KR100432788B1 - Method for manufacturing a semiconductor device - Google Patents

Method for manufacturing a semiconductor device Download PDF

Info

Publication number
KR100432788B1
KR100432788B1 KR10-2002-0038728A KR20020038728A KR100432788B1 KR 100432788 B1 KR100432788 B1 KR 100432788B1 KR 20020038728 A KR20020038728 A KR 20020038728A KR 100432788 B1 KR100432788 B1 KR 100432788B1
Authority
KR
South Korea
Prior art keywords
layer
metal
semiconductor device
forming
manufacturing
Prior art date
Application number
KR10-2002-0038728A
Other languages
Korean (ko)
Other versions
KR20040003901A (en
Inventor
김남식
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR10-2002-0038728A priority Critical patent/KR100432788B1/en
Publication of KR20040003901A publication Critical patent/KR20040003901A/en
Application granted granted Critical
Publication of KR100432788B1 publication Critical patent/KR100432788B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Abstract

본 발명은 반도체 소자의 제조방법에 관한 것으로, SOI(Silicon On Insulator) 기판 상에 후속 금속플러그가 매립되는 콘택홀의 너비보다 작게 소오스/드레인영역을 형성하고, 콘택홀 형성시 트렌치 측벽이 노출되도록 한 후 이 트렌치 측벽에 금속 샐리사이드층을 형성함으로써, 소오스/드레인영역에서의 접합누설전류의 증가를 최소화하고, 반도체 소자의 집적도를 높이며, 콘택저항을 감소시켜 반도체 소자의 신뢰성을 향상시킬 수 있는 반도체 소자의 제조방법을 개시한다.The present invention relates to a method for fabricating a semiconductor device, wherein a source / drain region is formed on a silicon on insulator (SOI) substrate smaller than the width of a contact hole in which a subsequent metal plug is buried, and the trench sidewalls are exposed when the contact hole is formed. By forming a metal salicide layer on the sidewalls of the trench, the semiconductor can minimize the increase of junction leakage current in the source / drain regions, increase the degree of integration of the semiconductor device, and reduce the contact resistance to improve the reliability of the semiconductor device. A method of manufacturing a device is disclosed.

Description

반도체 소자의 제조방법{Method for manufacturing a semiconductor device}Method for manufacturing a semiconductor device

본 발명은 반도체 소자의 제조방법에 관한 것으로, 특히 소오스/드레인영역의 감소에 따른 접합누설전류의 증가를 방지하여 반도체 소자의 집적화를 높이면서, 반도체 소자의 신뢰성을 향상시킬 수 있는 반도체 소자의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device. In particular, the semiconductor device can be manufactured to improve the reliability of the semiconductor device by increasing the integration of the semiconductor device by preventing an increase in the junction leakage current due to the reduction of the source / drain region. It is about a method.

최근, 반도체 소자가 고집적화되어 감에 따라 게이트전극의 길이 및 소오스/드레인영역의 깊이가 감소하고 있는 추세이다. 그러나, 반도체 소자의 고집적화와더불어 콘택영역의 감소도 수반되어야 하나, 현재의 리소그래피(Lithography) 기술상, 그 한계가 있어 반도체 소자의 집적도에 큰 문제가 되고 있다. 따라서, 이러한 소오스/드레인영역의 감소에 따른 접합누설전류의 증가문제를 해결하고, 콘택영역과 및 콘택저항의 확보를 위하여 SOI(Silicon On Insulator) 웨이퍼를 이용한 반도체 소자의 새로운 제조방법이 제안되어야 할 실정이다.In recent years, as semiconductor devices have been highly integrated, the length of the gate electrode and the depth of the source / drain regions have decreased. However, in addition to the high integration of semiconductor devices, the contact area should be reduced. However, current lithography techniques have limitations, which pose a great problem for the integration of semiconductor devices. Therefore, in order to solve the problem of increase of the junction leakage current according to the decrease of the source / drain region, and to secure the contact region and the contact resistance, a new method of manufacturing a semiconductor device using a silicon on insulator (SOI) wafer should be proposed. It is true.

따라서, 본 발명은 상기에서 설명한 종래 기술의 문제점을 해결하기 위해 안출된 것으로, 소오스/드레인영역의 감소에 따른 접합누설전류의 증가를 방지하여 반도체 소자의 집적화를 높이면서, 반도체 소자의 신뢰성을 향상시키는데 그 목적이 있다.Accordingly, the present invention has been made to solve the above-described problems of the prior art, and prevents an increase in the junction leakage current due to the reduction of the source / drain regions, thereby increasing the integration of the semiconductor device and improving the reliability of the semiconductor device. The purpose is to.

