KR20010110813A - 폴리에스터의 제조방법 - Google Patents

폴리에스터의 제조방법 Download PDF

Info

Publication number
KR20010110813A
KR20010110813A KR1020000031386A KR20000031386A KR20010110813A KR 20010110813 A KR20010110813 A KR 20010110813A KR 1020000031386 A KR1020000031386 A KR 1020000031386A KR 20000031386 A KR20000031386 A KR 20000031386A KR 20010110813 A KR20010110813 A KR 20010110813A
Authority
KR
South Korea
Prior art keywords
polyester
catalyst
added
reaction
acid
Prior art date
Application number
KR1020000031386A
Other languages
English (en)
Inventor
양승철
손양국
Original Assignee
조 정 래
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조 정 래, 주식회사 효성 filed Critical 조 정 래
Priority to KR1020000031386A priority Critical patent/KR20010110813A/ko
Publication of KR20010110813A publication Critical patent/KR20010110813A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Abstract

본 발명은 이산화티탄의 소디움 수화물을 촉매로 사용해서 TPA와 EG로 폴리에스터를 제조하는 방법임.
본 발명은 저렴한 비용으로 생산성 높게 폴리에스터를 제조할 수 있으며 상기 폴리에스터는 섬유화 시킬 때 방사구 주위에 찌꺼기를 잔류시키지 않기 때문에 방사작업성이 향상된다.
또 본 발명에서의 촉매는 안티몬계 촉매와는 달리 인체에 무해하다.

