KR20030070388A - Method of manufacturing semiconductor devices - Google Patents

Method of manufacturing semiconductor devices Download PDF

Info

Publication number
KR20030070388A
KR20030070388A KR1020020009913A KR20020009913A KR20030070388A KR 20030070388 A KR20030070388 A KR 20030070388A KR 1020020009913 A KR1020020009913 A KR 1020020009913A KR 20020009913 A KR20020009913 A KR 20020009913A KR 20030070388 A KR20030070388 A KR 20030070388A
Authority
KR
South Korea
Prior art keywords
semiconductor substrate
layer
salicide
soi
soi semiconductor
Prior art date
Application number
KR1020020009913A
Other languages
Korean (ko)
Other versions
KR100674645B1 (en
Inventor
김남식
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020020009913A priority Critical patent/KR100674645B1/en
Publication of KR20030070388A publication Critical patent/KR20030070388A/en
Application granted granted Critical
Publication of KR100674645B1 publication Critical patent/KR100674645B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE: A method for fabricating a semiconductor device is provided to reduce the resistance of a diffusion layer and make the interconnection of the diffusion layer by forming a salicide layer on the diffusion layer and the sidewall of a trench while using a silicon-on-insulator(SOI) wafer. CONSTITUTION: A gate oxide layer, a polysilicon layer and a salicide blocking layer are deposited on the SOI substrate(2) and are patterned to form a gate electrode. An ion implantation process for forming a lightly-doped-drain(LDD) diffusion layer is performed on the SOI substrate including the gate electrode. A nitride layer is deposited on the ion-implanted SOI substrate to form a spacer insulation layer. Ions for forming a diffusion layer are implanted into the SOI substrate including the spacer insulation layer and a heat treatment process is performed. A trench insulation layer for trench insulation is formed on the heat-treated SOI substrate. A salicide layer(14) is formed on the SOI substrate including the trench insulation layer. An insulation layer(16) is deposited and planarized on the SOI substrate having the salicide layer. A metal interconnection is deposited on the planarized SOI substrate.

Description

반도체 소자 제조 방법{METHOD OF MANUFACTURING SEMICONDUCTOR DEVICES}Semiconductor device manufacturing method {METHOD OF MANUFACTURING SEMICONDUCTOR DEVICES}

본 발명은 반도체 제조 방법에 관한 것으로, 좀 더 구체적으로는 SOI 웨이퍼를 이용한 고집적 반도체 트랜지스터 제조 방법에 관한 것이다.The present invention relates to a method for manufacturing a semiconductor, and more particularly, to a method for manufacturing a highly integrated semiconductor transistor using an SOI wafer.

고집적화라는 관점에서 반도체 소자의 집적도를 높이기 위해서는 개별 소자의 크기를 축소하는 것이 절대적으로 필요하지만, 동시에 소자와 소자 사이에 존재하는 절연(isolation) 영역의 폭을 전기적으로 허용하는 범위 내에서 축소하는 것도 필요하다. 칩 사이즈를 결정하는 중요한 기술로서 절연 공정 개발에 많은 노력을 기울이는 이유가 여기에 있다.In order to increase the integration of semiconductor devices from the viewpoint of high integration, it is absolutely necessary to reduce the size of individual devices, but at the same time, it is also possible to reduce the width of the isolation region existing between the devices and the devices within an electrically acceptable range. need. That's why we put a lot of effort into developing the isolation process as an important technology for determining chip size.

반도체 소자가 고집적화되어 게이트 길이가 0.15 ㎛ 이하로 줄어들게 됨에 따라 소자의 채널 저항이 줄어들게 되었다. 따라서 상대적으로 기생 저항 성분의 기여도가 켜져 그 중요도가 커짐에 따라, 고속도를 요하는 로직 소자에서는 게이트와 확산층의 저항과 접촉 저항을 낮추기 위한 살리사이드 기술이 필수적이다.As the semiconductor devices are highly integrated and the gate length is reduced to 0.15 μm or less, the channel resistance of the devices is reduced. Therefore, as the contribution of parasitic resistance components becomes relatively important, the salicide technique for lowering the resistance and contact resistance of the gate and the diffusion layer is essential in logic devices requiring high speed.

또한 소자 집적화가 증가될수록 확산층을 이용한 배선이 늘고 있어 게이트 뿐만 아니라, 확산층의 저항 감소가 크게 대두되고 있는 실정이다. 그러나 게이트 길이의 감소로 인하여 확산층은 점점 얕아지고 그에 따라 살리사이드의 두께도 점점 감소하여 확산층이 점점 더 켜지는 문제점이 발생된다.In addition, as the integration of devices increases, wiring using the diffusion layer is increasing, so that the resistance of the diffusion layer as well as the gate is increasing. However, due to the decrease in the gate length, the diffusion layer becomes shallower, and the thickness of the salicide decreases gradually, resulting in a problem that the diffusion layer is turned on more and more.

본 발명의 목적은 상술한 문제점을 해결하기 위한 것으로, SOI 웨이퍼를 이용한 고집적 반도체 트랜지스터 제조 방법을 구현하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems, and to implement a method for manufacturing a highly integrated semiconductor transistor using an SOI wafer.

이를 위해 SOI 웨이퍼의 특징을 최대한 활용하도록 트랜지스터 절연을 위한 트렌치 절연막 형성을 소오스/드레인 접합층 형성 후, 트랜치 측벽에 살리사이드를 형성하므로서 접합층의 저항을 감소시킨다. 이는 트랜치 하부가 산화물로 구비되기 때문에 그 부분에서는 살리사이드가 형성되지 않고, 측벽에만 살리사이드가 형성된다.To this end, in order to make the most of the characteristics of the SOI wafer, the trench insulating layer for transistor isolation is formed after the source / drain junction layer is formed, thereby forming salicide on the trench sidewalls, thereby reducing the resistance of the junction layer. Since the lower portion of the trench is formed of an oxide, salicide is not formed at the portion thereof, but only at the sidewall.

도 1 내지 도 5는 본 발명에 따른 트랜지스터 제조 공정 수순을 나타내는 단면도들이다.1 to 5 are cross-sectional views showing a transistor manufacturing process procedure according to the present invention.

* 도면의 주요 부분에 대한 부호 설명 *Explanation of symbols on the main parts of the drawings

2 : SOI 반도체 기판4 :2: SOI semiconductor substrate 4:

6 : 8 : 스페이서 절연막6: 8: spacer insulating film

10 : 12 :10: 12:

14 : 살리사이드16 : 절연막14 salicide 16: insulating film

상술한 목적을 달성하기 위한 본 발명의 일 특징에 의하면, 반도체 제조 방법은 SOI(Silicon On Isolation) 반도체 기판에 게이트 산화막과 폴리 실리콘 및살리사이드 방지막을 증착하고, 패터닝하여 게이트 전극을 형성하는 단계와, 상기 게이트 전극이 형성된 SOI 반도체 기판에 LDD 확산층을 형성하기 위해 이온 주입하는 단계와, 상기 이온 주입된 SOI 반도체 기판에 질화막을 증착하여 스페이서 절연막을 형성하는 단계와, 상기 스페이서 절연막이 형성된 SOI 반도체 기판에 확산층 형성을 위한 이온을 주입하고, 이를 열처리하는 단계와, 상기 열처리된 SOI 반도체 기판에 트랜지스터 절연을 위한 트랜치 절연막을 형성하는 단계와, 상기 트랜치 절연막이 형성된 SOI 반도체 기판에 샐리사이드를 형성하는 단계와, 상기 샐리사이드가 형성된 SOI 반도체 기판에 절연막을 증착하고, 이를 평탄화하는 단계 및 상기 평탄화된 SOI 반도체 기판에 금속 배선을 증착하는 단계를 포함한다.According to an aspect of the present invention for achieving the above object, the semiconductor manufacturing method comprises the steps of depositing and patterning a gate oxide film and a polysilicon and a salicide prevention film on a silicon on isolation (SOI) semiconductor substrate and forming a gate electrode; Ion implanting a SOI semiconductor substrate to form an LDD diffusion layer in the gate electrode formed thereon, depositing a nitride film on the ion implanted SOI semiconductor substrate to form a spacer insulating film, and forming the spacer insulating film. Implanting ions for forming a diffusion layer into the semiconductor substrate and heat-treating them, forming a trench insulating film for transistor insulation on the heat treated SOI semiconductor substrate, and forming a salicide on the SOI semiconductor substrate on which the trench insulating film is formed. And an SOI semiconductor substrate having the salicide formed therein. Depositing a film, planarizing it, and depositing a metal interconnect on the planarized SOI semiconductor substrate.

이 특징의 바람직한 실시예에 있어서, 상기 살리사이드 방지막은 질화막 또는 산화막으로 형성한다.In a preferred embodiment of this aspect, the salicide preventing film is formed of a nitride film or an oxide film.

그리고 상기 샐리사이드를 형성하는 단계는 상기 트랜치 절연막이 형성된 SOI 반도체 기판에 실리사이드 형성을 위한 금속층을 증착하는 단계와, 상기 금속층이 증착된 SOI 반도체 기판을 열처리하는 단계 및 상기 열처리된 SOI 반도체 기판에 상기 금속층의 미반응 금속 물질을 제거하기 위한 선택적으로 습식각하는 단계를 포함한다. 이 때, 상기 금속층은 코발트, 티타늄 또는 니켈을 100 ~ 500 Å 두께로 형성하고, 상기 상기 선택적으로 습식각하는 단계는 H2SO4와 H2O2의 혼합비가 4 : 1 인 혼합액으로 상기 미반응 금속 물질을 선택적으로 제거한다.The forming of the salicide may include depositing a metal layer for silicide formation on an SOI semiconductor substrate on which the trench insulating layer is formed, heat treating the SOI semiconductor substrate on which the metal layer is deposited, and performing the heat treatment on the SOI semiconductor substrate. Optionally wet etching to remove unreacted metal material from the metal layer. At this time, the metal layer is formed of cobalt, titanium or nickel in a thickness of 100 ~ 500 Å, and the step of selectively wet etching is a mixture of H 2 SO 4 and H 2 O 2 is a mixture of 4: 1 The reactive metal material is selectively removed.

또한 상기 샐리사이드가 형성된 SOI 반도체 기판에 증착하는 절연막은 고밀도 플라즈마 산화막으로 형성한다.The insulating film deposited on the salicide-formed SOI semiconductor substrate is formed of a high density plasma oxide film.

따라서 본 발명에 의하면, SOI 웨이퍼를 이용하여 확산층과 트랜치 측벽에 살리사이드 형성이 가능하고, 이를 통해 확산층 저항을 낮출 수 있어 확산층 배선이 가능하므로 고집적 소자 제조가 가능하다.Therefore, according to the present invention, salicide may be formed on the diffusion layer and the trench sidewalls using the SOI wafer, and thus the diffusion layer resistance may be lowered, thereby enabling the diffusion layer wiring to be manufactured.

이하 본 발명의 실시예를 첨부된 도면에 의거하여 상세히 설명한다.DETAILED DESCRIPTION Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1 내지 도 5는 본 발명에 따른 반도체 소자 제조 공정을 나타내는 단면도들이다. 이 제조 공정은 SOI 반도체 기판을 이용하여 고집적도의 트랜지스터를 제조한다.1 to 5 are cross-sectional views illustrating a semiconductor device manufacturing process according to the present invention. This manufacturing process uses a SOI semiconductor substrate to produce a high density transistor.

도 1 내지 도 5를 참조하면, 상기 반도체 소자는 SOI 반도제 기판에1 through 5, the semiconductor device may be formed on an SOI semiconductor substrate.

SOI(Silicon On Insulator)는 실리콘 웨이퍼 내부에 산화막을 형성시킨 후, 산화막 상의 실리콘에 트랜지스터를 형성하는 기술을 의미한다. SOI 공정 기술은 집적도와 동작 특성이 우수하여 차세대 칩 제조 기술로 유망한 기술이다. 또한 낮은 유전체와 구리 배선 기술을 사용하여 소비 전력이 작고 성능이 뛰어난 칩을 만들 수 있다.Silicon on insulator (SOI) refers to a technology for forming an oxide film inside a silicon wafer and then forming a transistor in silicon on the oxide film. SOI process technology is promising as next-generation chip manufacturing technology because of its high density and operation characteristics. Low dielectric and copper wiring techniques can also be used to create low power and high performance chips.

SOI(Silicon On Isolation) 반도체 기판에 게이트 산화막과 폴리 실리콘 및 살리사이드 방지막을 증착하고, 패터닝하여 게이트 전극을 형성한다. 상기 살리사이드 방지막은 질화막 또는 산화막 등으로 형성한다. 이어서 상기 게이트 전극이 형성된 SOI 반도체 기판에 LDD 확산층을 형성하기 위해 이온 주입한다.A gate oxide layer, a polysilicon layer, and a salicide barrier layer are deposited on a silicon on isolation (SOI) semiconductor substrate and patterned to form a gate electrode. The salicide preventing film is formed of a nitride film or an oxide film. Subsequently, ion implantation is performed to form an LDD diffusion layer on the SOI semiconductor substrate on which the gate electrode is formed.

상기 이온 주입된 SOI 반도체 기판에 질화막을 증착하여 스페이서 절연막을 형성한다. 그리고 상기 스페이서 절연막이 형성된 SOI 반도체 기판에 확산층 형성을 위한 이온을 주입하고, 이를 열처리하고, 상기 열처리된 SOI 반도체 기판에 트랜지스터 절연을 위한 트랜치 절연막을 형성한다.A nitride film is deposited on the ion implanted SOI semiconductor substrate to form a spacer insulating film. In addition, ions for forming a diffusion layer are implanted into the SOI semiconductor substrate having the spacer insulating layer formed thereon, and heat-treated, and a trench insulating layer for transistor insulation is formed on the heat treated SOI semiconductor substrate.

상기 트랜치 절연막이 형성된 SOI 반도체 기판에 실리사이드 형성을 위한 금속층을 증착하고, 이를 열처리하며 상기 열처리된 SOI 반도체 기판에 상기 금속층의 미반응 금속 물질을 제거하기 위한 선택적으로 습식각하여 샐리사이드를 형성한다. 이 때, 상기 금속층은 코발트, 티타늄 또는 니켈을 100 ~ 500 Å 두께로 형성한다. 그리고 상기 상기 선택적으로 습식각하는 단계는 H2SO4와 H2O2의 혼합비가 4 : 1 인 혼합액으로 상기 미반응 금속 물질을 선택적으로 제거한다.A metal layer for silicide formation is deposited on an SOI semiconductor substrate having the trench insulating layer formed thereon, and then heat-treated and selectively wet-etched to remove unreacted metal material of the metal layer on the heat treated SOI semiconductor substrate to form salicide. At this time, the metal layer is formed of cobalt, titanium or nickel to a thickness of 100 ~ 500 kPa. In the selective wet etching, the unreacted metal material is selectively removed by a mixture of H 2 SO 4 and H 2 O 2 in a ratio of 4: 1.

또한 상기 샐리사이드 형성 후의 절연막은 갭필 능력이 우수한 고밀도 플라즈마 산화막으로 형성하는 것이 적합하다.In addition, the insulating film after the salicide formation is preferably formed of a high density plasma oxide film having excellent gap fill capability.

이어서 상기 샐리사이드가 형성된 SOI 반도체 기판에 절연막을 증착하여, 이를 평탄화하고, 금속 배선을 증착한다.Subsequently, an insulating film is deposited on the salicide-formed SOI semiconductor substrate to planarize it and to deposit metal wirings.

그러므로 상술한 바와 같이, 본 발명의 반도체 소자 제조 방법은 SOI 웨이퍼를 이용하여 고집적도의 반도체 소자를 형성한다.Therefore, as described above, the semiconductor device manufacturing method of the present invention forms a highly integrated semiconductor device using an SOI wafer.

상술한 바와 같이, 본 발명은 반도체 소자 제조에 있어서, SOI 웨이퍼를 이용하여 확산층과 트랜치 측벽에 살리사이드 형성이 가능하고, 이를 통해 확산층 저항을 낮출 수 있어 확산층 배선이 가능하므로 고집적 소자 제조가 가능하다. 또한 SOI 웨이퍼에 의한 집적 소자 제조에 살리사이드 공정을 효과적으로 활용할 수 있으므로 경제성이 향상된다.As described above, in the semiconductor device fabrication, salicide may be formed in the diffusion layer and the trench sidewalls using the SOI wafer, and the diffusion layer resistance may be lowered through the diffusion layer wiring, thereby enabling the fabrication of highly integrated devices. . In addition, the salicide process can be effectively utilized for fabricating integrated devices using SOI wafers, thereby improving economic efficiency.

Claims (6)

반도체 제조 방법에 있어서:In the semiconductor manufacturing method: SOI(Silicon On Isolation) 반도체 기판에 게이트 산화막과 폴리 실리콘 및 살리사이드 방지막을 증착하고, 패터닝하여 게이트 전극을 형성하는 단계와;Depositing and patterning a gate oxide layer, a polysilicon, and a salicide prevention layer on a silicon on isolation (SOI) semiconductor substrate to form a gate electrode; 상기 게이트 전극이 형성된 SOI 반도체 기판에 LDD 확산층을 형성하기 위해 이온 주입하는 단계와;Implanting ions into an SOD semiconductor substrate on which the gate electrode is formed to form an LDD diffusion layer; 상기 이온 주입된 SOI 반도체 기판에 질화막을 증착하여 스페이서 절연막을 형성하는 단계와;Depositing a nitride film on the ion implanted SOI semiconductor substrate to form a spacer insulating film; 상기 스페이서 절연막이 형성된 SOI 반도체 기판에 확산층 형성을 위한 이온을 주입하고, 이를 열처리하는 단계와;Implanting ions for forming a diffusion layer into the SOI semiconductor substrate on which the spacer insulating film is formed and heat-treating them; 상기 열처리된 SOI 반도체 기판에 트랜지스터 절연을 위한 트랜치 절연막을 형성하는 단계와;Forming a trench insulating film for transistor insulation on the heat treated SOI semiconductor substrate; 상기 트랜치 절연막이 형성된 SOI 반도체 기판에 샐리사이드를 형성하는 단계와;Forming a salicide on an SOI semiconductor substrate on which the trench insulating film is formed; 상기 샐리사이드가 형성된 SOI 반도체 기판에 절연막을 증착하고, 이를 평탄화하는 단계 및;Depositing an insulating film on the salicide-formed SOI semiconductor substrate and planarizing it; 상기 평탄화된 SOI 반도체 기판에 금속 배선을 증착하는 단계를 포함하는 것을 특징으로 하는 반도체 소자 제조 방법.And depositing metal wires on the planarized SOI semiconductor substrate. 제 1 항에 있어서,The method of claim 1, 상기 살리사이드 방지막은 질화막 또는 산화막으로 형성하는 것을 특징으로 하는 반도체 소자 제조 방법.The salicide blocking film is formed of a nitride film or an oxide film. 제 1 항에 있어서,The method of claim 1, 상기 샐리사이드를 형성하는 단계는;Forming the salicide; 상기 트랜치 절연막이 형성된 SOI 반도체 기판에 실리사이드 형성을 위한 금속층을 증착하는 단계와,Depositing a metal layer for silicide formation on the SOI semiconductor substrate having the trench insulating layer formed thereon; 상기 금속층이 증착된 SOI 반도체 기판을 열처리하는 단계 및,Heat treating the SOI semiconductor substrate on which the metal layer is deposited; 상기 열처리된 SOI 반도체 기판에 상기 금속층의 미반응 금속 물질을 제거하기 위한 선택적으로 습식각하는 단계를 포함하는 것을 특징으로 하는 반도체 소자 제조 방법.And selectively wet etching the non-reacted metal material of the metal layer on the heat treated SOI semiconductor substrate. 제 2 항에 있어서,The method of claim 2, 상기 금속층은 코발트, 티타늄 또는 니켈을 100 ~ 500 Å 두께로 형성하는 것을 특징으로 하는 반도체 소자 제조 방법.The metal layer is a method of manufacturing a semiconductor device, characterized in that the cobalt, titanium or nickel to form a thickness of 100 ~ 500 Å. 제 2 항에 있어서,The method of claim 2, 상기 상기 선택적으로 습식각하는 단계는 H2SO4와 H2O2의 혼합비가 4 : 1 인 혼합액으로 상기 미반응 금속 물질을 선택적으로 제거하는 것을 특징으로 하는 반도체 소자 제조 방법.The selectively wet etching may include selectively removing the unreacted metal material with a mixture of H 2 SO 4 and H 2 O 2 in a ratio of 4: 1. 제 1 항에 있어서,The method of claim 1, 상기 샐리사이드가 형성된 SOI 반도체 기판에 증착하는 절연막은 고밀도 플라즈마 산화막으로 형성하는 것을 특징으로 하는 반도체 소자 제조 방법.The insulating film deposited on the salicide-formed SOI semiconductor substrate is formed of a high density plasma oxide film.
KR1020020009913A 2002-02-25 2002-02-25 Method of manufacturing semiconductor devices KR100674645B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020009913A KR100674645B1 (en) 2002-02-25 2002-02-25 Method of manufacturing semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020009913A KR100674645B1 (en) 2002-02-25 2002-02-25 Method of manufacturing semiconductor devices

Publications (2)

Publication Number Publication Date
KR20030070388A true KR20030070388A (en) 2003-08-30
KR100674645B1 KR100674645B1 (en) 2007-01-25

Family

ID=32222464

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020009913A KR100674645B1 (en) 2002-02-25 2002-02-25 Method of manufacturing semiconductor devices

Country Status (1)

Country Link
KR (1) KR100674645B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980083005A (en) * 1997-05-10 1998-12-05 윤종용 Morse transistor using salicide process and manufacturing method thereof
KR19980085205A (en) * 1997-05-28 1998-12-05 문정환 Salicide manufacturing method of semiconductor device
KR100464386B1 (en) * 1997-06-11 2005-02-28 삼성전자주식회사 Manufacturing method of transistor in semiconductor device
US6005506A (en) * 1997-12-09 1999-12-21 Qualcomm, Incorporated Receiver with sigma-delta analog-to-digital converter for sampling a received signal
KR100432788B1 (en) * 2002-07-04 2004-05-24 주식회사 하이닉스반도체 Method for manufacturing a semiconductor device
KR100466207B1 (en) * 2002-07-04 2005-01-13 매그나칩 반도체 유한회사 Method for manufacturing a semiconductor device

Also Published As

Publication number Publication date
KR100674645B1 (en) 2007-01-25

Similar Documents

Publication Publication Date Title
US6737308B2 (en) Semiconductor device having LDD-type source/drain regions and fabrication method thereof
US5777370A (en) Trench isolation of field effect transistors
US6649481B2 (en) Methods of fabricating a semiconductor device structure for manufacturing high-density and high-performance integrated-circuits
US6524901B1 (en) Method for forming a notched damascene planar poly/metal gate
US7129564B2 (en) Structure and method of forming a notched gate field effect transistor
JP5544367B2 (en) Recessed drain and source areas combined with advanced silicide formation in transistors
KR100653536B1 (en) Method for fabricating fin fet of semiconductor device
US20030235943A1 (en) Notched damascene planar poly/metal gate and methods thereof
KR20020070099A (en) Intrinsic dual gate oxide mosfet using a damascene gate process
JP2010500765A (en) JFET with built-in back gate in either SOI or bulk silicon
KR20020011133A (en) Self-aligned source and drain extensions fabricated in a damascene contact and gate process
JP2000223703A (en) Semiconductor device and its manufacture
KR20080037518A (en) Silicided polysilicon spacer for enhanced contact area
KR100414735B1 (en) A semiconductor device and A method for forming the same
US8466500B2 (en) Semiconductor device and method for manufacturing the same
JPH06177377A (en) Insulated-gate field-effect transistor
KR100674645B1 (en) Method of manufacturing semiconductor devices
KR100788362B1 (en) Mosfet device and method of forming the same
KR20020055147A (en) Method for manufacturing semiconductor device
JP3714396B2 (en) Manufacturing method of semiconductor device
KR100734259B1 (en) Method for fabricating semiconductor devices
KR20000000869A (en) Method for manufacturing semiconductor device
KR100357195B1 (en) method for forming contact metal line semiconductor device
KR100604044B1 (en) Method for fabricating the semiconductor device
KR100400782B1 (en) Method for fabricating of semiconductor device

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121210

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131217

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141222

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151217

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161220

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171218

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181218

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20191217

Year of fee payment: 14