JP5055688B2 - Ferrite material and inductor element - Google Patents

Ferrite material and inductor element Download PDF

Info

Publication number
JP5055688B2
JP5055688B2 JP2004204694A JP2004204694A JP5055688B2 JP 5055688 B2 JP5055688 B2 JP 5055688B2 JP 2004204694 A JP2004204694 A JP 2004204694A JP 2004204694 A JP2004204694 A JP 2004204694A JP 5055688 B2 JP5055688 B2 JP 5055688B2
Authority
JP
Japan
Prior art keywords
mol
ferrite material
temperature
initial permeability
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004204694A
Other languages
Japanese (ja)
Other versions
JP2006027916A (en
Inventor
博 丸澤
貴章 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2004204694A priority Critical patent/JP5055688B2/en
Publication of JP2006027916A publication Critical patent/JP2006027916A/en
Application granted granted Critical
Publication of JP5055688B2 publication Critical patent/JP5055688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、フェライト材料及びインダクタ素子に関し、更に詳しくは、温度特性に優れたフェライト材料及びインダクタ素子に関するものである。   The present invention relates to a ferrite material and an inductor element, and more particularly to a ferrite material and an inductor element having excellent temperature characteristics.

従来、Ni−Zn−Cu系のフェライト材料は、その磁気特性から磁芯の材料として、あるいは積層チップインダクタ等のインダクタ素子の材料として用いられている。これらの磁芯やインダクタ素子は、種々の環境下で使用されるため、温度変化に対する初透磁率μの変化が少ない材料、即ち温度特性に優れた材料によって形成されていることが望ましい。 Conventionally, Ni—Zn—Cu ferrite materials have been used as magnetic core materials or as inductor element materials such as multilayer chip inductors because of their magnetic properties. Since these magnetic cores and inductor elements are used in various environments, it is desirable that the magnetic cores and inductor elements are made of a material having a small change in initial permeability μ i with respect to a temperature change, that is, a material having excellent temperature characteristics.

特許文献1にはニッケル−亜鉛系フェライト材料の初透磁率の温度特性を改善した発明について開示されている。この発明は、Fe43〜50モル%、NiO10〜35モル%、ZnO10〜35モル%、CuO3〜15モル%である基本組成のニッケル−亜鉛系フェライト材料に対して、Inを0.01〜0.2重量%添加して焼成を行うことを特徴とするニッケル−亜鉛系フェライト材料の製造方法である。この発明によれば、ニッケル−亜鉛系フェライト材料の基本組成に対してInを添加することによって、初透磁率を低下させることなく、初透磁率の温度特性を改善することができ、また、インダクタ用酸化物磁性材料として用いることによって、温度特性の良好なチップコンデンサ等と組み合わせが容易になる。 Patent Document 1 discloses an invention in which the temperature characteristics of initial permeability of a nickel-zinc ferrite material are improved. The present invention, Fe 2 O 3 43 to 50 mol%, NiO10~35 mol%, ZnO10~35 mol%, the basic composition of the nickel is CuO3~15 mol% - relative to the zinc ferrite material, an In 2 O 3 Is a method for producing a nickel-zinc ferrite material, wherein 0.01 to 0.2% by weight is added and firing is performed. According to this invention, by adding In 2 O 3 to the basic composition of the nickel-zinc based ferrite material, the temperature characteristics of the initial permeability can be improved without reducing the initial permeability. Further, by using it as an oxide magnetic material for inductors, it can be easily combined with a chip capacitor having good temperature characteristics.

特開平04−338166号公報Japanese Patent Laid-Open No. 04-338166

しかしながら、特許文献1に記載のニッケル−亜鉛系フェライト材料の場合には、ニッケル−亜鉛系フェライト材料の基本組成(Fe43〜50モル%、NiO10〜35モル%、ZnO10〜35モル%、CuO3〜15モル%)に対するInの添加量が0.01〜0.2重量%と少ないため、電荷バランスが崩れ、温度特性改善効果を示す温度領域が狭く、しかも温度特性改善効果もせいぜい1.5ppm程度の改善が限界であった。 However, in the case of the nickel-zinc based ferrite material described in Patent Document 1, the basic composition of the nickel-zinc based ferrite material (Fe 2 O 3 43-50 mol%, NiO 10-35 mol%, ZnO 10-35 mol%) , CuO 3 to 15 mol%), the amount of In 2 O 3 added is as small as 0.01 to 0.2% by weight, so the charge balance is lost, the temperature range showing the effect of improving temperature characteristics is narrow, and the effect of improving temperature characteristics At best, the improvement of about 1.5 ppm was the limit.

一方、フェライト材料の初透磁率μの温度特性は、下記の(1)式で表されるように、飽和磁化M及び磁気異方性定数κそれぞれの温度変化に左右される。そして、飽和磁化M及び磁気異方性定数κは、温度上昇によって共に減少し、しかも磁気異方性定数κは、飽和磁化Mの減少量より急激に減少量が大きくなる温度領域があり、そのような温度領域では、下記(1)式からも明らかなように、初透磁率μが大きく跳ね上がる、いわゆるホプキンソン効果が発現し、初透磁率μが温度変化によって大きく変動して不安定になる。但し、下記式において、a、bはそれぞれ定数、λは磁歪定数、σは応力を示す。
μ∝M /(aκ+bσλ)・・・(1)
ところが、特許文献1に記載の発明では、磁気異方性定数κが緩やかに変化する狭い温度領域において、温度特性の改善は認められるものの、磁気異方性定数κが飽和磁化Mの減少量を大きく上回り、ホプキンソン効果によって初透磁率μが跳ね上がる広い温度領域には対応できないという課題があった。
従って、このようなフェライト材料を例えばアンテナに使用すると、LC共振周波数が温度変化によって変動し、アンテナとしての送受信が不可能になる。
On the other hand, the temperature characteristic of the initial permeability μ i of the ferrite material depends on the temperature changes of the saturation magnetization M s and the magnetic anisotropy constant κ, as expressed by the following equation (1). The saturation magnetization M s and the magnetic anisotropy constant κ both decrease as the temperature rises, and the magnetic anisotropy constant κ has a temperature region in which the amount of decrease is larger than the amount of decrease of the saturation magnetization M s . in such a temperature range, as is apparent from the following (1), initial permeability mu i jumps up large, so-called Hopkinson effect is expressed, initial permeability mu i is varied greatly by changes in temperature not Become stable. In the following formula, a and b are constants, λ is a magnetostriction constant, and σ is stress.
μ i ∝M s 2 / (aκ + bσλ) (1)
However, in the invention described in Patent Document 1, although an improvement in temperature characteristics is observed in a narrow temperature region where the magnetic anisotropy constant κ changes gradually, the magnetic anisotropy constant κ is reduced by the saturation magnetization M s . There is a problem that it cannot cope with a wide temperature range in which the initial permeability μ i jumps up by the Hopkinson effect.
Therefore, when such a ferrite material is used for an antenna, for example, the LC resonance frequency fluctuates due to a temperature change, and transmission / reception as an antenna becomes impossible.

本発明は、上記課題を解決するためになされたもので、磁気異方性定数自体を低減して磁気異方性定数の初透磁率に対する影響を抑制して初透磁率の温度特性を大幅に改善することができるフェライト材料及びインダクタ素子を提供することを目的としている。   The present invention has been made in order to solve the above-described problems. The magnetic anisotropy constant itself is reduced to suppress the influence of the magnetic anisotropy constant on the initial permeability, and the temperature characteristics of the initial permeability are greatly increased. It is an object to provide a ferrite material and an inductor element that can be improved.

本発明の請求項1に記載のフェライト材料は、43〜50.5モル%のFe、10〜48モル%のNiO、0〜34モル%のZnO、及び2〜17モル%のCuOを基本組成とするフェライト材料であって、上記フェライト材料にInのみを0.1〜7.0モル%含有させて、−25℃〜100℃の温度範囲における初透磁率の相対温度係数を±1.00ppm/℃以内の範囲にしたことを特徴とするものである。
Ferrite material according to claim 1 of the present invention, 43 to 50.5 mol% of Fe 2 O 3, 10 to 48 mol% of NiO, 0 to 34 mol% of ZnO, and 2-17 mol% of CuO The basic material is a ferrite material containing 0.1 to 7.0 mol% of In 2 O 3 alone in the ferrite material, and the relative temperature of initial permeability in a temperature range of −25 ° C. to 100 ° C. The coefficient is in a range of ± 1.00 ppm / ° C. or less.

また、本発明の請求項2に記載のインダクタ素子は、請求項1に記載のフェライト材料からなる磁性体を備えたことを特徴とするものである。   According to a second aspect of the present invention, there is provided an inductor element comprising the magnetic body made of the ferrite material according to the first aspect.

而して、本発明のフェライト材料は、43〜50.5モル%のFe、10〜48モル%のNiO、0〜34モル%のZnO、及び0〜17モル%のCuOを基本組成とするNi−Zn−Cu系のフェライト材料で、この基本組成を有することによってフェライト材料として確実に焼結することができる。 And Thus, a ferrite material of the present invention, 43 to 50.5 mol% of Fe 2 O 3, 10 to 48 mol% of NiO, basic 0-34 mol% of ZnO, and 0-17 mol% of CuO A Ni—Zn—Cu ferrite material having a composition, and having this basic composition, can be reliably sintered as a ferrite material.

従って、Feの含有量が43モル%未満になっても50.5モル%を超えても、所定の焼成温度で異相を析出して焼結しないため好ましくない。 Therefore, even if the content of Fe 2 O 3 is less than 43 mol% or more than 50.5 mol%, it is not preferable because a different phase is not precipitated and sintered at a predetermined firing temperature.

また、NiOの含有量が10%未満になっても48モル%を超えても、所定の焼成温度で異相を析出して焼結しないため好ましくない。   Moreover, even if the content of NiO is less than 10% or more than 48 mol%, it is not preferable because a heterogeneous phase is not precipitated and sintered at a predetermined firing temperature.

ZnOは初透磁率を制御する成分で、ZnOの含有量の増加に対応してNiOの含有量を相対的に減少させることによって、初透磁率を増加させることができる。従って、ZnOを添加しなくても良いが、この場合には、初透磁率の増加効果がなく初透磁率が小さくなる。ZnOの含有量が34モル%を超えると、所定の焼成温度で異相を析出して焼結しないため好ましくない。   ZnO is a component that controls the initial permeability, and the initial permeability can be increased by relatively decreasing the NiO content in response to an increase in the ZnO content. Therefore, it is not necessary to add ZnO, but in this case, there is no effect of increasing the initial permeability and the initial permeability is reduced. If the ZnO content exceeds 34 mol%, it is not preferable because a heterogeneous phase is precipitated and sintered at a predetermined firing temperature.

CuOは焼結性を向上させる成分で、焼成温度を1000℃以下に低下させることができ、延いては、積層インダクタ等の積層型電子部品のように、内部電極を共焼成することができる。CuOの含有量が17モル%を超えると、異相を析出して焼結しないため好ましくない。   CuO is a component that improves the sinterability, and can lower the firing temperature to 1000 ° C. or lower. As a result, the internal electrode can be co-fired like a multilayer electronic component such as a multilayer inductor. When the content of CuO exceeds 17 mol%, it is not preferable because a heterogeneous phase is precipitated and does not sinter.

本発明のフェライト材料は、0.1〜7.0モル%のInを含有している。この含有量は重量換算すると0.23〜15.5重量%である。フェライト材料に対して0.1〜7.0モル%のInを含有させることによって、フェライト材料の基本成分であるFeのFe3+イオンの一部をIn3+イオンで積極的に置換することができる。この置換によって、フェライト材料の磁気異方性定数κを低減することができ、ホプキンソン効果による飽和磁化Mの減少量に対する磁気異方性定数κの減少量の影響を抑制することができ、延いては、前記(1)式の関係からも明らかなように、初透磁率μに対する温度変化の影響を抑制し、フェライト材料の温度特性を向上させ、広い温度領域で安定した初透磁率μを得ることができる。 The ferrite material of the present invention contains 0.1 to 7.0 mol% In 2 O 3 . This content is 0.23 to 15.5% by weight in terms of weight. By containing 0.1 to 7.0 mol% of In 2 O 3 with respect to the ferrite material, a part of Fe 3+ ions of Fe 2 O 3 which is a basic component of the ferrite material is actively used with In 3+ ions. Can be substituted. By this substitution, the magnetic anisotropy constant κ of the ferrite material can be reduced, and the influence of the decrease in the magnetic anisotropy constant κ on the decrease in the saturation magnetization M s due to the Hopkinson effect can be suppressed. Therefore, as is clear from the relationship of the above equation (1), the effect of temperature change on the initial permeability μ i is suppressed, the temperature characteristics of the ferrite material are improved, and the stable initial permeability μ is obtained in a wide temperature range. i can be obtained.

Inの含有量が0.1モル%未満になると、Fe3+イオンをIn3+イオンで置換できず、添加効果が認められず初透磁率μの温度特性を安定化させることができないため好ましくない。また、Inの含有量が7.0モル%を超えると、キュリー温度Tが低下して透磁率が得られなくなる虞があるため好ましくない。 When the content of In 2 O 3 is less than 0.1 mol%, the Fe 3+ ions cannot be replaced with In 3+ ions, the addition effect is not observed, and the temperature characteristics of the initial permeability μ i cannot be stabilized. Therefore, it is not preferable. On the other hand, if the content of In 2 O 3 exceeds 7.0 mol%, the Curie temperature Tc is lowered and the magnetic permeability may not be obtained.

本発明のフェライト材料は、例えば、初透磁率の−25℃〜100℃の温度領域で、相対温度係数及び温度変化率が共に小さく、温度特性に優れたものであるため、狭偏差インダクタ材や、ミリ波若しくはマイクロ波アイソレータの低損失材として使用することができる。   The ferrite material of the present invention has, for example, a temperature range of −25 ° C. to 100 ° C. of initial permeability, a small relative temperature coefficient and a temperature change rate, and excellent temperature characteristics. It can be used as a low-loss material for millimeter wave or microwave isolators.

本発明のインダクタ素子は、本発明のフェライト材料によって形成された磁性体を備え、広い温度領域で温度特性に優れたインダクタ素子である。本発明のインダクタ素子は、例えば携帯電話等の移動体機器に用いられる積層インダクタや巻線型インダクタがある。例えば積層インダクタの場合には、本発明のフェライト材料によって磁性体を形成する際に、Ag、Cu及びこれらを主成分とする合金等の融点の低い導電性金属を1000℃以下の共焼成することによって、内部コイルを形成することができる。そして、本発明のインダクタ素子は、コンデンサと組み合わせて使用することにより、広い温度範囲で共振周波数が安定し、共振周波数の安定したLC共振回路を構成することができる。   The inductor element of the present invention is an inductor element having a magnetic body formed of the ferrite material of the present invention and having excellent temperature characteristics in a wide temperature range. Examples of the inductor element of the present invention include a laminated inductor and a wound inductor used in mobile equipment such as a mobile phone. For example, in the case of a multilayer inductor, when a magnetic body is formed from the ferrite material of the present invention, a conductive metal having a low melting point such as Ag, Cu and an alloy containing these as a main component is co-fired at 1000 ° C. or less. By this, an internal coil can be formed. When the inductor element of the present invention is used in combination with a capacitor, the resonance frequency is stabilized in a wide temperature range, and an LC resonance circuit having a stable resonance frequency can be configured.

本発明によれば、磁気異方性定数自体を低減して磁気異方性定数の初透磁率に対する影響を抑制して初透磁率の温度特性を大幅に改善することができ、しかも基本組成としてCuOを含むことにより1000℃以下の温度で焼成することができるフェライト材料及びインダクタ素子を提供することができる。 According to the onset bright, it is possible to greatly improve the temperature characteristic of the initial permeability by suppressing the influence on the initial permeability of the magnetic anisotropy constant to reduce the magnetic anisotropy constant itself, moreover basic composition ferrite material and inductor elements Ru can be fired at 1000 ° C. or less of the temperature by containing CuO as can be provided.

まず、本発明のフェライト材料を具体的に説明する。   First, the ferrite material of the present invention will be specifically described.

(1)フェライト材料の調製
まず、出発原料として、NiO、ZnO、CuO、Fe及びInの各粉末をそれぞれ用意した。その後、これらの出発原料の各粉末を、表1の試料No.1〜28に示す含有量になるように、秤量して配合した後、それぞれの配合物を、部分安定化ジルコニアボールを玉石として、ポットミルによって24時間湿式混合を行った。次いで、これらの配合物を乾燥させた後、所定の焼成温度(例えば、650〜750℃)で仮焼した後、これらの仮焼粉を、比表面積が5m/g程度になるように、ポットミルによって8時間程度粉砕を行うことにより、フェライト原料粉を得た。尚、表1において、*印を付した試料は本発明の範囲外のものである。
(1) Preparation of Ferrite Material First, NiO, ZnO, CuO, Fe 2 O 3 and In 2 O 3 powders were prepared as starting materials. Thereafter, each powder of these starting materials was weighed and blended so as to have the contents shown in Sample Nos. 1 to 28 in Table 1, and then each blended product was partially stabilized zirconia balls as cobblestones. Wet mixing was performed for 24 hours using a pot mill. Then, after drying these blends, after calcining at a predetermined firing temperature (for example, 650-750 ° C.), the calcined powder is adjusted so that the specific surface area becomes about 5 m 2 / g. Ferrite raw material powder was obtained by grinding for about 8 hours with a pot mill. In Table 1, samples marked with * are outside the scope of the present invention.

(2)フェライト焼結体の作製
上述の各フェライト原料粉に、酢酸ビニル系バインダ溶液を混合してスラリーを得た後、これらのスラリーを乾燥させた。次いで、これらの乾燥粉を、乾式プレス成形機を用いて、ブロック状の圧粉成形体を作製し、これらの圧粉成形体を、大気中で所定の焼成温度(例えば、900〜1000℃)で1〜2時間程度の本焼成を行い、トロイダルコア状のフェライト焼結体を得た。尚、出発原料に起因する不純物として、Mn、Cl、Ni、Zn、Mg、S、Ca、Cr、Bi等が約0.40重量%未満で混入したり、混合粉砕時の不純物として、ZnやSiが0.8重量%未満で混入することがあるが、フェライト材料を特性的にみて特に問題はない。
(2) Preparation of ferrite sintered body After each of the above ferrite raw material powders was mixed with a vinyl acetate binder solution to obtain a slurry, these slurries were dried. Next, using these dry powders, a dry press molding machine is used to produce block-shaped powder compacts, and these powder compacts are fired at a predetermined firing temperature (for example, 900 to 1000 ° C.) in the atmosphere. Was fired for about 1 to 2 hours to obtain a toroidal core-shaped ferrite sintered body. As impurities derived from starting materials, Mn, Cl, Ni, Zn, Mg, S, Ca, Cr, Bi, etc. are mixed in less than about 0.40% by weight, or impurities during mixing and grinding include Zn and Although Si may be mixed in less than 0.8% by weight, there is no particular problem in view of the ferrite material characteristically.

(3)フェライト焼結体の評価
次いで、上記各トロイダルコア状のフェライト焼結体に軟銅線を、それぞれ40ターン巻き、それぞれのインダクタンスを、インピーダンスアナライザを用いて周波数100kHzの条件で測定した。この際、トロイダルコアを恒温槽内に設置し、表1に示すように、測定温度を−25〜100℃の範囲で変え、インダクタンスの温度変化を測定することによって、フェライト焼結体の初透磁率μの相対温度係数αμrを下記の(2)式に基づいて算出して、各試料の評価を行い、その結果を表1に示した。下記式において、μ100℃、μ−25℃、μ25℃は、それぞれ100℃、−25℃、25℃における初透磁率を示す。
αμr(ppm/℃)=〔(μ100℃−μ−25℃)/(μ25℃ ×125)〕×10
・・・(2)
(3) Evaluation of ferrite sintered body Next, each of the above toroidal core-shaped ferrite sintered bodies was wound with an annealed copper wire for 40 turns, and each inductance was measured using an impedance analyzer at a frequency of 100 kHz. At this time, the toroidal core is installed in a thermostatic bath, and as shown in Table 1, the temperature of inductance is changed in the range of −25 to 100 ° C., and the temperature change of the inductance is measured. The relative temperature coefficient α μr of the magnetic susceptibility μ i was calculated based on the following equation (2), each sample was evaluated, and the results are shown in Table 1. In the following formula, μ 100 ° C. , μ −25 ° C. , and μ 25 ° C. indicate initial permeability at 100 ° C., −25 ° C., and 25 ° C., respectively.
α μr (ppm / ° C.) = [(μ 100 ° C.− μ− 25 ° C. ) / (μ 25 ° C. 2 × 125)] × 10 6
... (2)

また、25℃から100℃における初透磁率μの温度変化率Δμ/μを、下記の(3)式に基づいて算出して、各試料の評価を行い、それぞれの結果を表1に示した。
Δμ/μ(%)=〔(μ100℃−μ25℃)/μ25℃〕×100・・・(3)
Further, the temperature change rate Δμ / μ of the initial permeability μ i from 25 ° C. to 100 ° C. is calculated based on the following equation (3), each sample is evaluated, and each result is shown in Table 1. It was.
Δμ / μ (%) = [(μ 100 ° C.− μ 25 ° C. ) / Μ 25 ° C. ] × 100 (3)

Figure 0005055688
Figure 0005055688

表1に示す結果によれば、本発明の範囲内の試料No.2〜4、No.〜8、No.11〜13、No.15〜18、No.22〜27の場合には、いずれも本発明の基本組成を有し、Inの含有量が0.1〜7.0モル%であるため、基本組成であるFeのFe3+イオンの一部をIn3+イオンで積極的に置換してトロイダルコアの磁気異方性定数κを低減することができ、−25℃〜100℃の温度範囲における初透磁率μの相対温度係数αμrが±1.00ppm/℃以内の範囲で小さく、また、初透磁率μの温度変化率も25℃を基準にして14%以下の変化率であり、温度安定性に優れていることが判った。 According to the results shown in Table 1, in the case of sample Nos. 2 to 4, Nos. 7 to 8, Nos. 11 to 13, Nos. 15 to 18, and Nos. 22 to 27 within the scope of the present invention, Since both have the basic composition of the present invention and the content of In 2 O 3 is 0.1 to 7.0 mol%, a part of Fe 3+ ions of Fe 2 O 3 which is the basic composition is converted to In 3+. The magnetic anisotropy constant κ of the toroidal core can be reduced by positive substitution with ions, and the relative temperature coefficient α μr of the initial permeability μ i in the temperature range of −25 ° C. to 100 ° C. is ± 1.00 ppm. It was small in the range of / ° C, and the temperature change rate of the initial permeability µ i was 14% or less with reference to 25 ° C, indicating that the temperature stability was excellent.

これに対して、Inの含有量が0.1モル%未満の試料No.20、21の場合には、初透磁率μの相対温度係数αμrが1.38ppm/℃、あるいは1.19ppm/℃と大きく、−25℃〜100℃の範囲で初透磁率μが980〜1250まで、あるいは980〜1190まで変化し、温度変化率Δμ/μが19%以上、あるいは13%以上で温度安定性に劣っていることが判った。また、Inの含有量が7.0モル%を超える試料No.29の場合には、キュリー温度Tが低下し、透磁率μが得られないことが判った。 On the other hand, in the case of sample Nos. 20 and 21 having an In 2 O 3 content of less than 0.1 mol%, the relative temperature coefficient α μr of the initial permeability μ i is 1.38 ppm / ° C., or 1.19 ppm / ° C is large, the initial permeability μ i changes from 980 to 1250, or from 980 to 1190 in the range from −25 ° C. to 100 ° C., and the temperature change rate Δμ / μ is 19% or more, or 13%. From the above, it was found that the temperature stability was inferior. In addition, in the case of Sample No. 29 in which the content of In 2 O 3 exceeds 7.0 mol%, it was found that the Curie temperature T c is lowered and the magnetic permeability μ cannot be obtained.

また、フェライト材料の基本組成であるFeの含有量が43モル%未満の試料No.1及びその含有量が50.5モル%を超える試料No.5のいずれの場合にも異相が析出しフェライト材料として焼結しないことが判った。 Further, in any case of sample No. 1 in which the content of Fe 2 O 3 which is the basic composition of the ferrite material is less than 43 mol% and sample No. 5 in which the content exceeds 50.5 mol%, a different phase is present. It was found that it was deposited and not sintered as a ferrite material.

基本組成であるCuOの含有量が17モル%を超える試料No.9の場合にも異相が析出しフェライト材料として焼結しないことが判った。   It was found that even in the case of Sample No. 9 in which the content of CuO, which is the basic composition, exceeds 17 mol%, a heterogeneous phase precipitates and does not sinter as a ferrite material.

基本組成であるNiOの含有量が10モル%未満の試料No.10及びその含有量が48モル%を超える試料No.14のいずれの場合にも異相が析出しフェライト材料として焼結しないことが判った。   In any case of sample No. 10 in which the content of NiO which is the basic composition is less than 10 mol% and sample No. 14 in which the content exceeds 48 mol%, a heterogeneous phase is precipitated and does not sinter as a ferrite material. understood.

基本組成であるZnOの含有量が34モル%を超える試料No.19の場合にも異相が析出しフェライト材料として焼結しないことが判った。   It was found that even in the case of Sample No. 19 in which the content of ZnO as the basic composition exceeds 34 mol%, a heterogeneous phase is precipitated and does not sinter as a ferrite material.

次に、本発明のフェライト材料を磁性体として用いた本実施形態の積層インダクタについて、図1を参照しながら説明する。
本実施形態の積層インダクタ10は、例えば図1に示すように、本発明のフェライト材料からなる磁性体11と、この磁性体11内に形成されたコイル12と、このコイル12の上下の電極部12A、12Bに接続され且つ焼結体11の両端面を被覆する左右一対の外部電極13A、13Bとを備え、温度特性に優れたインダクタ素子である。コイル12は、水平方向に上下複数段に渡って形成されたコイル導体121と、上下のコイル導体121を電気的に接続するビアホール導体122とからなり、上下方向に延びる矩形の螺旋状として形成されている。
Next, the multilayer inductor of this embodiment using the ferrite material of the present invention as a magnetic material will be described with reference to FIG.
For example, as shown in FIG. 1, the multilayer inductor 10 of this embodiment includes a magnetic body 11 made of the ferrite material of the present invention, a coil 12 formed in the magnetic body 11, and upper and lower electrode portions of the coil 12. The inductor element is provided with a pair of left and right external electrodes 13A and 13B connected to 12A and 12B and covering both end faces of the sintered body 11, and having excellent temperature characteristics. The coil 12 includes a coil conductor 121 formed in a plurality of upper and lower stages in the horizontal direction and a via-hole conductor 122 that electrically connects the upper and lower coil conductors 121, and is formed as a rectangular spiral extending in the vertical direction. ing.

本実施形態の積層インダクタを作製する場合には、例えば以下に示すような製造方法を用いている。まず、本発明のフェライト原料を含むスラリーをドクターブレード法によってシート成形し、複数のセラミックグリーンシートを作製する。次いで、適宜のセラミックグリーンシートの所定位置に、ビアホールを形成した後、セラミックグリーンシートの上面に、Cu等の導電性金属粉を含む導電性ペーストを、スクリーン印刷法等を用いて印刷し、所定のコイルパターンを形成した。所定のコイルパターンが形成されたセラミックグリーンシートを、必要枚数積層すると共に、その上下の両面にコイルパターンが形成されていないセラミックグリーンシートを積層した後、これを例えば98MPaの圧力で圧着して圧着ブロックを形成した。これにより、各層のコイルパターンがビアホールによって接続されて積層型のコイルを形成する。そして、この圧着ブロックを所定サイズにカットして積層体を得た。次いで、この積層体を脱脂処理した後、脱脂後の積層体を900℃で焼成してフェライト焼結体(磁性体)を得た。そして、この磁性体の端面処理を行った後、その両端面に導電ペーストを塗布し、700℃で焼き付けて、外部電極をそれぞれ形成した。これにより、磁性体内にコイルを内蔵する積層インダクタを得た。   When manufacturing the multilayer inductor according to the present embodiment, for example, the following manufacturing method is used. First, a slurry containing the ferrite raw material of the present invention is formed into a sheet by a doctor blade method to produce a plurality of ceramic green sheets. Next, after forming a via hole at a predetermined position of an appropriate ceramic green sheet, a conductive paste containing a conductive metal powder such as Cu is printed on the upper surface of the ceramic green sheet by using a screen printing method or the like. The coil pattern was formed. The required number of ceramic green sheets on which a predetermined coil pattern is formed are stacked, and the ceramic green sheets on which the coil pattern is not formed are stacked on both upper and lower surfaces thereof. A block was formed. Thereby, the coil pattern of each layer is connected by the via hole to form a laminated coil. And this press-bonded block was cut into a predetermined size to obtain a laminate. Next, after degreasing the laminate, the degreased laminate was fired at 900 ° C. to obtain a ferrite sintered body (magnetic body). And after performing the end surface processing of this magnetic body, the electrically conductive paste was apply | coated to the both end surfaces, and it baked at 700 degreeC, and formed the external electrode, respectively. As a result, a multilayer inductor having a coil incorporated in the magnetic body was obtained.

尚、本発明は、上記実施形態に何等制限されるものではなく、要は、43〜50.5モル%のFe、10〜48モル%のNiO、0〜34モル%のZnO、及び〜17モル%のCuOを基本組成とするフェライト材料であって、0.1〜7.0モル%のInを含有するフェライト材料及びこのフェライト材料を磁性体とするインダクタ素子であれば、全て本発明に包含される。
The present invention is not construed as being limited to the above embodiments, short, 43 to 50.5 mol% of Fe 2 O 3, 10 to 48 mol% of NiO, 0 to 34 mol% of ZnO, and 2-17 mol% of CuO an ferrites material shall be the basic composition, the magnetic body ferrite material and ferrite material containing in 2 O 3 of 0.1 to 7.0 mol% inductor Any element is included in the present invention.

本発明は、例えば、携帯電話等の移動体機器のインダクタ素子等として好適に利用することができる。   The present invention can be suitably used as, for example, an inductor element of a mobile device such as a mobile phone.

本発明のインダクタ素子の一実施形態を透視して示す斜視図である。FIG. 3 is a perspective view showing a perspective view of an embodiment of an inductor element of the present invention.

符号の説明Explanation of symbols

10 積層インダクタ(インダクタ素子)
11 磁性体
10 Multilayer inductor (inductor element)
11 Magnetic material

Claims (2)

43〜50.5モル%のFe、10〜48モル%のNiO、0〜34モル%のZnO、及び2〜17モル%のCuOを基本組成とするフェライト材料であって、上記フェライト材料にInのみを0.1〜7.0モル%含有させて、−25℃〜100℃の温度範囲における初透磁率の相対温度係数を±1.00ppm/℃以内の範囲にしたことを特徴とするフェライト材料。 43 to 50.5 mol% of Fe 2 O 3, 10~48 mol% of NiO, a ferrite material having a basic composition 0 to 34 mol% of ZnO, and 2-17 mol% of CuO, the ferrite The material contains 0.1 to 7.0 mol% of In 2 O 3 alone, and the relative temperature coefficient of the initial permeability in the temperature range of −25 ° C. to 100 ° C. is within ± 1.00 ppm / ° C. Ferrite material characterized by that. 請求項1に記載のフェライト材料からなる磁性体を備えたことを特徴とするインダクタ素子。
An inductor element comprising a magnetic body made of the ferrite material according to claim 1.
JP2004204694A 2004-07-12 2004-07-12 Ferrite material and inductor element Active JP5055688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004204694A JP5055688B2 (en) 2004-07-12 2004-07-12 Ferrite material and inductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004204694A JP5055688B2 (en) 2004-07-12 2004-07-12 Ferrite material and inductor element

Publications (2)

Publication Number Publication Date
JP2006027916A JP2006027916A (en) 2006-02-02
JP5055688B2 true JP5055688B2 (en) 2012-10-24

Family

ID=35894712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004204694A Active JP5055688B2 (en) 2004-07-12 2004-07-12 Ferrite material and inductor element

Country Status (1)

Country Link
JP (1) JP5055688B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4556668B2 (en) * 2004-12-28 2010-10-06 株式会社村田製作所 Ferrite material and inductor element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2515184B2 (en) * 1991-05-08 1996-07-10 富士電気化学株式会社 Method for producing nickel-zinc ferrite

Also Published As

Publication number Publication date
JP2006027916A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
CN106057393B (en) Complex ferrite composition and electronic component
KR101543752B1 (en) Composite ferrite composition and electronic device
KR101421455B1 (en) Low-loss ferrite, and electronic component using the same
KR101603827B1 (en) Multilayer coil part
WO2013031842A1 (en) Ferrite ceramic composition, ceramic electronic component, and production method for ceramic electronic component
JP6740817B2 (en) Ferrite composition, ferrite sintered body, electronic component and chip coil
JP2010018482A (en) Ferrite, and manufacturing method thereof
US10839995B2 (en) Ferrite composition and multilayer electronic component
KR20200094081A (en) Ferrite composition and multilayer electronic component
JP2010235324A (en) Ferrite composition, ferrite sintered body, composite lamination type electronic component, and method for manufacturing ferrite sintered body
KR20170141605A (en) Soft magnetic metal powder, soft magnetic metal fired body, and coil type electronic device
JP2019210204A (en) Composite magnetic material and electronic component using the same
JP2020061522A (en) Multilayer coil component
JP5871017B2 (en) Wire-wound coil component having a magnetic material and a core formed using the same
JP2003272912A (en) Oxide magnetic material and laminated electronic component using the same
JP3975051B2 (en) Method for manufacturing magnetic ferrite, method for manufacturing multilayer chip ferrite component, and method for manufacturing LC composite multilayer component
JP4556668B2 (en) Ferrite material and inductor element
JP5055688B2 (en) Ferrite material and inductor element
US6558566B2 (en) Oxide magnetic materials, chip components using the same, and method for producing oxide magnetic materials and chip components
JP4074438B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JP4631348B2 (en) Ni-Zn-Cu ferrite material and inductor element
JP6967418B2 (en) Magnetic materials and laminated chip parts
JP2725227B2 (en) Multilayer inductor and method for manufacturing the same
JP7221751B2 (en) Magnetic materials and laminated chip components
JPH11307335A (en) Magnetic oxide material, multilayer chip inductor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5055688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150