도 1 내지 도 8은 본 발명의 바람직한 실시예에 따른 반도체 소자의 제조방법을 설명하기 위해 도시한 단면도들이다.1 to 8 are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with a preferred embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

102 : SOI 기판102: SOI substrate

104 : 소자분리막104: device isolation film

106 : 게이트 산화막106: gate oxide film

108 : 폴리실리콘층108: polysilicon layer

110a : NMOS 게이트 전극110a: NMOS gate electrode

110b : PMOS 게이트 전극110b: PMOS gate electrode

112 : 스페이서112: spacer

114a : N형 저농도 접합영역114a: N-type low concentration junction region

114b : P형 저농도 접합영역114b: P type low concentration junction region

116a : N형 고농도 접합영역116a: N-type high concentration junction region

116b : P형 고농도 접합영역116b: P-type high concentration junction region

118a : NMOS 소오스/드레인영역118a: NMOS source / drain region

118b : PMOS 소오스/드레인영역118b: PMOS source / drain area

120 : 제1 금속 샐리사이드층120: first metal salicide layer

122 : 층간절연막122: interlayer insulating film

124 : 콘택홀124: contact hole

126 : 장벽금속층126: barrier metal layer

128 : 제2 금속 샐리사이드층128: second metal salicide layer

130 : 금속플러그130: metal plug

132 : 금속배선132: metal wiring

본 발명에서는, SOI 기판에 트렌치를 형성하는 단계와, 상기 트렌치를 매립하여 소자분리막을 형성하는 단계와, 상기 활성영역 상에 게이트전극을 형성하는 단계와, 상기 활성영역에 소오스/드레인영역을 형성하는 단계와, 전체 구조 상부에 금속물질을 증착한 후, 열처리공정을 실시하여 제1 금속 샐리사이드층을 형성하는 단계와, 전체 구조 상부에 층간절연막을 형성하는 단계와, 상기 소오스/드레인영역 상의 상기 제1 금속 샐리사이드층과, 상기 트렌치의 측벽이 노출되도록 식각공정을 실시하여, 상기 층간절연막과 상기 소자분리막을 식각하여 콘택홀을 형성하는 단계와, 전체 구조 상부에 하부층이 금속물질로 이루어진 장벽금속층을 형성하는 단계와, 전체 구조 상부에 대해 열처리공정을 실시하여, 상기 단계에서 노출되는 트렌치의 측벽에 제2 금속 샐리사이드층을 형성하는 단계와, 상기 콘택홀을 매립하도록 금속플러그를 형성하는 단계와, 전체 구조 상부에 금속배선을 형성하는 단계를 포함하는 반도체 소자의 제조방법을 제공한다.In the present invention, forming a trench in an SOI substrate, forming a device isolation layer by filling the trench, forming a gate electrode on the active region, and forming a source / drain region in the active region And depositing a metal material over the entire structure, and then performing a heat treatment process to form a first metal salicide layer, forming an interlayer insulating film over the entire structure, and forming the interlayer insulating film on the source / drain region. Performing an etching process to expose the first metal salicide layer and sidewalls of the trench to etch the interlayer insulating layer and the device isolation layer to form a contact hole, and a lower layer on the entire structure of the metal material Forming a barrier metal layer, and performing a heat treatment process on the upper part of the entire structure, so that a second sidewall of the trench is exposed. A method of manufacturing a semiconductor device includes forming a metal salicide layer, forming a metal plug to fill the contact hole, and forming a metal wiring on the entire structure.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명하기로 한다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록하며 통상의 지식을 가진자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 한편, 도면상에서 동일 부호는 동일한 요소를 지칭하며, 중복되는 요소에 대해서는 설명을 생략하기로 한다.Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of the present invention. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention and to those skilled in the art. It is provided for complete information. In the drawings, the same reference numerals refer to the same elements, and descriptions of overlapping elements will be omitted.

도 1 내지 도 8은 본 발명의 바람직한 실시예에 따른 반도체 소자의 제조방법을 설명하기 위하여 도시한 단면들로서, 그 일례로 도시한 CMOS(Complementary Metal-Oxide-Semiconductor)소자의 단면도들이다.1 to 8 are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with a preferred embodiment of the present invention, and are cross-sectional views of a complementary metal-oxide-semiconductor (CMOS) device.

도 1을 참조하면, SOI 기판(102), 예컨대 실리콘(Silicon; 102a)/실리콘 산화막(SiO2; 102b)/실리콘(102c)으로 이루어진, SOI 기판(102)을 NMOS영역과 PMOS영역으로 정의하기 위해 소자분리막(104)을 형성한다. 이때, 소자분리막(104)은 LOCOS(LOCal Oxidation of Silicon)방법, PBL(Poly-Buffed LOCOS)방법 및 STI(Shallow Trench Isolation) 방법중 어느 하나의 방법을 이용하여 형성할 수 있으나, 소자의 집적도와 후속 공정상의 편의를 고려하여 STI방법으로 형성하는 것이 바람직하다.Referring to FIG. 1, defining an SOI substrate 102 as an NMOS region and a PMOS region, which is made of an SOI substrate 102, for example, silicon 102a / silicon oxide film SiO 2 102b / silicon 102c. In order to form the device isolation film 104. In this case, the device isolation layer 104 may be formed using any one of a LOCOS (Poly Oxidation of Silicon) method, a poly-buffered LOCOS (PBL) method, and a shallow trench isolation (STI) method. It is preferable to form by STI method in consideration of the following process convenience.

한편, STI방법은, SOI 기판(102) 상에 미도시된 패드산화막과 패드질화막을 순차적으로 증착한 후, 포토리소그래피(Photolithography) 공정과 식각공정을 순차적으로 실시하여 트렌치(Trench; 미도시)를 형성한다. 그런 다음, 상기 트렌치를 매립하도록 갭 필(Gap fill) 특성이 우수한 고밀도플라즈마(High Density Plasma; HDP)산화막(미도시)을 화학적기상증착법(Chemical Vapor Deposition; 이하, 'CVD'라 함)을 이용하여 증착한다. 그런 다음, 화학적기계적연마(Chemical Mechanical Polishing; 이하, 'CMP'라 함)공정을 통해 상기 트렌치를 매립하도록 상기 고밀도플라즈마산화막을 연마하여 소자분리막(104)을 형성한다.Meanwhile, the STI method sequentially deposits a pad oxide film and a pad nitride film, which are not shown on the SOI substrate 102, and then sequentially performs a photolithography process and an etching process to perform a trench. Form. Then, a high-density plasma (HDP) oxide film (not shown) having excellent gap fill characteristics is buried in the trenches using chemical vapor deposition (hereinafter, referred to as 'CVD'). By deposition. Then, the high-density plasma oxide film is polished to fill the trench through chemical mechanical polishing (hereinafter, referred to as 'CMP') to form the device isolation film 104.

이어서, NMOS영역에는 'p-' 불순물인 보론(Boron)을 주입하여 P-웰(P-Well; 미도시)을 형성하고, PMOS영역에는 'n-' 불순물인 인(Phosphorous)을 주입하여 N-웰(N-Well; 미도시)을 형성한다.Then, NMOS region 'p -' impurity boron (Boron) injection to P- well (P-Well; not shown), a-implanting phosphorus (Phosphorous), the impurity is formed, and the N, PMOS area 'n' Form a well (N-Well) (not shown).

도 2를 참조하면, 전체 구조 상부에 게이트산화막(106)을 형성한 후 그 상부에 게이트전극용 폴리실리콘층(108)을 형성한다. 그런 다음, 게이트전극패턴용 마스크를 이용한 식각공정을 실시하여 폴리실리콘층(108) 및 게이트산화막(106)을 순차적으로 패터닝하여 NMOS영역에는 NMOS 게이트전극(110a)을 형성하고, PMOS영역에는 PMOS 게이트전극(110b)을 형성한다.Referring to FIG. 2, the gate oxide film 106 is formed on the entire structure, and then the polysilicon layer 108 for the gate electrode is formed thereon. Then, an etching process using a mask for a gate electrode pattern is performed to sequentially pattern the polysilicon layer 108 and the gate oxide film 106 to form an NMOS gate electrode 110a in the NMOS region, and a PMOS gate in the PMOS region. The electrode 110b is formed.

이어서, 전체 구조 상부에 CVD공정을 실시하여 절연막(미도시)을 증착한 후에치백(Etch back)과 같은 전면 식각공정을 실시하여 NMOS 게이트전극(110a) 및 PMOS 게이트전극(110b)의 측벽에 LDD(Lightly Doped Drain) HLD(High temperature Low pressure Dielectric)용 스페이서(112)를 형성한다.Subsequently, an CVD process is performed on the entire structure to deposit an insulating film (not shown), and then an entire surface etching process such as etching back is performed to LDD on sidewalls of the NMOS gate electrode 110a and the PMOS gate electrode 110b. (Lightly Doped Drain) A spacer 112 for a high temperature low pressure dielectric (HLD) is formed.

이어서, NMOS영역이 오픈(Open)되도록 포토레지스트 패턴(미도시)을 PMOS 영역에만 형성한 후, 이 포토레지트 패턴을 이용한 'n-' 이온주입공정(Ion implant)을 실시하여 NMOS영역의 P-웰에 얕은 접합영역(Shallow junction)인 N형 저농도 접합영역(114a)을 형성한다. 그런 다음, PMOS영역이 오픈되도록 포토레지스트 패턴(미도시)을 NMOS영역에만 형성한 후, 이 포토레지트 패턴을 이용한 'p-' 이온주입공정을 실시하여 PMOS영역의 N-웰에 얕은 접합영역인 P형 저농도 접합영역(114b)을 형성한다.Then, after the NMOS region, a photoresist pattern (not shown) to open (Open) formed only in the PMOS region, a photoresist agent for using pattern 'n -' of the exemplary ion implantation process (Ion implant) NMOS regions P An N-type low concentration junction 114a, which is a shallow junction, is formed in the well. Then, after a photoresist pattern (not shown), the PMOS region are open only NMOS forming region, a photoresist pattern using a bit 'p -' shallow junction regions in the N- well of the PMOS region by conducting an ion implantation process A P-type low concentration junction region 114b is formed.

이어서, NMOS영역이 오픈되도록 포토레지스트 패턴(미도시)을 PMOS영역에만 형성한 후, 이 포토레지트 패턴을 이용한 'n+' 이온주입공정을 실시하여 NMOS영역의 P-웰에 깊은 접합영역(Depth junction)인 N형 고농도 접합영역(116a)을 형성한다. 그런 다음, PMOS 영역이 오픈되도록 포토레지스트 패턴(미도시)을 NMOS영역에만 형성한 후, 이 포토레지트 패턴을 이용한 'p+' 이온주입공정을 실시하여 PMOS영역의 N-웰에 깊은 접합영역인 P형 고농도 접합영역(116b)을 형성한다.Subsequently, a photoresist pattern (not shown) is formed only in the PMOS region to open the NMOS region, and then a 'n + ' ion implantation process using the photoresist pattern is performed to deeply bond to the P-well of the NMOS region. N-type high concentration junction region 116a, which is a depth junction), is formed. Then, a photoresist pattern (not shown) is formed only in the NMOS region so that the PMOS region is opened, and then a 'p + ' ion implantation process using the photoresist pattern is performed to deeply bond to the N-well of the PMOS region. P-type high concentration junction region 116b is formed.

상기에서 설명한 다수의 이온주입공정을 실시하여, NMOS영역의 P-웰에는 N형 저농도 접합영역(114a)와 N형 고농도 접합영역(116a)으로 이루어진 LDD 구조의NMOS 소오스/드레인영역(118a)이 형성되고, PMOS영역의 N-웰에는 P형 저농도 접합영역(114b)와 P형 고농도 접합영역(116b)으로 이루어진 LDD 구조의 PMOS 소오스/드레인영역(118b)이 형성된다. 한편, 상기 NMOS 소오스/드레인영역(118a)과 상기 PMOS 소오스/드레인영역(118b)은 후속 콘택홀(도 5의 '124'참조)의 너비보다 작게형성하는 것이 바람직하다. 이로써, 반도체 소자의 집적도를 높이는 것이 가능하다.By performing a plurality of ion implantation processes described above, an NMOS source / drain region 118a of an LDD structure including an N-type low concentration junction region 114a and an N-type high concentration junction region 116a is formed in the P-well of the NMOS region. In the N-well of the PMOS region, an LDD structure PMOS source / drain region 118b including a P-type low concentration junction region 114b and a P-type high concentration junction region 116b is formed. Meanwhile, the NMOS source / drain region 118a and the PMOS source / drain region 118b may be formed smaller than the width of a subsequent contact hole (see '124' in FIG. 5). Thereby, it is possible to raise the integration degree of a semiconductor element.

도 3을 참조하면, 전체 구조 상부에 제1 금속 샐리사이드층(Salicide; 120)을 형성하기 위하여 니켈(Nickel) 또는 코발트(Cobalt) 금속으로 금속층(미도시)을 증착한다. 아울러, 상기 금속층을 보호하기 위하여, 상기 금속층 상에는 코발트, 니켈, 티타늄(Titanium; Ti) 또는 티타늄 질화막(TiN)으로 캡핑층을 형성하는 것이 바람직하다.Referring to FIG. 3, a metal layer (not shown) is deposited with nickel or cobalt metal to form a first metal salicide layer 120 on the entire structure. In addition, in order to protect the metal layer, the capping layer is preferably formed of cobalt, nickel, titanium (Ti) or titanium nitride (TiN) on the metal layer.

이어서, 전체 구조 상부에 RTP(Rapid Temperature Process) 방식으로 열처리공정을 실시하여 제1 금속 샐리사이드층(120)을 형성한다. 이때, 상기 제1 금속 샐리사이드층(120)은 NMOS영역 및 PMOS영역의 각 소오스/드레인영역(118a 및 118b)과, 각 게이트전극(110a 및 110b) 상에 형성된다.Subsequently, the first metal salicide layer 120 is formed by performing a heat treatment process on the entire structure by a rapid temperature process (RTP) method. In this case, the first metal salicide layer 120 is formed on the source / drain regions 118a and 118b of the NMOS region and the PMOS region and the gate electrodes 110a and 110b.

한편, 상기 금속층의 금속재료에 따라 제1 금속 샐리사이드층(120)을 형성하기 위한 공정은 금속재료의 특성상 약간의 차이를 보인다. 예컨대, 금속층의 금속재료로 니켈 금속을 사용할 경우에는, 한번의 RTP 방식으로 열처리공정을 실시한 후 습식식각공정을 실시하여 미반응된 니켈 금속을 제거하여 제1 금속 샐리사이드층(120)을 형성하는 것이 바람직하다. 반면, 금속층의 금속재료로 코발트 금속을사용할 경우에는, 1차 RTP 방식으로 열처리공정을 실시하고, 습식식각공정을 실시하여 미반응된 코발트 금속을 제거한 후, 다시 2차 RTP 방식으로 열처리공정을 실시하여 금속 샐리사이드층(120)을 형성하는 것이 바람직하다.On the other hand, the process for forming the first metal salicide layer 120 according to the metal material of the metal layer shows a slight difference in the characteristics of the metal material. For example, when nickel metal is used as the metal material of the metal layer, the first metal salicide layer 120 is formed by removing the unreacted nickel metal by performing a heat treatment process using a single RTP method and then performing a wet etching process. It is preferable. On the other hand, in the case of using cobalt metal as the metal material of the metal layer, the heat treatment process is performed by the primary RTP method, the wet etching process is performed to remove the unreacted cobalt metal, and then the heat treatment process is performed by the secondary RTP method. It is preferable to form a metal salicide layer 120.

도 4를 참조하면, 전체 구조 상부에 SOG(Spin On Glass), USG(Un-doped silicate glass), BPSG(Boron-Phosphorus Silicate glass), PSG(Phosphorus Silicate Glass) 또는 PETEOS(Plasma Enhanced Tetra Ethyl Ortho Silicate Glass)를 CVD방식을 이용하여 층간절연막(Inter layer dielectric; ILD, 122)을 형성한다.Referring to FIG. 4, a spin on glass (SOG), un-doped silicate glass (USG), boron-phosphorus silicate glass (BPSG), phosphorus silicate glass (PSG), or plasma enhanced tetra ethyl ortho silicate (PETOS) is formed on an entire structure. Glass is formed using an CVD method to form an interlayer dielectric (ILD 122).

이어서, 층간절연막(122)에 대하여 CVD방식을 이용한 평탄화공정을 실시하여 전체 구조 상부를 평탄화한다. 한편, 상기 층간절연막(128)을 스핀코팅방식으로 형성할 경우에는, CMP방식 대신 건식에치백(Dry-etch back)공정을 실시하여 평탄화공정을 진행하는 것이 바람직하다.Next, the planarization process using the CVD method is performed on the interlayer insulating film 122 to planarize the entire structure. On the other hand, when the interlayer insulating film 128 is formed by spin coating, it is preferable to perform a flat etching process by performing a dry etch back process instead of the CMP method.

도 5를 참조하면, 전체 구조 상부에 포토레지스트(Photoresist)를 코팅한 후 포토마스크(Photo mask)를 이용한 노광공정 및 현상공정을 실시하여, 콘택홀(124)의 프로파일(Profile)을 갖도록 포토레지스트 패턴(Photoresist pattern; 미도시)을 형성한다.Referring to FIG. 5, after the photoresist is coated on the entire structure, an exposure process and a development process using a photo mask are performed to have a profile of the contact hole 124. A photoresist pattern (not shown) is formed.

이어서, 상기 포토레지스트 패턴을 식각마스크로 이용한 식각공정을 실시하여 NMOS영역의 NMOS 소오스/드레인영역(118a)과 PMOS영역의 PMOS 소오스/드레인영역(118b)이 노출되도록 층간절연막(122)을 식각한다. 이때, 상기 식각공정을 조절하여 트렌치의 측벽(즉, SOI 기판)이 노출되도록 소자분리막(104)의 상부중 일부를식각하는 것이 바람직하다.Subsequently, an etch process using the photoresist pattern as an etching mask is performed to etch the interlayer insulating layer 122 to expose the NMOS source / drain region 118a of the NMOS region and the PMOS source / drain region 118b of the PMOS region. . In this case, it is preferable to etch a portion of the upper portion of the isolation layer 104 so that the sidewall of the trench (ie, the SOI substrate) is exposed by adjusting the etching process.

도 6을 참조하면, 상기 콘택홀(124)의 내부면 및 층간절연막(122) 상에 콘택홀(124)을 매립하도록 형성되는 후속 금속플러그(도 8의 '130'참조)과 SOI 기판(102) 간의 반응에 의해 그들의 접합면에서 발생하는 접합 스파이킹(Sparking) 현상을 방지하기 위해 티타늄과 티타늄 질화막을 순차적으로 증착하여 적층구조의 장벽금속층(Barrier matal; 126)을 형성한다. 이때, 장벽금속층(126)의 하부층으로는 티타늄 대신에 코발트 또는 니켈을 사용할 수도 있으며, 이온금속플라즈마(Ion Metal Plasma; IMP) 스퍼터링방식으로 형성한다. 특히, 티타늄의 경우에는 PECVD(Plasma Enhanced CVD)방식으로도 형성할 수 있으며, 그 증착가스로는 TiCl4와 H2가스를 이용한다.Referring to FIG. 6, the SOI substrate 102 and the subsequent metal plug (see '130' of FIG. 8) formed to bury the contact hole 124 on the inner surface of the contact hole 124 and the interlayer insulating film 122. Titanium and titanium nitride films are sequentially deposited to form a barrier mat layer 126 of a stacked structure in order to prevent junction sparking from occurring at the junction surface by reaction between the layers). In this case, cobalt or nickel may be used instead of titanium as the lower layer of the barrier metal layer 126, and may be formed by an ion metal plasma (IMP) sputtering method. In particular, titanium may be formed by a plasma enhanced CVD (PECVD) method, and TiCl 4 and H 2 gas may be used as the deposition gas.

도 7을 참조하면, 전체 구조 상부에 RTP방식으로 열처리공정을 실시하여 도시된 'A'부위와 같이 트렌치의 측벽에 제2 금속 샐리사이드층(128)을 형성한다. 이때, 상기 열처리공정은 장벽금속층(126)의 하부층을 티타늄으로 형성할 경우에는, 600 내지 700℃의 온도범위에서 실시하고, 코발트의 경우에는, 550 내지 700℃의 온도범위에서 실시하고, 니켈의 경우에는, 400 내지 600℃에서 실시하는 것이 바람직하다.Referring to FIG. 7, the second metal salicide layer 128 is formed on the sidewalls of the trench as shown in the 'A' region by performing a heat treatment process on the entire structure by the RTP method. At this time, the heat treatment step is carried out in the temperature range of 600 to 700 ℃, if the lower layer of the barrier metal layer 126 is formed of titanium, in the temperature range of 550 to 700 ℃, cobalt, In that case, it is preferable to carry out at 400-600 degreeC.

도 8을 참조하면, 전체 구조 상부에 텅스텐(W), 알루미늄(Al) 또는 구리(Cu)금속을 증착한 후, 에치백방식으로 층간절연막(122) 상의 장벽금속층(126)이 노출되도록 식각공정을 실시하여 콘택홀(124)이 매립되도록 금속플러그(130)를 형성한다.Referring to FIG. 8, after depositing tungsten (W), aluminum (Al), or copper (Cu) metal on the entire structure, an etching process is performed such that the barrier metal layer 126 on the interlayer insulating layer 122 is exposed by an etch back method. The metal plug 130 is formed to fill the contact hole 124.

이어서, 전체 구조 상부에 텅스텐(W), 알루미늄(Al) 또는 구리(Cu)금속을 증착하여 금속배선(132)을 형성한다. 이후의 공정은 종래 기술과 동일함에 따라 여기서는 그 설명의 편의를 위해 생략하기로 한다.Subsequently, tungsten (W), aluminum (Al) or copper (Cu) metal is deposited on the entire structure to form a metal wiring 132. Since the process is the same as the prior art, it will be omitted here for the convenience of description.

상기에서 설명한 본 발명의 기술적 사상은 바람직한 실시예들에서 구체적으로 기술되었으나, 상기한 실시예들은 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명은 이 기술 분야의 통상의 전문가라면 본 발명의 기술적 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical spirit of the present invention described above has been described in detail in the preferred embodiments, it should be noted that the above-described embodiments are for the purpose of description and not of limitation. In addition, the present invention will be understood by those of ordinary skill in the art that various embodiments are possible within the scope of the technical idea of the present invention.

이상에서 설명한 바와 같이, 본 발명에서는, SOI(Silicon On Insulator) 기판 상에 후속 금속플러그가 매립되는 콘택홀의 너비보다 작게 소오스/드레인영역을 형성함으로써, 소오스/드레인영역에서의 접합누설전류의 증가를 최소화하고, 반도체 소자의 집적도를 높일 수 있다.As described above, in the present invention, an increase in junction leakage current in the source / drain regions is formed by forming a source / drain region smaller than the width of a contact hole in which a subsequent metal plug is buried on a silicon on insulator (SOI) substrate. Minimize and increase the integration degree of the semiconductor device.

또한, 본 발명에서는, 상기 콘택홀 형성시 트렌치 측벽이 노출되도록 한 후, 이 부위에 금속 샐리사이드층을 형성함으로써, 콘택저항을 감소시켜 반도체 소자의 신뢰성을 향상시킬 수 있다.In addition, in the present invention, the trench sidewalls are exposed when the contact hole is formed, and then a metal salicide layer is formed on the portion, whereby the contact resistance can be reduced to improve the reliability of the semiconductor device.

Claims (8)

(a) SOI 기판에 트렌치를 형성하는 단계;(a) forming a trench in the SOI substrate; (b) 상기 트렌치를 매립하여 소자분리막을 형성하는 단계;(b) filling the trench to form an isolation layer; (c) 상기 활성영역 상에 게이트전극을 형성하는 단계;(c) forming a gate electrode on the active region; (d) 상기 활성영역에 소오스/드레인영역을 형성하는 단계;(d) forming a source / drain region in the active region; (e) 전체 구조 상부에 금속물질을 증착한 후, 열처리공정을 실시하여 제1 금속 샐리사이드층을 형성하는 단계;(e) depositing a metal material on the entire structure, and then performing a heat treatment process to form a first metal salicide layer; (f) 전체 구조 상부에 층간절연막을 형성하는 단계;(f) forming an interlayer insulating film over the entire structure; (g) 상기 소오스/드레인영역 상의 상기 제1 금속 샐리사이드층과, 상기 트렌치의 측벽이 노출되도록 식각공정을 실시하여, 상기 층간절연막과 상기 소자분리막을 식각하여 콘택홀을 형성하는 단계;(g) etching the interlayer insulating layer and the device isolation layer to form a contact hole by performing an etching process to expose the first metal salicide layer on the source / drain region and sidewalls of the trench; (h) 전체 구조 상부에 하부층이 금속물질로 이루어진 장벽금속층을 형성하는 단계;(h) forming a barrier metal layer formed of a metal material on a lower layer over the entire structure; (i) 전체 구조 상부에 대해 열처리공정을 실시하여, 상기 (g)단계에서 노출되는 트렌치의 측벽에 제2 금속 샐리사이드층을 형성하는 단계;(i) performing a heat treatment process on the entire structure to form a second metal salicide layer on sidewalls of the trench exposed in step (g); (j) 상기 콘택홀을 매립하도록 금속플러그를 형성하는 단계; 및(j) forming a metal plug to fill the contact hole; And (k) 전체 구조 상부에 금속배선을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 제조방법.(k) forming a metal wiring on the entire structure. 제 1 항에 있어서,The method of claim 1, 상기 소오스/드레인영역은, 상기 콘택홀의 너비보다 작게 형성하는 것을 특징으로 하는 반도체 소자의 제조방법.The source / drain area may be formed to be smaller than the width of the contact hole. 제 1 항에 있어서,The method of claim 1, 상기 금속물질은, 티타늄, 코발트 또는 니켈금속인 것을 특징으로 하는 반도체 소자의 제조방법.The metal material is a method of manufacturing a semiconductor device, characterized in that the titanium, cobalt or nickel metal. 제 1 항에 있어서,The method of claim 1, 상기 하부층은, 티타늄, 코발트 또는 니켈금속인 것을 특징으로 하는 반도체 소자의 제조방법.The lower layer is a method of manufacturing a semiconductor device, characterized in that titanium, cobalt or nickel metal. 제 1 항에 있어서,The method of claim 1, 상기 하부층은, IMP 스퍼터링방식 또는 PECVD방식으로 형성하는 것을 특징으로 하는 반도체 소자의 제조방법.The lower layer is a semiconductor device manufacturing method, characterized in that formed by IMP sputtering method or PECVD method. 제 1 항에 있어서,The method of claim 1, 상기 하부층은, 티타늄으로 형성할 경우, TiCl4와 H2가스를 이용한 PECVD방식으로 형성하는 것을 특징으로 하는 반도체 소자의 제조방법.When the lower layer is formed of titanium, a method of manufacturing a semiconductor device, characterized in that formed by PECVD method using TiCl 4 and H 2 gas. 제 1 항에 있어서,The method of claim 1, 상기 장벽층은, 상부층이 티타늄질화막인 것을 특징으로 하는 반도체 소자의 제조방법.The barrier layer is a semiconductor device manufacturing method, characterized in that the upper layer is a titanium nitride film. 제 1 항에 있어서, 상기 열처리공정은,The method of claim 1, wherein the heat treatment step, 상기 하부층이 티타늄인 경우에는, 600 내지 700℃의 온도에서 실시하고,When the lower layer is titanium, it is carried out at a temperature of 600 to 700 ℃, 상기 하부층이 코발트인 경우에는, 550 내지 700℃의 온도에서 실시하고,When the lower layer is cobalt, it is carried out at a temperature of 550 to 700 ℃, 상기 하부층이 니켈인 경우에는, 400 내지 600℃의 온도에서 실시하는 것을 특징으로 하는 반도체 소자의 제조방법.When the lower layer is nickel, the manufacturing method of the semiconductor device, characterized in that carried out at a temperature of 400 to 600 ℃.
KR10-2002-0038728A 2002-07-04 2002-07-04 Method for manufacturing a semiconductor device KR100432788B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0038728A KR100432788B1 (en) 2002-07-04 2002-07-04 Method for manufacturing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0038728A KR100432788B1 (en) 2002-07-04 2002-07-04 Method for manufacturing a semiconductor device

Publications (2)

Publication Number Publication Date
KR20040003901A KR20040003901A (en) 2004-01-13
KR100432788B1 true KR100432788B1 (en) 2004-05-24

Family

ID=37314868

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0038728A KR100432788B1 (en) 2002-07-04 2002-07-04 Method for manufacturing a semiconductor device

Country Status (1)

Country Link
KR (1) KR100432788B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674645B1 (en) * 2002-02-25 2007-01-25 매그나칩 반도체 유한회사 Method of manufacturing semiconductor devices
DE102015200198B4 (en) 2014-04-04 2020-01-16 Siltronic Ag Method for cutting semiconductor wafers from a workpiece with a saw wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980012244A (en) * 1996-07-19 1998-04-30 김광호 Method for manufacturing semiconductor device
US5780348A (en) * 1997-07-14 1998-07-14 United Microelectronics Corporation Method of making a self-aligned silicide component
US5949126A (en) * 1997-12-17 1999-09-07 Advanced Micro Devices, Inc. Trench isolation structure employing protective sidewall spacers upon exposed surfaces of the isolation trench
US6133105A (en) * 1999-04-27 2000-10-17 United Microelectronics Corp. Method of manufacturing borderless contact hole including a silicide layer on source/drain and sidewall of trench isolation structure
KR20010065747A (en) * 1999-12-30 2001-07-11 박종섭 Structure For Preventing The Short Of Semiconductor Device And Manufacturing Method Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980012244A (en) * 1996-07-19 1998-04-30 김광호 Method for manufacturing semiconductor device
US5780348A (en) * 1997-07-14 1998-07-14 United Microelectronics Corporation Method of making a self-aligned silicide component
US5949126A (en) * 1997-12-17 1999-09-07 Advanced Micro Devices, Inc. Trench isolation structure employing protective sidewall spacers upon exposed surfaces of the isolation trench
US6133105A (en) * 1999-04-27 2000-10-17 United Microelectronics Corp. Method of manufacturing borderless contact hole including a silicide layer on source/drain and sidewall of trench isolation structure
KR20010065747A (en) * 1999-12-30 2001-07-11 박종섭 Structure For Preventing The Short Of Semiconductor Device And Manufacturing Method Thereof

Also Published As

Publication number Publication date
KR20040003901A (en) 2004-01-13

Similar Documents

Publication Publication Date Title
US5950090A (en) Method for fabricating a metal-oxide semiconductor transistor
US7153745B2 (en) Recessed gate transistor structure and method of forming the same
US6265302B1 (en) Partially recessed shallow trench isolation method for fabricating borderless contacts
US6350661B2 (en) Silicon nitride capped shallow trench isolation method for fabricating sub-micron devices with borderless contacts
US7879707B2 (en) Semiconductor integrated circuit device and related method
US20120288982A1 (en) Method for reducing contact resistance of cmos image sensor
JP4027064B2 (en) Method for manufacturing MOSFET device
US8362569B2 (en) Semiconductor device and semiconductor device fabrication method
US11367661B2 (en) Semiconductor device having deep trench structure and method of manufacturing thereof
US7981762B2 (en) Method of forming pre-metal dielectric layer of semiconductor device
KR20110052206A (en) Semiconductor device having a device isolation structure
US7649218B2 (en) Lateral MOS transistor and method for manufacturing thereof
CN110571193B (en) Method for manufacturing single diffusion blocking structure and method for manufacturing semiconductor device
US6211021B1 (en) Method for forming a borderless contact
KR100695868B1 (en) Isolation Layer and Method of manufacturing using the same, apparatus for a Semiconductor device having the Isolation Layer and Method of manufacturing using the same
KR102295882B1 (en) Semiconductor Device having Deep Trench Structure and Method Thereof
KR100432788B1 (en) Method for manufacturing a semiconductor device
KR100466207B1 (en) Method for manufacturing a semiconductor device
US6200848B1 (en) Method of fabricating self-aligned contact in embedded DRAM
US20240047350A1 (en) Metal structure having funnel-shaped interconnect and method of manufacturing the same
KR100307537B1 (en) Method for forming gate of semiconductor device
JP2004165527A (en) Semiconductor device and manufacturing method of semiconductor device
KR20000039307A (en) Method for forming contact of semiconductor device
KR100448593B1 (en) Method for manufacturing a semiconductor device
KR101212266B1 (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee