KR20010089994A - Oxide magnetic materials, chip components using the same, and method for producing oxide magnetic materials and chip components - Google Patents

Oxide magnetic materials, chip components using the same, and method for producing oxide magnetic materials and chip components Download PDF

Info

Publication number
KR20010089994A
KR20010089994A KR1020010012505A KR20010012505A KR20010089994A KR 20010089994 A KR20010089994 A KR 20010089994A KR 1020010012505 A KR1020010012505 A KR 1020010012505A KR 20010012505 A KR20010012505 A KR 20010012505A KR 20010089994 A KR20010089994 A KR 20010089994A
Authority
KR
South Korea
Prior art keywords
magnetic material
oxide magnetic
mol
less
sintered body
Prior art date
Application number
KR1020010012505A
Other languages
Korean (ko)
Other versions
KR100643413B1 (en
Inventor
오노타쿠야
이토코
Original Assignee
사토 히로시
티디케이가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사토 히로시, 티디케이가부시기가이샤 filed Critical 사토 히로시
Publication of KR20010089994A publication Critical patent/KR20010089994A/en
Application granted granted Critical
Publication of KR100643413B1 publication Critical patent/KR100643413B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core
    • Y10T29/49076From comminuted material

Abstract

PURPOSE: To provide a Ni-Cu-Zn oxide base magnetic material in which the internal conductor is stabilized at very low sintering temperature and which is excellent in characteristics in high frequency region of 100 MHz or higher by adding an additive for minimizing the deterioration of electromagnetic characteristics even though the additive reacts with the principal component of a parent material and also minimizing the deterioration of the temperature characteristics of the inductance. CONSTITUTION: This oxide magnetic material consists of 35.0-51.0 mole % Fe2O3, 1.0-35.0 mole % CuO, 38.0-64.0 mole % NiO and 0-10.0 mole % (including 0) ZnO.

Description

산화물 자성재료, 이 산화물 자성재료를 사용한 칩부품 및 산화물 자성재료의 제조방법과 칩부품의 제조방법{OXIDE MAGNETIC MATERIALS, CHIP COMPONENTS USING THE SAME, AND METHOD FOR PRODUCING OXIDE MAGNETIC MATERIALS AND CHIP COMPONENTS}OXIDE MAGNETIC MATERIALS, CHIP COMPONENTS USING THE SAME, AND METHOD FOR PRODUCING OXIDE MAGNETIC MATERIALS AND CHIP COMPONENTS}

본 발명은 칩인덕터, 칩비드와 같은 칩부품 또는 벌크형 인덕터와 같은 전자파의 차폐부품 등에 사용되는 산화물 자성재료와 그 제조방법 및 이 산화물 자성재료를 사용한 벌크형 코일부품이나 적층형 코일부품과 그 제조방법에 관한 것이다. 더욱 상세하게는 칩부품의 내부도체에 이용하는 Ag의 융점 이하에서 소성이 가능하고 뛰어난 고주파특성을 갖는 산화물 자성재료 및 그것을 이용한 벌크형 또는 칩형 인덕터의 제조방법에 관한 것이다.The present invention relates to an oxide magnetic material used for chip inductors, chip components such as chip beads, or shielding parts for electromagnetic waves such as bulk inductors, and a method of manufacturing the same, and to a bulk coil component or a laminated coil component using the oxide magnetic material, and a method of manufacturing the same. It is about. More particularly, the present invention relates to an oxide magnetic material capable of firing below the melting point of Ag used in the inner conductor of a chip component and having excellent high frequency characteristics, and a method of manufacturing a bulk or chip inductor using the same.

최근의 전자·통신기기의 현저한 발전은 전자부품의 소형화, 박막화 및 실장성의 개량 등이 기초가 되어 새로운 산업구조를 구축하고 있지만 이와같은 산업구조의 발전은 이전에는 무시할 수 있었던 새로운 문제점, 즉 환경 및 통신장해 등을 유발함으로써 사회적 문제를 일으키는 양면성을 갖게 되었다.The recent remarkable development of electronic and communication devices is based on the miniaturization of electronic components, thinning of film, and improvement of mountability, but the construction of a new industrial structure is a new problem that has previously been ignored, namely environment and By causing communication problems, etc., both sides have social problems.

특히 무선통신기기가 일반적으로 상용됨으로써 악화하는 전자기 환경에 관한각국의 전자기 장해규제가 강화됨으로써 예를들면 유해한 전파를 일으키지 않도록 한 전자파 장해제거(EMI/EMC)소자에 대한 개발이 요구되고 그 부품의 수요가 급증함과 동시에 자기특성과 온도특성 등의 기능의 복잡화, 고집적화 및 고주파대역이 넓은 등의 고효율화로 발전하고 있다.In particular, due to the strengthening of the electromagnetic interference regulations of various countries regarding the electromagnetic environment that is worsened by the common use of wireless communication devices, for example, the development of electromagnetic interference elimination (EMI / EMC) devices that do not cause harmful radio waves is required. As demand grows rapidly, it is developing with high efficiency such as complicated functions such as magnetic and temperature characteristics, high integration, and wide high frequency band.

그럼에 따라 전자파 장해제거소자용 또는 전력용 트랜스와 같은 전자부품 등의 소재로서 사용되는 산화물 자성재료의 적용범위도 특성별 예를들면 주파수대역별로 세분화되고, 그 제조방법도 종래의 분말치금학적인 제조방법에서 적층형 부품제조방법의 연구가 활발하게 진행되어 실용화되고 있으며 최근에는 세라믹 전자부품 제조분야에 소형칩부품의 제조기술로서 정착하게 되었다.Therefore, the application range of the oxide magnetic material used for the electromagnetic interference removing device or the electronic component such as the power transformer is also subdivided by characteristics, for example, the frequency band, and the manufacturing method is also conventional powder In the manufacturing method, the research of the manufacturing method of the laminated component is actively progressed and it has been practically used. Recently, it has become a technology for manufacturing small chip components in the ceramic electronic component manufacturing field.

일반적으로 칩인덕터, 칩 LC필터 및 칩트랜스 등의 칩부품에 이용되는 산화물 자성재료는 높은 인덕턴스를 필요로 하고 있고 그와같은 산화물 자성재료에서는 Mn-Zn페라이트, Ni페라이트, Ni-Zn페라이트 또는 Ni-Cu-Zn등을 들 수 있다.In general, oxide magnetic materials used in chip components such as chip inductors, chip LC filters, and chip transformers require high inductance, and in such oxide magnetic materials, Mn-Zn ferrite, Ni ferrite, Ni-Zn ferrite, or Ni -Cu-Zn etc. are mentioned.

Mn-Zn페라이트의 경우, 투과율이 높고 전력손실이 매우 적기 때문에 전원용 트랜스코어, 전력라인용 필터 등의 자심재료에 이용되지만 고주파특성이 낮기 때문에 1MHz이상의 주파수 대역에서는 적용하기 어렵다는 단점이 있다. 현재와 같은 고주파 대역에서 이용되는 자심재료로서는 Ni페라이트, Ni-Zn페라이트 또는 Ni-Cu-Zn페라이트 등이 적용되고 있다.Mn-Zn ferrite is used for magnetic core materials such as power transformers and power line filters because of its high transmittance and very low power loss. However, Mn-Zn ferrite has a disadvantage in that it is difficult to apply in a frequency band of 1 MHz or more because of its low frequency characteristics. Ni-ferrite, Ni-Zn ferrite, Ni-Cu-Zn ferrite, etc. are used as a magnetic core material currently used in the high frequency band.

한편 상기 산화물 자성재료를 제조하는 종래의 방법은 소성공정이 약 1000~1400℃에서 1~5시간 정도 행해진다. 그러나 적층형 칩인덕터 등의 전자부품의 내부도체는 보통 Ag전극을 이용하지만 상기와 같은 소성온도는 내부도체의 Ag의용융점(960℃)을 초과하고 매우 높은 온도조건에서 제조한 부품은 Ag가 용해하기 때문에 고주파에 있어 손실이 매우 크다는 단점을 갖고 있어 요구되는 인덕턴스를 실현하는 것이 상당히 어렵다는 문제를 갖고 있다.On the other hand, in the conventional method for producing the oxide magnetic material, the firing step is performed at about 1000 to 1400 ° C for about 1 to 5 hours. However, internal conductors of electronic parts such as stacked chip inductors usually use Ag electrodes, but the above firing temperature exceeds the melting point (960 ° C) of Ag of the internal conductors, and the components manufactured under very high temperature conditions are difficult for Ag to dissolve. This has the disadvantage that the loss is very high at high frequencies, and it is difficult to realize the required inductance.

그렇기 때문에 소성온도를 내려 고주파에서의 손실이 적은 칩을 얻기 위해 이용하는 첨가물로서 CoO가 일반적으로 상용되고 있다(일본국 특개평 9-63826호 공보). 그러나 CoO는 그 첨가량에 비례하여 인덕턴스의 온도특성을 열화시켜 제품의 신뢰성에 영향을 미친다는 문제가 있었다.Therefore, CoO is generally used as an additive used to lower the firing temperature to obtain a chip with low loss at high frequencies (Japanese Patent Laid-Open No. 9-63826). However, CoO has a problem in that it affects the reliability of the product by deteriorating the temperature characteristic of the inductance in proportion to the addition amount.

본 발명은 상기의 종래의 문제점을 해결하기 위해 모재의 주성분과 반응해도 전자기특성의 열화가 최소가 되고 또한 인덕턴스의 온도특성의 열화가 최소가 되는 첨가물을 첨가함으로써 매우 낮은 소성온도로 내부도체의 안정화를 도모할 수 있는 것은 물론 100MHz이상의 고주파대역에서의 특성이 뛰어난 Ni-Cu-Zn계 산화물 자성재료, 이 산화물 자성재료를 사용한 칩부품 및 산화물 자성재료의 제조방법과 칩부품의 제조방법을 제공하는 것을 목적으로 한다.The present invention stabilizes the inner conductor at a very low firing temperature by adding an additive which minimizes the deterioration of the electromagnetic characteristics and reacts with the main component of the base material to minimize the deterioration of the temperature characteristics of the inductance. The Ni-Cu-Zn-based oxide magnetic material having excellent characteristics in the high frequency band of 100 MHz or more, a chip component and oxide magnetic material manufacturing method using the oxide magnetic material, and a method of manufacturing the chip component are provided. For the purpose of

상기 목적을 이루기 위해 본 발명에서는 하기 (1) ~ (9)의 산화물 자성재료, 이 산화물 자성재료를 사용한 칩부품 및 산화물 자성재료의 제조방법과 칩부품의 제조방법을 제공한다.In order to achieve the above object, the present invention provides an oxide magnetic material (1) to (9) below, a chip component and an oxide magnetic material manufacturing method using the oxide magnetic material, and a method of manufacturing the chip component.

(1) Fe2O3가 35.0 ~ 51.0몰%, CuO가 1.0 ~ 35.0몰%, NiO가 38.0~64.0 몰% 및 ZnO가 0 ~ 10.0몰%(0을 포함함)로 이루어지는 것으로 특징으로 한다.(1) characterized by comprising a (including 0), Fe 2 O 3 is 35.0 ~ 51.0 mol%, CuO 1.0 to 35.0 mol%, NiO is 38.0 ~ 64.0 mol% and ZnO is 0 to 10.0 mole%.

(2) 상기 (1)에 기재된 산화물 자성재료에 있어서 Ca를 0.3wt%이하(0은 포함하지 않음) 함유하는 것을 특징으로 한다.(2) The oxide magnetic material described in the above (1) is characterized by containing Ca 0.3 wt% or less (0 is not included).

(3) 상기 (2)에 기재된 산화물 자성재료에 있어서, CoO를 0.7wt%이하(0은 포함하지 않음) 함유하는 것을 특징으로 한다.(3) The oxide magnetic material according to the above (2), wherein the content of CoO is 0.7 wt% or less (0 is not included).

(4) 산화물 자성재료의 제조방법에 있어서 Fe2O3가 35.0~51.0몰%, CuO가 1.0~35.0 몰%, NiO가 38.0~64.0몰% 및 ZnO가 0~10.0몰%(0을 포함함)로 이루어지는 산화물 자성재료에 Ca3(PO4)2를 0.5wt%이하(0은 포함하지 않음) 함유시켜 소성하는 것을 특징으로 한다.(4) In the method of producing the oxide magnetic material, Fe 2 O 3 is 35.0-51.0 mol%, CuO is 1.0-35.0 mol%, NiO is 38.0-664.0 mol% and ZnO is 0-10.0 mol% (contains 0). And Ca 3 (PO 4 ) 2 is contained in an oxide magnetic material consisting of 3 wt% or less (without 0) and calcined.

(5) 상기 (4)에 기재된 산화물 자성재료의 제조방법에 있어서 CoO를 0.7wt%이하 함유시켜 소성하는 것을 특징으로 한다.(5) In the manufacturing method of the oxide magnetic material as described in said (4), it is characterized by baking by containing CoO below 0.7 wt%.

(6) 칩부품에 있어서, Fe2O3가 35.0~51.0몰%, CuO가 1.0~35.0몰%, NiO가 38.0~64.0몰%, ZnO가 0~10.0몰%(0을 포함함)로 이루어지는 산화물 자성재료 또는 이에 Ca를 0.3wt몰%이하(0은 포함하지 않음)함유하고 또한 Ca를 0.3wt몰%이하(0은 포함하지 않음) 및 CoO를 0.7wt몰%이하(0은 포함하지 않음) 함유하는 산화물 자성재료의 소결체를 이용하여 벌크형 코일부품을 구성한 것을 특징으로 한다.(6) A chip component comprising 35.0-51.0 mol% of Fe 2 O 3 , 1.0-35.0 mol% of CuO, 38.0-664.0 mol% of NiO, and 0-10.0 mol% (including 0) of ZnO. Oxide magnetic material or containing 0.3 wt mol% or less (without 0) of Ca and also 0.3 wt mol% or less (without 0) of Ca and 0.7 wt mol% or less (without 0) of CoO A bulk type coil component is constructed using a sintered body of an oxide magnetic material.

(7) 칩부품에 있어서, Fe2O3가 35.0~51.0몰%, CuO가 1.0~35.0몰%, NiO가38.0~64.0몰%, ZnO가 0~10.0몰%(0을 포함함)로 이루어지는 산화물 자성재료 또는 이에 Ca를 0.3wt%이하(0은 포함하지 않음) 함유하고 또한 Ca를 0.3wt%이하(0은 포함하지 않음) 및 CoO를 0.7wt%이하(0은 포함하지 않음) 함유하는 산화물 자성재료의 소결체를 이용하고 또한 소결체내에 도전체층을 갖고 적층형 코일부품을 구성한 것을 특징으로 한다.(7) A chip component comprising 35.0-51.0 mol% of Fe 2 O 3 , 1.0-35.0 mol% of CuO, 38.0-664.0 mol% of NiO, and 0-10.0 mol% (including 0) of ZnO. Oxide magnetic material or Ca containing 0.3 wt% or less (without zero), Ca 0.3 wt% or less (without zero) and CoO 0.7 wt% or less (without zero) A laminated coil component is constructed by using a sintered body of an oxide magnetic material and having a conductor layer in the sintered body.

(8) 상기 (7)에 기재된 칩부품에 있어서 내부도체가 Ag 또는 Ag와 Pd의 합금을 주성분으로 한 도체로 구성된 것을 특징으로 한다.(8) The chip component according to the above (7), wherein the inner conductor is composed of Ag or a conductor mainly composed of an alloy of Ag and Pd.

(9) 칩부품의 제조방법에 있어서, Fe2O3가 35.0~51.0몰%, CuO가 1.0~35.0몰%, NiO가 38.0~64.0몰%, ZnO가 0~10.0몰%(0을 포함함)로 이루어지는 산화물 자성재료 또는 이에 Ca를 0.3wt%이하(0은 포함하지 않음) 함유하고 또는 Ca를 0.3wt%이하(0은 포함하지 않음) 및 CoO를 0.7wt%이하(0은 포함하지 않음) 함유하는 산화물 자성재료의 소성체를 이용하며 또한 소결체내에 도전체층 또는 도전체로서 Ag 또는 Ag와 Pd의 합금을 주성분을 한 도체를 이용한 칩부품의 제조방법에 있어서 분쇄된 산화물 자성재료와 내부도체를 880℃ ~ 920℃로 소성하는 것을 특징으로 한다. 이에 따라 하기의 작용효과를 나타낼 수 있다.(9) In the method of manufacturing a chip component, Fe 2 O 3 is 35.0 to 51.0 mol%, CuO is 1.0 to 35.0 mol%, NiO is 38.0 to 6.40 mol%, ZnO is 0 to 10.0 mol% (contains 0 ) Oxide magnetic material consisting of or containing 0.3 wt% or less (without 0) of Ca or 0.3 wt% or less (without 0) of Ca and 0.7 wt% or less (without 0) of CoO In the method of manufacturing a chip component using a sintered body of an oxide magnetic material containing and a conductor having a main component of Ag or an alloy of Ag and Pd as a conductor layer or conductor in the sintered body, the oxide magnetic material and the inner conductor crushed It is characterized by firing at 880 ℃ ~ 920 ℃. Accordingly, the following effects can be exhibited.

(1) 사용하는 고주파대역 100MHz이상에 있어 초기투자율이 낮고 소결체 밀도가 크며 와전류 손실이 적으며 저온소성이 가능한 산화물 자성체를 얻을 수 있다.(1) Oxide magnetic material capable of low-temperature firing and low initial permeability, high sintered body density, low eddy current loss, and low-temperature firing can be obtained in the high frequency band of 100MHz or more.

(2) Ca를 0.3wt%이하 첨가시킴으로써 초기투자율이 낮고 소결체 밀도가 큰 인덕턴스의 온도특성이 양호한 산화물 자성체를 얻을 수 있다.(2) An oxide magnetic material having good initial temperature and low inductance temperature characteristics having a high initial permeability and a high sintered compact can be obtained by adding Ca or less than 0.3 wt%.

(3) Ca를 0.3wt%이하 첨가시키고 또한 CoO를 0.7wt%이하 첨가시킴으로써 초기투자율이 작고, 소결체 밀도가 큰 인덕턴스의 온도특성이 양호한 산화물 자성체를 얻을 수 있다.(3) An oxide magnetic material having good initial characteristics with low initial permeability and good temperature characteristics of inductance having a high sintered compact density can be obtained by adding Ca or less in an amount of 0.3 wt% or less and CoO in an amount of 0.7 wt% or less.

(4) Ca3(PO4)2를 0.5wt% 이하 첨가시킴으로써 초기투자율이 낮고 소결체 밀도가 크며 인덕턴스의 온도특성이 양호한 산화물 자성체를 얻을 수 있다.(4) By adding Ca 3 (PO 4 ) 2 to 0.5 wt% or less, an oxide magnetic material having low initial permeability, high sintered body density, and good inductance temperature characteristics can be obtained.

(5) Ca3(PO4)2외에 추가로 CoO를 0.7wt%이하 첨가시켰기 때문에 더욱 초기투자율이 낮고, 소결체 밀도가 큰 인덕턴스의 온도특성이 양호한 산화물 자성체를 얻을 수 있다.(5) In addition to Ca 3 (PO 4 ) 2 , since CoO was added in an amount of 0.7 wt% or less, an oxide magnetic body having low initial permeability and good temperature characteristics of inductance having a high sintered body density can be obtained.

(6) 초기투자율이 낮고 소결체 밀도가 크며 인덕턴스의 온도특성이 양호한 산화물 자성체에 의해 칩부품을 구성했기 때문에 이들의 각 특성이 양호한 뛰어난 칩부품을 제공할 수 있다.(6) Since the chip components are composed of an oxide magnetic material having a low initial permeability, a high sintered compact density, and good inductance temperature characteristics, excellent chip components having good respective characteristics can be provided.

(7) 초기투자율이 낮고 소결체 밀도가 크며 인덕턴스의 온도특성이 양호한 소성온도가 낮은 산화물 자성체에 의해 적층형 코일부품을 구성했기 때문에 이들의 각 특성이 양호한 인덕턴스의 품질계수 Q가 뛰어난 적층형 코일부품을 제공할 수 있다.(7) Laminated coil parts are composed of oxide magnetic material with low initial permeability, high sintered body density, and low firing temperature with good inductance temperature characteristics. Therefore, multilayer coil parts with excellent inductance quality factor Q having excellent characteristics are provided. can do.

(8) 초기투자율이 낮고 소결체 밀도가 크며 인덕턴스의 온도특성이 양호한 소성온도가 낮은 산화물 자성체를 사용하고, 내부도체가 Ag 또는 Ag·Pd합금을 주성분으로 한 도체로 칩부품을 구성했기 때문에 이들의 각 특성이 양호한 인덕턴스의 품질계수 Q가 뛰어난 칩부품을 제공할 수 있다.(8) The chip parts are composed of an oxide magnetic material having a low initial permeability, a high sintered body density, a low firing temperature having good inductance temperature characteristics, and an inner conductor composed of a conductor mainly composed of Ag or Ag / Pd alloy. A chip component having excellent inductance quality factor Q having good characteristics can be provided.

(9) 초기투자율이 낮고 소결체 밀도가 크며 인덕턴스의 온도특성이 양호한 산화물 자성체를 사용하고, Ag 또는 Ag·Pd합금을 주성분으로 한 도체를 내부도체로 하여 880℃~920℃의 온도에서 소성하여 칩부품을 제조하므로 이들의 각 특성이 양호한 또한 인덕턴스의 품질계수 Q가 뛰어난 칩부품을 제조할 수 있다.(9) Chips are prepared by using oxide magnetic material with low initial permeability, high density of sintered body and good inductance temperature characteristics, and firing at temperatures of 880 ℃ ~ 920 ℃ with inner conductors mainly composed of Ag or Ag · Pd alloy Since the parts are manufactured, chip parts having good respective characteristics and excellent inductance quality factor Q can be manufactured.

다음 본 발명의 일 실시예를 설명한다. 자성재료는 일반적으로 그 조성에 의해 주파수대역에 의한 특성이 다르다. 본 발명에 있어서는 사용하는 고주파대역 100MHz 이상에 있어서, 적합한 Ni-Cu-Zn 페라이트는 ZnO의 성분이 적고 상대적으로 NiO성분이 많은 연자성 페라이트를 사용한다.Next, an embodiment of the present invention will be described. Magnetic materials generally differ in their characteristics by frequency band depending on their composition. In the present invention, in the high frequency band of 100 MHz or more, suitable Ni-Cu-Zn ferrite uses soft magnetic ferrite having a small amount of ZnO and a relatively high NiO component.

본 발명의 일 실시예에서는 Ni-Cu-Zn계 산화물 자성재료에 있어서 Fe2O3가 35.0~51.0몰%, CuO가 1.0~35.0몰%, NiO가 38.0~64.0몰% 및 ZnO가 0~10.0몰%의 산화물 자성재료를 제공하는 것이다.In one embodiment of the present invention, in the Ni-Cu-Zn-based oxide magnetic material, Fe 2 O 3 is 35.0 ~ 51.0 mol%, CuO is 1.0 ~ 35.0 mol%, NiO is 38.0 ~ 66.0 mol% and ZnO 0 ~ 10.0 To provide a mol% oxide magnetic material.

또 투자율이나 소성체밀도, 인덕턴스의 온도특성 등에 영향을 주지 않는 정도이면 불순물로서 Si, Al, B, Mn, Mg, Ba, Sr, Bi, Pb, W, V, Mo등을 함유해도 좋다.The impurities may contain Si, Al, B, Mn, Mg, Ba, Sr, Bi, Pb, W, V, Mo, and the like as long as they do not affect the permeability, the sintered body density, the temperature characteristics of the inductance, and the like.

이에 따라 초기투자율이 25이하이고 소결체 밀도가 4.75g/㎤이상 이며, 인덕턴스의 온도특성이 ±20%이내의 특성을 갖는 산화물 자성재료가 얻어진다.As a result, an oxide magnetic material having an initial permeability of 25 or less, a sintered compact of 4.75 g / cm 3 or more, and an inductance having a temperature characteristic of within ± 20% is obtained.

주상(主相)을 이루는 Fe2O3는 35.0몰%보다 적으면 소결밀도가 4.75g/㎤이하가 되고 또 51.0몰%를 넘으면 전기저항율이 저하하여 와전류손실이 증가하므로 자기손실의 증가에 이어지게 된다.When the Fe 2 O 3 constituting the main phase is less than 35.0 mol%, the sintered density is 4.75 g / cm3 or less, and if it exceeds 51.0 mol%, the electrical resistivity decreases and the eddy current loss increases, leading to an increase in magnetic loss. do.

CuO는 저온소결을 촉진시키는 효과가 있으며, 그 의미에서는 양을 늘리면 좋지만 35.0몰%를 넘으면 결정입자계에 이상(異相)으로서 석출하고, 입자계 스트레스가 발생하여 인덕턴스의 온도특성이 열화한다. 또 CuO가 1몰%이하에서는 소결체밀도가 열화한다.CuO has an effect of promoting low-temperature sintering, and in that sense, the amount may be increased, but if it exceeds 35.0 mol%, it precipitates as an abnormal phase in the grain boundary, and grain stress occurs and the temperature characteristic of the inductance deteriorates. Moreover, when CuO is 1 mol% or less, the sintered compact density deteriorates.

ZnO는 초기투자율에 영향을 준다. 주파수특성은 초기투자율에 의존하며, 구해지는 주파수대역이 높아질 수록 초기투자율을 낮게 억제할 필요가 있다. 초기투자율은 바람직하게는 25이하, 더욱 바람직하게는 18이하, 더 더욱 바람직하게는 13이하이다. 초기투자율은 ZnO의 함유량에 비례하여 높아지기 때문에 100MHz ~ 500MHz이상의 대역에 사용되는 산화물 자성재료에 있어서는 ZnO는 10몰%이하이다.ZnO affects the initial permeability. The frequency characteristic depends on the initial permeability, and the higher the frequency band to be obtained, the lower the initial permeability needs to be. The initial permeability is preferably 25 or less, more preferably 18 or less, even more preferably 13 or less. Since the initial permeability increases in proportion to the content of ZnO, ZnO is 10 mol% or less in the oxide magnetic material used in the band of 100 MHz to 500 MHz or more.

따라서 상대적으로 잔여부분을 치환하는 NiO를 38.0~64.0몰%로 할 필요가 있다.Therefore, it is necessary to make NiO which replaces a remainder into 38.0-64.0 mol%.

또한 본 발명은 상기 Ni-Cu-Zn계 산화물 자성재료에 있어 Fe2O3가 35.0~51.0몰%, CuO가 1.0~35.0몰%, NiO가 38.0~64.0몰% 및 ZnO가 0~10.0몰%로 이루어지는 산화물 자성재료에 있어서, Ca를 0.3wt%이하 함유시키거나 Ca를 0.3wt%이하 및 CaO를 0.7wt%이하 함유시키거나 Ca3(PO4)2를 0.5wt%이하 첨가하여 소성하거나, Ca3(PO4)2를 0.5wt%이하 첨가하여 소성하거나 Ca3(PO4)2를 0.5wt%이하 및 CoO를 0.7wt%이하 첨가하여 소성하는 것이다.In the present invention, in the Ni-Cu-Zn oxide oxide magnetic material, Fe 2 O 3 is 35.0-51.0 mol%, CuO is 1.0-35.0 mol%, NiO is 38.0-664.0 mol% and ZnO is 0-10.0 mol%. In the oxide magnetic material consisting of: 0.3 wt% or less of Ca, 0.3 wt% or less of Ca and 0.7 wt% or less of CaO, or calcining by adding Ca 3 (PO 4 ) 2 or less of 0.5 wt%, Ca 3 (PO 4) 2 was added to 0.5wt% or less and then fired, or Ca 3 (PO 4) 2 for thereby forming a 0.5wt% or less and the addition of CoO less than 0.7wt%.

본 발명의 실시예를 설명한다. Ni-Cu-Zn페라이트 즉 산화물 자성재료의 주성분으로서 NiO가 45.5몰%, CuO가 6.0몰%, ZnO가 0몰%, Fe2O3가 48.5몰%로 이루어지는 물질에 대해 매체비드로서 직경 3mm의 부분안정화 질코니아(Paritially Stabilized Zirconia : PSZ)를 사용하고 습식내부 순환방식의 메디어 교반형밀에 의해 습식으로 혼합하여 건조한 후 780℃로 가소성했다.An embodiment of the present invention will be described. Ni-Cu-Zn ferrite, i.e., a material bead having a diameter of 3 mm as a medium bead for a material composed of 45.5 mol% of NiO, 6.0 mol% of CuO, 0 mol% of ZnO, and 48.5 mol% of Fe 2 O 3 as a main component of the oxide magnetic material Partially stabilized zirconia (Paritially Stabilized Zirconia: PSZ) was used, wet mixed by means of a wet internal circulation media agitated mill, dried and plasticized at 780 ° C.

다음 이 가소성물을 매체비드인 PSZ을 이용하고 다시 습식내부 순환방식의 메디어 교반형밀에 의해 습식으로 가소성물의 농도를 33%로 하여 미세분쇄하였다. 이 때 상기 가소성한 분말에 CoO, Ca3(PO4)2, Ca, P를 표 1에 나타낸 것과 같이 선택, 첨가한 것을 분쇄했다. 또한 표 1에 있어서 CoO, Ca, P는 Co3O4, CaCO3, P2O5를 첨가한 것을 나타낸다.Next, the plasticized material was finely pulverized by using PSZ as a medium bead and wetted again by wet internal circulation type median agitation mill with a concentration of 33%. At this time, CoO, Ca 3 (PO 4 ) 2 , Ca, and P were selected and added to the plasticized powder as shown in Table 1, and then ground. In addition, in the Table 1 CoO, Ca, P indicates that the addition of Co 3 O 4, CaCO 3, P 2 O 5.

재료의 평균입자지름이 0.5㎛ 즉 비표면적이 8㎡/g이 된 곳에서 건조하여 최종분말을 얻었다.The final powder was obtained by drying at a place where the average particle diameter of the material was 0.5 µm, that is, the specific surface area was 8 m 2 / g.

이 건조분말을 체를 통해 균일한 입자로서 취출한 후 이에 바인더로서 PVA124의 3%수용액을 10wt%첨가하여 입자를 만들고, 후술하는 측정조건에 의해 소정의 형상으로 성형하여 얻어진 성형체를 공기 중에서 910℃에서 2시간 소성하여 작성했다.The dried powder was taken out as a uniform particle through a sieve, and then a 3% aqueous solution of PVA124 was added as a binder to make 10% by weight of particles, and a molded product obtained by molding into a predetermined shape under the measurement conditions described below was formed at 910 ° C in air. It was prepared by firing at 2 hours.

첨가량(wt%)Addition amount (wt%) 초기투자율μiInitial Permeability μi 소결체밀도(g/㎤)Sintered compact density (g / cm 3) 인덕턴스의 온도특성(%)Temperature characteristic of inductance (%) 적요briefs 실시예Example CaOCaO Ca3(PO4)2 Ca 3 (PO 4 ) 2 CaCa PP -20~20℃-20 ~ 20 ℃ 20~80℃20 ~ 80 ℃ 본 발명예Inventive Example 샘플 1Sample 1 20.920.9 5.035.03 5.005.00 3.383.38 비교예Comparative example 샘플 2Sample 2 0.700.70 14.514.5 5.115.11 21.5621.56 13.4513.45 비교예Comparative example 샘플 3Sample 3 0.750.75 14.314.3 5.115.11 24.4824.48 15.3915.39 비교예Comparative example 샘플 4Sample 4 1.001.00 11.111.1 5.045.04 29.0429.04 36.3836.38 본 발명예Inventive Example 샘플 5Sample 5 0.0250.025 20.120.1 5.085.08 4.864.86 4.064.06 본 발명예Inventive Example 샘플 6Sample 6 0.050.05 19.419.4 5.015.01 4.434.43 3.543.54 본 발명예Inventive Example 샘플 7Sample 7 0.100.10 17.817.8 4.954.95 3.123.12 2.382.38 본 발명예Inventive Example 샘플 8Sample 8 0.200.20 16.716.7 4.864.86 2.442.44 1.951.95 본 발명예Inventive Example 샘플 9Sample 9 0.300.30 15.915.9 4.774.77 1.891.89 1.141.14 비교예Comparative example 샘플10Sample 10 0.400.40 13.213.2 4.724.72 1.011.01 0.560.56 비교예Comparative example 샘플11Sample 11 0.0250.025 12.812.8 4.654.65 -1.21-1.21 0.370.37 비교예Comparative example 샘플12Sample 12 0.050.05 10.110.1 4.314.31 -0.90-0.90 -0.45-0.45 비교예Comparative example 샘플13Sample 13 0.100.10 6.76.7 3.683.68 -0.45-0.45 -1.00-1.00 본 발명예Inventive Example 샘플14Sample 14 0.00250.0025 20.420.4 5.145.14 4.364.36 3.603.60 본 발명예Inventive Example 샘플15Sample 15 0.0050.005 20.220.2 5.135.13 4.034.03 3.293.29 본 발명예Inventive Example 샘플16Sample 16 0.050.05 16.716.7 4.944.94 2.262.26 1.221.22 본 발명예Inventive Example 샘플17Sample 17 0.100.10 16.016.0 4.934.93 1.981.98 1.161.16 본 발명예Inventive Example 샘플18Sample 18 0.500.50 12.812.8 4.764.76 1.171.17 0.320.32 비교예Comparative example 샘플19Sample 19 1.001.00 9.69.6 4.584.58 0.360.36 -0.52-0.52 본 발명예Inventive Example 샘플20Sample 20 0.700.70 0.100.10 14.014.0 4.914.91 19.0119.01 11.4411.44 본 발명예Inventive Example 샘플21Sample 21 0.700.70 0.200.20 12.912.9 4.824.82 18.1218.12 10.8810.88 본 발명예Inventive Example 샘플22Sample 22 0.500.50 0.0250.025 15.015.0 5.115.11 4.784.78 6.026.02 본 발명예Inventive Example 샘플23Sample 23 0.650.65 0.0050.005 14.314.3 5.105.10 11.3411.34 7.647.64 본 발명예Inventive Example 샘플24Sample 24 0.500.50 0.100.10 12.412.4 4.804.80 2.892.89 7.447.44 본 발명예Inventive Example 샘플25Sample 25 0.700.70 0.100.10 11.711.7 4.884.88 19.5719.57 11.5111.51 본 발명예Inventive Example 샘플26Sample 26 1.001.00 0.100.10 9.19.1 4.714.71 24.7524.75 30.4430.44 비교예Comparative example

표 1의 샘플 1은 상기 가소성하고, 미세분쇄한 주 성분에 첨가물을 가하지 않고 상기와 마찬가지로 조립, 성형하여 공기중에서 910℃로 2시간 소성한 것이다.Sample 1 of Table 1 is granulated and molded in the same manner as above without adding an additive to the plastic, finely divided main component, and calcined at 910 ° C for 2 hours in air.

샘플 2 ~ 샘플 4는 상기 가소성하고 미세분쇄한 주 성분에 첨가물로서 Co3O4를 CoO환산으로 표 1에 도시하는 첨가량만 가하여 상기와 마찬가지로 조립, 성형, 소성한 것이다.Samples 2 to 4 were granulated, molded and calcined in the same manner as described above by adding only Co 3 O 4 as the additives shown in Table 1 in terms of CoO as additives to the plastic, finely ground main component.

샘플 5~샘플 10은 상기 가소성하고, 미세분쇄한 주 성분에 첨가물로서 CaCo3를 Ca환산으로 표 1에 도시하는 첨가량만 가하여 상기와 마찬가지로 조립, 성형, 소성한 것이다.Samples 5 to 10 were granulated, molded, and calcined in the same manner as described above by adding only the addition amounts shown in Table 1 in terms of Ca to CaCo 3 as additives to the plastic, finely ground main component.

샘플 11 ~ 샘플 13은 상기 가소성하고, 미세분쇄한 주 성분에 첨가물로서 P2O5를 P환산으로 표 1에 도시하는 양의 첨가량만 가하여 상기와 마찬가지로 조립, 성형, 소성한 것이다.Samples 11 to 13 were granulated, molded, and fired in the same manner as described above by adding only the amounts of the amounts shown in Table 1 in terms of P to P 2 O 5 as additives to the plastic, finely ground main component.

샘플 14 ~ 샘플 19는 상기 가소성하고, 미세분쇄한 주 성분에 첨가물로서 Ca3(PO4)2를 표 1에 도시하는 첨가량만 가하여 상기와 마찬가지로 조립, 성형, 소성한 것이다. 또한 예를들면 샘플 18과 같이 Ca3(PO4)2를 0.5wt%첨가했을 때 소성후는 산화물 자성재료안에 Ca가 0.2wt%, P가 0.1wt%존재한다.Samples 14 to 19 were granulated, molded, and fired in the same manner as described above by adding only Ca 3 (PO 4 ) 2 as an additive to the plastic, finely ground main component as an additive. For example, when 0.5 wt% of Ca 3 (PO 4 ) 2 is added as in Sample 18, 0.2 wt% of Ca and 0.1 wt% of P exist in the oxide magnetic material after firing.

샘플 20,21은 상기 가소성하고, 미세분쇄한 주 성분에 첨가물로서 Co3O4와 CaCO3를 CoO및 Ca환산으로 표 1에 도시하는 첨가량만 가하여 상기와 마찬가지로 조립, 성형, 소성한 것이다.Samples 20 and 21 were granulated, molded, and calcined in the same manner as described above by adding only the amounts of Co 3 O 4 and CaCO 3 added to CoO and Ca in terms of CoO and Ca as additives to the plastic, finely ground main component.

샘플 22 ~ 26은 상기 가소성하고 미세분쇄한 주 성분에 첨가물로서 Co3O4와 Ca3(PO4)2를, Co3O4에 대해서는 CoO 환산으로 표 1에 도시하는 첨가량만 Ca3(PO4)2에 대해서는 표 1에 도시하는 첨가량만 복합하여 가하고, 상기와 마찬가지로 조립, 성형, 소성한 것이다.Samples 22-26 are an additive to the plastic and fine-ground main component Co 3 O 4 and Ca 3 (PO 4) 2 a, Co 3 for O 4 man addition amount shown in Table 1 as CoO terms of Ca 3 (PO 4 ) About 2 , only the addition amount shown in Table 1 is added and it assembles, shape | molded, and baked similarly to the above.

자성재료로서의 평가는 표 1에 도시하는 초기투자율과, 외관밀도와, 인덕턴스의 온도특성을 평가함으로써 행했다.Evaluation as a magnetic material was performed by evaluating the initial permeability, the appearance density, and the temperature characteristic of inductance shown in Table 1.

초기투자율과 인덕턴스의 온도특성의 측정은 외경 18mm, 내경 10mm, 높이 3.1mm의 토로이달형이 되도록 성형하고, 공기중에서 상기 소정온도로 소성하며, 와이어를 20회 감아 실제로 코일을 작제하고 임피던스 애널라이저(HP사 제품 4291A)에 의해 자계를 0.4A/m인가하고 100KHz의 인덕턴스를 측정하여 형상으로부터 얻어진 정수로부터 산출하여 초기투자율을 구했다.The measurement of the initial permeability and temperature characteristics of inductance were made to be a toroidal type of 18mm in outer diameter, 10mm in inner diameter and 3.1mm in height, firing at the predetermined temperature in air, winding the wire 20 times, and actually constructing a coil and performing an impedance analyzer (HP 4291A) was used to apply a magnetic field of 0.4 A / m, and the inductance of 100 KHz was measured and calculated from the constant obtained from the shape to obtain the initial permeability.

여기서 초기투자율은 소결체의 고주파특성을 보기 위한 것이다. 그리고 초기투자율이 낮은 만큼 피크주파수는 고주파측으로 이동한다. 본 발명의 조건을 만족하는 곳이 되는 주파수 대역에서의 특성을 얻을 수 있는 초기투자율은 바람직하게는 25이하(100MHz대), 더욱 바람직하게는 18이하(300MHz대), 더 더욱 바람직하게는 13이하(500MHz ~)이다.Here, the initial permeability is to see the high frequency characteristics of the sintered body. And as the initial permeability is low, the peak frequency moves to the high frequency side. The initial permeability to obtain the characteristics in the frequency band where the conditions of the present invention are satisfied is preferably 25 or less (100 MHz band), more preferably 18 or less (300 MHz band), even more preferably 13 or less. (500MHz ~).

인덕턴스의 온도특성은 소결체의 특성측정시에 20℃에서의 인덕턴스값 L을 기준으로 -20과 +80℃로 온도를 변화시키고, 얻어진 각 온도에서의 기준인덕턴스 값 L과의 변화율(△L/L)에서 구한 인덕턴스의 온도특성은 그대로 신뢰성에 관련되므로 가능한 한 변화율을 억제할 필요가 있다. 신뢰성을 확보할 수 있는 인덕턴스의 온도특성은 바람직하게는 ±20%이내, 더욱 바람직하게는 ±15%이내이다.The temperature characteristic of the inductance changes the temperature between -20 and + 80 ° C based on the inductance value L at 20 ° C when measuring the characteristics of the sintered body, and the rate of change with the reference inductance value L at each obtained temperature (ΔL / L Since the temperature characteristics of the inductance obtained in the above) are directly related to the reliability, it is necessary to suppress the change rate as much as possible. The temperature characteristic of the inductance capable of ensuring reliability is preferably within ± 20%, more preferably within ± 15%.

외관밀도는 소결체의 치수로부터 체적을 구하고, 그 질량을 이 체적에서 나누어 구했다. 여기서 외관밀도는 소결체의 소결성의 좋고 나쁨을 보기 위한 것이다. 외관밀도가 낮은 것은 소결체 내부의 빈 구멍이 많은 것을 나타내는 것이며, 소자화한 경우에 있어서 높은 온습도에서의 사용에 의해 이 빈 구멍의 존재가 원인이 되어 쇼트불량 등의 신뢰성에 영향을 미치거나 물리적 강도가 유약하게 된다는문제가 발생한다. 이와같은 문제가 발생하지 않는 외관밀도는 일반적으로 Ni-Cu-Zn페라이트의 이론밀도 5.24g/㎤의 90%이상이 되는 4.75g/㎤이상이다.The apparent density calculated | required the volume from the dimension of the sintered compact, and the mass was divided and calculated | required from this volume. Here, the appearance density is intended to show good and bad sinterability of the sintered compact. The low appearance density indicates a large number of hollow holes in the sintered body. In the case of element formation, the use of high temperature and humidity causes the presence of these hollow holes, which affects reliability such as short defects and physical strength. There is a problem of being glazed. The apparent density which does not cause such a problem is generally 4.75 g / cm 3 or more, which is 90% or more of the theoretical density of 5.24 g / cm 3 of Ni-Cu-Zn ferrite.

이상에 의해 다음을 알 수 있다.By the above, the following is understood.

샘플 1 즉 본 발명의 기본조성의 것은 상기와 같이 초기투자율이 25이하로 작고, 소결체 밀도가 4.75g/㎤이상의 큰 값으로서 또한 인덕턴스의 온도특성이 ±20%이하의 특성을 갖는 것이다.Sample 1, that is, the basic composition of the present invention has a characteristic in which the initial permeability is as small as 25 or less, the sintered body density is 4.75 g / cm 3 or more, and the temperature characteristic of the inductance is ± 20% or less.

샘플 2 ~ 4에 도시하는 것과 같이 기본조성에 CoO를 단체로 첨가해도 인덕턴스의 온도특성이 커 본 발명의 범위외가 된다.As shown in Samples 2 to 4, even if CoO is added to the basic composition alone, the temperature characteristics of the inductance are large and fall outside the scope of the present invention.

샘플 5 ~9에 도시하는 것과 같이 Ca가 0.3wt%이하의(0을 포함하지 않음) 경우 초기투자율, 소결체밀도, 인덕턴스의 온도특성 등은 상기 소정의 값을 만족하게 되지만 샘플 10과 같이 Ca가 0.3wt%를 넘으면 소결체밀도가 작아져 소정의 값을 만족하지 못하게 된다.As shown in Samples 5 to 9, when Ca is 0.3 wt% or less (not including 0), initial permeability, sintered body density, temperature characteristics of inductance, etc. satisfy the predetermined values, but as shown in Sample 10, When it exceeds 0.3 wt%, the sintered compact becomes small and does not satisfy a predetermined value.

샘플 11 ~ 13에 도시하는 것과 같이 P를 단체(單體)로 첨가해도 소결체 밀도가 작아 소정의 값을 만족할 수 없다.As shown in Samples 11 to 13, even if P is added alone, the sintered compact is small and cannot satisfy a predetermined value.

샘플 14 ~ 18에 도시하는 것과 같이 Ca3(PO4)2를 0.5wt%이하(0을 포함하지 않음) 첨가시켜 소성할 경우, 초기투자율, 소결체 밀도, 인덕턴스의 온도특성 등은 소정의 값을 만족하게 되지만 샘플 19와 같이 Ca3(PO4)2의 첨가량이 0.5wt%를 넘으면 소결체 밀도가 작고 소정의 값을 만족할 수 없다.As shown in Samples 14 to 18, when Ca 3 (PO 4 ) 2 was added at 0.5 wt% or less (not containing 0) and fired, the initial permeability, sintered compact density, inductance temperature characteristics, etc. Although satisfactory, when the addition amount of Ca 3 (PO 4 ) 2 exceeds 0.5wt% as in Sample 19, the sintered compact is small and cannot satisfy a predetermined value.

샘플 20, 21에 도시하는 것과 같이 Ca를 0.3wt%이하 함유시킨 것에 CoO를0.7wt%이하 함유시킴으로써 초기투자율이 작고, 소결체 밀도가 큰 인덕턴스의 온도특성이 양호한 것을 얻는다.As shown in Samples 20 and 21, by containing 0.3 wt% or less of Ca and by containing 0.7 wt% or less of CoO, the initial permeability is small and the temperature characteristics of the inductance having a high sintered compact are good.

샘플 22~25에 도시하는 것과 같이 Ca3(PO4)2를 0.5wt% 이하 첨가하고 있을 때 CaO를 0.7wt%이하 함유시킬 경우, 초기투자율, 소결체 밀도, 인덕턴스의 온도특성 등은 소정의 값을 만족하게 되지만 샘플 26과 같이 CoO가 0.7wt%를 넘으면 소결체 밀도가 소정의 값보다 작아지고 또 인덕턴스의 온도특성이 커져 소정의 값을 넘게 되어 소정의 값을 만족할 수 없게 된다.As shown in Samples 22 to 25, when Ca 3 (PO 4 ) 2 is added in an amount of 0.5 wt% or less, when CaO is contained in an amount of 0.7 wt% or less, initial permeability, sintered compact density, inductance temperature characteristics, etc. However, when CoO exceeds 0.7 wt% as in Sample 26, the sintered compact density becomes smaller than the predetermined value and the temperature characteristic of the inductance becomes large and exceeds the predetermined value so that the predetermined value cannot be satisfied.

또한 본 발명에 의한 벌크형 코일용의 코어는 상기와 같이 가소성하고, 습식분쇄한 산화물 자성재료에 바인더를 가하여 입자를 만든 후 소정의 형상으로 성형, 가공하고 공기중에서 900 ~ 1300℃정도로 소성하여 만든다. 또한 이 코어는 소성후에 가공해도 좋다. 그리고 이 코어에 예를들면 Au, Ag, Cu, Fe, Pt, Sn, Ni, Pb, Al, Co 또는 이들의 합금으로 이루어지는 와이어를 감아 작성한다.In addition, the core for a bulk coil according to the present invention is made as described above by adding a binder to the plastic material, wet-pulverized oxide magnetic material to form particles, and then molded and processed into a predetermined shape and fired to about 900 ~ 1300 ℃ in the air. In addition, you may process this core after baking. Then, for example, a wire made of Au, Ag, Cu, Fe, Pt, Sn, Ni, Pb, Al, Co, or an alloy thereof is wound around this core.

한편 적층형 코일은 통상의 방법인 산화물 자성재료로 이루어지는 자성체층 페이스트와 내부도체층을, 인쇄법이나 닥터 블레이드법과 같은 후막(thick film)기술에 의해 적층하여 일체화한 후 소성하여 얻어진 소결체 표면에 외부전극용 페이스트를 인쇄하고, 소성함으로써 제조된다. 내부도전체용 페이스트는 통상 도전성 소자와 바인더와 용제를 함유한다. 도전성 소자의 재질은 인덕터의 품질계수 Q가 향상되는 이유에서 Ag 또는 Ag·Pd합금이 적합하다. 소성조건이나 소성분위기는 자성체나 도전성 소자의 재질 등에 따라 적절히 결정하면 되지만 소성온도는 바람직하게는 800~950℃, 보다 바람직하게는 880~920℃정도이다. 소성온도가 880℃미만인 경우는 소결부족이 되기 쉽기 때문에 장시간 소성하는 것이 필요하며 920℃를 넘으면 페라이트안에 전극재료가 확산되기 쉽고 칩의 전자기적 특성을 악화시키므로 단시간 소성하게 된다. 800℃미만에서는 소결불량이 되고 950℃를 넘으면 전극재료가 확산한다. 또한 소성시간은 880~920℃에서 5분 ~3시간 정도이다.On the other hand, in the multilayer coil, an external electrode is formed on the surface of a sintered body obtained by laminating and integrating a magnetic layer paste made of an oxide magnetic material and an inner conductor layer by a thick film technique such as a printing method or a doctor blade method. It is manufactured by printing and baking for a paste. The paste for internal conductors usually contains a conductive element, a binder, and a solvent. The material of the conductive element is Ag or Ag · Pd alloy is suitable for the reason that the quality factor Q of the inductor is improved. The firing conditions and the minor component crisis may be appropriately determined depending on the magnetic material, the material of the conductive element, and the like, but the firing temperature is preferably 800 to 950 ° C, more preferably about 880 to 920 ° C. If the firing temperature is less than 880 ° C, it is likely to be insufficient sintering, so it is necessary to bake for a long time. If the firing temperature is higher than 920 ° C, the electrode material is easily diffused in the ferrite and the electromagnetic properties of the chip are deteriorated. If the temperature is lower than 800 ° C, the sintering failure occurs, and if the temperature exceeds 950 ° C, the electrode material diffuses. Moreover, firing time is about 5 minutes-3 hours at 880-920 degreeC.

본 발명에 의해 다음의 효과를 나타낼 수 있다.According to the present invention, the following effects can be obtained.

(1) 사용하는 고주파대역 100MHz이상에 있어 초기투자율이 낮고 소결체밀도가 크며 와전류손실이 적고 저온소성이 가능한 산화물 자성체를 얻을 수 있다.(1) Oxide magnetic material capable of low-temperature firing and low initial permeability, high sintered body density, low eddy current loss and low-temperature sintering can be obtained in the high frequency band of 100MHz or more.

(2) Ca를 0.3wt%이하 첨가시킴으로써 초기투자율이 낮고 소결체 밀도가 큰 인덕턴스의 온도특성이 양호한 산화물 자성체를 얻을 수 있다.(2) An oxide magnetic material having good initial temperature and low inductance temperature characteristics having a high initial permeability and a high sintered compact can be obtained by adding Ca or less than 0.3 wt%.

(3) Ca를 0.3wt%이하 첨가시키고 또한 CoO를 0.7wt%이하 첨가시킴으로써 초기투자율이 작고, 소결체 밀도가 큰 인덕턴스의 온도특성이 양호한 산화물 자성체를 얻을 수 있다.(3) An oxide magnetic material having good initial characteristics with low initial permeability and good temperature characteristics of inductance having a high sintered compact density can be obtained by adding Ca or less in an amount of 0.3 wt% or less and CoO in an amount of 0.7 wt% or less.

(4) Ca3(PO4)2를 0.5wt% 이하 첨가시킴으로써 초기투자율이 낮고 소결체 밀도가 큰 인덕턴스의 온도특성이 양호한 산화물 자성체를 얻을 수 있다.(4) By adding Ca 3 (PO 4 ) 2 to 0.5 wt% or less, an oxide magnetic body having low initial permeability and good temperature characteristics of inductance having a high sintered body density can be obtained.

(5) Ca3(PO4)2외에 추가로 CoO를 0.7wt%이하 첨가시켰기 때문에 더욱 초기투자율이 낮고 소결체 밀도가 큰 인덕턴스의 온도특성이 양호한 산화물 자성체를 얻을 수 있다.(5) In addition to Ca 3 (PO 4 ) 2 , since CoO was added in an amount of 0.7 wt% or less, an oxide magnetic body having a low initial permeability and good temperature characteristics of inductance having a high sintered body density can be obtained.

(6) 초기투자율이 낮고 소결체 밀도가 크며 인덕턴스의 온도특성이 양호한 산화물 자성체에 의해 칩부품을 구성했기 때문에 이들의 각 특성이 양호한 뛰어난 칩부품을 제공할 수 있다.(6) Since the chip components are composed of an oxide magnetic material having a low initial permeability, a high sintered compact density, and good inductance temperature characteristics, excellent chip components having good respective characteristics can be provided.

(7) 초기투자율이 낮고 소결체 밀도가 크며 인덕턴스의 온도특성이 양호한 소성온도가 낮은 산화물 자성체에 의해 적층형 코일부품을 구성했기 때문에 이들의 각 특성이 양호한 인덕턴스의 품질계수 Q가 뛰어난 적층형 코일부품을 제공할 수 있다.(7) Laminated coil parts are composed of oxide magnetic material with low initial permeability, high sintered body density, and low firing temperature with good inductance temperature characteristics. Therefore, multilayer coil parts with excellent inductance quality factor Q having excellent characteristics are provided. can do.

(8) 초기투자율이 낮고 소결체 밀도가 크며 인덕턴스의 온도특성이 양호한 소성온도가 낮은 산화물 자성체를 사용하고, 내부도체가 Ag 또는 Ag·Pd합금을 주성분으로 한 도체로서 칩부품을 구성했기 때문에 이들의 각 특성이 양호한 인덕턴스의 품질계수 Q가 뛰어난 칩부품을 제공할 수 있다.(8) Oxide magnetic material with low initial permeability, high sintered density and low firing temperature with good inductance temperature characteristics, and internal components composed of chip components as conductors mainly composed of Ag or Ag / Pd alloy. A chip component having excellent inductance quality factor Q having good characteristics can be provided.

(9) 초기투자율이 낮고 소결체 밀도가 크며 인덕턴스의 온도특성이 양호한 산화물 자성체를 사용하고, Ag 또는 Ag·Pd합금을 주성분으로 한 도체를 내부도체로 하여 880℃~920℃의 온도에서 소성하여 칩부품을 제조하므로 이들의 각 특성이 양호하며 또한 인덕턴스의 품질계수 Q가 뛰어난 칩부품을 제조할 수 있다.(9) Chips are prepared by using oxide magnetic material with low initial permeability, high density of sintered body and good inductance temperature characteristics, and firing at temperatures of 880 ℃ ~ 920 ℃ with inner conductors mainly composed of Ag or Ag · Pd alloy Since parts are manufactured, each of these characteristics is good and a chip part having excellent inductance quality factor Q can be manufactured.

Claims (15)

Fe2O3가 35.0~51.0몰%,Fe 2 O 3 is 35.0-51.0 mol%, CuO가 1.0~35.0몰%,CuO is 1.0-35.0 mol%, NiO가 38.0~64.0 몰% 및,NiO is 38.0-64.0 mol%, ZnO가 0 ~ 10.0%(0을 포함함)로 이루어지는 것으로 특징으로 하는 산화물 자성재료.Oxide magnetic material, characterized in that ZnO is made from 0 to 10.0% (including 0). 제 1항에 있어서,The method of claim 1, Ca를 0.3wt%이하(0은 포함하지 않음) 함유하는 것을 특징으로 하는 산화물 자성재료.An oxide magnetic material, containing Ca 0.3 wt% or less (0 is not included). 제 2항에 있어서,The method of claim 2, CoO를 0.7wt%이하(0은 포함하지 않음) 함유하는 것을 특징으로 하는 산화물 자성재료.Oxide magnetic material, characterized in that it contains 0.7 wt% or less (0 is not included). Fe2O3가 35.0~51.0%, CuO가 1.0~35.0, NiO가 38.0~64.0% 및 ZnO가 0~10.0%(0을 포함함)로 이루어지는 산화물 자성재료를 마련하는 단계와,Preparing an oxide magnetic material comprising Fe 2 O 3 of 35.0 to 51.0%, CuO of 1.0 to 35.0, NiO of 38.0 to 66.0%, and ZnO of 0 to 10.0% (containing 0), Ca3(PO4)를 0.5wt%이하(0은 포함하지 않음)를 상기 산화물 자성재료에 함유시키는 단계와,Including Ca 3 (PO 4 ) 0.5wt% or less (not including 0) in the oxide magnetic material, 상기 산화물 자성재료는 소성하는 단계를,The oxide magnetic material is calcined, 구비하는 것을 특징으로 하는 산화물 자성재료의 제조방법.Method for producing an oxide magnetic material, characterized in that provided. 제 4항에 있어서,The method of claim 4, wherein CoO를 0.7wt%이하 함유시키는 단계를 더 포함하는 것을 특징으로 하는 산화물 자성재료의 제조방법.The method of producing an oxide magnetic material, characterized in that it further comprises the step of containing less than 0.7wt% CoO. Fe2O3가 35.0~51.0몰%, CuO가 1.0~35.0몰%, NiO가 38.0~64.0몰%, ZnO가 0~10.0몰%(0을 포함함)를 함유하는 산화물 자성재료의 소결체를 포함하는 것을 특징으로 하는 벌크형 칩부품.It contains a sintered body of an oxide magnetic material containing 35.0-51.0 mol% of Fe 2 O 3 , 1.0-35.0 mol% of CuO, 38.0-364.0 mol% of NiO, and 0-10.0 mol% (including 0) of ZnO. Bulk chip parts, characterized in that. 제6항에 있어서,The method of claim 6, 상기 산화물 자성재료의 소결체는 Ca를 0.3wt%이하(0은 포함하지 않음) 더 함유하는 것을 특징으로 하는 벌크형 칩부품.The sintered body of the oxide magnetic material further contains 0.3 wt% or less of Ca (not including 0). 제7항에 있어서,The method of claim 7, wherein 상기 산화물 자성재료의 소결체는CoO를 0.7wt%이하(0은 포함하지 않음) 더 함유하는 것을 특징으로 하는 벌크형 칩부품.The sintered compact of the oxide magnetic material further contains 0.7 wt% or less of CoO (not including 0). Fe2O3가 35.0~51.0몰%, CuO가 1.0~35.0몰%, NiO가 38.0~64.0몰%, ZnO가 0~10.0몰%(0을 포함함)로 이루어지는 산화물 자성재료의 소결체를 포함하는 적층형 코일부품.Containing a sintered body of the oxide magnetic material consisting of 35.0-51.0 mol% Fe 2 O 3 , 1.0-35.0 mol% CuO, 38.0-364.0 mol% NiO, 0-10.0 mol% (containing 0) ZnO Stacked Coil Parts. 제9항에 있어서,The method of claim 9, 상기 자성물질의 소결체는 Ca를 0.3wt%이하(0은 포함하지 않음) 더 함유하는 것을 특징으로 하는 적층형 코일부품.The sintered body of the magnetic material is a laminated coil component, characterized in that it further contains 0.3 wt% or less (not including 0). 제10항에 있어서,The method of claim 10, 상기 자성물질의 소결체는 CoO를 0.7wt%이하(0은 포함하지 않음) 더 함유하는 것을 특징으로 하는 적층형 코일부품.The sintered body of the magnetic material is a laminated coil component, characterized in that it further contains 0.7 wt% or less (not including 0) CoO. 제 9항에 있어서,The method of claim 9, Ag 또는 Ag와 Pd의 합금을 주성분으로 한 도체로 구성된 내부도체를 더 함유하는 것을 특징으로 하는 칩부품.A chip component further comprising an inner conductor composed of Ag or a conductor mainly composed of an alloy of Ag and Pd. Fe2O3가 35.0~51.0몰%, CuO가 1.0~35.0몰%, NiO가 38.0~64.0몰%, ZnO가 0~10.0몰%(0을 포함함)로 이루어지는 산화물 자성재료의 소결체를 마련하는 단계와,A sintered body of an oxide magnetic material composed of 35.0 to 51.0 mol% of Fe 2 O 3 , 1.0 to 35.0 mol% of CuO, 38.0 to 6,0 mol% of NiO, and 0 to 10.0 mol% of ZnO (containing 0) is provided. Steps, 전기도체층 또는 전기도체로서 소결체에 이용하는 Ag 또는 Ag-Pd합금의 주성분을 갖는 내부도체를 마련하는 단계와,Providing an inner conductor having a main component of Ag or Ag-Pd alloy used in the sintered body as an electric conductor layer or an electric conductor, 880 ℃∼920℃로 산화물 자성물질과 내부도체를 소성하는 단계를Firing the oxide magnetic material and the inner conductor at 880 ° C to 920 ° C. 구비하는 것을 특징으로 하는 칩부품 제조방법.Chip component manufacturing method characterized in that it comprises. 제13항에 있어서,The method of claim 13, Ca 0.3wt% 이하(0은 포함하지 않음)를 첨가하는 단계를 더 포함하는 것을 특징으로 하는 칩부품 제조방법.Chip component manufacturing method comprising the step of adding less than 0.3wt% Ca (does not include 0). 제14항에 있어서,The method of claim 14, CoO 0.7 wt% 이하를 첨가하는 단계를 더 포함하는 것을 특징으로 하는 칩부품 제조방법.Chip component manufacturing method further comprises the step of adding CoO 0.7 wt% or less.
KR1020010012505A 2000-03-13 2001-03-12 Oxide magnetic materials, chip components using the same, and method for producing oxide magnetic materials and chip components KR100643413B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000068199A JP4255044B2 (en) 2000-03-13 2000-03-13 Oxide magnetic material and method for producing oxide magnetic material
JP2000-068199 2000-03-13

Publications (2)

Publication Number Publication Date
KR20010089994A true KR20010089994A (en) 2001-10-17
KR100643413B1 KR100643413B1 (en) 2006-11-10

Family

ID=18587288

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010012505A KR100643413B1 (en) 2000-03-13 2001-03-12 Oxide magnetic materials, chip components using the same, and method for producing oxide magnetic materials and chip components

Country Status (5)

Country Link
US (1) US6558566B2 (en)
JP (1) JP4255044B2 (en)
KR (1) KR100643413B1 (en)
CN (1) CN1251254C (en)
TW (1) TW490686B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1314697B1 (en) * 2000-08-21 2007-07-25 TDK Corporation Ferrite material
JP4204329B2 (en) * 2002-01-21 2009-01-07 三洋電機株式会社 Method for producing oxide magnetic material
JP5134696B2 (en) * 2010-03-18 2013-01-30 日本碍子株式会社 Powder used for producing Ni-Cu-Zn ceramic sintered body and method for producing the same
DE102012201847A1 (en) * 2012-02-08 2013-08-08 Würth Elektronik eiSos Gmbh & Co. KG Electronic component
CN103594242B (en) * 2013-11-12 2016-08-17 上海华源磁业股份有限公司 A kind of preparation method of day font magnetic ferrite magnetic core
CN113735573B (en) * 2021-08-27 2022-08-16 西安交通大学 Low-loss NiCuZn soft magnetic ferrite material for NFC and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151146A (en) * 1992-11-04 1994-05-31 Tokin Corp Oxide magnetic material and manufacture thereof
JP2963041B2 (en) * 1995-06-15 1999-10-12 日立金属株式会社 Magnetic ceramics and multilayer electronic components
JP3672161B2 (en) * 1997-07-16 2005-07-13 Tdk株式会社 Ferrite manufacturing method and inductor manufacturing method
JP3769137B2 (en) * 1998-12-28 2006-04-19 Tdk株式会社 Inductance element and manufacturing method thereof
JP2000252112A (en) * 1999-03-02 2000-09-14 Murata Mfg Co Ltd Magnetic ceramic composition and inductor part using the same

Also Published As

Publication number Publication date
TW490686B (en) 2002-06-11
KR100643413B1 (en) 2006-11-10
JP2001253769A (en) 2001-09-18
US20010028051A1 (en) 2001-10-11
CN1313609A (en) 2001-09-19
JP4255044B2 (en) 2009-04-15
CN1251254C (en) 2006-04-12
US6558566B2 (en) 2003-05-06

Similar Documents

Publication Publication Date Title
KR101543752B1 (en) Composite ferrite composition and electronic device
CN106057393B (en) Complex ferrite composition and electronic component
KR101210772B1 (en) Hexagonal ferrite, and antenna and communication equipment using the same
KR101138078B1 (en) Dielectric ceramic composition, multilayer complex electronic device, multilayer common mode filter, multilayer ceramic coil and multilayer ceramic capacitor
KR101928210B1 (en) Ferrite composition, ferrite sintered body, electronic device, and chip coil
KR100423961B1 (en) Sintered body and high-frequency circuit component
WO1997002221A1 (en) Dielectric porcelain, process for production thereof, and electronic parts produced therefrom
JP2002255637A (en) Oxide magnetic ceramic composition and inductor component using the composition
US6287479B1 (en) Magnetic ceramic composition and inductor component using the same
JP2691715B2 (en) Ferrite sintered body, chip inductor and LC composite parts
JP2002141215A (en) Oxide magnetic material, its manufacturing method, and laminated chip inductor
JP2005132715A (en) Ni-Cu-Zn SYSTEM FERRITE MATERIAL AND ITS MANUFACTURING METHOD
KR100643413B1 (en) Oxide magnetic materials, chip components using the same, and method for producing oxide magnetic materials and chip components
WO2005005341A1 (en) Magnetic ferrite and magnetic device using same
JPWO2013115064A1 (en) Wire-wound coil component having a magnetic material and a core formed using the same
JP2001010820A (en) Ferrite composition, ferrite sintered compact laminate- type electronic part and production thereof
JP4074440B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JP2003272914A (en) Oxide magnetic material, manufacturing method of the same, and laminated chip inductor
KR20120115810A (en) Nizncu ferrite and preparation method thereof
JP4436493B2 (en) High frequency low loss ferrite material and ferrite core using the same
US20220306541A1 (en) Ferrite composition and electronic component
JP3364267B2 (en) Chip antenna
JP2006182633A (en) Ferrite material and inductor element
JP5055688B2 (en) Ferrite material and inductor element
JPH11307335A (en) Magnetic oxide material, multilayer chip inductor and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee