KR100674645B1 - Method of manufacturing semiconductor devices - Google Patents

Method of manufacturing semiconductor devices Download PDF

Info

Publication number
KR100674645B1
KR100674645B1 KR1020020009913A KR20020009913A KR100674645B1 KR 100674645 B1 KR100674645 B1 KR 100674645B1 KR 1020020009913 A KR1020020009913 A KR 1020020009913A KR 20020009913 A KR20020009913 A KR 20020009913A KR 100674645 B1 KR100674645 B1 KR 100674645B1
Authority
KR
South Korea
Prior art keywords
layer
salicide
active layer
diffusion layer
film
Prior art date
Application number
KR1020020009913A
Other languages
Korean (ko)
Other versions
KR20030070388A (en
Inventor
김남식
Original Assignee
매그나칩 반도체 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매그나칩 반도체 유한회사 filed Critical 매그나칩 반도체 유한회사
Priority to KR1020020009913A priority Critical patent/KR100674645B1/en
Publication of KR20030070388A publication Critical patent/KR20030070388A/en
Application granted granted Critical
Publication of KR100674645B1 publication Critical patent/KR100674645B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명은 SOI 반도체 기판을 이용한 반도체 소자 제조 방법에 관한 것이다. 본 발명의 반도체 제조 방법은 SOI(Silicon On Isolation) 반도체 기판에 게이트 산화막과 폴리 실리콘 및 살리사이드 방지막을 증착하고, 패터닝하여 게이트 전극을 형성한다. LDD 확산층을 형성하기 위해 이온 주입하고, 질화막을 증착하여 스페이서 절연막을 형성한다. 스페이서가 형성된 반도체 기판 위에 확산층 형성을 위한 이온 주입하고, 이를 열처리 공정을 실시한다. 트랜지스터 절연을 위한 트랜치 절연막을 형성하고, 샐리사이드를 형성한다. 이어서 절연막을 증착, 평탄화하고, 금속 배선을 형성한다. 따라서 본 발명에 의하면, SOI 웨이퍼를 이용하여 확산층과 트랜치 측벽에 살리사이드 형성이 가능하고, 이를 통해 확산층 저항을 낮출 수 있어 확산층 배선이 가능하므로 고집적 소자 제조가 가능하다.The present invention relates to a semiconductor device manufacturing method using an SOI semiconductor substrate. In the semiconductor manufacturing method of the present invention, a gate oxide layer, a polysilicon layer, and a salicide barrier layer are deposited on a silicon on isolation (SOI) semiconductor substrate and patterned to form a gate electrode. Ion implantation is performed to form an LDD diffusion layer, and a nitride film is deposited to form a spacer insulating film. Ion implantation for forming a diffusion layer is formed on the semiconductor substrate on which the spacer is formed, and a heat treatment process is performed. A trench insulating film for transistor insulation is formed, and salicide is formed. Subsequently, an insulating film is deposited and planarized to form a metal wiring. Therefore, according to the present invention, salicide may be formed on the diffusion layer and the trench sidewalls using the SOI wafer, and thus the diffusion layer resistance may be lowered, thereby enabling the diffusion layer wiring to be manufactured.

SOI 반도체 기판, 살리사이드, 확산층 저항, 확산층 배선SOI semiconductor substrate, salicide, diffusion layer resistor, diffusion layer wiring

Description

반도체 소자 제조 방법{METHOD OF MANUFACTURING SEMICONDUCTOR DEVICES}Semiconductor device manufacturing method {METHOD OF MANUFACTURING SEMICONDUCTOR DEVICES}

도 1 내지 도 5는 본 발명에 따른 트랜지스터 제조 공정 수순을 나타내는 단면도들이다.1 to 5 are cross-sectional views showing a transistor manufacturing process procedure according to the present invention.

* 도면의 주요 부분에 대한 부호 설명 *Explanation of symbols on the main parts of the drawings

2 : SOI 기판 4 : 활성층2: SOI substrate 4: active layer

6 : 게이트 산화막 8 : 스페이서 절연막6 gate oxide film 8 spacer insulating film

10 : 게이트 전극 12 : 금속층10 gate electrode 12 metal layer

14 : 샐리사이드막 16 : 절연막14 salicide film 16 insulating film

본 발명은 반도체 제조 방법에 관한 것으로, 좀 더 구체적으로는 SOI 웨이퍼를 이용한 고집적 반도체 트랜지스터 제조 방법에 관한 것이다.The present invention relates to a method for manufacturing a semiconductor, and more particularly, to a method for manufacturing a highly integrated semiconductor transistor using an SOI wafer.

고집적화라는 관점에서 반도체 소자의 집적도를 높이기 위해서는 개별 소자의 크기를 축소하는 것이 절대적으로 필요하지만, 동시에 소자와 소자 사이에 존재하는 절연(isolation) 영역의 폭을 전기적으로 허용하는 범위 내에서 축소하는 것도 필요하다. 칩 사이즈를 결정하는 중요한 기술로서 절연 공정 개발에 많은 노력 을 기울이는 이유가 여기에 있다.In order to increase the integration of semiconductor devices from the viewpoint of high integration, it is absolutely necessary to reduce the size of individual devices, but at the same time, it is also possible to reduce the width of the isolation region existing between the devices and the devices within an electrically acceptable range. need. This is the reason why a lot of effort is put into the development of the isolation process as an important technique for determining chip size.

반도체 소자가 고집적화되어 게이트 길이가 0.15 ㎛ 이하로 줄어들게 됨에 따라 소자의 채널 저항이 줄어들게 되었다. 따라서 상대적으로 기생 저항 성분의 기여도가 켜져 그 중요도가 커짐에 따라, 고속도를 요하는 로직 소자에서는 게이트와 확산층의 저항과 접촉 저항을 낮추기 위한 살리사이드 기술이 필수적이다.As the semiconductor devices are highly integrated and the gate length is reduced to 0.15 μm or less, the channel resistance of the devices is reduced. Therefore, as the contribution of parasitic resistance components becomes relatively important, the salicide technique for lowering the resistance and contact resistance of the gate and the diffusion layer is essential in logic devices requiring high speed.

또한 소자 집적화가 증가될수록 확산층을 이용한 배선이 늘고 있어 게이트 뿐만 아니라, 확산층의 저항 감소가 크게 대두되고 있는 실정이다. 그러나 게이트 길이의 감소로 인하여 확산층은 점점 얕아지고 그에 따라 살리사이드의 두께도 점점 감소하여 확산층이 점점 더 켜지는 문제점이 발생된다.In addition, as the integration of devices increases, wiring using the diffusion layer is increasing, so that the resistance of the diffusion layer as well as the gate is increasing. However, due to the decrease in the gate length, the diffusion layer becomes shallower, and the thickness of the salicide decreases gradually, resulting in a problem that the diffusion layer is turned on more and more.

본 발명의 목적은 상술한 문제점을 해결하기 위한 것으로, SOI 웨이퍼를 이용한 고집적 반도체 트랜지스터 제조 방법을 구현하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems, and to implement a method for manufacturing a highly integrated semiconductor transistor using an SOI wafer.

이를 위해 SOI 웨이퍼의 특징을 최대한 활용하도록 트랜지스터 절연을 위한 트렌치 절연막 형성을 소오스/드레인 접합층 형성 후, 트랜치 측벽에 살리사이드를 형성하므로서 접합층의 저항을 감소시킨다. 이는 트랜치 하부가 산화물로 구비되기 때문에 그 부분에서는 샐리사이드가 형성되지 않고, 측벽에만 샐리사이드가 형성된다.To this end, in order to make the most of the characteristics of the SOI wafer, the trench insulating layer for transistor isolation is formed after the source / drain junction layer is formed, thereby forming salicide on the trench sidewalls, thereby reducing the resistance of the junction layer. Since the bottom portion of the trench is formed of an oxide, salicide is not formed at the portion thereof, and salicide is formed only at the sidewall.

상술한 목적을 달성하기 위한 본 발명에 의한 반도체 제조 방법은
SOI(Silicon On Isolation) 기판의 활성층에 게이트 산화막과 폴리 실리콘을 증착하고, 패터닝하여 게이트 전극을 형성하는 단계와; 상기 게이트 전극이 형성된 활성층에 LDD 확산층을 형성하기 위해 이온 주입하는 단계와; 상기 게이트 전극의 측면에 스페이서 절연막을 형성하는 단계와; 상기 스페이서 절연막이 형성된 활성층에 확산층 형성을 위한 이온을 주입하고, 이를 열처리하는 단계와;
상기 열처리된 활성층을 식각 및 분리하여 트랜지스터 절연을 위한 트랜치를 형성하는 단계와; 상기 트랜치가 형성된 활성층에 샐리사이드막을 형성하는 단계와; 상기 샐리사이드막이 형성된 활성층에 절연막을 증착하고, 이를 평탄화하는 단계 및; 상기 평탄화된 활성층에 금속 배선을 증착하는 단계를 포함한다.
The semiconductor manufacturing method according to the present invention for achieving the above object is
Depositing and patterning a gate oxide film and polysilicon on an active layer of a silicon on isolation (SOI) substrate to form a gate electrode; Ion implantation to form an LDD diffusion layer in the active layer on which the gate electrode is formed; Forming a spacer insulating film on a side of the gate electrode; Implanting ions for forming a diffusion layer into an active layer on which the spacer insulating film is formed and heat-treating them;
Etching and separating the heat treated active layer to form a trench for transistor isolation; Forming a salicide layer on the trench in which the trench is formed; Depositing an insulating film on the active layer on which the salicide film is formed and planarizing the insulating film; Depositing a metal line on the planarized active layer.

또한, 상기한 샐리사이드막은 질화막 또는 산화막으로 형성한다.The salicide film is formed of a nitride film or an oxide film.

그리고 상기 샐리사이드를 형성하는 단계는 상기 트랜치가 형성된 활성층에 샐리사이드 형성을 위한 금속층을 증착하는 단계와, 상기 금속층이 증착된 활성층을 열처리하는 단계 및, 상기 열처리된 활성층에 상기 금속층의 미반응 금속 물질을 제거하기 위한 선택적으로 습식각하는 단계를 포함한다.
이 때, 상기 금속층은 코발트, 티타늄 또는 니켈을 100 ~ 500 Å 두께로 형성하고, 상기 상기 선택적으로 습식각하는 단계는 H2SO4와 H2O2의 혼합비가 4 : 1 인 혼합액으로 상기 미반응 금속 물질을 선택적으로 제거한다.
The forming of the salicide may include depositing a metal layer for forming salicide on the trench formed active layer, heat treating the active layer on which the metal layer is deposited, and unreacted metal of the metal layer on the heat treated active layer. Optionally wet etching to remove the material.
At this time, the metal layer is formed of cobalt, titanium or nickel in a thickness of 100 ~ 500 Å, and the step of selectively wet etching is a mixture of H 2 SO 4 and H 2 O 2 is a mixture of 4: 1 The reactive metal material is selectively removed.

또한 상기 샐리사이드막이 형성된 활성층에 증착하는 절연막은 고밀도 플라즈마 산화막으로 형성한다.The insulating film deposited on the active layer on which the salicide film is formed is formed of a high density plasma oxide film.

따라서 본 발명에 의하면, SOI 웨이퍼를 이용하여 확산층과 트랜치 측벽에 샐리사이드막 형성이 가능하고, 이를 통해 확산층 저항을 낮출 수 있어 확산층 배선이 가능하므로 고집적 소자 제조가 가능하다.Therefore, according to the present invention, a salicide layer may be formed on the diffusion layer and the trench sidewalls using the SOI wafer, and the diffusion layer resistance may be lowered through the diffusion layer wiring, thereby enabling the fabrication of highly integrated devices.

이하 본 발명의 실시예를 첨부된 도면에 의거하여 상세히 설명한다.DETAILED DESCRIPTION Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1 내지 도 5는 본 발명에 따른 반도체 소자 제조 공정을 나타내는 단면도들이다. 이 제조 공정은 SOI 반도체 기판을 이용하여 고집적도의 트랜지스터를 제조한다.1 to 5 are cross-sectional views illustrating a semiconductor device manufacturing process according to the present invention. This manufacturing process uses a SOI semiconductor substrate to produce a high density transistor.

도 1 내지 도 5를 참조하면, SOI(Silicon On Insulator)는 실리콘 웨이퍼 내부에 산화막(도시 생략됨)을 형성시킨 후, 산화막 상의 실리콘에 트랜지스터를 형성하는 기술을 의미한다. SOI 공정 기술은 집적도와 동작 특성이 우수하여 차세대 칩 제조 기술로 유망한 기술이다. 또한 낮은 유전체와 구리 배선 기술을 사용하여 소비 전력이 작고 성능이 뛰어난 칩을 만들 수 있다.1 to 5, a silicon on insulator (SOI) refers to a technique of forming an oxide film (not shown) inside a silicon wafer and then forming a transistor in silicon on the oxide film. SOI process technology is promising as next-generation chip manufacturing technology because of its high density and operation characteristics. Low dielectric and copper wiring techniques can also be used to create low power and high performance chips.

삭제delete

SOI(Silicon On Isolation) 기판(2)상의 활성층(4) 및 게이트 산화막(6)과 폴리 실리콘을 증착하고, 패터닝하여 게이트 전극(10)을 형성한다. 이어서 상기 게이트 전극이 형성된 활성층(4)에 LDD 확산층을 형성하기 위해 이온 주입한다.A gate electrode 10 is formed by depositing and patterning an active layer 4, a gate oxide film 6, and polysilicon on a silicon on isolation (SOI) substrate 2. Subsequently, ion implantation is performed to form an LDD diffusion layer in the active layer 4 having the gate electrode formed thereon.

상기 이온 주입된 SOI 기판(2)에 질화막을 증착하고 에치백하여 게이트 전극(10)측면에 스페이서 절연막(8)을 형성한다.
그리고 상기 스페이서 절연막(8)이 형성된 활성층(4)에 확산층 형성을 위한 이온을 주입하고, 이를 열처리하고, 상기 열처리된 SOI 기판(2)에 트랜지스터 절연을 위한 활성층(4)을 선택적으로 식각하여 트랜치를 형성한다.
A nitride film is deposited on the ion implanted SOI substrate 2 and etched back to form a spacer insulating film 8 on the side of the gate electrode 10.
In addition, a trench is implanted by implanting ions for forming a diffusion layer into the active layer 4 having the spacer insulating layer 8 thereon, and heat-treating them, and selectively etching the active layer 4 for transistor insulation to the heat-treated SOI substrate 2. To form.

상기 트랜치가 형성된 SOI 기판(2)에 샐리사이드막(14)을 형성하기 위한 금속층(12)을 증착하고, 이를 열처리하며 상기 열 처리된 SOI 기판(2)에 상기 금속층(12)의 미반응 금속 물질을 제거하기 위한 선택적으로 습식각하여 샐리사이드막(14)을 형성한다. 이 때, 상기 금속층(12)은 코발트, 티타늄 또는 니켈을 100 ~ 500 Å 두께로 형성한다.
그리고 상기 상기 선택적으로 습식각하는 단계는 H2SO4와 H2O2의 혼합비가 4 : 1 인 혼합액으로 상기 미반응 금속 물질을 선택적으로 제거한다.
이어서 상기 샐리사이드막(14)이 형성된 SOI 기판(2)에 절연막(16)을 증착하여, 이를 평탄화하고, 금속배선(도시 생략됨)을 증착한다.
상기 샐리사이드막(14) 형성 후의 절연막(16)은 갭필 능력이 우수한 고밀도 플라즈마 산화막으로 형성하는 것이 적합하다.
The metal layer 12 for forming the salicide layer 14 is deposited on the trench formed SOI substrate 2, and then heat-treated and the unreacted metal of the metal layer 12 on the heat treated SOI substrate 2. It selectively wets to remove the material to form the salicide film 14. At this time, the metal layer 12 is formed of cobalt, titanium or nickel to a thickness of 100 ~ 500 kPa.
In the selective wet etching, the unreacted metal material is selectively removed by a mixture of H 2 SO 4 and H 2 O 2 in a ratio of 4: 1.
Subsequently, an insulating film 16 is deposited on the SOI substrate 2 on which the salicide film 14 is formed, and the planarization is performed to deposit a metal wiring (not shown).
It is preferable to form the insulating film 16 after the salicide film 14 is formed of a high density plasma oxide film having excellent gap fill capability.

삭제delete

그러므로 상술한 바와 같이, 본 발명의 반도체 소자 제조 방법은 SOI 웨이퍼를 이용하여 고집적도의 반도체 소자를 형성한다. Therefore, as described above, the semiconductor device manufacturing method of the present invention forms a highly integrated semiconductor device using an SOI wafer.

삭제delete

상술한 바와 같이, 본 발명은 반도체 소자 제조에 있어서, SOI 웨이퍼를 이용하여 확산층과 트랜치 측벽에 살리사이드 형성이 가능하고, 이를 통해 확산층 저항을 낮출 수 있어 확산층 배선이 가능하므로 고집적 소자 제조가 가능하다. 또한 SOI 웨이퍼에 의한 집적 소자 제조에 살리사이드 공정을 효과적으로 활용할 수 있으므로 경제성이 향상된다.
As described above, in the semiconductor device fabrication, salicide may be formed in the diffusion layer and the trench sidewalls using the SOI wafer, and the diffusion layer resistance may be lowered through the diffusion layer wiring, thereby enabling the fabrication of highly integrated devices. . In addition, the salicide process can be effectively utilized for fabricating integrated devices using SOI wafers, thereby improving economic efficiency.

Claims (6)

반도체 제조 방법에 있어서:In the semiconductor manufacturing method: SOI(Silicon On Isolation) 기판(2)의 활성층(4)에 게이트 산화막(6)과 폴리 실리콘(10)을 증착하고, 패터닝하여 게이트 전극을 형성하는 단계와;Depositing and patterning a gate oxide film 6 and polysilicon 10 on the active layer 4 of the silicon on isolation (SOI) substrate 2; 상기 게이트 전극이 형성된 활성층(4)에 LDD 확산층을 형성하기 위해 이온 주입하는 단계와;Ion implantation into an active layer (4) on which the gate electrode is formed to form an LDD diffusion layer; 상기 게이트 전극의 측면에 스페이서 절연막(8)을 형성하는 단계와;Forming a spacer insulating film (8) on the side of the gate electrode; 상기 스페이서 절연막(8)이 형성된 활성층(4)에 확산층 형성을 위한 이온을 주입하고, 이를 열처리하는 단계와;Implanting ions for forming a diffusion layer into an active layer (4) on which the spacer insulating film (8) is formed and heat-treating them; 상기 열처리된 활성층(4)을 식각 및 분리하여 트랜지스터 절연을 위한 트랜치를 형성하는 단계와;Etching and separating the heat treated active layer (4) to form a trench for transistor isolation; 상기 트랜치가 형성된 활성층(4)에 샐리사이드막(14)을 형성하는 단계와;Forming a salicide layer (14) in the trench with the active layer (4) formed thereon; 상기 샐리사이드막(14)이 형성된 활성층(4)에 절연막을 증착하고, 이를 평탄화하는 단계 및;Depositing an insulating film on the active layer (4) on which the salicide film (14) is formed and planarizing it; 상기 평탄화된 활성층(4)에 금속 배선을 증착하는 단계를 포함하는 것을 특징으로 하는 반도체 소자 제조 방법.And depositing a metal wiring on the planarized active layer (4). 제 1 항에 있어서,The method of claim 1, 상기 샐리사이드막(14)은 질화막 또는 산화막으로 형성하는 것을 특징으로 하는 반도체 소자 제조 방법.The salicide film (14) is a semiconductor device manufacturing method, characterized in that formed by a nitride film or an oxide film. 제 1 항에 있어서,The method of claim 1, 상기 샐리사이드막(14)을 형성하는 단계는;Forming the salicide layer (14); 상기 트랜치가 형성된 활성층(4)에 샐리사이드 형성을 위한 금속층(12)을 증착하는 단계와,Depositing a metal layer 12 for forming salicide on the trench formed active layer 4, 상기 금속층(12)이 증착된 활성층(4)을 열처리하는 단계 및,Heat treating the active layer 4 on which the metal layer 12 is deposited; 상기 열처리된 활성층(4)에 상기 금속층(12)의 미반응 금속 물질을 제거하기 위한 선택적으로 습식각하는 단계를 포함하는 것을 특징으로 하는 반도체 소자 제조 방법.And selectively wet etching the non-reacted metal material of the metal layer (12) in the heat treated active layer (4). 제 3 항에 있어서,The method of claim 3, wherein 상기 금속층(12)은 코발트, 티타늄 또는 니켈을 100 ~ 500 Å 두께로 형성하는 것을 특징으로 하는 반도체 소자 제조 방법.The metal layer (12) is a method of manufacturing a semiconductor device, characterized in that to form a cobalt, titanium or nickel 100 ~ 500 Å thickness. 제 3 항에 있어서,The method of claim 3, wherein 상기 선택적으로 습식각하는 단계는 H2SO4와 H2O2의 혼합비가 4 : 1 인 혼합액으로 상기 미반응 금속 물질을 선택적으로 제거하는 것을 특징으로 하는 반도체 소자 제조 방법.The selectively wet etching may include selectively removing the unreacted metal material with a mixture of H 2 SO 4 and H 2 O 2 in a ratio of 4: 1. 제 1 항에 있어서,The method of claim 1, 상기 샐리사이드막이 형성된 활성층(4)에 증착하는 절연막은 고밀도 플라즈마 산화막으로 형성하는 것을 특징으로 하는 반도체 소자 제조 방법.The insulating film deposited on the active layer (4) on which the salicide film is formed is formed of a high density plasma oxide film.
KR1020020009913A 2002-02-25 2002-02-25 Method of manufacturing semiconductor devices KR100674645B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020009913A KR100674645B1 (en) 2002-02-25 2002-02-25 Method of manufacturing semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020009913A KR100674645B1 (en) 2002-02-25 2002-02-25 Method of manufacturing semiconductor devices

Publications (2)

Publication Number Publication Date
KR20030070388A KR20030070388A (en) 2003-08-30
KR100674645B1 true KR100674645B1 (en) 2007-01-25

Family

ID=32222464

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020009913A KR100674645B1 (en) 2002-02-25 2002-02-25 Method of manufacturing semiconductor devices

Country Status (1)

Country Link
KR (1) KR100674645B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980085205A (en) * 1997-05-28 1998-12-05 문정환 Salicide manufacturing method of semiconductor device
KR19980083005A (en) * 1997-05-10 1998-12-05 윤종용 Morse transistor using salicide process and manufacturing method thereof
KR19990001016A (en) * 1997-06-11 1999-01-15 윤종용 Method of manufacturing transistor of semiconductor device
KR20010032840A (en) * 1997-12-09 2001-04-25 밀러 럿셀 비 Receiver with sigma-delta analog-to-digital converter
KR20040003901A (en) * 2002-07-04 2004-01-13 주식회사 하이닉스반도체 Method for manufacturing a semiconductor device
KR20040003900A (en) * 2002-07-04 2004-01-13 주식회사 하이닉스반도체 Method for manufacturing a semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980083005A (en) * 1997-05-10 1998-12-05 윤종용 Morse transistor using salicide process and manufacturing method thereof
KR19980085205A (en) * 1997-05-28 1998-12-05 문정환 Salicide manufacturing method of semiconductor device
KR19990001016A (en) * 1997-06-11 1999-01-15 윤종용 Method of manufacturing transistor of semiconductor device
KR20010032840A (en) * 1997-12-09 2001-04-25 밀러 럿셀 비 Receiver with sigma-delta analog-to-digital converter
KR20040003901A (en) * 2002-07-04 2004-01-13 주식회사 하이닉스반도체 Method for manufacturing a semiconductor device
KR20040003900A (en) * 2002-07-04 2004-01-13 주식회사 하이닉스반도체 Method for manufacturing a semiconductor device

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
1019980083005
1019980085205
1019990001016
1020010032840
1020040003900
1020040003901

Also Published As

Publication number Publication date
KR20030070388A (en) 2003-08-30

Similar Documents

Publication Publication Date Title
US5777370A (en) Trench isolation of field effect transistors
US6524901B1 (en) Method for forming a notched damascene planar poly/metal gate
KR100282452B1 (en) Semiconductor device and method for fabricating the same
JP5544367B2 (en) Recessed drain and source areas combined with advanced silicide formation in transistors
US12062578B2 (en) Prevention of contact bottom void in semiconductor fabrication
KR100653536B1 (en) Method for fabricating fin fet of semiconductor device
US6962838B2 (en) High mobility transistors in SOI and method for forming
US20030235943A1 (en) Notched damascene planar poly/metal gate and methods thereof
KR20080037518A (en) Silicided polysilicon spacer for enhanced contact area
JP2010177690A (en) Electrically programmed mos transistor having source/drain series resistance
KR100414735B1 (en) A semiconductor device and A method for forming the same
WO2014063379A1 (en) Manufacturing method of mosfet
KR20100103488A (en) Method for adjusting the height of a gate electrode in a semiconductor device
CN112951765B (en) Semiconductor structure and forming method thereof
KR100674645B1 (en) Method of manufacturing semiconductor devices
JPH06177377A (en) Insulated-gate field-effect transistor
KR100620065B1 (en) Semiconductor device and method for fabrication of the same
KR101180976B1 (en) Field effect transistor having a doped gate electrode with reduced gate depletion and method of forming the transistor
KR20020055147A (en) Method for manufacturing semiconductor device
JP4797495B2 (en) Manufacturing method of semiconductor device
KR100408728B1 (en) Method for manufacturing mos field effect transistor
KR100734259B1 (en) Method for fabricating semiconductor devices
KR100357195B1 (en) method for forming contact metal line semiconductor device
KR100400782B1 (en) Method for fabricating of semiconductor device
CN117525068A (en) Semiconductor structure and forming method thereof

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121210

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131217

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141222

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151217

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161220

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171218

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181218

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20191217

Year of fee payment: 14