JP2515184B2 - Method for producing nickel-zinc ferrite - Google Patents

Method for producing nickel-zinc ferrite

Info

Publication number
JP2515184B2
JP2515184B2 JP3131935A JP13193591A JP2515184B2 JP 2515184 B2 JP2515184 B2 JP 2515184B2 JP 3131935 A JP3131935 A JP 3131935A JP 13193591 A JP13193591 A JP 13193591A JP 2515184 B2 JP2515184 B2 JP 2515184B2
Authority
JP
Japan
Prior art keywords
added
amount
magnetic permeability
nickel
initial magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3131935A
Other languages
Japanese (ja)
Other versions
JPH04338166A (en
Inventor
修一 乙部
秀樹 松井
武史 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP3131935A priority Critical patent/JP2515184B2/en
Publication of JPH04338166A publication Critical patent/JPH04338166A/en
Application granted granted Critical
Publication of JP2515184B2 publication Critical patent/JP2515184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−亜鉛系フェ
ライトの製造方法に関し、更に詳しく述べると、少量の
酸化インジウム(In2 3 )を添加して焼成すること
により、初透磁率を低下させることなく、初透磁率の温
度特性を改善できる方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a nickel-zinc system ferrite, and more specifically, it reduces the initial magnetic permeability by adding a small amount of indium oxide (In 2 O 3 ) and firing it. The present invention relates to a method capable of improving the temperature characteristic of the initial magnetic permeability without causing it.

【0002】[0002]

【従来の技術】回路の小型化に伴い、高周波用フェライ
ト磁心の温度変化に対する特性の安定化がますます重要
なものとなっている。例えばフェライト磁心を用いたコ
イルとチップコンデンサ等とを組み合わせて回路を構成
する場合、一方の温度特性を正(+)、他方の温度特性
を負(−)として互いに相殺させて全体としての温度特
性を改善することが行われている。近年の技術進歩によ
り、チップコンデンサの温度特性は比較的良好であり、
それに伴いフェライト磁心の温度特性も更に小さくする
ことが要求されている。
2. Description of the Related Art With the miniaturization of circuits, it is becoming more and more important to stabilize the characteristics of high frequency ferrite cores against temperature changes. For example, when a circuit is constructed by combining a coil using a ferrite core and a chip capacitor or the like, one temperature characteristic is set to positive (+) and the other temperature characteristic is set to negative (-) to cancel each other out, and the overall temperature characteristic is set. Is being improved. Due to recent technological advances, the temperature characteristics of chip capacitors are relatively good,
Along with this, it is required to further reduce the temperature characteristics of the ferrite core.

【0003】ニッケル−亜鉛系フェライトは主要原料で
あるFe2 3 、NiO、ZnO、CuOなどを秤量し
て混合し、仮焼→粉砕→成形→焼成という工程を経て製
造する。上記主要原料の中で特にFe2 3 とZnO
は、初透磁率μi に重大な影響を及ぼす。そこで通常、
それらを適切な比率で配合することにより、所望の初透
磁率を有するフェライトコアを製造している。
The nickel-zinc type ferrite is manufactured through the steps of calcination, crushing, molding and firing, which are main raw materials such as Fe 2 O 3 , NiO, ZnO and CuO. Among the above main raw materials, especially Fe 2 O 3 and ZnO
Has a significant effect on the initial permeability μ i. So usually,
A ferrite core having a desired initial magnetic permeability is manufactured by mixing them in an appropriate ratio.

【0004】このようなニッケル−亜鉛系フェライトに
おいて、温度特性を改善する技術として、酸化コバルト
または酸化ケイ素を適量添加することが行われている。
ここで述べている「温度特性の改善」とは、「ある定め
られた温度間での初透磁率の変化量をできるだけ小さく
すること」である。
[0004] In such nickel-zinc type ferrite, as a technique for improving temperature characteristics, an appropriate amount of cobalt oxide or silicon oxide is added.
The “improvement of temperature characteristics” described here means “to minimize the amount of change in initial magnetic permeability between certain predetermined temperatures”.

【0005】[0005]

【発明が解決しようとする課題】しかし従来の酸化コバ
ルト等を添加する方法では、温度特性は改善されるが、
常温での初透磁率が低下してしまう欠点がある。回路の
小型化に伴って、当然、巻線部品も小型化されることを
考慮すると、初透磁率の低下は小型化には不利である。
従って、初透磁率を悪化させることなく、温度特性を改
善できることが望ましい。
However, although the conventional method of adding cobalt oxide or the like improves the temperature characteristics,
There is a drawback that the initial magnetic permeability at room temperature decreases. Considering that the winding parts are naturally downsized as the circuit is downsized, lowering the initial magnetic permeability is disadvantageous for downsizing.
Therefore, it is desirable that the temperature characteristics can be improved without deteriorating the initial magnetic permeability.

【0006】本発明の目的は、上記のような従来技術の
欠点を解消し、ニッケル−亜鉛系フェライトの温度特性
を、初透磁率の悪化を伴うことなく改善できる方法を提
供することである。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a method capable of improving the temperature characteristics of nickel-zinc system ferrite without deteriorating the initial magnetic permeability.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成できる
本発明は、従来一般に用いられている組成のニッケル−
亜鉛系フェライト材料に対して極く少量の酸化インジウ
ム(In2 3 )を添加し、焼成する方法である。酸化
インジウムの添加量は、主成分となるニッケル−亜鉛系
フェライト材料に対して0.01〜0.2重量%の範囲
とする。
The present invention, which can achieve the above objects, provides a nickel-based alloy having a composition generally used in the past.
This is a method in which an extremely small amount of indium oxide (In 2 O 3 ) is added to a zinc-based ferrite material, and then firing is performed. The amount of indium oxide added is in the range of 0.01 to 0.2% by weight with respect to the main component nickel-zinc ferrite material.

【0008】ここで用いるニッケル−亜鉛系フェライト
材料は、通常、インダクタ用酸化物磁性材料などとして
用いられている組成範囲のものであり、Fe2 3 が4
3〜50モル%、NiOが10〜35モル%、ZnOが
10〜35モル%、CuOが3〜15重量%である基本
組成である。ニッケル−亜鉛系フェライト材料の基本組
成によっても異なるが、特に好ましいIn2 3 の添加
量は0.05〜0.1重量%の範囲内である。
The nickel-zinc ferrite material used here has a composition range that is generally used as an oxide magnetic material for inductors, and Fe 2 O 3 is 4
The basic composition is 3 to 50 mol%, NiO is 10 to 35 mol%, ZnO is 10 to 35 mol%, and CuO is 3 to 15 wt%. Although it depends on the basic composition of the nickel-zinc ferrite material, the particularly preferable amount of In 2 O 3 added is in the range of 0.05 to 0.1% by weight.

【0009】[0009]

【作用】In2 3 の添加によって、初透磁率は殆ど変
わらず温度特性のみ変化する。その理由は未だ充分解明
された訳ではないが、温度特性はそのフェライトの結晶
磁気異方性定数K1 によって影響を受けることから、I
2 3 の添加によってFe+3のサイト分布のずれ等の
現象が起こり、前記K1 の温度特性が緩やかになって、
その結果、初透磁率の温度特性も緩やかになるものと考
えられる。しかしIn2 3 の添加量が多過ぎると、逆
に温度特性の悪化を招き好ましくない。よってIn2
3 の添加量は0.01〜0.2重量%の範囲内とし、特
に0.05〜0.1重量%程度の範囲内とすることが好
ましい。
The addition of In 2 O 3 hardly changes the initial magnetic permeability and changes only the temperature characteristics. The reason has not been fully clarified yet, but since the temperature characteristics are affected by the magnetocrystalline anisotropy constant K 1 of the ferrite, I
The addition of n 2 O 3 causes a phenomenon such as a shift in the Fe +3 site distribution, and the K 1 temperature characteristic becomes gradual.
As a result, it is considered that the temperature characteristic of the initial magnetic permeability also becomes gentle. However, if the amount of In 2 O 3 added is too large, the temperature characteristics are deteriorated, which is not preferable. Therefore, In 2 O
The addition amount of 3 is in the range of 0.01 to 0.2% by weight, and particularly preferably in the range of about 0.05 to 0.1% by weight.

【0010】[0010]

【実施例】表1に示すA〜Cの3種の基本組成(何れも
単位はモル%)のニッケル−亜鉛系フェライト材料に対
して、In2 3 を0〜0.2重量%の範囲で添加し、
焼結温度1100℃で焼成して多種のフェライトコアを
作製し、初透磁率とその温度特性を測定した。
EXAMPLES In 2 O 3 in the range of 0 to 0.2 wt% with respect to nickel-zinc ferrite materials of three basic compositions A to C shown in Table 1 (each unit is mol%). Added in
Various types of ferrite cores were produced by firing at a sintering temperature of 1100 ° C., and the initial magnetic permeability and its temperature characteristics were measured.

【0011】[0011]

【表1】 [Table 1]

【0012】基本組成AでのIn2 3 添加量(重量
%)と相対温度係数αμr (×10-6/℃)との関係を
図1に示す。なお相対温度係数αμr は次式で定義した
値である。 αμr =〔μi (at 60℃) −μi (at-20℃) 〕/〔μi 2 (at 60℃) ×80℃〕 In2 3 を0.01重量%以上添加していくと相対温
度係数αμr が減少しはじめ、約0.1重量%でピーク
に達する。その後、In2 3 添加量が増大すると、相
対温度係数αμr は増加していく。
FIG. 1 shows the relationship between the amount of In 2 O 3 added (% by weight) and the relative temperature coefficient α μr (× 10 −6 / ° C.) in the basic composition A. The relative temperature coefficient αμr is a value defined by the following equation. αμr = [μi (at 60 ° C) -μi (at-20 ° C)] / [μi 2 (at 60 ° C) × 80 ° C] Relative temperature coefficient when 0.01% by weight or more of In 2 O 3 is added αμr begins to decrease and reaches a peak at about 0.1% by weight. After that, as the amount of In 2 O 3 added increases, the relative temperature coefficient αμr increases.

【0013】同じく基本組成Aについて、In2 3
添加の場合、In2 3 を0.05重量%添加した場
合、0.1重量%添加した場合のそれぞれについて、2
0℃基準での温度係数Δμi/μi (%)と温度(℃)
との関係を求めた結果を図2に示す。In2 3 無添加
の場合に比べて、In2 3 を0.05重量%あるいは
0.1重量%添加した場合は、温度特性が改善されてい
ることが分かる。
[0013] The same basic composition A, the case of In 2 O 3 not added, when the In 2 O 3 was added 0.05 wt%, for each of the case of adding 0.1 wt%, 2
Temperature coefficient Δμi / μi (%) and temperature (℃) at 0 ℃
The result of obtaining the relationship with is shown in FIG. Than in the case of In 2 O 3 not added, if the In 2 O 3 was added 0.05 wt% or 0.1 wt%, it can be seen that the temperature characteristics are improved.

【0014】基本組成B,CでのIn2 3 の添加量
(重量%)と相対温度係数αμr (×10-6/℃)との
関係を図3に示す。この場合も図1の場合と同様、In
2 3 を0.01重量%以上添加すると相対温度係数α
μr が減少しはじめ、約0.1重量%でピークに達す
る。その後In2 3 添加量が増大していくにつれて相
対温度係数αμr も増加していくことが分かる。
FIG. 3 shows the relationship between the added amount (% by weight) of In 2 O 3 and the relative temperature coefficient αμr (× 10 -6 / ° C.) in the basic compositions B and C. Also in this case, as in the case of FIG.
If 0.01% by weight or more of 2 O 3 is added, the relative temperature coefficient α
μr begins to decrease and reaches a peak at about 0.1% by weight. It can be seen that the relative temperature coefficient αμr also increases as the amount of In 2 O 3 added thereafter increases.

【0015】これらの結果、In2 3 の添加量の範囲
を0.01〜0.2重量%とするのがよいが、特に0.
05〜0.1重量%の範囲が好ましい。
As a result of these, the range of the amount of In 2 O 3 added is preferably 0.01 to 0.2% by weight, but particularly preferably 0.
The range of 05 to 0.1% by weight is preferable.

【0016】またA〜Cの各基本組成でのIn2 3
加量(重量%)と初透磁率μi との関係を図4に示す。
いずれの場合も、In2 3 添加にかかわらず初透磁率
μiの変化は生じていない。
FIG. 4 shows the relationship between the amount of In 2 O 3 added (% by weight) and the initial magnetic permeability μi in each of the basic compositions A to C.
In any case, the initial magnetic permeability μi did not change regardless of the addition of In 2 O 3 .

【0017】[0017]

【発明の効果】本発明は上記のように、ニッケル−亜鉛
系フェライトに酸化インジウムを少量添加し焼成する方
法であるから、初透磁率を低下させることなしに、初透
磁率の温度特性を改善できる。そのため、温度特性の良
好なチップコンデンサなどと組み合わせ易い利点があ
る。また前記のように、初透磁率が低下しないため、巻
線部品の小型化にも貢献でき、回路の小型化に寄与する
ところ大である。
As described above, the present invention is a method of adding a small amount of indium oxide to nickel-zinc type ferrite and firing it. Therefore, the temperature characteristic of the initial magnetic permeability is improved without lowering the initial magnetic permeability. it can. Therefore, there is an advantage that it can be easily combined with a chip capacitor having good temperature characteristics. Further, as described above, since the initial magnetic permeability does not decrease, it is possible to contribute to the miniaturization of the winding parts and the miniaturization of the circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】In2 3 添加量と相対温度係数αμr の関係
の一例を示すグラフ。
FIG. 1 is a graph showing an example of the relationship between the amount of In 2 O 3 added and the relative temperature coefficient αμr.

【図2】周囲温度とΔμi /μi の関係の一例を示すグ
ラフ。
FIG. 2 is a graph showing an example of the relationship between ambient temperature and Δμi / μi.

【図3】In2 3 添加量と相対温度係数αμr の関係
の他の例を示すグラフ。
FIG. 3 is a graph showing another example of the relationship between the amount of In 2 O 3 added and the relative temperature coefficient αμr.

【図4】In2 3 添加量と初透磁率の関係を示すグラ
フ。
FIG. 4 is a graph showing the relationship between the amount of In 2 O 3 added and the initial magnetic permeability.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Fe2 3 43〜50モル%、NiO
10〜35モル%、ZnO 10〜35モル%、CuO
3〜15モル%である基本組成のニッケル−亜鉛系フ
ェライト材料に対して、In2 3を0.01〜0.2
重量%添加して焼成を行うことを特徴とするニッケル−
亜鉛系フェライトの製造方法。
1. Fe 2 O 3 43 to 50 mol%, NiO
10-35 mol%, ZnO 10-35 mol%, CuO
In 2 O 3 is added in an amount of 0.01 to 0.2 with respect to a nickel-zinc ferrite material having a basic composition of 3 to 15 mol%.
Nickel characterized by adding weight% and firing
Method for producing zinc-based ferrite.
【請求項2】 In2 3 の添加量を0.05〜0.1
重量%とする請求項1記載の製造方法。
2. The amount of In 2 O 3 added is 0.05 to 0.1.
The manufacturing method according to claim 1, wherein the weight percentage is set.
JP3131935A 1991-05-08 1991-05-08 Method for producing nickel-zinc ferrite Expired - Lifetime JP2515184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3131935A JP2515184B2 (en) 1991-05-08 1991-05-08 Method for producing nickel-zinc ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3131935A JP2515184B2 (en) 1991-05-08 1991-05-08 Method for producing nickel-zinc ferrite

Publications (2)

Publication Number Publication Date
JPH04338166A JPH04338166A (en) 1992-11-25
JP2515184B2 true JP2515184B2 (en) 1996-07-10

Family

ID=15069655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3131935A Expired - Lifetime JP2515184B2 (en) 1991-05-08 1991-05-08 Method for producing nickel-zinc ferrite

Country Status (1)

Country Link
JP (1) JP2515184B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2599887B2 (en) * 1993-11-01 1997-04-16 日立金属株式会社 Magnetic materials for chip parts
KR960022381A (en) * 1994-12-16 1996-07-18 김익명 Soft ferrite magnetic material
JP5055688B2 (en) * 2004-07-12 2012-10-24 株式会社村田製作所 Ferrite material and inductor element
JP5811860B2 (en) * 2012-01-20 2015-11-11 Tdk株式会社 Ferrite sintered body and electronic parts

Also Published As

Publication number Publication date
JPH04338166A (en) 1992-11-25

Similar Documents

Publication Publication Date Title
US5906768A (en) Ferrite magnetic material, and ferrite core
JP2001085217A (en) Manganese-zinc ferrite
JP3492802B2 (en) Low loss ferrite material
JP2515184B2 (en) Method for producing nickel-zinc ferrite
JP2679716B2 (en) Ferrite core firing material
JP2004296865A (en) Ferrite core for winding chip inductor, manufacturing method thereof, and winding chip inductor
JP5041480B2 (en) MnZn ferrite
JP2674624B2 (en) Chip inductor
JP5089923B2 (en) MnCoZn ferrite and transformer core
JPH01179402A (en) Magnetic core for inductor
JPH0521222A (en) Manufacture of nickel-zinc ferrite
JP2802839B2 (en) Oxide soft magnetic material
JP2000299217A (en) High permeability oxide magnetic material
JP3945967B2 (en) High-frequency oxide soft magnetic materials
JP2696834B2 (en) Oxide magnetic material
JPH0391209A (en) Chip inductor
JP3337937B2 (en) Ferrite magnetic material and ferrite core
JP2939035B2 (en) Soft magnetic oxide substance
JPH097814A (en) Oxide magnetic material and its manufacturing method
JP3366708B2 (en) Low loss Mn-Zn ferrite
JP3120816B2 (en) Oxide magnetic material
JP2001284117A (en) Common mode choke coil and ferrite sintered material for common mode choke coil
JP3550247B2 (en) Ferrite material
JPH0786021A (en) High-permeability oxide magnetic material and manufacture thereof
JP2001348226A (en) Magnetic ferrite material