Description

폴리에스터의 제조방법{Manufacture of polyester}
본 발명은 테레프탈산(이하 TPA로 약칭)과 알킬렌 글라이콜로 이루어지는 고분자량 폴리에스터 중합체의 제조에 유용한 촉매를 이용하여 고분자량의 폴리에스터를 제조하는 방법에 관한 것이다.
TPA와 알킬렌 글라이콜로 이루어진 폴리에스터의 제조를 위해서 공업적으로 여러가지의 촉매들이 사용되고 있다.
가장 많이 사용되는 촉매는 삼산화 안티몬이나 안티몬 아세테이트 등의 안티몬 촉매이다.
안티몬 촉매는 현재 폴리에스터 중합용 촉매로 알려진 것중 가격이 가장 싸다는 장점이 있으나 다른 촉매들 보다 활성이 낮으며 이를 사용한 폴리에스터 섬유로 방사할 경우에는 방사구 주위에 안티몬 촉매의 잔류물이 생겨 섬유의 방사에 문제를 일으키기도 하며, 또 병(bottle)으로 성형되었을 경우에는 중합물 내에 함유된 안티몬으로 인하여 식음료용으로 사용하는데 제한을 받기도 한다.
그리고 테트라부틸 티탄에이트나 테트라아이소프로필 티탄에이트 등의 유기 티탄 화합물은 안티몬 촉매 보다 활성은 높으나 촉매 자체의 색깔 때문에 중합물의황화(黃化) 문제가 발생하며 자외선에 민감해지는 단점이 있다.
또한 게르마늄 디옥사이드 등의 무기 게르마늄 촉매는 활성과 중합물의 색깔 등에서 다른 촉매에 비해 월등한 효과를 보이지만 공업적으로 사용하기에는 가격이 너무 비싸다는 단점이 있다.
본 발명은 방사중에 방사구 주위에 잔재물을 발생시키지 않으며, 인체에 무해하고, 가격이 저렴한 촉매를 이용함으로서 인체에 무해한 폴리에스터를 높은 생산성으로 저렴하게 제조하는 방법을 제공하는데 기술적 과제를 두고 있다.
본 발명을 상세히 설명하면 아래와 같다.
TPA와 알킬렌 글라이콜로 폴리에스터를 중합하는 방법은 크게 다음의 두 가지의 반응으로 이루어진다.
(1) 테레프탈산과 알킬렌 글라이콜의 에스터화에 의해 비스하이드록시알킬 테레프탈레이트(bishydroxyalkyl terephthalate, 이하 BHAT라고 함), 혹은 이들로 구성된 저중합도의 올리고머를 생성하는 에스터화 반응(이하 DE 반응이라고 함.), (2) DE 반응으로 제조된 BHAT 혹은 올리고머를 사용해서 고온과 진공하에서 고분자량의 폴리에스터를 생성하는 중축합반응(이하 PC 반응이라고 함).
DE 반응에서는 주로 반응조 내에 이미 제조되어진 BHAT, 혹은 올리고머가 존재하는 상태에서 TPA와 알킬렌 글라이콜의 슬러리를 투입하여 반응시키는 방법이 주로 이용되며 반드시 촉매가 필요하지는 않다.
PC 반응에서는 고온과 고진공하에서 중축합 반응에 의하여 알킬렌 글라이콜이 유출되며 촉매를 필요로 한다.
본 발명에서 사용하는 촉매는 이산화 티탄의 소디움 수화물(이하 CA라고 함, 상품명 홈비패스트 피씨, 독일의 SACHTLEBEN사 제품)로서, 본 촉매는 폴리에스터 중합시 소광제로 사용되는 이산화티탄과 마찬가지로 안티몬과 같은 환경적인 문제가 적으며 활성 또한 타 촉매 보다 높아 생산성 향상에 효과적이다.
CA 입자의 크기는 15㎛ 이하이다.
CA는 DE 반응과 PC 반응 어느 쪽에 투입해도 좋으며, TPA와 EG로 슬러리를 제조할 때 투입하여도 좋다.
또한 CA는 분말상으로 투입하여도 좋으나 반응기 내로의 투입을 양호하게 하기 위하여 0.1 ∼ 10중량% 만큼 EG에 분산시켜 투입하는게 유리하다.
농도가 이보다 높을 경우에는 EG에 대한 분산성이 좋지 않으며, 이보다 낮을 경우에는 사용되는 EG의 양이 많아서 경제적 면에서 불리하고, 또 중합물 중에 디에틸렌 에테르 글라이콜(이하 DEG)이 많이 생성되므로 좋지 않다.
CA의 중합물 대비 투입량은 1 ∼ 200ppm, 더욱 좋게는 3 ∼ 150ppm이 좋다.
투입하는 방법은 EG에 의한 분산성을 높이기 위하여 슬러리 제조시에 투입하는 것이 더욱 좋다.
또한 본 발명에 의해 제조되는 중합물은 약간의 황색을 띠지만 섬유로 사용하는데 지장을 줄 정도는 아니다.
하지만 색상을 개선하기 위해 색조 개선제를 사용할 수 도 있다.
색조 개선제로는 코발트 아세테이트 등의 무기물이나 블루마린 등의 유기물을 목적과 공정에 따라 사용할 수 있다.
그리고 소광제로서 이산화 티탄을 목적하는 바에 따라 중합물 대비 0.001 ∼ 10중량%를 투입할 수 도 있다.
그리고 섬유 혹은 섬유 이외의 용도인 경우 내열안정제로서 인산이나 트리메틸포스페이트, 트리에틸포스페이트, 트리페닐포스페이트 등의 인산 에스터나 트리옥틸포스파이트, 디메틸포스파이트 등의 인산 에테르를 중합물 대비 인 원자 기준으로 하여 100ppm 이하 투입하는 것이 좋다.
이보다 높으면 촉매의 활성을 저하시켜 반응시간이 길어지므로 생산성 향상의 목적을 이루기가 어렵다.
여러가지 물성의 개선을 위하여 공중합 모노머들이 반응기 내에 투입되기도 하는데 이들을 분류하면 다음과 같다.
공중합 모노머로는 디카르복실산과 디올이 주로 이용되며 가교나 분지(分枝)등의 목적으로 세가지 이상의 반응기를 가지는 다관능성 모노머들이 사용되기도 한다.
디카르복실산계의 모노머로는 이소프탈산(isophthalic acid), 프탈산(phthalic acid), 2,6-니프탈렌 디카르복실산(2,6-naphthalene dicarboxylic acid), 이소프탈산 술폰산의 금속염(metal sulfo isophthalic acid)등의 방향족 디카르복실산이나 이들의 저급 알칸 에스터가 주로 이용된다.
이들의 투입량은 폴리에스터의 물성을 크게 저하시키지 않고 반응조건을 안정화시키기 위하여 전체 산에 대해 20몰% 이하로 하는 것이 좋다.
이보다 높을 경우에는 폴리에스터의 결정성이 급격히 저하되어 성형상의 문제가 생기며 폴리에스터의 반응조건을 크게 변경시켜야 하는 등의 문제가 생긴다.
디올계의 모노머로는 1,5-핵산디올, 1,3-프로판디올, 1,4-부탄디올, 1,6-펜탄디올 등의 α, ω-디올(메틸렌기의 수가 5 ∼ 12), 분자량 500 ∼ 20,000의 폴리에틸렌 에테르 글라이콜(이하 PEG로 약칭) 등의 폴리알킬렌에테르 글라이콜, 네오펜틸글라이콜 등의 분지형 디올, 1,4-사이클로핵산 디메탄올 등의 지환족 디올, 비스하이드록시에톡시페닐 프로판 등의 방향족 디올 등이 이용되어 진다.
이들도 디카르복실산계의 모노머와 같은 이유로 전체 디올의 20몰% 이하의 범위에서 투입하는 것이 좋다.
또한 다관능성 모노머로는 트리멜리트산, 피로멜리트산 혹은 이들의 무수물, 글리세린, 트리메틸올 프로판 등의 다가 알코올 그리고 사과산, 구연산 등의 하이드록시 디카르복실산 등이 이용된다.
이들의 첨가량은 가교에 의해 겔화가 생기지 않도록 전체 산이나 알코올에 대해 5몰% 이하로 투입하는 것이 좋다.
실시예 1
교반기와 유출수 칼럼 등이 설치된 반응기에 CA가 0.5부 첨가된 베이스 올리고머를 1,000부 투입하고, 테레프탈산 856부, 에틸렌 글라이콜 352부, EG에 분산된 농도 1%의 CA를 0.5부 투입하여 반응온도 260℃에서 반응을 진행하였다.
통상의 PET 에스터화 반응과 마찬가지로 에스터화 반응시켰으며 이론양의 유출수가 빠져 나온 후(에스터화 반응율 97%), PC 반응기로 이송하여 통상의 PET 중축합과 마찬가지로 중축합하여 최종적으로 극한점도 0.64dl/g의 중합체를 얻었다.
그 물성 분석 결과를 표 1에 나타내었다.
실시예 2
EG에 분산된 CA의 농도를 5%로 하여 0.1부 투입한 것을 제외하고는 실시예 1과 똑같이 실시하여 그 물성 분석 결과를 표 1에 나타내었다.
실시예 3
교반기와 유출수 칼럼 등이 설치된 반응기에 CA가 1부 첨가된 베이스 올리고머를 1,000부 투입하고, 테레프탈산 856부, 에틸렌 글라이콜 352부, EG에 분산된 농도 1%의 CA를 10부 투입하여 그 이외에는 실시예 1과 마찬가지로 실시하였다.
그 물성 분석 결과를 표 1에 나타내었다.
실시예 4
PC 반응 초기에 EG 1% 인산 용액을 1부 투입한 것을 제외하고는 실시예 1과 똑같이 실시하였으며 그 결과를 표 1에 나타내었다.
실시예 5
PC 반응 초기에 EG에 20중량% 분산시킨 이산화티탄을 30부 투입한 것을 제외하고는 실시예 1과 똑같이 실시하였으며 그 결과를 표 1에 나타내었다.
비교예 1
CA 대신에 1% EG 삼산화 안티몬 용액을 슬러리에 20부 투입한 것을 제외하고는 실시예 1과 동일하게 실시하였으며 그 결과를 표 1에 나타내었다.
< 표 1 >
시험예 PC 반응시간(분) 극한점도 DEG(중량%) CEG(meg/gKOH) 색상(b)
실시예 1 131 0.642 1.01 23 3.5
실시예 2 134 0.644 1.06 26 3.8
실시예 3 127 0.643 1.02 25 4.9
실시예 4 129 0.641 1.03 27 3.8
실시예 5 128 0.640 1.09 22 2.9
비교예 1 165 0.642 1.12 28 2.1
* DEG : Diethylene Ether Glycol
CEG : Carboxylic End Group
본 발명은 PC 반응시간이 현저하게 단축되므로 생산성을 향상 시킬 수 있으며 경제적으로 폴리에스터를 제조할 수 있다.
또 본 발명으로 제조된 폴리에스터는 종래의 안티몬계 촉매에 비하여 무해하므로 환경문제를 야기 시키지 않는다.
또 본 발명으로 제조된 폴리에스터는 섬유화 시키기 위하여 용융방사 시킬 때 방사구 주위에 잔재물을 발생시키지 않으므로 방사 작업성을 향상시킬 수 있다.

Claims (3)

  1. 90% 이상의 테레프탈산과 90% 이상의 에틸렌 글라이콜로 부터 폴리에스터를 제조함에 있어서, 반응촉매로서 이산화티탄의 소디움 수화물을 중합물 대비 3 ∼ 150ppm 첨가하는 것을 특징으로 하는 폴리에스터의 제조방법.
  2. 제 1 항에 있어서, 열안정제로서 인계 화합물을 인 원자 기준으로 중합물 대비 100ppm 이하 투입하는 것을 특징을 하는 폴리에스터의 제조방법.
  3. 제 1 항에 있어서, 소광제로서 이산화티탄을 0.001 ∼ 10중량% 투입하는 것을 특징으로 하는 폴리에스터의 제조방법.
KR1020000031386A 2000-06-08 2000-06-08 폴리에스터의 제조방법 KR20010110813A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000031386A KR20010110813A (ko) 2000-06-08 2000-06-08 폴리에스터의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000031386A KR20010110813A (ko) 2000-06-08 2000-06-08 폴리에스터의 제조방법

Publications (1)

Publication Number Publication Date
KR20010110813A true KR20010110813A (ko) 2001-12-15

Family

ID=45929217

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000031386A KR20010110813A (ko) 2000-06-08 2000-06-08 폴리에스터의 제조방법

Country Status (1)

Country Link
KR (1) KR20010110813A (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4365054A (en) * 1975-08-11 1982-12-21 The Firestone Tire & Rubber Company Ethylene glycol terephthalate production
KR930012880A (ko) * 1991-12-31 1993-07-21 배도 폴리에스터의 제조방법
US5656716A (en) * 1995-04-07 1997-08-12 Zimmer Aktiengesellschaft Titanium-containing catalyst and process for the production of polyester
KR0162684B1 (ko) * 1993-12-28 1999-01-15 고다 시게노리 폴리에스테르 제조방법
KR19990031831A (ko) * 1997-10-15 1999-05-06 조정래 사원 공중합 폴리에스터 수지 및 이를 이용한 성형체
JP2000095851A (ja) * 1998-09-22 2000-04-04 Hitachi Ltd ポリエチレンテレフタレートの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4365054A (en) * 1975-08-11 1982-12-21 The Firestone Tire & Rubber Company Ethylene glycol terephthalate production
KR930012880A (ko) * 1991-12-31 1993-07-21 배도 폴리에스터의 제조방법
KR0162684B1 (ko) * 1993-12-28 1999-01-15 고다 시게노리 폴리에스테르 제조방법
US5656716A (en) * 1995-04-07 1997-08-12 Zimmer Aktiengesellschaft Titanium-containing catalyst and process for the production of polyester
KR19990031831A (ko) * 1997-10-15 1999-05-06 조정래 사원 공중합 폴리에스터 수지 및 이를 이용한 성형체
JP2000095851A (ja) * 1998-09-22 2000-04-04 Hitachi Ltd ポリエチレンテレフタレートの製造方法

Similar Documents

Publication Publication Date Title
KR100984908B1 (ko) 에스테르 변성 디카르복실레이트 중합체
US6713595B2 (en) Copolyester resin composition and a process of preparation thereof
US5744572A (en) Process for the acceleration of the polycondensation of polyester
BG100750A (bg) Метод за получаване на полиестери и съполиестери
CN111087588B (zh) 一种异山梨醇改性的高耐热生物降解聚酯及其制备方法
US6479619B1 (en) Sulfoisophthalic acid solution process therewith
US3528946A (en) Acetylacetonates as polycondensation catalysts in transesterification method of preparing polyesters
KR20000048364A (ko) 폴리에스테르 수지의 제조방법
US5874515A (en) Method to reduce gel formation in pet resin
US3528945A (en) Acetylacetonates as polycondensation catalysts in the direct esterification method of preparing polyesters
AU738285B2 (en) A copolyester for molding a bottle
US6239200B1 (en) Composition and process for preparing high molecular weight polyester
US4446303A (en) Process for preparing high molecular weight polyesters
KR100567123B1 (ko) 코폴리에테르 에스테르의 제조방법
CA2164805A1 (en) Process for the preparation of polyesters and copolyesters
KR20010110813A (ko) 폴리에스터의 제조방법
US4383106A (en) High melt strength elastomeric copolyesters
KR102589382B1 (ko) 폴리에스테르 수지 및 이의 제조방법
KR100537270B1 (ko) 폴리트리메틸렌테레프탈레이트의 제조방법
JPS60219226A (ja) 高重合度ポリエステルの製造法
JPH02302432A (ja) ポリエステルの製造法
US3532671A (en) Acetylacetonate transesterification catalysts
KR20050014247A (ko) 폴리에스터 중합물 및 이의 제조방법
SU443887A1 (ru) Способ получени полиэфиров
KR20020080105A (ko) 난연성 폴리에스터의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application