막대한 전력 및 시간 소모가 뒤따른다는 문제점이 있다.On the other hand, as a photocatalyst coating method via gaseous phase without using a photocatalyst coating sol, there is a sputtering method or a chemical vapor deposition method disclosed in Japanese Patent Laid-Open No. 60-44053. However, even in this case, there is a disadvantage that the initial investment cost, that is, the manufacturing equipment is expensive, and when the coating thickness is increased, enormous power and time consumption are followed.

한편, 이산화티타늄을 졸-겔법 등으로 지지체에 박막화하였을 때는 오염물질 등이 광촉매 박막에 접촉할 수 있는 접촉면적이 제한되기 때문에 오염물질의 분해·처리에 많은 시간이 소요된다. 광촉매를 사용하여 환경오염물질을 효율적으로 제거하기 위해서는 광촉매의 표면적을 넓게 하거나 광원의 세기를 강하게 할 필요가 있는데 특히, 악취물질 등을 제거하기 위한 공기청정기, 에어콘 등의 공조기용 필터에서는 그 처리시간이 10-3초 정도를 요구하기 때문에 높은 흡착력 및 광촉매활성을 지니는 코팅용 졸의 개발이 더욱더 절실히 요구되고 있는 실정이다.On the other hand, when titanium dioxide is thinned on a support by a sol-gel method or the like, the contact area for contaminants and the like to contact the photocatalyst thin film is limited, which takes a long time to decompose and treat the contaminants. In order to effectively remove environmental pollutants using photocatalysts, it is necessary to increase the surface area of photocatalysts or to increase the intensity of light sources. Especially, in air conditioner filters such as air cleaners and air conditioners to remove odorous substances, the processing time Since it requires about 10 -3 seconds, the development of a coating sol having high adsorption power and photocatalytic activity is urgently required.

종래에는 용액 상태에서 한 종류의 입자들 사이에 다른 종류의 입자를 균일하게 분산하기 위해 서로 다른 두 가지 종류의 졸을 물리적으로 혼합하거나(미국특허 제5,591,380호), 출발 물질인 두 종류의 알콕사이드(alkoxide)를 용매에 동시에 용해시켜 졸을 제조하는 방법(미국특허 제4,176,089호) 등이 개시되었다. 그러나, 일반적으로 두 가지 종류의 졸을 혼합할 경우 졸의 안정성이 저하되어 짧은 시간 내에 겔화되어 버리며, 코팅시 코팅막이 두꺼워져 열처리 후에 담체로부터 탈리될 우려가 있다. 또한, 출발 물질을 동시에 용해하여 졸입자를 분산시킬 경우, 제조조건을 정밀하게 조절해야 하기 때문에 공정이 복잡해진다는 단점이 있다.Conventionally, two different types of sol are physically mixed (US Pat. No. 5,591,380) to uniformly disperse different types of particles among different types of particles in a solution state, or two kinds of alkoxides as starting materials ( A method of preparing a sol by simultaneously dissolving alkoxide in a solvent (US Pat. No. 4,176,089) and the like have been disclosed. However, in general, when the two types of sol is mixed, the stability of the sol is reduced and gelled within a short time, and the coating layer becomes thick during coating, and there is a concern that it may detach from the carrier after heat treatment. In addition, when dissolving the sol particles by dissolving the starting material at the same time, there is a disadvantage that the process is complicated because the manufacturing conditions must be precisely controlled.

이에 본 발명자들은 상술한 종래 기술의 문제점을 고려하여 지속적으로 연구 한 끝에 흡착력과 광촉매활성이 우수한 광촉매 코팅용 졸을 개발함으로써 본 발명을 완성하기에 이르렀다.Accordingly, the present inventors have completed the present invention by developing a photocatalyst coating sol having excellent adsorptive power and photocatalytic activity after continuously studying in view of the problems of the prior art described above.

본 발명은 높은 광촉매활성을 지니며 순간적인 광촉매 반응으로 인해 발생하는 2차 오염물질의 탈리를 방지할 수 있는 고흡착성 광촉매 코팅용 졸 및 이의 제조방법을 제공한다.The present invention provides a highly adsorptive photocatalyst coating sol having a high photocatalytic activity and preventing the decontamination of secondary pollutants caused by the instant photocatalytic reaction, and a preparation method thereof.

또한, 본 발명의 광촉매 코팅용 졸을 수처리 및 공기처리용 필터 등에 스프레이법, 담금법 등으로 코팅함으로써, 환경오염물질 및 유해한 미생물 등을 분해·제거할 수 있는 방법을 제공한다.The present invention also provides a method for decomposing and removing environmental pollutants, harmful microorganisms, etc. by coating the photocatalyst coating sol of the present invention with a spray method, a dip method, or the like for water treatment and air treatment filters.

도 1은 무기흡착제 및 금속혼합물을 첨가하지 않은 광촉매 코팅용 졸을 코팅한 금속메쉬의 광촉매활성을 나타내는 그래프,1 is a graph showing the photocatalytic activity of a metal mesh coated with a sol for photocatalyst coating without addition of an inorganic adsorbent and a metal mixture;

도 2는 본 발명에 따른 실시예 6의 광촉매 코팅용 졸을 코팅한 금속메쉬의 광촉매활성을 나타낸 그래프,2 is a graph showing the photocatalytic activity of a metal mesh coated with a photocatalyst coating sol of Example 6 according to the present invention;

도 3은 본 발명에 따른 실시예 7의 광촉매 코팅용 졸을 코팅한 금속메쉬의 광촉매활성을 나타낸 그래프,3 is a graph showing the photocatalytic activity of a metal mesh coated with a photocatalyst coating sol of Example 7 according to the present invention;

도 4는 본 발명에 따른 광촉매 코팅용 졸을 코팅한 금속메쉬와 무기흡착제 및 금속이온을 첨가하지 않은 광촉매 코팅용 졸을 코팅한 금속메쉬의 항균실험을 나타낸 그래프,4 is a graph showing an antimicrobial experiment of a metal mesh coated with a photocatalyst coating sol and an inorganic adsorbent and a metal mesh coated with a sol for photocatalyst coating without addition of metal ions according to the present invention;

도 5는 본 발명에 따른 광촉매 코팅용 졸을 코팅한 폴리에틸렌 필터의 탈색실험을 나타낸 그래프,5 is a graph showing a decolorization experiment of a polyethylene filter coated with a photocatalyst coating sol according to the present invention;

도 6은 본 발명에 따른 광촉매 코팅용 졸을 코팅한 폴리에틸렌 필터의 활성실험을 나타낸 그래프,6 is a graph showing an activity test of a polyethylene filter coated with a sol for photocatalyst coating according to the present invention;

도 7은 본 발명에 따른 광촉매 코팅용 졸을 코팅한 폴리에틸렌 필터의 포화활성실험을 나타낸 그래프,7 is a graph showing a saturation activity test of the polyethylene filter coated with a photocatalyst coating sol according to the present invention,

도 8은 본 발명에 따른 광촉매 코팅용 졸을 코팅한 폴리에틸렌 필터의 표면을 나타내는 전자현미경 사진,8 is an electron micrograph showing the surface of the polyethylene filter coated with a sol for photocatalyst coating according to the present invention,

도 9는 본 발명에 따른 광촉매 코팅용 졸을 코팅한 폴리에틸렌 필터의 단면을 나타내는 전자현미경 사진이다.9 is an electron micrograph showing a cross section of a polyethylene filter coated with a photocatalyst coating sol according to the present invention.

본 발명의 광촉매 코팅용 졸은 0.1 내지 20중량%의 광촉매, 0.1 내지 10중량%의 무기흡착제, 1 내지 20중량%의 무기바인더 및 55 내지 95중량%의 유기용매를 포함하는 것을 특징으로 한다.The photocatalyst coating sol of the present invention is characterized in that it comprises 0.1 to 20% by weight of the photocatalyst, 0.1 to 10% by weight of the inorganic adsorbent, 1 to 20% by weight of the inorganic binder and 55 to 95% by weight of the organic solvent.

또한, 본 발명의 광촉매 코팅용 졸은 0.1 내지 20중량%의 광촉매, 0.1 내지 10중량%의 무기흡착제, 1 내지 20중량%의 무기바인더, 55 내지 95중량%의 유기용매 및 0.1 내지 10중량%의 금속화합물을 포함하는 것을 특징으로 한다.In addition, the photocatalyst coating sol of the present invention is 0.1 to 20% by weight photocatalyst, 0.1 to 10% by weight inorganic adsorbent, 1 to 20% by weight inorganic binder, 55 to 95% by weight organic solvent and 0.1 to 10% by weight It characterized by containing a metal compound of.

또한, 본 발명은 1 내지 20중량%의 무기바인더, 55 내지 95중량%의 유기용매 및 필요에 따라서 0.1 내지 0.5중량%의 강산 또는 강염기를 혼합한 후 10 내지 30분 동안 상온에서 1000 내지 1500 rpm으로 교반하고, 상기 혼합물에 0.1 내지 20중량%의 광촉매 분말 및 0.1 내지 10중량%의 무기 흡착제를 첨가한 후 초음파 장치에서 10 내지 50분간 초음파 처리하고, 상기 혼합물에 필요에 따라서 0.1 내지 10중량%의 금속화합물을 첨가하는 것을 포함함을 특징으로 한다.In addition, the present invention is 1000 to 1500 rpm at room temperature for 10 to 30 minutes after mixing 1 to 20% by weight of the inorganic binder, 55 to 95% by weight of an organic solvent and 0.1 to 0.5% by weight of a strong acid or strong base, if necessary Stirred, and added 0.1 to 20% by weight of the photocatalyst powder and 0.1 to 10% by weight of the inorganic adsorbent, followed by sonication in an ultrasonic apparatus for 10 to 50 minutes, and 0.1 to 10% by weight of the mixture, if necessary. It characterized in that it comprises the addition of a metal compound.

상기 광촉매로는 일반적으로 광활성 금속산화물 즉, TiO2, ZnO2, ZnO, CaTiO, WO3, SnO2, MoO3, Fe2O3, InP, GaAs, BaTiO3, KNbO3, Fe2O3, 및 Ta2O5를 단독 또는 둘 이상 혼합하여 사용할 수 있으며, 특히 TiO2및/또는 ZnO를 사용하는 것이 바람직하다. 또한 광촉매의 입자크기가 작을수록 광촉매 특성이 우수하므로 상기 입자의 평균직경이 1 내지 50㎚, 추천하기로는 1 내지 10㎚인 것이 좋다.The photocatalyst is generally a photoactive metal oxide, that is, TiO 2 , ZnO 2 , ZnO, CaTiO, WO 3 , SnO 2 , MoO 3 , Fe 2 O 3 , InP, GaAs, BaTiO 3 , KNbO 3 , Fe 2 O 3 , And Ta 2 O 5 may be used alone or in combination of two or more, and it is particularly preferable to use TiO 2 and / or ZnO. In addition, the smaller the particle size of the photocatalyst, the better the photocatalyst characteristics, so that the average diameter of the particles is preferably 1 to 50 nm, preferably 1 to 10 nm.

한편, 광촉매의 반응속도는 금속 또는 금속산화물, 예를 들면, 팔라듐, 백금, 라듐, 텅스텐, 금, 은 및 구리 등을 첨가함으로써, 그 반응속도를 증가시키게 되는데, 상기 첨가물은 총 광촉매 중량당 0.01∼5 중량%를 첨가하여 사용할 수 있다. 또한, 광촉매 작용으로 인한 광촉매 코팅막의 열화를 억제할 목적으로 힌더드 아민계의 광안정제 및 트리아졸계의 자외선 흡수제 등을 혼합함으로써 내구성을 향상시킬 수 있다.On the other hand, the reaction rate of the photocatalyst is increased by adding a metal or metal oxide, for example, palladium, platinum, radium, tungsten, gold, silver and copper, etc., the additive is 0.01 per total photocatalyst weight -5 weight% can be added and used. In addition, durability can be improved by mixing a hindered amine light stabilizer and a triazole ultraviolet light absorber for the purpose of suppressing deterioration of the photocatalyst coating film due to the photocatalytic action.

본 발명에 따른 무기 흡착제는 광촉매 반응시 악취물질 및 유해물질들을 흡착시킬 수 있는 고흡착성 무기물질이면 어느 것을 사용하여도 무방하며, 특히 마그네슘 또는 칼슘이 함유된 실리케이트류, 활석, 규조토, 은 및/또는 구리이온을 담지한 제올라이트를 사용하는 것이 바람직하다.The inorganic adsorbent according to the present invention may be used as long as it is a highly adsorbent inorganic substance capable of adsorbing odorous substances and harmful substances in the photocatalytic reaction, and especially silicates, talc, diatomaceous earth, silver and / or containing magnesium or calcium. Or it is preferable to use the zeolite which carried the copper ion.

본 발명에 따른 무기바인더는 이소프록포사이드 화합물, 실란(silane)화합물 등을 사용할 수 있으며, 특히 티타늄 이소프록포사이드와 같은 이소프록포사이드 화합물을 사용하는 것이 바람직하다. 이때, 상기 무기바인더의 가수분해 속도를조절하기 위하여 산이나 염기촉매를 소량 첨가할 수도 있다.The inorganic binder according to the present invention may be an isoproposide compound, a silane compound, or the like, and particularly, an isoproposide compound such as titanium isoproposide is preferably used. In this case, a small amount of an acid or a base catalyst may be added to control the hydrolysis rate of the inorganic binder.

본 발명에 따른 유기용매로는 저급 알킬기를 가진 알코올을 사용할 수 있으며, 특히 무수 에탄올 또는 이소프로판올 등을 사용하는 것이 바람직하다.As the organic solvent according to the present invention, an alcohol having a lower alkyl group may be used, and in particular, it is preferable to use anhydrous ethanol or isopropanol.

한편, 본 발명에 따른 금속화합물로는 항균기능을 향상시킬 수 있고, 광원을 조사하였을 경우 색을 띄는 물질이라면 어느 것을 사용하여도 무방하며, 특히 구리화합물 예를 들면, 아세틸아세토네이트(Copper(II) acetylacetonate), 구리 아세테이트 수화물(Copper(II) acetate monohydrate) 등, 은화합물 예를 들면, 은 아세테이트(Silver Acetate) 등, 벵갈라, 버밀리온, 카드뮴레드, 황토, 카드뮴옐로, 에메랄드록, 산화크롬녹, 프러시안블루, 코발트청, 망간 또는 카본블랙 등을 단독 또는 둘 이상 혼합하여 사용할 수 있으며, 특히 바람직하게는 구리화합물이 좋다.On the other hand, the metal compound according to the present invention can improve the antimicrobial function, and may be used as long as the material is a color when irradiated with a light source, especially a copper compound, for example, acetylacetonate (Copper (II) acetylacetonate), copper acetate hydrate (Copper (II) acetate monohydrate), silver compounds such as silver acetate (Silver Acetate), bengala, vermilion, cadmium red, ocher, cadmium yellow, emerald rock, chromium oxide, Prussian blue, cobalt blue, manganese or carbon black may be used alone or in combination of two or more, and particularly preferably a copper compound.

상기와 같은 구성을 포함하는 광촉매 코팅용 졸의 제조방법을 설명하면 다음과 같다.Referring to the manufacturing method of the photocatalyst coating sol comprising the above configuration as follows.

먼저 1 내지 20중량%의 무기바인더, 55 내지 95중량%의 유기용매와 필요에 따라서 0.1 내지 0.5중량%의 강산 또는 강염기를 혼합한 후 10 내지 30분 동안 상온에서 1000 내지 1500 rpm으로 교반한다. 그리고 0.1 내지 20중량%의 광촉매 분말을 첨가한다.First, an inorganic binder of 1 to 20% by weight, 55 to 95% by weight of an organic solvent and 0.1 to 0.5% by weight of a strong acid or strong base are mixed as necessary, followed by stirring at 1000 to 1500 rpm at room temperature for 10 to 30 minutes. And 0.1-20 weight% photocatalyst powder is added.

상기 혼합물에 0.1 내지 10중량%의 무기 흡착제를 첨가한 후 초음파 장치에서 10 내지 50분간 초음파 처리함으로써 본 발명의 코팅용 졸을 얻는다. 이때, 무기 흡착제는 악취물질 등의 유해물질들을 광촉매로 분해할 경우 순간적으로 광촉매코팅막에 흡착하게 되고, 1차적으로 분해되는 물질의 광촉매 분해 후 2차 오염물질이 코팅막에 흡착되기 때문에 광촉매의 광분해에 의하여 대기중으로 방출될 가능성이 감소된다.0.1 to 10% by weight of an inorganic adsorbent is added to the mixture, followed by sonication for 10 to 50 minutes in an ultrasonic apparatus to obtain a coating sol of the present invention. In this case, when the inorganic adsorbent decomposes harmful substances such as odorous substances into the photocatalyst, the adsorbent is instantly adsorbed onto the photocatalyst coating film, and the secondary pollutants are adsorbed onto the coating film after the photocatalytic decomposition of the firstly decomposed material. This reduces the likelihood of release into the atmosphere.

또한, 본 발명에 따른 광촉매 코팅용 졸의 항균작용을 향상시키기거나 코팅막에 자외선을 조사할 경우 코팅막에 색을 부여하기 위하여 필요에 따라서 0.1 내지 10중량%의 금속화합물을 첨가할 수 있으며, 바람직하게는 0.2 내지 5 중량%가 좋다.In addition, in order to improve the antimicrobial activity of the photocatalyst coating sol according to the present invention or to give a color to the coating film when irradiating UV light on the coating film, 0.1 to 10% by weight of a metal compound may be added as necessary. Is preferably 0.2 to 5% by weight.

본 발명에 따른 광촉매 코팅용 졸은 코팅막에 서로 다른 종류의 산화물을 균일하게 분산시킬 수 있으므로 종래의 방법에 비해 쉽고 경제적으로 원하는 목적을 달성할 수 있다. 한편 무기 바인더의 가수분해 속도를 조절하기 위하여 산이나 염기촉매를 소량 첨가할 수도 있다.Since the photocatalyst coating sol according to the present invention can uniformly disperse different kinds of oxides in the coating film, it can be easily and economically achieved the desired purpose compared to the conventional method. On the other hand, a small amount of acid or base catalyst may be added to control the hydrolysis rate of the inorganic binder.

본 발명에 따른 광촉매 코팅용 졸을 원하는 기재에 담지하는 방법으로는 인쇄법, 스프레이법, 담금법(dipping method) 등으로 코팅하여 건조시키는 방법을 사용할 수 있으나, 추천하기로는 스프레이법 및 담금법을 사용하는 것이 좋다. 여기서, 상기 스프레이법 및 담금법의 건조온도는 용매의 종류에 따라 상이하지만, 일반적으로 50 내지 200℃, 특히 100 내지 150℃가 바람직하다.As a method of supporting the photocatalyst coating sol according to the present invention on a desired substrate, a method of coating and drying by a printing method, a spray method, a dipping method, etc. may be used, but it is recommended to use a spray method and a immersion method. It is good. Here, although the drying temperature of the said spraying method and the immersion method changes with kinds of solvent, generally 50-200 degreeC, especially 100-150 degreeC is preferable.

상기 "기재"라함은 본 발명에 따라 제조되는 광촉매 코팅용 졸을 코팅하여 사용할 수 있는 것이라면 어느 것이라도 무방하다. 예컨대, 항균, 탈취, 오염방지 등의 효과를 필요로 하는 다양한 담체나 각종 수처리 및 대기오염방지 설비에 필요한 필터류, 금속, 합금, 유리, 커튼, 벽지, 포장지, 플라스틱류 및 종이류 등이 있다.The term "substrate" may be any one that can be used by coating a photocatalyst coating sol prepared according to the present invention. For example, filters, metals, alloys, glass, curtains, wallpaper, wrapping papers, plastics, and papers, which are required for various carriers requiring various effects such as antibacterial, deodorization, pollution prevention, and various water treatment and air pollution prevention facilities.

광촉매 코팅용 졸을 기재에 코팅할 경우 용도에 따라 상기 코팅막의 두께를 조절할 필요가 있다. 특히, 상기 코팅막의 두께가 0.1㎛ 이상이면 광촉매층이 기재에 견고하게 접착되어 내구성이 높은 광촉매 코팅 구조체를 이룰 수 있으며, 상기 코팅막의 두께가 증가할수록 광촉매 활성 또한 증가하게 되나 그 두께가 5㎛이상이 되면 광원이 광촉매층의 기저로 충분히 투과할 수 없으므로 광촉매의 활성은 더 이상 증가하지 않는다. 한편, 5㎛ 이하에서는 높은 광촉매 활성을 나타내며 또한 투광성을 고려하여 볼 때 투명한 광촉매 코팅막을 갖는 것이 바람직하다. 또한, 오염물질의 흡착력을 향상시키기 위해서는 코팅막의 두께를 20 내지 50㎛까지 두껍게 하여도 효과적이다. 그러므로, 용도에 따라 광촉매층의 두께를 5 내지 50㎛까지 제조하는 것이 좋다.When coating the photocatalyst coating sol on the substrate it is necessary to adjust the thickness of the coating film according to the application. Particularly, if the thickness of the coating film is 0.1 μm or more, the photocatalyst layer may be firmly adhered to the substrate to form a highly durable photocatalyst coating structure. As the thickness of the coating film increases, the photocatalytic activity also increases, but the thickness thereof is 5 μm or more. In this case, since the light source cannot sufficiently transmit to the base of the photocatalytic layer, the activity of the photocatalyst no longer increases. On the other hand, it is preferable to have a high photocatalytic activity at 5 μm or less and have a transparent photocatalyst coating film in view of light transmittance. In addition, it is effective to increase the thickness of the coating film to 20 to 50㎛ in order to improve the adsorptive power of the contaminants. Therefore, it is good to manufacture the thickness of a photocatalyst layer to 5-50 micrometers according to a use.

본 발명에 따른 광촉매 코팅용 졸은 항균, 탈취, 오염방지 등의 효과를 필요로 하는 다양한 담체, 예를 들면, 커튼, 벽지 등의 인테리어 제품, 텐트, 우산, 테이블보 등의 일용품, 식품 포장재 등의 포장용기, 육묘 시트 등의 농업분야 등에 사용할 수 있다. 또한 광촉매 기능을 포함한 금속으로서는 알루미늄, 철, 구리 등의 단일금속 외에 스테인레스, 진주, 황동, 알루미늄합금, 티탄합금 등의 각종 합금 등을 기재로 사용할 수 있다.Photocatalyst coating sol according to the present invention is a variety of carriers that require antibacterial, deodorant, pollution prevention, such as interior products such as curtains, wallpaper, daily necessities such as tents, umbrellas, tablecloths, food packaging materials It can be used for agricultural fields such as packaging containers, seedling sheets and the like. As the metal including the photocatalytic function, various alloys such as stainless steel, pearl, brass, aluminum alloy, titanium alloy and the like can be used as the base material in addition to a single metal such as aluminum, iron and copper.

한편, 사용하는 금속의 형상, 재질에 따라서 통상의 도료로 도장한 금속시트나 판, 착색한 컬러 동판에 본 발명에 따른 광촉매 코팅용 코팅막을 형성시킬 수 있다. 이때 접착층 및 광촉매 코팅막의 광투과율이 높고 투명하면 기초 도료의 색조를 손상시키지 않으므로 그 응용성이 향상될 수 있다.On the other hand, according to the shape and material of the metal to be used, the coating film for photocatalyst coating which concerns on this invention can be formed in the metal sheet | seats, board | plates which were coated with the normal paint, and the colored copper plate which were colored. At this time, if the light transmittance of the adhesive layer and the photocatalyst coating film is high and transparent, the application of the coating material may be improved since the color tone of the base paint is not impaired.

본 발명에 따른 광촉매 기재 구조체는 오염방지, 항균, 탈취기능을 활용하여 자동차나 각종 수송기기의 창유리, 건축물의 창유리, 냉동·냉장 쇼 케이스나 환경정화시스템의 필터 등에 적용하여 유해물질의 분해, 항균 및 탈취가 동시에 가능하고 유리 표면의 오염방지 기능을 향상시킬 수 있다. 특히, 환경정화시스템, 공조기 및 공기청정기에 사용되는 플라스틱 필터류 예를 들면, 폴리에틸렌 필터, 폴리프로필렌 필터 등에 코팅하여 사용할 수 있다.The photocatalytic substrate structure according to the present invention is applied to the window glass of automobiles or various transportation devices, the window glass of buildings, the freezing / refrigerating show cases or the filters of environmental purification systems by utilizing pollution prevention, antibacterial, and deodorizing functions to decompose and disinfect harmful substances. And deodorization is possible at the same time and can improve the antifouling function of the glass surface. In particular, plastic filters used in environmental purification systems, air conditioners and air purifiers, for example, can be used by coating the polyethylene filter, polypropylene filter and the like.

이하에서 실시예를 통하여 본 발명을 구체적으로 설명하기로 한다. 그러나 하기의 실시예는 오로지 본 발명을 구체적으로 설명하기 위한 것으로 이를 실시예에 의해 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the following examples are only for illustrating the present invention in detail and do not limit the scope of the present invention by the examples.

<실시예 1><Example 1>

5중량%의 티타늄 이소프록폭사이드[Junsei Chemical Co., Ltd.]와 78.8중량%의 무수에탄올, 0.2중량%의 염산을 혼합한 후 20분 동안 상온에서 1200rpm으로 교반하였다. 그 다음 10중량%의 이산화티타늄 분말[Degussa P25, 독일]을 첨가하였다.5 wt% of titanium isopropoxide [Junsei Chemical Co., Ltd.], 78.8 wt% of anhydrous ethanol and 0.2 wt% of hydrochloric acid were mixed, followed by stirring at 1200 rpm for 20 minutes at room temperature. Then 10% by weight of titanium dioxide powder [Degussa P25, Germany] was added.

상기 혼합용액에 6중량%의 활석[DUKSAN PURE CHEMICAL Co., Ltd.]을 첨가한 후 초음파장치[BRANSON Ultrasonic Co., DHA-1000]에서 30분 이상 초음파처리하여 코팅용 졸을 제조하였다.After the addition of 6% by weight of talc [DUKSAN PURE CHEMICAL Co., Ltd.] to the mixed solution was sonicated for 30 minutes or more in an ultrasonic apparatus [BRANSON Ultrasonic Co., DHA-1000] to prepare a coating sol.

<실시예 2><Example 2>

5중량%의 티타늄 이소프록폭사이드[Junsei Chemical Co., Ltd]와 78.5중량%의 무수에탄올, 0.2중량%의 염산을 혼합한 후 20분 동안 상온에서 1200rpm으로 교반하였다. 그 다음 10중량%의 이산화티타늄 분말[Degussa P25, 독일]을 첨가하였다.5 wt% of titanium isopropoxide [Junsei Chemical Co., Ltd], 78.5 wt% of anhydrous ethanol and 0.2 wt% of hydrochloric acid were mixed, followed by stirring at 1200 rpm for 20 minutes at room temperature. Then 10% by weight of titanium dioxide powder [Degussa P25, Germany] was added.

상기 혼합용액에 6중량%의 활석[DUKSAN PURE CHEMICAL Co., Ltd.]을 첨가한 후 초음파장치[BRANSON Ultrasonic Co., DHA-1000]에서 30분 이상 초음파처리를 한 후 0.3중량%의 구리아세테이트 수화물[Junsei chemical. Co., Ltd., 일본]을 첨가함으로써 코팅용 졸을 제조하였다.After adding 6% by weight of talc [DUKSAN PURE CHEMICAL Co., Ltd.] to the mixed solution and sonicating for 30 minutes or more in an ultrasonic apparatus [BRANSON Ultrasonic Co., DHA-1000] 0.3% by weight of copper acetate Hydrates [Junsei chemical. Co., Ltd., Japan] to prepare a coating sol.

<실시예 3><Example 3>

실시예 1과 동일한 방법으로 실시하되 6중량%의 활석 대신 5중량%의 규조토[DUKSAN PURE CHEMICAL Co., Ltd.]를 사용하여 코팅용 졸을 제조하였다.A coating sol was prepared in the same manner as in Example 1, but using 5% by weight of diatomaceous earth [DUKSAN PURE CHEMICAL Co., Ltd.] instead of 6% by weight of talc.

<실시예 4><Example 4>

실시예 2와 동일한 방법으로 실시하되 0.3중량%의 구리아세테이트 수화물 대신 0.3중량%의 은아세테이트[Junsei Chem. Co., Ltd., 일본]를 사용하여 코팅용 졸을 제조하였다.The same method as in Example 2, except that 0.3% by weight of silver acetate instead of 0.3% by weight of copper acetate hydrate [Junsei Chem. Co., Ltd., Japan] to prepare a sol for coating.

<실시예 5>Example 5

3중량%의 이산화티타늄[Degussa P25, 독일]과 93중량%의 에탄올, 0.2중량%의 염산을 혼합한 후 20분 동안 상온에서 1200rpm으로 교반하였다.After mixing 3% by weight of titanium dioxide [Degussa P25, Germany], 93% by weight of ethanol, 0.2% by weight of hydrochloric acid and stirred at 1200rpm at room temperature for 20 minutes.

상기 용액에 3.8중량%의 마그네슘실리케이트[Aldrich, 미국]를 첨가한 후 초음파장치[BRANSON Ultrasonic Co., DHA-1000]에서 30분 이상 초음파처리하고 0.3중량%의 구리아세틸아세토네이트[Junsei Chem. Co., Ltd., 일본]를 첨가함으로써 코팅용 졸을 제조하였다.3.8% by weight of magnesium silicate [Aldrich, USA] was added to the solution, followed by sonication for 30 minutes in an ultrasonic apparatus [BRANSON Ultrasonic Co., DHA-1000] and 0.3% by weight of copper acetylacetonate [Junsei Chem. Co., Ltd., Japan] to prepare a coating sol.

<실시예 6><Example 6>

실시예 1에 의하여 제조된 코팅용 졸을 금속메쉬[Al싸롱 4x8mm, 0.4T, 형제메탈라스, 한국]에 상온에서 스프레이법(1.5구경, 압력:4KG)으로 코팅한 뒤 120 내지 150℃의 온도로 건조시켜 광촉매가 코팅된 금속메쉬를 수득하였다.The coating sol prepared according to Example 1 was coated on a metal mesh [Al Sarong 4x8mm, 0.4T, Brother Metallas, Korea] at room temperature by spray method (1.5 diameter, pressure: 4KG) and then heated to 120 to 150 ° C. Drying to obtain a metal mesh coated with a photocatalyst.

<실시예 7><Example 7>

실시예 6과 동일한 방법으로 실시하되, 상기 실시예 1에 의하여 제조된 코팅용 졸 대신, 실시예 2에 의하여 제조된 코팅용 졸을 사용하였다.It was carried out in the same manner as in Example 6, but instead of the coating sol prepared by Example 1, a coating sol prepared by Example 2 was used.

<실시예 8><Example 8>

실시예 6과 동일한 방법으로 실시하되, 상기 실시예 1에 의하여 제조된 코팅용 졸 대신, 실시예 3에 의하여 제조된 코팅용 졸을 사용하였다.It was carried out in the same manner as in Example 6, but instead of the coating sol prepared by Example 1, a coating sol prepared by Example 3 was used.

<실시예 9>Example 9

실시예 6과 동일한 방법으로 실시하되, 상기 실시예 1에 의하여 제조된 코팅용 졸 대신, 실시예 4에 의하여 제조된 코팅용 졸을 사용하였다.It was carried out in the same manner as in Example 6, but instead of the coating sol prepared by Example 1, the coating sol prepared by Example 4 was used.

<실시예 10><Example 10>

실시예 5에 의하여 제조된 코팅용 졸을 폴리에틸렌 필터[SW80M, 신우, 한국]에 상온에서 스프레이법[1.5구경, 압력:4KG]으로 코팅한 뒤 온도 60℃에서 건조시켜 광촉매가 코팅된 폴리에틸렌 필터를 수득하였다.The coating sol prepared according to Example 5 was coated on a polyethylene filter [SW80M, Shinwoo, Korea] at room temperature with a spray method [1.5 diameter, pressure: 4KG] and dried at a temperature of 60 ° C. to obtain a photocatalyst coated polyethylene filter. Obtained.

<비교 실시예>Comparative Example

5중량%의 티타늄 이소프록폭사이드[Junsei Chemical Co., Ltd.]와 95중량%의 무수에탄올, 0.2중량%의 염산을 혼합한 후 20분 동안 상온에서 1200 rpm으로 교반하였다. 그 다음 10중량%의 이산화티타늄 분말[Degussa P25, 독일]을 첨가한 후 초음파장치[BRANSON Ultrasonic Co., DHA-1000]에서 30분 이상 초음파처리하여 코팅용 졸을 제조하였다.5 wt% of titanium isopropoxide [Junsei Chemical Co., Ltd.], 95 wt% of anhydrous ethanol, and 0.2 wt% of hydrochloric acid were mixed, followed by stirring at 1200 rpm for 20 minutes at room temperature. Then, 10 wt% of titanium dioxide powder [Degussa P25, Germany] was added and sonicated for 30 minutes or more in an ultrasonic apparatus [BRANSON Ultrasonic Co., DHA-1000] to prepare a coating sol.

그 다음, 상기 코팅용 졸을 금속메쉬[Al싸롱4x8mm, 0.4T, 형제메탈라스, 한국]에 상온에서 스프레이법(1.5구경, 압력:4KG)으로 코팅한 뒤 60℃에서 건조시켜 무기흡착제와 금속화합물을 첨가하지 않은 금속메쉬를 수득하였다.Then, the coating sol is coated on a metal mesh [Al Sarong 4x8mm, 0.4T, Brother Metallas, Korea] at room temperature by spray method (1.5 diameter, pressure: 4KG) and dried at 60 ° C. to form an inorganic adsorbent and a metal. A metal mesh without a compound was obtained.

<실험><Experiment>

ⅰ) 금속메쉬를 이용한 실험실험) Experiment using metal mesh

포화활성 테스트Saturation Activity Test

다수개의 배치 반응기를 준비한 뒤 실시예 6 내지 실시예 9 및 비교실시예에 의하여 제조된 광촉매가 코팅된 금속메쉬를 각각의 배치 반응기 내부에 안착시킨 후 트라이클로로에틸렌(C2HCl3, TCE)을 투입하여 분해속도를 측정하였다. 이때 트라이클로로에틸렌의 초기농도는 약 2000ppm이고, 반응기 부피는 125cm3이며, 상기 금속메쉬에 광활성을 주기 위해서 자외선을 발광하는 블랙라이트 램프(파장 300 내지 368㎚, 최대파장 400㎚)[4W BLB, Sankyo denki, 일본]로 상기 금속메쉬에 빛을 조사하였으며, 트라이클로로에틸렌의 분해속도는 FTIR 분광기[Perkin Elmer, Spectrum one FT-IR spectrometer]로 측정하였다.After preparing a plurality of batch reactors, the metal catalyst coated metal mesh prepared according to Examples 6 to 9 and Comparative Example was placed in each batch reactor, and then trichloroethylene (C 2 HCl 3 , TCE) was added. The rate of decomposition was measured by adding. At this time, the initial concentration of trichloroethylene is about 2000ppm, the reactor volume is 125cm 3 , a black light lamp (wavelength 300 to 368nm, maximum wavelength 400nm) to emit ultraviolet light to give photoactivity to the metal mesh [4W BLB, Sankyo denki, Japan] was irradiated with light on the metal mesh, and the decomposition rate of trichloroethylene was measured by a FTIR spectrometer [Perkin Elmer, Spectrum one FT-IR spectrometer].

그 결과를 도 1 내지 도 3으로 나타냈다.The results are shown in Figs.

도 1은 상기 비교실시예에 따른 무기흡착제와 금속화합물을 첨가하지 않은 광촉매 코팅용 졸을 코팅한 금속메쉬의 활성을 나타내고, 도 2는 본 발명에 따른 실시예 6의 광촉매 코팅용 졸을 코팅한 금속메쉬의 활성을 나타내고, 도 3은 본 발명에 따른 실시예 7의 광촉매 코팅용 졸을 코팅한 금속메쉬의 활성을 나타낸다.1 shows the activity of a metal mesh coated with a photocatalyst coating sol not adding an inorganic adsorbent and a metal compound according to the comparative example, and FIG. 2 is a photocatalyst coating sol of Example 6 according to the present invention. It shows the activity of the metal mesh, Figure 3 shows the activity of the metal mesh coated with the photocatalyst coating sol of Example 7 according to the present invention.

도 1에 도시된 바와 같이, 트라이클로로에틸렌(TCE)을 반응물질로 하여 광촉매 분해하였을 때 트라이클로로에틸렌은 수분(10 내지 20분)이내에 분해되었으나 중간생성물인 호스겐의 피크가 검출되었다(C-Cl:856cm-1, C=O:1825cm-1). 이는 상기광촉매 코팅용 졸이 특정유기물인 트라이클로로에틸렌을 분해하는 속도는 빠르나 유해한 호스겐이 공기 중으로 배출되는 단점이 있다는 것을 의미한다.As shown in FIG. 1, trichloroethylene was decomposed within a few minutes (10 to 20 minutes) when the photocatalyst was decomposed using trichloroethylene (TCE) as a reactant, but a peak of the intermediate product Hosgen was detected (C- Cl: 856 cm −1 , C═O: 1825 cm −1 ). This means that the photocatalyst coating sol decomposes trichloroethylene, which is a particular organic matter, but has a disadvantage in that harmful hosgene is released into the air.

따라서, 무기흡착제와 금속화합물을 첨가하지 않은 광촉매 코팅용 졸은 에어콘, 공기청정기용 광촉매필터로 사용하기에는 부적합하다.Therefore, the photocatalyst coating sol without the inorganic adsorbent and the metal compound is not suitable for use as a photocatalyst filter for an air conditioner or an air cleaner.

이에 비하여, 도 2 및 도 3에 도시된 바와 같이, 비교실시예에 따른 금속메쉬와 비교하여 볼 때, 광촉매활성은 약 1/2정도 감소하였으나 트라이클로로에틸렌의 분해 후 2차 오염물질(부생성물)인 호스겐의 피크는 검출되지 않았다. 이것은 첨가된 고흡착성 무기물질에 의하여 2차 오염물질이 흡착되어 공기 중으로 방출되지 않았기 때문이다.In contrast, as shown in Figures 2 and 3, compared with the metal mesh according to the comparative example, the photocatalytic activity was reduced by about 1/2, but after the decomposition of trichloroethylene secondary contaminants (by-products) Was not detected. This is because secondary pollutants were not adsorbed and released into the air by the added superadsorbent inorganic material.

항균성 테스트Antimicrobial testing

대장균이 배양된 직경 100mm, 높이 15mm의 페트리 디쉬(petri dish) 2개와 본 발명에 따른 실시예 8에 의하여 제조된 금속메쉬를 3cm × 6cm 크기한 시편 2개를 준비하였다. 그 다음, 상기 시편 각각을 상기 대장균이 들어 있는 각각의 용기에 넣고 그 중 하나의 용기에는 파장 300 내지 368nm, 최대파장 400nm, 4W인 블랙라이트 램프[4W BLB, Sankyo Denki, 일본]를 상기 시편으로부터 5cm 이격된 거리에 설치하여 자외선을 조사하고, 또 다른 용기에는 자외선을 조사하지 않았다. 이때, 실험에 사용된 초기 대장균의 콜로니(colony) 수는 각 용기마다 70이었다.Two petri dishes with a diameter of 100 mm and a height of 15 mm in which E. coli was cultured and two metal meshes prepared in Example 8 according to the present invention were prepared with two specimens having a size of 3 cm × 6 cm. Then, each of the specimens was placed in a respective container containing the E. coli, and one of them contained a black light lamp [4W BLB, Sankyo Denki, Japan] having a wavelength of 300 to 368 nm, a maximum wavelength of 400 nm, and 4 W from the specimen. It was installed at a distance of 5 cm and irradiated with ultraviolet rays, and another container was not irradiated with ultraviolet rays. At this time, the colony number of the initial E. coli used in the experiment was 70 in each container.

그 결과를 도 4로 나타냈다.The result is shown in FIG.

도 4에 나타낸 바와 같이 6시간동안 자외선 조사하였을 때 용기에 존재하는 대장균이 완전히 제거되었다. 그리고 동일 조건 하에서 자외선을 조사하지 않은상태에서의 실험을 수행한 결과 대장균의 콜로니수가 감소하지 않았음을 알 수 있었다.As shown in FIG. 4, when exposed to ultraviolet rays for 6 hours, E. coli was completely removed from the container. In addition, the experiment was performed under the same conditions without irradiation of UV light, indicating that the colony count of E. coli was not reduced.

ⅱ) 폴리에틸렌 필터를 이용한 실험Ii) experiment with polyethylene filter

탈색 테스트Decolorization test

실시예 10에 의하여 제조된 광촉매 코팅용 졸이 코팅된 폴리에틸렌 필터의 흡착력을 실험하기 위하여 0.8ppm의 메틸렌블루 수용액(M.B.)[Methylene blue 2~3hydrate, Junsei Chem. Co., Ltd, 일본] 25㎖를 직경 100mm, 높이 15mm의 페트리 디쉬에 넣고, 상기 실시예 10에 의하여 제조된 광촉매가 코팅된 폴리에틸렌 필터를 상기 페트리 디쉬에 담근 후 상기 페트리 디쉬로부터 13cm 이격된 거리에서 파장 300 내지 368nm, 최대파장 400nm, 4W인 블랙라이트 램프[4W BLB, Sankyo Denki, 일본]로 빛을 조사하여 수용액의 탈색 정도를 실험하였다.0.8 ppm methylene blue aqueous solution (M.B.) [Methylene blue 2-3 hydrate, Junsei Chem. In order to test the adsorption power of the photocatalyst coating sol coated polyethylene filter prepared in Example 10. Co., Ltd, Japan] 25 ml of a 100 mm diameter and 15 mm high petri dish, and the photocatalyst coated polyethylene filter prepared in Example 10 was immersed in the petri dish and spaced 13 cm from the petri dish. The light was irradiated with a black light lamp [4W BLB, Sankyo Denki, Japan] having a wavelength of 300 to 368 nm, a maximum wavelength of 400 nm, and 4 W to test the degree of decolorization of the aqueous solution.

그 결과를 도 5로 나타냈다. 도 5에 도시된 바와 같이, 상기 메틸렌블루(M.B.) 수용액은 30분 후에 84.4%의 제거율을 나타냄을 알 수 있었다.The result is shown in FIG. As shown in FIG. 5, the aqueous methylene blue (M.B.) solution showed a removal rate of 84.4% after 30 minutes.

악취제거 실험Deodorization Experiment

기상에서의 악취제거 테스트를 실험하기 위하여 125ℓ의 용적을 갖는 밀폐된 SUS 반응기 내부에 실시예 10에 의하여 제조된 광촉매를 코팅한 폴리에틸렌 필터를 그 내부 중심에 설치한 후 악취물질로 8ppm의 트리메틸아민(TMA)을 유속 0.83m/s의 속도로 상기 반응기에 주입시켰다. 상기 트리메틸아민(TMA)이 주입된 후 시간에 따른 제거율을 측정하였으며, 그 결과를 도 6으로 나타냈다.To test the odor removal test in the gas phase, a polyethylene filter coated with a photocatalyst prepared in Example 10 was installed in a sealed SUS reactor having a volume of 125 L at the center thereof, and 8 ppm of trimethylamine TMA) was injected into the reactor at a flow rate of 0.83 m / s. After the trimethylamine (TMA) was injected, the removal rate was measured over time, and the results are shown in FIG. 6.

도 6에 도시된 바와 같이, 10분 후 트리메틸아민의 제거율이 82.2%, 30분 후 90.41%인 것으로 나타났다.As shown in FIG. 6, the removal rate of trimethylamine after 10 minutes was 82.2%, and 90.41% after 30 minutes.

포화활성 실험Saturation Activity Experiment

125ℓ의 용적을 갖는 밀폐된 SUS 반응기 내부에 실시예 10에 의하여 제조된 광촉매 코팅용 졸을 코팅한 폴리에틸렌 필터 및 순환팬을 그 내부에 설치한 후 악취물질로 20ppm의 트리메틸아민(TMA)을 상기 반응기에 주입하였다. 그 다음, 순환팬을 0.83m/s의 속도로 회전시켜 내부 공기를 순환시키며, 1시간 정도 방치하였다. 그 다음, 상기 반응기 내부의 트리메틸아민(TMA) 농도를 측정하였다. 여기서, 상기 실험과정을 1 사이클로 하고, 상기 1 사이클이 종료된 후 상기 광촉매를 코팅한 폴리에틸렌 필터에 블랙라이트 램프[4W BLB, Sankyo Denki, 일본]로 빛을 1시간 정도 조사한 뒤 전술한 실험과정과 동일한 실험을 수행하였다. 이때, 두 번째 실험을 2 사이클로 하여 상기 사이클을 반복적으로 수행하였다.After installing a polyethylene filter and a circulating fan coated with a photocatalyst coating sol prepared in Example 10 in a sealed SUS reactor having a volume of 125 L therein, 20 ppm of trimethylamine (TMA) as a malodorous substance was added to the reactor. Injected into. Then, the circulation fan was rotated at a speed of 0.83 m / s to circulate the internal air, and left for about 1 hour. Then, the concentration of trimethylamine (TMA) in the reactor was measured. Here, the experiment process is one cycle, and after the cycle is finished, the polyethylene filter coated with the photocatalyst is irradiated with a black light lamp [4W BLB, Sankyo Denki, Japan] for about 1 hour, and then The same experiment was performed. At this time, the cycle was repeatedly performed with the second experiment as 2 cycles.

그 결과를 도 7로 나타냈다.The result is shown in FIG.

도 7에 도시된 바와 같이, 53사이클 동안 총 1002.7ppm의 트리메틸아민 제거성능을 나타냈으며 트리메틸아민(TMA)의 제거효율은 90% 내외를 유지하였다.As shown in FIG. 7, trimethylamine removal performance was 1002.7 ppm in total for 53 cycles, and the removal efficiency of trimethylamine (TMA) was maintained at about 90%.

항균성 시험Antimicrobial test

Shake Flask Method를 이용하여 실시예 10에 의하여 제조된 광촉매 코팅용 졸을 코팅한 폴리에틸렌 필터의 항균성을 측정하였다.The antimicrobial activity of the polyethylene filter coated with a photocatalyst coating sol prepared in Example 10 was measured using the Shake Flask Method.

여기서, 상기 Shake Flask Method는 다음과 같은 방법으로 수행된다.Here, the shake flask method is performed by the following method.

먼저 시험 편(1cm X 1cm인 정방형으로 30개)과 대조 편(1cm X 1cm인 정방형으로 30개)을 공지 균으로 접종시킨 후 접종 액과 일정량의 중화용액을 진탕시켜 배양된 세균을 추출한 후 상기 중화용액 속에 존재하는 세균의 수가 측정되면 항균성이 있는 시험 편과 대조 편간의 세균감소율을 하기 수학식 1로 측정한다.First, inoculate test pieces (30 pieces in 1cm X 1cm square) and control pieces (30 pieces in 1cm X 1cm square) with known bacteria, and shake the inoculation solution with a certain amount of neutralizing solution to extract the cultured bacteria. When the number of bacteria present in the neutralization solution is measured, the bacterial reduction rate between the antimicrobial test piece and the control piece is measured by Equation 1 below.

이때, 상기 중화용액은 인산완충액(pH 7.0±0.2)를 사용하였고, 계면활성제 Tween 80(0.05%)를 사용하였으며, 시험균액의 균수는 온도 35±1℃에서 24시간 동안 150회/분으로 진탕배양한 후 측정하였다.In this case, the neutralizing solution was used as a phosphate buffer (pH 7.0 ± 0.2), the surfactant Tween 80 (0.05%), the number of bacteria in the test solution was shaken at 150 times / min for 24 hours at a temperature of 35 ± 1 ℃ It was measured after incubation.

상기 Shake Flask Method에 사용된 공지 균주는Staphylococcus aureusATCC 6538와Escherichia coliATCC 25992 였다.Known strains used in the Shake Flask Method were Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 25992.

그 결과를 표 1로 나타냈다.The results are shown in Table 1.

하기 표 1로부터 알 수 있듯이, 광촉매 코팅용 졸을 코팅한 폴리에틸렌 필터를 이용한 실시예 7 및 실시예 10의 균 증가율은 거의 나타나지 않았으며, 광촉매 코팅용 졸을 코팅하지 않은 폴리에틸렌 필터(blank)의 경우 균 증가율이 30 내지 40%였음을 알 수 있었다.As can be seen from Table 1, the bacterial growth rate of Example 7 and Example 10 using the polyethylene filter coated with a photocatalyst coating sol was hardly seen, and the polyethylene filter (blank) was not coated with a photocatalyst coating sol. The bacterial growth rate was found to be 30 to 40%.

균 주Strain Staphylococcus aureus ATCC 6538Staphylococcus aureus ATCC 6538 Staphylococcus aureus ATCC 6538Staphylococcus aureus ATCC 6538 Escherichia coli ATCC 25992Escherichia coli ATCC 25992 Escherichia coli ATCC 25992Escherichia coli ATCC 25992 샘 플Sample blankblank 실시예7Example 7 blankblank 실시예 10Example 10 접종직후Right after vaccination 1.8×105 1.8 × 10 5 1.8×105 1.8 × 10 5 1.7×105 1.7 × 10 5 1.7×105 1.7 × 10 5 접종 후 24시간 경과24 hours after vaccination 1.7×105 1.7 × 10 5 <100<100 1.7×105 1.7 × 10 5 <100<100 균 감소율(%)% Of bacteria reduction -- 99.999.9 -- 99.999.9 증가율(비율)Rate of increase (rate) 33.933.9 -- 37.137.1 --

방미도 시험A deficiency test

ASTM G-21 시험기준을 이용하여 실시예 10에 의하여 제조된 광촉매 코팅용 졸을 코팅한 폴리에틸렌 필터의 방미도(antimicrobial)를 측정하였다.The antimicrobial of the polyethylene filter coated with a photocatalyst coating sol prepared in Example 10 was measured using ASTM G-21 test criteria.

상기 ASTM G-21 시험기준에 사용된 공지 균주는Aspergillus nigerATCC 9642,Penicillium pinophiliumATCC 11797,Chaetomium globosumATCC 6205,Gliocladium virensATCC 9645 및Aureobaidium pullulansATCC 15233이었다.Known strains used in the ASTM G-21 test criteria were Aspergillus niger ATCC 9642, Penicillium pinophilium ATCC 11797, Chaetomium globosum ATCC 6205, Gliocladium virens ATCC 9645 and Aureobaidium pullulans ATCC 15233.

그 결과 ASTM G-21 시험기준으로 0등급 판정이 수득되었다. 여기서, 상기 0등급이라 함은 상기 공지 균주가 자라지 않았음을 의미한다.As a result, a rating of 0 was obtained based on the ASTM G-21 test criteria. Here, the 0 grade means that the known strain did not grow.

한편, 상기 실시예 10에 의하여 제조된 폴리에틸렌 필터의 표면과 단면을 도 8 내지 도 9의 전자현미경 사진으로 나타냈다.On the other hand, the surface and the cross-section of the polyethylene filter prepared in Example 10 is shown by the electron micrograph of FIGS.

도 8 및 도 9에 도시된 바와 같이 광촉매 코팅용 졸의 코팅표면이 매우 다공질인 것을 확인할 수 있었으며, 코팅두께는 약 20㎛ 내외였다.As shown in FIGS. 8 and 9, the coating surface of the photocatalyst coating sol was very porous, and the coating thickness was about 20 μm.

이상에서 설명한 바와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.As described above, those skilled in the art will understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. Therefore, the above-described embodiments are to be understood as illustrative in all respects and not as restrictive. The scope of the present invention should be construed that all changes or modifications derived from the meaning and scope of the appended claims and their equivalents, rather than the detailed description, are included in the scope of the present invention.

본 발명은 상술한 바와 같이 무기 흡착제를 활용하여 고 흡착성과 광촉매 활성을 동시에 나타내는 광촉매 코팅용 졸을 스텐네스스틸과 같은 금속 등의 메시류, 알루미늄과 같은 비철금속, 부직포, 세라믹 필터 및 폴리에틸렌 필터 등과 같은 환경오염물질 처리시스템에서 사용되는 필터류에 상온에서 스프레이법, 담금법등으로 코팅하여 이들을 환경정화 시스템에 적용할 수 있다.As described above, the present invention provides a photocatalyst coating sol that exhibits high adsorption and photocatalytic activity by using an inorganic adsorbent, such as meshes such as metals such as stainless steel, nonferrous metals such as aluminum, nonwoven fabrics, ceramic filters, and polyethylene filters. Filters used in environmental pollutant treatment systems can be coated at room temperature by spraying, dipping, etc. and applied to environmental purification systems.

Claims (11)

0.1 내지 20중량%의 광촉매, 0.1 내지 10중량%의 무기흡착제, 1 내지 20중량%의 무기바인더 및 55 내지 95중량%의 유기용매로 이루어진 것을 특징으로 하는 광촉매 코팅용 졸.A photocatalyst coating sol comprising 0.1 to 20 wt% photocatalyst, 0.1 to 10 wt% inorganic adsorbent, 1 to 20 wt% inorganic binder, and 55 to 95 wt% organic solvent. 제 1항에 있어서,The method of claim 1, 0.1 내지 10중량%의 금속화합물을 더 포함하는 것을 특징으로 하는 광촉매 코팅용 졸.Photocatalyst coating sol characterized in that it further comprises 0.1 to 10% by weight of the metal compound. 제 2항에 있어서,The method of claim 2, 금속화합물은 구리화합물, 은화합물, 벵갈라, 버밀리온, 카드뮴레드, 황토, 카드뮴옐로, 에메랄드록, 산화크롬녹, 프러시안블루, 코발트청, 망간 또는 카본블랙 중에 선택된 어느 하나인 것을 특징으로 하는 광촉매 코팅용 졸.The metal compound is any one selected from copper, silver, bengal, vermilion, cadmium red, ocher, cadmium yellow, emerald rock, chromium oxide, prussian blue, cobalt blue, manganese or carbon black. Sol. 제 1항에 있어서,The method of claim 1, 광촉매는 TiO2, ZnO2, ZnO, CaTiO, WO3, SnO2, MoO3, Fe2O3, InP, GaAs, BaTiO3, KNbO3, Fe2O3또는 Ta2O5중에서 선택된 것을 특징으로 하는 광촉매 코팅용 졸.The photocatalyst is selected from TiO 2 , ZnO 2 , ZnO, CaTiO, WO 3 , SnO 2 , MoO 3 , Fe 2 O 3 , InP, GaAs, BaTiO 3 , KNbO 3 , Fe 2 O 3 or Ta 2 O 5 Sol for photocatalyst coating. 제 4항에 있어서,The method of claim 4, wherein 광촉매의 입자의 평균직경이 5 내지 50㎚인 것을 특징으로 하는 광촉매 코팅용 졸.The photocatalyst coating sol of Claim 5 whose average diameter of the particle | grains of a photocatalyst is 5-50 nm. 제 1항에 있어서,The method of claim 1, 무기 흡착제는 마그네슘 또는 칼슘과 합성된 실리케이트, 활석, 규조토 또는 은 및/또는 구리이온이 담지된 제올라이트를 사용한 것을 특징으로 하는 광촉매 코팅용 졸.Inorganic adsorbent sol for photocatalyst coating, characterized in that the silicate, talc, diatomaceous earth or silver and / or copper ion supported zeolite synthesized with magnesium or calcium. 제 1항에 있어서,The method of claim 1, 무기바인더는 이소프록포사이드 화합물 또는 실란화합물인 것을 특징으로 하는 광촉매 코팅용 졸.Inorganic binder is a photocatalyst coating sol, characterized in that the isoproposide compound or silane compound. 제 1항에 있어서,The method of claim 1, 유기용매는 저급 알킬기를 가진 알코올인 것을 특징으로 하는 광촉매 코팅용 졸.The organic solvent is a photocatalyst coating sol, characterized in that the alcohol having a lower alkyl group. 1 내지 20중량%의 무기바인더, 55 내지 95중량%의 유기용매 및 필요에 따라서 0.1 내지 0.5중량%의 강산 또는 강염기를 혼합한 후 10 내지 30분 동안 상온에서 1000 내지 1500 rpm으로 교반하고, 상기 혼합물에 0.1 내지 20중량%의 광촉매 분말 및 0.1 내지 10중량%의 무기 흡착제를 첨가한 후 초음파 장치에서 10 내지 50분간 초음파 처리하고, 상기 혼합물에 필요에 따라서 0.1 내지 10중량%의 금속화합물을 첨가하는 것을 특징으로 하는 광촉매 코팅용 졸의 제조방법.1 to 20% by weight of an inorganic binder, 55 to 95% by weight of an organic solvent and 0.1 to 0.5% by weight of a strong acid or strong base, if necessary, and then stirred at 1000 to 1500 rpm at room temperature for 10 to 30 minutes, 0.1-20 wt% of the photocatalyst powder and 0.1-10 wt% of the inorganic adsorbent are added to the mixture, followed by sonication for 10 to 50 minutes in an ultrasonic apparatus, and 0.1-10 wt% of the metal compound as necessary. Method for producing a photocatalyst coating sol, characterized in that. 제 1항 내지 제8항 중 어느 한 항에 따른 광촉매 코팅용 졸을 인쇄법, 스프레이법 또는 담금법으로 코팅하여 건조시킨 기재.A substrate obtained by coating and drying the photocatalyst coating sol according to any one of claims 1 to 8 by printing, spraying, or dipping. 제 10항에 있어서,The method of claim 10, 상기 기재가 알루미늄 필터, 폴리에틸렌 필터 또는 폴리프로필렌 필터인 것을 특징으로 하는 기재.A substrate, characterized in that the substrate is an aluminum filter, polyethylene filter or polypropylene filter.
KR10-2002-0022687A 2001-04-25 2002-04-25 Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same KR100518956B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020010022270 2001-04-25
KR20010022270 2001-04-25

Publications (2)

Publication Number Publication Date
KR20020083455A true KR20020083455A (en) 2002-11-02
KR100518956B1 KR100518956B1 (en) 2005-10-05

Family

ID=19708680

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0022687A KR100518956B1 (en) 2001-04-25 2002-04-25 Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same

Country Status (4)

Country Link
US (1) US20050126428A1 (en)
KR (1) KR100518956B1 (en)
CN (1) CN1222580C (en)
WO (1) WO2002085989A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040023178A (en) * 2002-09-11 2004-03-18 박영희 a
KR100611634B1 (en) * 2004-02-27 2006-08-11 (주)지엔씨글로텍 Sol composition which has multiple funtion
KR100662090B1 (en) * 2004-11-11 2006-12-28 한국에너지기술연구원 Photocatalytic paper and its manufacturing method for gas adsorption and photocatalytic oxidation
KR100676899B1 (en) * 2005-04-18 2007-02-01 (주)나인 Unharmful Painting Composites comprising Loess and Fabricating Method thereof
WO2007055430A1 (en) * 2005-11-08 2007-05-18 Young Jung Bang Air purifier with sterilization, deodorization and absorbing toxic materials
KR100879964B1 (en) * 2007-02-26 2009-01-23 (주) 나노팩 Preparation Method for Optical Fibers Coated with Photocatalysts
KR101112672B1 (en) * 2010-05-26 2012-03-13 이화여자대학교 산학협력단 A cadmium sulfide quantum dots-tungsten oxide nanohybrid photo-catalyst and preparation method thereof
KR20210087242A (en) * 2020-01-02 2021-07-12 성균관대학교산학협력단 Photocatalyst coating material, manufacturing method for the same, and construction material including the same
KR20210114264A (en) * 2020-03-10 2021-09-23 (주) 디아이엔바이로 Porosity filter media for under drain device and Water treatment facility containing the same

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068181A1 (en) * 2004-01-16 2005-07-28 Domo Oudenaarde Nv Photocatalytic particles in floor laminates
EP1790410A1 (en) 2005-11-25 2007-05-30 Buxair N.V. Apparatus for photocatalytically cleaning and deodorizing fluids
US20080083411A1 (en) * 2006-10-06 2008-04-10 Steven Lyon Guth Self-Sterilizing Particulate Respirator Facepiece and Method for Using Same
EP2186561B1 (en) * 2007-09-05 2022-08-10 Kabushiki Kaisha Toshiba Visible-light-responsive photocatalyst powder, and visible-light-responsive photocatalyst material, photocatalytic coating material, and photocatalytic product each containing the same
WO2009031317A1 (en) * 2007-09-05 2009-03-12 Kabushiki Kaisha Toshiba Visible-light-responsive photocatalyst powder, process for producing the same, and visible-light-responsive photocatalyst material, photocatalytic coating material, and photocatalytic product each containing the same
CN105032174A (en) * 2008-03-31 2015-11-11 意大利乐科伍德公司 Application of photo-catalytic coating particles in decomposition of air pollutants
CN101544854B (en) * 2009-04-22 2014-10-22 上海杉胜科技有限公司 Antibacterial, mildewproof, self-cleaning, air cleaning and environment-friendly spray coating liquid and preparation and application thereof
CN101618288B (en) * 2009-06-08 2011-06-22 浙江大学 Preparation method of fiberglass-based photocatalysis filter screen
JP5567828B2 (en) * 2009-11-30 2014-08-06 パナソニック株式会社 Visible light responsive photocatalyst coating material, coated product and allergen inactivation method
CN101974259B (en) * 2010-10-13 2012-04-25 中国科学院理化技术研究所 Method for preparing A1-doped SiC powder infrared radiation coating
WO2012082476A2 (en) * 2010-12-16 2012-06-21 Advanced Technologies & Testing Laboratories, Inc. Fluid disinfection device and method
US8564770B1 (en) * 2011-06-01 2013-10-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration System for in-situ detection of plant exposure to trichloroethylene (TCE)
CN102400123B (en) * 2011-11-01 2015-08-26 昆明理工大学 A kind of preparation method of Na-Mg weak doping p-type ZnO film
US20130337121A1 (en) * 2012-06-14 2013-12-19 Empire Technology Development Llc Devices and methods for perserving food
CN102876147B (en) * 2012-09-29 2016-03-09 大连工业大学 A kind of composite air purifying paint and preparation method thereof
CN103285885B (en) * 2012-12-26 2015-04-22 河北联合大学 CdS-intercalated and Mn-doped K4Nb6O17 composite photocatalytic material and preparation method thereof
EP3049485B1 (en) * 2013-09-25 2019-04-10 Välinge Photocatalytic AB A method of applying a photo catalytic dispersion and a method of manufacturing a panel
RU2552452C9 (en) * 2013-12-24 2015-11-10 Открытое акционерное общество "Казанский химический научно-исследовательский институт" Photocatalytic composite material
WO2016048851A1 (en) * 2014-09-22 2016-03-31 Gallager Scott M Continuous particle imaging and classification system
CN104607039B (en) * 2015-01-20 2017-11-24 淄博木齐新材料科技有限公司 Antibacterial purifying functional composite material and preparation method thereof
CN106031886A (en) * 2015-03-18 2016-10-19 李建明 Neutral photocatalytic coating agent, preparation method and coating method thereof
CN106031887A (en) * 2015-03-18 2016-10-19 李建明 Photocatalytic coating agent, preparation method and coating method thereof
CN106140153A (en) * 2015-04-09 2016-11-23 龙游天禾生态农业有限公司 A kind of mixed solution preparation method promoting photocatalyst to purify air
CN105504893B (en) * 2015-12-16 2018-03-30 南京倍立达新材料系统工程股份有限公司 Spacetabs type photocatalysis anti-fouling and self-cleaning coating and preparation method thereof
CN107216752A (en) * 2016-06-13 2017-09-29 嘉力丰科技股份有限公司 Wallpaper basement membrane and preparation method thereof
CN108031280A (en) * 2017-12-13 2018-05-15 中国科学院合肥物质科学研究院 Diatom ooze and its application with visible ray removal ability
CN108365124B (en) * 2018-02-13 2019-05-31 武汉华星光电半导体显示技术有限公司 OLED encapsulation method and OLED encapsulating structure
CN109110793A (en) * 2018-03-22 2019-01-01 云南大学 A kind of preparation method of alumina load nano-cerium oxide compound gold and ru oxide
CN110449192A (en) * 2019-09-03 2019-11-15 青岛农业大学 The carrying method of catalyst in a kind of photocatalysis coupled microbial synchronous degradation of contaminant
CN110628246A (en) * 2019-09-26 2019-12-31 浙江迈实科技有限公司 Composite photocatalyst wall coating
CN110801805B (en) * 2019-11-15 2020-12-29 江南大学 Magnetic renewable adsorbent for adsorbing gaseous zero-valent mercury and preparation method thereof
CN111286247A (en) * 2020-04-16 2020-06-16 佛山市三水区康立泰无机合成材料有限公司 Functional environment-friendly coating and preparation method thereof
JP2023529598A (en) * 2020-06-03 2023-07-11 ボナ エービー Air Purifying Coating System and Manufacturing Method Thereof
CN111659449A (en) * 2020-07-13 2020-09-15 浙江理工大学 Photocatalyst with high catalytic activity and preparation method and application thereof
CN113144887A (en) * 2021-02-07 2021-07-23 青岛中福高新装备制造有限公司 Method for improving pollutant degradation effect of photocatalytic coating

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044053A (en) * 1983-08-19 1985-03-08 Toshiba Corp Photo-reactive membrane like catalyst
DK157816C (en) * 1985-06-11 1990-07-09 Malning Hf PAINT ON ACRYLIC BASIS, WHICH PROVIDES WATER DUTIES, BUT WATER Vapor permeable cover
US5616532A (en) * 1990-12-14 1997-04-01 E. Heller & Company Photocatalyst-binder compositions
US5591380A (en) * 1991-12-20 1997-01-07 United Technologies Corporation Preparation of alumina-silica sol gel compositions
KR970706901A (en) * 1994-11-16 1997-12-01 시게후치 마사토시 Photocatalytic functional material and method of production thereof
JP3690864B2 (en) * 1996-03-29 2005-08-31 株式会社ティオテクノ Production method of photocatalyst
US6407033B1 (en) * 1996-10-08 2002-06-18 Nippon Soda Co., Ltd. Photocatalytic coating composition and photocatalyst-bearing structure
JPH1161044A (en) * 1997-08-07 1999-03-05 Jsr Corp Building material
EP1036826B1 (en) * 1997-12-02 2004-04-07 Showa Denko Kabushiki Kaisha Photocatalytic oxide composition, thin film, and composite
JPH11279446A (en) * 1998-03-27 1999-10-12 Tokushu Paper Mfg Co Ltd Photocatalytic coating material, its production and photocatalytic deodorizing paper produced by using the coating material
CZ295546B6 (en) * 1998-07-30 2005-08-17 Toto Ltd. Method for producing high-performance material having photocatalytic function and apparatus for making the same
JP4034885B2 (en) * 1998-09-17 2008-01-16 石原産業株式会社 Photocatalytic coating composition
KR20000038564A (en) * 1998-12-08 2000-07-05 배상태 Coating composition for preventing glass from being dirty and its use
KR20000075273A (en) * 1999-05-31 2000-12-15 윤종용 Arm of wafer movement apparatus
KR100357765B1 (en) * 1999-11-25 2002-10-25 (주)바이오세라 Process of preparation of photo-semiconductive filter for deodorization and antibacterial activity and photo-semiconductive filter for deodorization and antibacterial activity used this process
US6569520B1 (en) * 2000-03-21 2003-05-27 3M Innovative Properties Company Photocatalytic composition and method for preventing algae growth on building materials
EP1166871A1 (en) * 2000-06-21 2002-01-02 Fuji Photo Film B.V. Photocalytic sheet of film and its manufacturing process
KR20020069256A (en) * 2000-11-17 2002-08-29 유겐가이샤 칸코우 데바이스 켄큐쇼 Coating responding to visible light, coating film and article
KR100403275B1 (en) * 2001-03-30 2003-10-30 주식회사 매그린 Photocatalytic Coating Composition, Preparation Method Thereof and Coated Body Using the Same
KR100442919B1 (en) * 2001-09-13 2004-08-02 재단법인 포항산업과학연구원 Preparation method for photocatalyst sol having high transparency photoactivity
US20040245496A1 (en) * 2001-09-27 2004-12-09 Hiroshi Taoda Cleaning agent, antibacterial material, environment clarifying material, functional adsorbent
US6673738B2 (en) * 2001-11-28 2004-01-06 K.K. Ueda Shikimono Kojyo Photocatalytic active carbon, colored photocatalytic active carbon, coloring active carbon, and deodorant and adsorption product using them
US7414009B2 (en) * 2001-12-21 2008-08-19 Showa Denko K.K. Highly active photocatalyst particles, method of production therefor, and use thereof
US7521133B2 (en) * 2002-03-25 2009-04-21 Osaka Titanium Technologies Co., Ltd. Titanium oxide photocatalyst, process for producing the same and application

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040023178A (en) * 2002-09-11 2004-03-18 박영희 a
KR100611634B1 (en) * 2004-02-27 2006-08-11 (주)지엔씨글로텍 Sol composition which has multiple funtion
KR100662090B1 (en) * 2004-11-11 2006-12-28 한국에너지기술연구원 Photocatalytic paper and its manufacturing method for gas adsorption and photocatalytic oxidation
KR100676899B1 (en) * 2005-04-18 2007-02-01 (주)나인 Unharmful Painting Composites comprising Loess and Fabricating Method thereof
WO2007055430A1 (en) * 2005-11-08 2007-05-18 Young Jung Bang Air purifier with sterilization, deodorization and absorbing toxic materials
KR100879964B1 (en) * 2007-02-26 2009-01-23 (주) 나노팩 Preparation Method for Optical Fibers Coated with Photocatalysts
KR101112672B1 (en) * 2010-05-26 2012-03-13 이화여자대학교 산학협력단 A cadmium sulfide quantum dots-tungsten oxide nanohybrid photo-catalyst and preparation method thereof
KR20210087242A (en) * 2020-01-02 2021-07-12 성균관대학교산학협력단 Photocatalyst coating material, manufacturing method for the same, and construction material including the same
KR20210114264A (en) * 2020-03-10 2021-09-23 (주) 디아이엔바이로 Porosity filter media for under drain device and Water treatment facility containing the same

Also Published As

Publication number Publication date
US20050126428A1 (en) 2005-06-16
CN1222580C (en) 2005-10-12
CN1513040A (en) 2004-07-14
KR100518956B1 (en) 2005-10-05
WO2002085989A1 (en) 2002-10-31

Similar Documents

Publication Publication Date Title
KR100518956B1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
JP2636158B2 (en) Titanium oxide porous thin film photocatalyst and method for producing the same
JP2775399B2 (en) Porous photocatalyst and method for producing the same
JP3275032B2 (en) Environmental purification material and method for producing the same
EP0634363B1 (en) Process for preparing a photocatalyst and process for purifying water
US6284314B1 (en) Porous ceramic thin film and method for production thereof
JP2517874B2 (en) Method for producing titanium oxide thin film photocatalyst
JP2600103B2 (en) Photocatalytic filter and method for producing the same
JP2832342B2 (en) Photocatalyst particles and method for producing the same
US6365007B1 (en) Photocatalysts for the degradation of organic pollutants
JPH09111022A (en) Photocatalytic sheet and its production
JPH10305230A (en) Photocatalyst, its production and decomposing and removing method of harmful substance
JP2945926B2 (en) Photocatalyst particles and method for producing the same
KR20050006267A (en) Antibacterial and anti-staining paint for building material and building material coated therewith
JP3484470B2 (en) Film material with photocatalytic function
JP5403584B2 (en) Stain resistant material synthesized by reprecipitation method and having weather resistance and method for producing the same
JP4621859B2 (en) Method for producing porous photocatalyst
JP3567693B2 (en) Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances
JP2006198465A (en) Photocatalyst and its production method
KR100562476B1 (en) Photocatalytic coating solution containing the encapsulated natural fragnance and preparation method thereof
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
JPH09239277A (en) Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them
JP3388993B2 (en) Photocatalyst based on titanium dioxide and method for producing the same
JP2003268945A (en) Interior finish material
KR100502838B1 (en) Air treatment apparatus using photocatalytic filter and adsorption photocatalytic filter and use thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120925

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130926

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140926

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150923

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170927

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee