KR20020046682A - method for forming contact metal line semiconductor device - Google Patents

method for forming contact metal line semiconductor device Download PDF

Info

Publication number
KR20020046682A
KR20020046682A KR1020000076990A KR20000076990A KR20020046682A KR 20020046682 A KR20020046682 A KR 20020046682A KR 1020000076990 A KR1020000076990 A KR 1020000076990A KR 20000076990 A KR20000076990 A KR 20000076990A KR 20020046682 A KR20020046682 A KR 20020046682A
Authority
KR
South Korea
Prior art keywords
forming
semiconductor substrate
gate electrode
film
contact hole
Prior art date
Application number
KR1020000076990A
Other languages
Korean (ko)
Other versions
KR100357195B1 (en
Inventor
이성권
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1020000076990A priority Critical patent/KR100357195B1/en
Publication of KR20020046682A publication Critical patent/KR20020046682A/en
Application granted granted Critical
Publication of KR100357195B1 publication Critical patent/KR100357195B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: A method for fabricating a contact interconnection of a semiconductor device is provided to prevent a leakage current and improve an electrical characteristic, by forming a contact hole while performing an etch process once so that a substrate is prevented from being damaged by an excessive over-etch process. CONSTITUTION: A gate electrode(34) is formed on a semiconductor substrate(31) by interposing a gate insulation layer(33). A sidewall insulation layer(36) is formed on both side surfaces of the gate electrode. A source/drain impurity region(37) is formed in the surface of the semiconductor substrate at both sides of the gate electrode. An undoped silicate glass(USG) layer(38) for easily generating a void is formed on the entire surface of the semiconductor substrate including the gate electrode. The USG layer is selectively polished to open the opening of the void. The first and second insulation layers(40,41) are sequentially formed on the entire surface of the semiconductor substrate including the void. The second and first insulation layers are selectively removed to expose the source/drain impurity region having the void so that the contact hole is formed. A metal plug(43) is formed inside the contact hole. A metal interconnection(44) is formed on the metal plug and the second insulation layer adjacent to the metal plug.

Description

반도체 소자의 콘택 배선 형성방법{method for forming contact metal line semiconductor device}Method for forming contact metal line semiconductor device

본 발명은 반도체 소자의 제조방법에 관한 것으로, 특히 셀프 얼라인 콘택(self align contact)을 형성하는데 적당한 반도체 소자의 콘택 배선 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for forming contact wiring of a semiconductor device suitable for forming a self align contact.

반도체 집적회로에 있어서 좋은 회로동작 성능과 높은 집적도를 얻기 위하여 집적회로를 구성하는 MOS FET의 크기를 줄이기 위한 노력의 결과로 반도체 집적회로의 기술이 마이크론 이하로 스케일다운(Scale Down)되었다.As a result of efforts to reduce the size of the MOS FET constituting the integrated circuit in order to obtain good circuit operation performance and high integration in the semiconductor integrated circuit, the technology of the semiconductor integrated circuit has been scaled down to less than micron.

따라서 MOS FET에 있어서는 게이트 라인의 폭이 좁게(Narrow) 되었으며, CMOS FET에 있어서는 집적화가 거듭되면서 단일 소자의 크기가 줄어듦에 따른 MOS FET의 특성 중 숏 채널 효과(short channel effect)에 의한 핫 캐리어(hot carrier)의 문제를 해결하기 위해 LDD(Lightly Doped Drain) 구조를 MOS FET에 적용하여 그와 같은 문제를 개선하고, 집적도 증가에 따른 배선저항의 증가로 발생하는 신호전달속도 저하의 문제를 해결하기 위하여 폴리 사이드를 이용한 게이트 구조를 채용하는 등으로 다각적으로 연구 및 개발되고 있다.Therefore, in the MOS FET, the gate line width is narrowed, and in the CMOS FET, the hot carrier due to the short channel effect is one of the characteristics of the MOS FET as the size of a single device decreases as integration is repeated. In order to solve the problem of hot carrier, the LDD (Lightly Doped Drain) structure is applied to the MOS FET to solve such problems, and to solve the problem of signal transmission speed degradation caused by the increase in wiring resistance due to the increase in integration. For this purpose, various researches and developments have been made by employing a gate structure using polysides.

이밖에도, 게이트 전극의 양측면 반도체 기판에 소오스/드레인으로 사용할 불순물 영역을 형성한 이후 진행되는 배선공정은 상기 게이트 전극을 포함한 기판 전면에 평탄화 공정을 포함하는 ILD(Inter Layer Dielectric)공정 후에 소오스/드레인 영역의 상측에 형성된 ILD층을 선택적으로 제거하여 콘택홀을 형성한 다음 진행되는데, 이와 같은 콘택 배선 공정 또한 반도체 소자의 미세화로 인해 그 종횡비(aspect ratio)가 증가하여 비트 라인이나 메모리 콘택부의 마진 확보에 어려움이 있어 이를 해결하기 위한 연구가 활발히 진행되고 있다.In addition, after the impurity regions to be used as the source / drain regions are formed on both side semiconductor substrates of the gate electrode, the wiring process is performed after the ILD (Inter Layer Dielectric) process including a planarization process on the entire surface of the substrate including the gate electrode. A contact hole is formed by selectively removing the ILD layer formed on the upper side of the gate, and the contact wiring process also increases the aspect ratio due to the miniaturization of the semiconductor device, thereby securing the margin of the bit line or the memory contact portion. There is a difficulty, and research to solve this problem is being actively conducted.

한편, 반도체 소자의 콘택 배선 형성 공정 중 게이트 전도체와의 오버랩 마진(overlap margin)을 증대시키기 위해 SOSCON(Sidewall Oxide Spacer CONtact hole) 공정을 진행하고 있다.Meanwhile, a SOSCON (Sidewall Oxide Spacer CONtact hole) process is being performed to increase an overlap margin with a gate conductor during the process of forming a contact wiring of a semiconductor device.

이하, 첨부된 도면을 참고하여 종래의 반도체 소자의 콘택 배선 형성방법을 설명하면 다음과 같다.Hereinafter, a method for forming contact wires of a conventional semiconductor device will be described with reference to the accompanying drawings.

도 1a 내지 도 1d는 종래의 반도체 소자의 콘택 배선 형성방법을 나타낸 공정단면도이다.1A to 1D are cross-sectional views illustrating a conventional method for forming contact wirings in a semiconductor device.

도 1a에 도시한 바와 같이, 필드 영역과 활성 영역으로 정의된 반도체 기판(11)의 필드 영역에 필드 산화막(12)을 형성하고, 전면에 산화막과 폴리 실리콘을 증착한 후 게이트 형성 마스크로 패터닝하여 게이트 산화막(13)과 게이트 전극(14)을 적층하여 형성한다.As shown in FIG. 1A, a field oxide film 12 is formed in a field region of a semiconductor substrate 11 defined as a field region and an active region, an oxide layer and polysilicon are deposited on the entire surface, and then patterned by a gate forming mask. The gate oxide film 13 and the gate electrode 14 are laminated to form.

이어, 상기 게이트 전극(14)을 마스크로 이용하여 상기 반도체 기판(11)에 저농도 n형 소오스/드레인 이온을 주입하여 LDD(Lightly Doped Drain) 영역(15)을 형성한다.Subsequently, a lightly doped drain (LDD) region 15 is formed by implanting low concentration n-type source / drain ions into the semiconductor substrate 11 using the gate electrode 14 as a mask.

그리고 상기 게이트 전극(14)을 포함한 반도체 기판(11)의 전면에 절연막을 형성한 후 이방성 식각하여 상기 게이트 전극(14)의 양측면에 측벽 절연막(16)을 형성한다.An insulating film is formed on the entire surface of the semiconductor substrate 11 including the gate electrode 14, and then anisotropically etched to form sidewall insulating films 16 on both sides of the gate electrode 14.

이어, 상기 측벽 절연막(16)과 게이트 전극(14)을 마스크로 이용하여 반도체 기판(11)에 고농도 n형 소오스/드레인 이온을 주입하여 상기 LDD 영역(15)과 연결되는 소오스/드레인 불순물 영역(17)을 형성한다.Subsequently, a high concentration of n-type source / drain ions are implanted into the semiconductor substrate 11 using the sidewall insulating layer 16 and the gate electrode 14 as masks, so that source / drain impurity regions connected to the LDD region 15 ( 17).

도 1b에 도시한 바와 같이, 상기 게이트 전극(14)을 포함한 반도체 기판(11)의 전면에 제 1 절연막(18)을 형성하고, 포토 및 식각공정을 통해 상기 게이트 전극(14) 사이의 소오스/드레인 불순물 영역(17)이 노출되도록 콘택홀(19)을 형성한다.As shown in FIG. 1B, a first insulating film 18 is formed on the entire surface of the semiconductor substrate 11 including the gate electrode 14, and a source / gate between the gate electrodes 14 is formed through photo and etching processes. The contact hole 19 is formed to expose the drain impurity region 17.

도 1c에 도시한 바와 같이, 상기 콘택홀(19)을 포함한 반도체 기판(11)의 전면에 제 2 절연막을 형성한 후, 전면에 에치백 공정을 실시하여 상기 콘택홀(19)의 양측면에 제 2 절연막 측벽(20)을 형성한다.As shown in FIG. 1C, after the second insulating film is formed on the entire surface of the semiconductor substrate 11 including the contact hole 19, an etch back process is performed on the entire surface of the semiconductor substrate 11. 2 insulating film sidewall 20 is formed.

도 1d에 도시한 바와 같이, 상기 콘택홀(19)을 포함한 반도체 기판(11)의 전면에 플러그(plug)용 제 1 금속막을 증착한 후, 에치백 또는 CMP 공정을 통해 상기 콘택홀(19)의 내부에 금속 플러그(21)를 형성한다.As illustrated in FIG. 1D, after depositing a first metal film for plug on the front surface of the semiconductor substrate 11 including the contact hole 19, the contact hole 19 may be subjected to an etch back or CMP process. The metal plug 21 is formed in the interior thereof.

이어, 상기 금속 플러그(21)를 포함한 반도체 기판(11)의 전면에 금속 배선용 제 2 금속막을 증착한 후, 포토 및 식각공정을 통해 제 2 금속막을 선택적으로 제거하여 금속 플러그(21) 및 그에 인접한 제 1 절연막(18)상에 금속 배선(22)을 형성한다.Subsequently, after depositing the second metal film for metal wiring on the front surface of the semiconductor substrate 11 including the metal plug 21, the second metal film is selectively removed through a photo and etching process to thereby remove the metal plug 21 and adjacent thereto. The metal wiring 22 is formed on the first insulating film 18.

그러나 상기와 같은 종래의 반도체 소자의 콘택 배선 형성방법에 있어서 다음과 같은 문제점이 있었다.However, the above-described conventional method for forming a contact wiring of a semiconductor device has the following problems.

즉, 콘택홀을 형성한 후에 콘택홀의 양측면에 절연막 측벽을 형성할 때 2번 식각 공정으로 오버 에치(over etch)가 발생하여 기판의 손상(damage)(접합 깊이 감소)으로 인한 과다한 누설 전류를 유발한다.That is, when forming the insulating film sidewalls on both sides of the contact hole after forming the contact hole, an over-etch occurs by the etching process 2, causing excessive leakage current due to damage of the substrate (reduction of the bonding depth). do.

본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 안출한 것으로 콘택홀 형성시 오버 에치에 의한 기판의 손상(damage)을 방지하여 누설 전류의 유발을 줄이도록 한 반도체 소자의 콘택 배선 형성방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems and provides a method for forming contact wirings in a semiconductor device to reduce the occurrence of leakage current by preventing damage to the substrate due to over-etching when forming contact holes. Its purpose is to.

도 1a 내지 도 1d는 종래의 반도체 소자의 콘택 배선 형성방법을 나타낸 공정단면도1A to 1D are cross-sectional views illustrating a method of forming contact wirings in a conventional semiconductor device.

도 2a 내지 도 2e는 본 발명에 의한 반도체 소자의 콘택 배선 형성방법을 나타낸 공정단면도2A through 2E are cross-sectional views illustrating a method of forming contact wirings in a semiconductor device according to the present invention.

도면의 주요 부분에 대한 부호의 설명Explanation of symbols for the main parts of the drawings

31 : 반도체 기판 32 : 필드 산화막31 semiconductor substrate 32 field oxide film

33 : 게이트 절연막 34 : 게이트 전극33 gate insulating film 34 gate electrode

35 : LDD 영역 36 : 측벽 절연막35 LDD region 36 sidewall insulating film

37 : 소오스/드레인 불순물 영역 38 : USG막37 source / drain impurity region 38 USG film

39 : 보이드 40 : 제 1 절연막39: void 40: first insulating film

41 : 제 2 절연막 42 : 콘택홀41 second insulating film 42 contact hole

43 : 금속 플러그 44 : 금속 배선43: metal plug 44: metal wiring

상기와 같은 목적을 달성하기 위한 본 발명에 의한 반도체 소자의 콘택 배선 형성방법은 반도체 기판상에 게이트 절연막을 개재하여 게이트 전극을 형성하는 단계와, 상기 게이트 전극 양측면에 측벽 절연막을 형성하는 단계와, 상기 게이트 전극 양측의 반도체 기판 표면내에 소오스/드레인 불순물 영역을 형성하는 단계와, 상기 게이트 전극을 포함한 반도체 기판의 전면에 보이드 발생이 용이한 USG막을 형성하는 단계와, 상기 보이드의 개구부가 오픈되도록 상기 USG막을 선택적으로 폴리싱하는 단계와, 상기 보이드를 포함한 반도체 기판의 전면에 제 1, 제 2 절연막을 차례로 형성하는 단계와, 상기 보이드가 형성된 소오스/드레인 불순물 영역이 노출되도록 상기 제 2, 제 1 절연막을 선택적으로 제거하여 콘택홀을 형성하는 단계와, 상기 콘택홀의 내부에 금속 플러그를 형성하는 단계와, 상기 금속 플러그 및 그에 인접한 제 2 절연막상에 금속 배선을 형성하는 단계를 포함하여 형성함을 특징으로 한다.The contact wiring forming method of the semiconductor device according to the present invention for achieving the above object comprises the steps of forming a gate electrode on the semiconductor substrate via a gate insulating film, forming a sidewall insulating film on both sides of the gate electrode; Forming a source / drain impurity region on a surface of the semiconductor substrate at both sides of the gate electrode, forming a USG film that easily generates voids on the entire surface of the semiconductor substrate including the gate electrode, and opening the opening of the void Selectively polishing a USG film, sequentially forming first and second insulating films on the entire surface of the semiconductor substrate including the voids, and exposing the second and first insulating films to expose source / drain impurity regions in which the voids are formed. Selectively removing the contact hole to form a contact hole; Forming a metal plug in, including the step of forming the metal wiring on the metal plug and the second insulating layer adjacent thereto, characterized in that formation.

이하, 첨부된 도면을 참고하여 본 발명에 의한 반도체 소자의 콘택 배선 형성방법을 상세히 설명하면 다음과 같다.Hereinafter, a method for forming contact wirings of a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2e는 본 발명에 의한 반도체 소자의 콘택 배선 형성방법을 나타낸 공정단면도이다.2A through 2E are cross-sectional views illustrating a method of forming contact wirings in a semiconductor device according to the present invention.

도 2a에 도시한 바와 같이, 필드 영역과 활성 영역으로 정의된 반도체 기판(31)의 필드 영역에 필드 산화막(32)을 형성하고, 전면에 산화막과 폴리 실리콘을 증착한 후 게이트 형성 마스크로 패터닝하여 게이트 산화막(33)과 게이트 전극(34)을 적층하여 형성한다.As shown in FIG. 2A, a field oxide film 32 is formed in a field region of a semiconductor substrate 31 defined as a field region and an active region, an oxide layer and polysilicon are deposited on the entire surface, and then patterned by a gate forming mask. The gate oxide film 33 and the gate electrode 34 are laminated.

이어, 상기 게이트 전극(34)을 마스크로 이용하여 상기 반도체 기판(31)에 저농도 n형 소오스/드레인 이온을 주입하여 LDD(Lightly Doped Drain) 영역(35)을 형성한다.Subsequently, a lightly doped drain (LDD) region 35 is formed by implanting low concentration n-type source / drain ions into the semiconductor substrate 31 using the gate electrode 34 as a mask.

그리고 상기 게이트 전극(34)을 포함한 반도체 기판(31)의 전면에 절연막을 형성한 후 이방성 식각하여 상기 게이트 전극(34)의 양측면에 측벽 절연막(36)을 형성한다.An insulating film is formed on the entire surface of the semiconductor substrate 31 including the gate electrode 34, and then anisotropically etched to form sidewall insulating films 36 on both sides of the gate electrode 34.

이어, 상기 측벽 절연막(36)과 게이트 전극(34)을 마스크로 이용하여 반도체 기판(31)에 고농도 n형 소오스/드레인 이온을 주입하여 상기 LDD 영역(35)과 연결되는 소오스/드레인 불순물 영역(37)을 형성한다.Subsequently, a high concentration of n-type source / drain ions are implanted into the semiconductor substrate 31 using the sidewall insulating layer 36 and the gate electrode 34 as a mask to form a source / drain impurity region connected to the LDD region 35. 37).

도 2b에 도시한 바와 같이, 상기 게이트 전극(34)을 포함한 반도체 기판(31)의 전면에 보이드(void) 발생이 용이한 USG(Undoped Silicate Glass)막(38)을 증착한다.As shown in FIG. 2B, an undoped silicate glass (USG) film 38 which easily generates voids is deposited on the entire surface of the semiconductor substrate 31 including the gate electrode 34.

여기서 상기 USG막(38)을 증착할 때 상기 게이트 전극(34) 사이에는 단차에 의해 보이드(39)가 발생한다.Here, when the USG film 38 is deposited, a void 39 is generated between the gate electrodes 34 due to a step.

한편, 상기 USG막(38)은 3000 ~ 10000Å 두께로 형성한다.On the other hand, the USG film 38 is formed to a thickness of 3000 ~ 10000Å.

도 2c에 도시한 바와 같이, 상기 보이드(39)의 개구부가 오픈(open)되도록상기 USG막(38)의 전면에 CMP(Chemical Mechanical Polishing) 공정을 이용하여 상기 USG막(38)을 선택적으로 폴리싱한다.As shown in FIG. 2C, the USG film 38 is selectively polished by using a chemical mechanical polishing (CMP) process on the entire surface of the USG film 38 so that the opening of the void 39 is open. do.

도 2d에 도시한 바와 같이, 상기 개구부가 오픈된 보이드(39)를 포함한 반도체 기판(31)의 전면에 에치스톱(etch stop)용 제 1 절연막(40)과 유동성이 용이한 제 2 절연막(41)을 차례로 형성한다.As shown in FIG. 2D, the first insulating film 40 for etch stop and the second insulating film 41 for easy fluidity are formed on the entire surface of the semiconductor substrate 31 including the voids 39 having the openings opened. ) In turn.

여기서 상기 제 1 절연막(40)은 SiON, SiN, PE-질화막, Al2O3등의 비전도성 재료를 500 ~ 3000Å 두께로 형성하고, 상기 제 2 절연막(41)은 HDP(High Density Plasma) 산화막, SOG(Spin On Glass), BPSG 등의 절연막을 3000 ~ 10000Å 두께로 형성한다.Here, the first insulating film 40 is formed of a non-conductive material such as SiON, SiN, PE-nitride film, Al 2 O 3 to a thickness of 500 ~ 3000Å, the second insulating film 41 is HDP (High Density Plasma) oxide film , Insulating film such as SOG (Spin On Glass), BPSG, etc. to form a thickness of 3000 ~ 10000Å.

이어, 포토 및 식각 공정을 통해 상기 보이드(39)가 형성된 소오스/드레인 불순물 영역(37)의 표면이 노출되도록 상기 제 2 절연막(41) 및 제 1 절연막(40)을 선택적으로 제거하여 콘택홀(42)을 형성한다.Subsequently, the second insulating layer 41 and the first insulating layer 40 may be selectively removed to expose the surface of the source / drain impurity region 37 in which the void 39 is formed through photo and etching processes. 42).

도 2e에 도시한 바와 같이, 상기 콘택홀(42)을 포함한 반도체 기판(31)의 전면에 플러그(plug)용 제 1 금속막을 증착한 후, 에치백 또는 CMP 공정을 통해 상기 콘택홀(42)의 내부에 금속 플러그(43)를 형성한다.As shown in FIG. 2E, a first metal film for plug is deposited on the entire surface of the semiconductor substrate 31 including the contact hole 42, and then the contact hole 42 is formed through an etch back or a CMP process. The metal plug 43 is formed inside.

이어, 상기 금속 플러그(43)를 포함한 반도체 기판(31)의 전면에 금속 배선용 제 2 금속막을 증착한 후, 포토 및 식각공정을 통해 제 2 금속막을 선택적으로 제거하여 금속 플러그(43) 및 그에 인접한 제 2 절연막(41)상에 금속 배선(44)을 형성한다.Subsequently, after depositing the second metal film for metal wiring on the front surface of the semiconductor substrate 31 including the metal plug 43, the second metal film is selectively removed through a photo and etching process to thereby remove the metal plug 43 and the adjacent metal plug 43. Metal wires 44 are formed on the second insulating film 41.

여기서 상기 금속 배선(44)은 W, 폴리 실리콘, TiN 등을 사용할 수 있다.Here, the metal wire 44 may use W, polysilicon, TiN, or the like.

이상에서 설명한 바와 같이 본 발명에 의한 반도체 소자의 콘택 배선 형성방법은 다음과 같은 효과가 있다.As described above, the method for forming a contact wiring of a semiconductor device according to the present invention has the following effects.

즉, 한 번의 식각공정을 통해 콘택홀을 형성함으로서 과도한 오버 에치에 의한 기판의 손상을 방지할 수 있으므로 누설 전류의 발생을 방지하여 소자의 전기적 특성을 개선할 수 있다.That is, by forming the contact hole through one etching process, damage to the substrate due to excessive over-etching can be prevented, thereby preventing the occurrence of leakage current, thereby improving the electrical characteristics of the device.

Claims (4)

반도체 기판상에 게이트 절연막을 개재하여 게이트 전극을 형성하는 단계;Forming a gate electrode on the semiconductor substrate via the gate insulating film; 상기 게이트 전극 양측면에 측벽 절연막을 형성하는 단계;Forming sidewall insulating films on both sides of the gate electrode; 상기 게이트 전극 양측의 반도체 기판 표면내에 소오스/드레인 불순물 영역을 형성하는 단계;Forming a source / drain impurity region in a surface of the semiconductor substrate on both sides of the gate electrode; 상기 게이트 전극을 포함한 반도체 기판의 전면에 보이드 발생이 용이한 USG막을 형성하는 단계;Forming a USG film that easily generates voids on an entire surface of the semiconductor substrate including the gate electrode; 상기 보이드의 개구부가 오픈되도록 상기 USG막을 선택적으로 폴리싱하는 단계;Selectively polishing the USG film to open the voids; 상기 보이드를 포함한 반도체 기판의 전면에 제 1, 제 2 절연막을 차례로 형성하는 단계;Sequentially forming first and second insulating films on the entire surface of the semiconductor substrate including the voids; 상기 보이드가 형성된 소오스/드레인 불순물 영역이 노출되도록 상기 제 2, 제 1 절연막을 선택적으로 제거하여 콘택홀을 형성하는 단계;Forming a contact hole by selectively removing the second and first insulating layers to expose the source / drain impurity regions in which the voids are formed; 상기 콘택홀의 내부에 금속 플러그를 형성하는 단계;Forming a metal plug in the contact hole; 상기 금속 플러그 및 그에 인접한 제 2 절연막상에 금속 배선을 형성하는 단계를 포함하여 형성함을 특징으로 하는 반도체 소자의 콘택 배선 형성방법.And forming a metal line on the metal plug and a second insulating layer adjacent thereto. 제 1 항에 있어서, 상기 제 1 절연막은 SiON, SiN, PE-질화막, Al2O3등의 비전도성 재료를 500 ~ 3000Å 두께로 형성하는 것을 특징으로 하는 반도체 소자의 콘택 배선 형성방법.2. The method of claim 1, wherein the first insulating film is formed of a non-conductive material such as SiON, SiN, PE-nitride film, Al 2 O 3 and the like to have a thickness of 500 to 3000 GPa. 제 1 항에 있어서, 상기 제 2 절연막은 HDP 산화막, SOG, BPSG 등의 절연막을 3000 ~ 10000Å 두께로 형성하는 것을 특징으로 하는 반도체 소자의 콘택 배선 형성방법.2. The method of claim 1, wherein the second insulating film is formed to form an insulating film such as an HDP oxide film, SOG, BPSG, or the like at a thickness of 3000 to 10000 GPa. 제 1 항에 있어서, 상기 USG막은 3000 ~ 10000Å 두께로 형성하는 것을 특징으로 하는 반도체 소자의 콘택 배선 형성방법.The method of claim 1, wherein the USG film is formed to have a thickness of 3000 to 10000 Å.
KR1020000076990A 2000-12-15 2000-12-15 method for forming contact metal line semiconductor device KR100357195B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000076990A KR100357195B1 (en) 2000-12-15 2000-12-15 method for forming contact metal line semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000076990A KR100357195B1 (en) 2000-12-15 2000-12-15 method for forming contact metal line semiconductor device

Publications (2)

Publication Number Publication Date
KR20020046682A true KR20020046682A (en) 2002-06-21
KR100357195B1 KR100357195B1 (en) 2002-10-19

Family

ID=27682198

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000076990A KR100357195B1 (en) 2000-12-15 2000-12-15 method for forming contact metal line semiconductor device

Country Status (1)

Country Link
KR (1) KR100357195B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220034973A (en) 2020-09-11 2022-03-21 삼성전자주식회사 Image sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297277A (en) * 1994-04-22 1995-11-10 Nec Corp Method for inspecting semiconductor device
KR20000045324A (en) * 1998-12-30 2000-07-15 김영환 Method for forming fine contact hole of semiconductor device

Also Published As

Publication number Publication date
KR100357195B1 (en) 2002-10-19

Similar Documents

Publication Publication Date Title
US5777370A (en) Trench isolation of field effect transistors
KR20030000074A (en) Semiconductor device having shared contact and fabrication method thereof
KR20020095356A (en) Semiconductor device having LDD-type source/drain regions and fabrication method thereof
US20080128819A1 (en) Lateral mos transistor and method for manufacturing thereof
KR100348316B1 (en) Method for Fabricating of Semiconductor Device
KR20000051318A (en) Semicon ductor and method for fabricating the same
KR100293052B1 (en) Semiconductor device manufacturing method
KR100357195B1 (en) method for forming contact metal line semiconductor device
US6426263B1 (en) Method for making a merged contact window in a transistor to electrically connect the gate to either the source or the drain
KR100259075B1 (en) Semiconductor device and its manufacturing method
KR20010053237A (en) Field effect transistors, integrated circuitry, methods of forming field effect transistor gates, and methods of forming integrated circuitry
US6670254B1 (en) Method of manufacturing semiconductor device with formation of a heavily doped region by implantation through an insulation layer
KR100277905B1 (en) Manufacturing Method of Semiconductor Memory Device
US6521517B1 (en) Method of fabricating a gate electrode using a second conductive layer as a mask in the formation of an insulating layer by oxidation of a first conductive layer
KR100672672B1 (en) Method for Forming Semi-conductor Device
KR100232228B1 (en) Method of fabricating semiconductor device
JP3523244B1 (en) Method for manufacturing semiconductor device
KR20010065914A (en) A method for fabricating damascene gate type mos transistor
KR100223809B1 (en) Method of manufacturing transistor of semiconductor device
KR100674645B1 (en) Method of manufacturing semiconductor devices
KR100606953B1 (en) Method for Forming Of Semi-conductor Device
KR100439191B1 (en) Method of making salicide contact
KR100606952B1 (en) Method for Forming Transistor Of Semi-conductor Device
KR20020023049A (en) Method for forming interconnection of semiconductor device
KR20050022168A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090922

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee