JP5041480B2 - MnZn ferrite - Google Patents

MnZn ferrite Download PDF

Info

Publication number
JP5041480B2
JP5041480B2 JP2007326652A JP2007326652A JP5041480B2 JP 5041480 B2 JP5041480 B2 JP 5041480B2 JP 2007326652 A JP2007326652 A JP 2007326652A JP 2007326652 A JP2007326652 A JP 2007326652A JP 5041480 B2 JP5041480 B2 JP 5041480B2
Authority
JP
Japan
Prior art keywords
less
magnetic permeability
mnzn ferrite
permeability
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007326652A
Other languages
Japanese (ja)
Other versions
JP2009152256A (en
Inventor
照夫 安岡
龍矢 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007326652A priority Critical patent/JP5041480B2/en
Publication of JP2009152256A publication Critical patent/JP2009152256A/en
Application granted granted Critical
Publication of JP5041480B2 publication Critical patent/JP5041480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Description

本発明は、ラインフィルタ用フェライトコアとして好適なMnZnフェライトに関する。   The present invention relates to a MnZn ferrite suitable as a ferrite core for a line filter.

近年、プラズマテレビ等の開発が盛んとなり、それに伴うノイズ対策も重要なものとなって来ている。特に、150kHz近傍のノイズ対策が重要となり、500kHz程度の周波数帯域まで高い初透磁率を有する材料が求められている。   In recent years, development of plasma televisions and the like has become active, and noise countermeasures associated therewith have become important. In particular, noise countermeasures in the vicinity of 150 kHz are important, and a material having a high initial permeability up to a frequency band of about 500 kHz is required.

従来よりノイズ対策部品に用いられてきたMnZnフェライトにおいて、透磁率は結晶磁気異方性を小さくすることにより高くなる。また、透磁率は平均結晶粒径を大きくすることにより高くなる。
結晶磁気異方性を小さくするためには、MnZnフェライトの主成分組成のZnO量をrich組成とすることが一般的に知られている。具体的には52.0mol%〜52.5mol%Fe、24.0〜28.0mol%MnO、残部ZnO付近の組成が高透磁率材料として製造されている。結晶粒径を大きくするためには、粒成長を促進することを目的として種種の粒成長添加物を適量添加する手法が用いられている。また、焼結保持温度を高くすることにより、粒成長を促進する手法も用いられている。特許文献1にはBiを添加し結晶粒径を大きくすることが提案されている。
In MnZn ferrite has been used in anti-noise component than conventional, the permeability is increased by Kusuru small magnetocrystalline anisotropy. Further, the magnetic permeability is increased by increasing the average crystal grain size.
In order to reduce the magnetocrystalline anisotropy, it is generally known that the ZnO content of the main component composition of MnZn ferrite is the Rich composition. Specifically 52.0mol% ~52.5mol% Fe 2 O 3 is, 24.0~28.0mol% MnO, the composition in the vicinity of the balance ZnO are produced as high-permeability material. In order to increase the crystal grain size, a technique of adding an appropriate amount of various grain growth additives for the purpose of promoting grain growth is used. In addition, a technique for promoting grain growth by increasing the sintering holding temperature is also used. Patent Document 1 proposes that Bi 2 O 3 is added to increase the crystal grain size.

しかしながら、粒成長添加物は異常粒成長促進因子でもあり、異常粒が発生しやすくなる。異常粒は、渦電流損失を増加させ比抵抗の低減につながり、結果として高周波域における初透磁率は低下する。また、結晶粒径を大きくするためには焼結温度を高くすることを述べたが、焼結温度を高くしすぎると焼結体表面からZnOが揮発し、その結果おこる組成勾配により歪みが生じ、透磁率の低下を招くことになる。また、低周波から高周波までの広帯域にわたり高い透磁率を示すためには材料の比抵抗を高くすることが必要であり、粒界に析出する添加物を添加し、粒界を高比抵抗化する方法も検討されている。以上述べたように、高い透磁率と広い周波数帯域にわたり高い透磁率を得ることは極めて困難である。   However, the grain growth additive is also an abnormal grain growth promoting factor, and abnormal grains are easily generated. Abnormal grains increase eddy current loss and lead to a decrease in specific resistance. As a result, the initial permeability in the high frequency region is lowered. In order to increase the crystal grain size, the sintering temperature is increased. However, if the sintering temperature is increased too much, ZnO volatilizes from the surface of the sintered body, resulting in distortion due to the resulting composition gradient. This leads to a decrease in magnetic permeability. In order to show high permeability over a wide band from low frequency to high frequency, it is necessary to increase the specific resistance of the material. Additives that precipitate at the grain boundaries are added to increase the specific resistance of the grain boundaries. Methods are also being considered. As described above, it is extremely difficult to obtain a high magnetic permeability and a high magnetic permeability over a wide frequency band.

特開昭47−8176号公報JP-A-47-8176

フェライト焼結体は金属系の圧粉体に比べて大きな透磁率を有するため、電源回路上のトランスやインダクタ等に多く用いられている。特にMnZnフェライトはNiZnフェライトに比べて、大きな透磁率を有することから、低周波域におけるトランスやラインフィルターとして用いられている。従って、MnZnフェライト材料開発は、トランス用途においては高透磁率化及び低損失化、ラインフィルター用途においては主に高透磁率化が主眼に行われてきた。 Ferrite sintered bodies have a larger magnetic permeability than metal green compacts, and are therefore often used for transformers and inductors on power supply circuits. In particular, Mn Zn ferrite has a larger magnetic permeability than NiZn ferrite, and is therefore used as a transformer or a line filter in a low frequency range. Accordingly, the development of Mn Zn ferrite materials has been mainly focused on increasing the magnetic permeability and loss in transformer applications and increasing the magnetic permeability mainly in line filter applications.

しかし、近年の薄型テレビやプラズマテレビの普及により、ラインフィルター用途においても広帯域のノイズ減衰特性が求められている。そのため、広い周波数帯域において高透磁率を示す材料が必要とされるが、一般的に、低い周波数で高透磁率の材料は、高い周波数まで高透磁率を維持することが困難であるという問題があった。従って、本発明の課題は、広い周波数帯域において高透磁率を示すMnZnフェライトを提供することにある。   However, with the recent spread of thin televisions and plasma televisions, broadband noise attenuation characteristics are also required for line filter applications. For this reason, a material having high permeability in a wide frequency band is required, but generally, a material having high permeability at a low frequency has a problem that it is difficult to maintain high permeability up to a high frequency. there were. Therefore, an object of the present invention is to provide a MnZn ferrite exhibiting high magnetic permeability in a wide frequency band.

本発明は上記の課題を解決するためになされたものであり、主成分としてFeを52.0mol%以上53.0mol%以下、ZnOを19.0mol%以上23.5mol%以下、MnOを23.5mol%以上29.0mol%以下、副成分としてSiOを0.005wt%以下、CaOを0.05wt%以上0.2wt%以下、MoO0.1wt%以上0.5wt%以下、Biを0.005wt%以上0.1wt%以下、Bを0.005wt%以上0.1wt%以下、Pを0.005wt%以上0.1wt%以下を含有してなり、焼結体の平均結晶粒径が30μm以上、100μm以下、比抵抗が20Ωcm以上、100Ωcm以下であることを特徴とするMnZnフェライトである。 The present invention has been made in order to solve the above-described problems. As main components, Fe 2 O 3 is 52.0 mol% or more and 53.0 mol% or less, ZnO is 19.0 mol% or more and 23.5 mol% or less, MnO the 23.5Mol% or more 29.0Mol% or less, 0.005 wt% SiO 2 as subcomponent less, 0.05 wt% or more 0.2 wt% or less CaO, the MoO 3 0.1 wt% or more 0.5 wt% Hereinafter, Bi 2 O 3 is 0.005 wt% or more and 0.1 wt% or less, B 2 O 3 is 0.005 wt% or more and 0.1 wt% or less, and P 2 O 5 is 0.005 wt% or more and 0.1 wt% or less. containing to Ri Na, average crystal grain size 30μm or more of the sintered body, 100 [mu] m or less, the specific resistance is more than 20 .OMEGA.cm, a MnZn ferrite which is characterized in der Rukoto below 100 .OMEGA.cm.

また、本発明は前記焼結体比抵抗が20Ωcm以上、100Ωcm以下であることを特徴とするMnZnフェライトである。 Further, the present invention is pre-Symbol sintered body having a specific resistance not less than 20 .OMEGA.cm, a MnZn ferrite which is characterized in that not more than 100 .OMEGA.cm.

本発明によれば、MnZnフェライトに添加するCaO量を0.05wt%以上0.2wt%以下とすることにより、結晶粒成長を阻害することなく、高比抵抗の粒界層を形成できることから、渦電流損失の低減が図れる。また、MnZnフェライトに添加するMoO3量を0.05wt%以上0.5wt%以下とすることにより、焼結体表面からZnOが揮発することのない焼結温度で結晶粒径を大きくすることができることにより、高透磁率フェライトが得られる。 According to the present invention, since the amount of CaO added to MnZn ferrite is 0.05 wt% or more and 0.2 wt% or less, a high resistivity grain boundary layer can be formed without hindering crystal grain growth. Eddy current loss can be reduced. Further, by setting the amount of MoO 3 added to MnZn ferrite to 0.05 wt% or more and 0.5 wt% or less, the crystal grain size can be increased at a sintering temperature at which ZnO does not volatilize from the surface of the sintered body. By doing so, a high permeability ferrite can be obtained.

また、MnZnフェライトに添加するSiO2量を0.005wt%以下としたのは、SiO2量を0.005wt%を超えて含有すると、結晶粒成長を阻害し、透磁率を著しく低下させてしまうからである。 The SiO 2 amount added to the MnZn ferrite is 0.005 wt% or less. If the SiO 2 content exceeds 0.005 wt%, the crystal grain growth is inhibited and the magnetic permeability is remarkably lowered. Because.

また、MnZnフェライトに添加するCaO量を0.05wt%以上0.2wt%以下としたのは、0.05wt未満であると粒界層形成が不十分であることから比抵抗が低くなり、渦電流損失の増大によって広い周波数帯域にわたり高い透磁率が得られないためであり、0.2wt%を超えると過剰のCaOが結晶粒成長を阻害し、十分な透磁率を得られないためである。   The reason why the amount of CaO added to MnZn ferrite is 0.05 wt% or more and 0.2 wt% or less is that if it is less than 0.05 wt, the grain boundary layer is not sufficiently formed, so that the specific resistance becomes low, and the vortex This is because a high magnetic permeability cannot be obtained over a wide frequency band due to an increase in current loss, and when it exceeds 0.2 wt%, excessive CaO inhibits crystal grain growth and a sufficient magnetic permeability cannot be obtained.

また、MnZnフェライトに添加するMoO3量を0.05wt%以上0.5wt%以下、MnZnフェライトに添加するBi23量を0.005wt%以上0.1wt%以下としたのはMoO3が0.05wt%未満、Bi23が0.005wt%未満であると結晶粒の成長が十分でないため透磁率が低くなり、MoO3が0.5wt%を超え、Bi23が0.1wt%を超えると過剰添加により、異常粒成長をもたらし広い周波数帯域にわたり高い透磁率が得られないためである。 Also, less 0.5 wt% or more 0.05 wt% of MoO 3 amount to be added to MnZn ferrite, the Bi 2 O 3 amount was not less than 0.005 wt% 0.1 wt% or less MoO 3 added to MnZn ferrite If it is less than 0.05 wt% and Bi 2 O 3 is less than 0.005 wt%, the crystal growth is insufficient and the magnetic permeability is lowered, MoO 3 exceeds 0.5 wt%, and Bi 2 O 3 is 0.00. This is because, if it exceeds 1 wt%, the excessive addition causes abnormal grain growth and a high magnetic permeability cannot be obtained over a wide frequency band.

また、MnZnフェライトに添加するB量を0.005wt%以上0.1wt%以下、Pを0.005wt%以上0.1wt%以下としたのは、B0.005wt%未満、P0.005wt%未満であると、焼結体の結晶粒径が十分でなく、透磁率が低いためであり、Bが0.1wt%を超え、Pが0.1wt%を超えると過剰添加により、異常粒成長をもたらし広い周波数帯域にわたり高い透磁率が得られないためである。 The amount of B 2 O 3 added to MnZn ferrite is 0.005 wt% or more and 0.1 wt% or less, and P 2 O 5 is 0.005 wt% or more and 0.1 wt% or less because B 2 O 3 is 0 If it is less than 0.005 wt% and P 2 O 5 is less than 0.005 wt%, the crystal grain size of the sintered body is insufficient and the magnetic permeability is low, and B 2 O 3 is 0.1 wt%. This is because, if P 2 O 5 exceeds 0.1 wt%, the excessive addition causes abnormal grain growth and a high magnetic permeability cannot be obtained over a wide frequency band.

また、得られた高透磁率MnZnフェライトにおいて焼結体の平均結晶粒径が30μ以上、100μm以下としたのは、平均結晶粒径が30μm未満であると結晶粒径が小さいため十分な透磁率が得られないためであり、100μmを超えると粒界相形成が不十分なことから比抵抗が低くなり、渦電流損失の増大によって広い周波数帯域にわたり高い透磁率が得られないためである。 Further, the average crystal grain size of the sintered body in high permeability MnZn ferrite obtained was 30 mu m or more, had a 100μm or less, sufficient for the average crystal grain size of a small grain size is less than 30μm This is because the magnetic permeability cannot be obtained. When the thickness exceeds 100 μm, the grain boundary phase is not sufficiently formed, so that the specific resistance is lowered, and the increase in eddy current loss makes it impossible to obtain a high magnetic permeability over a wide frequency band. .

また、比抵抗を20Ωcm以上、100Ωcm以下としたのは、比抵抗が20Ωcm未満であると渦電流損失の増大によって広い周波数帯域にわたり高い初透磁率を得られないためであり、比抵抗が100Ωcmを超えると結晶粒径が小さいため十分な透磁率が得られないためである。   The specific resistance is set to 20 Ωcm or more and 100 Ωcm or less because if the specific resistance is less than 20 Ωcm, a high initial permeability cannot be obtained over a wide frequency band due to an increase in eddy current loss. This is because if it exceeds, the crystal grain size is small, and sufficient magnetic permeability cannot be obtained.

本発明によれば、Fe23、ZnO、MnOを主成分とし、添加物としてSiO2が0〜0.005wt%、CaOが0.05wt%〜0.2wt%、MoO3が0.05wt%〜0.5wt%、Bi23が0.005wt%〜0.1wt%、B23が0.005〜0.1wt%、P25が0.005wt%〜0.1wt%を含有するMnZnフェライトにおいて、得られた焼結体の焼結体表面にMoO3とCaOを含む析出相を有し、平均結晶粒径が30μm以上、100μm以下、焼結体比抵抗が20Ωcm以上、100Ωcm以下であり、1kHz時の透磁率が12000以上、150kHz時の透磁率が12500以上である広い周波数帯域で高透磁率を有するMnZnフェライトが得られる。 According to the present invention, Fe 2 O 3 , ZnO, and MnO are the main components, and as additives, SiO 2 is 0 to 0.005 wt%, CaO is 0.05 wt% to 0.2 wt%, and MoO 3 is 0.05 wt%. % ~0.5wt%, Bi 2 O 3 is 0.005wt% ~0.1wt%, B 2 O 3 is 0.005~0.1wt%, P 2 O 5 is 0.005wt% ~0.1wt% In the MnZn ferrite containing, the sintered body surface of the obtained sintered body has a precipitated phase containing MoO 3 and CaO, the average crystal grain size is 30 μm or more and 100 μm or less, and the sintered body specific resistance is 20 Ωcm or more. MnZn ferrite having a high magnetic permeability in a wide frequency band of 100 Ωcm or less, having a permeability of 12000 or more at 1 kHz and a permeability of 12,500 or more at 150 kHz is obtained.

更に、本発明によれば、CaOを0.05wt%〜0.2wt%とすることにより、結晶粒成長を阻害することなく、高抵抗の粒界層を形成できることから、渦電流損失の低減を図れる。また、MoO3を0.05wt%〜0.5wt%、Bi23を0.005wt%〜0.1wt%、B23を0.005wt%〜0.1wt%、P25を0.005wt%〜0.1wt%とすることにより、焼結体表面からZnOが揮発することのない焼結温度で結晶粒径を大きくすることができ、その結果、高透磁率フェライトが得られる。 Furthermore, according to the present invention, by setting CaO to 0.05 wt% to 0.2 wt%, a high resistance grain boundary layer can be formed without hindering crystal grain growth, thereby reducing eddy current loss. I can plan. Also, MoO 3 is 0.05 wt% to 0.5 wt%, Bi 2 O 3 is 0.005 wt% to 0.1 wt%, B 2 O 3 is 0.005 wt% to 0.1 wt%, and P 2 O 5 is added. By setting the content to 0.005 wt% to 0.1 wt%, the crystal grain size can be increased at a sintering temperature at which ZnO does not volatilize from the surface of the sintered body, and as a result, a high permeability ferrite is obtained. .

以下、具体的な実施例を挙げ、本発明の実施の形態について説明する。   Hereinafter, specific examples will be given to describe embodiments of the present invention.

MnZnフェライトの製造に際しては、予め主成分及び添加物を所定の比率となるように秤量し、これらをアトライターを用いて2時間混合して混合粉末を得、次に、この混合粉末をスプレードライヤーで造粒し、所定の温度で2時間予焼される。予焼温度は組成範囲により850〜950℃の温度範囲内で適宜選択される。予焼粉末は、アトライター或いはボールミル等で粉砕後、スプレードライヤーでの造粒、成形、さらに焼結との通常のフェライト製造プロセスを経てMnZnフェライト焼結体が得られる。   In the production of MnZn ferrite, the main components and additives are weighed in advance so as to have a predetermined ratio, and these are mixed for 2 hours using an attritor to obtain a mixed powder. And pre-baked at a predetermined temperature for 2 hours. The pre-baking temperature is appropriately selected within the temperature range of 850 to 950 ° C. depending on the composition range. The pre-fired powder is pulverized with an attritor or a ball mill, and then a MnZn ferrite sintered body is obtained through a normal ferrite production process including granulation, molding with a spray dryer, and further sintering.

得られたMnZnフェライト焼結体は、焼結体表面にMoO3とCaOを含む析出相を有し、平均結晶粒径が30μm以上、100μm以下、焼結体比抵抗が20Ωcm以上、100Ωcm以下であり、1kHz時の透磁率が12000以上、150kHz時の透磁率が12500以上である広い周波数帯域で高透磁率を有する。 The obtained MnZn ferrite sintered body has a precipitated phase containing MoO 3 and CaO on the surface of the sintered body, the average crystal grain size is 30 μm or more and 100 μm or less, and the sintered body specific resistance is 20 Ωcm or more and 100 Ωcm or less. Yes, it has high permeability in a wide frequency band where the permeability at 1 kHz is 12000 or more and the permeability at 150 kHz is 12,500 or more.

主成分が52.5mol%のFe、22.5mol%のZnO、残部MnOで、主成分100に対して添加物としてSiO、CaO、MoO、Bi 、Bを表1に示す種々割合で各粉末原料を秤量し、これらの粉末をアトライターを用いて2時間混合した。次に、スプレードライヤーで造粒し、850℃の大気中で2時間予焼した。得られた予焼粉末をアトライターで粉砕した。粉砕後、バインダーであるポリビニールアルコールを加えてスプレードライヤーで造粒し、外径25mm、内径15mm、高さ12mmのトロイダル形状コアを成形し、その後、成形体を焼成に入れ、1320℃で焼結し、本発明のMnZnフェライト焼結体試料を得た。磁気特性は試料に10ターンの巻線を施し透磁率を測定した。比抵抗の測定は、試料の上下面にGa−Inペーストを塗布し、測定した。それらの結果は表1及び図1に示した。 The main component is 52.5 mol% Fe 2 O 3 , 22.5 mol% ZnO and the balance MnO, and the additive is added to the main component 100 as SiO 2 , CaO, MoO 3 , Bi 2 O 3 , P 2 O 5. Each powder raw material was weighed at various ratios shown in Table 1 for B 2 O 3 , and these powders were mixed for 2 hours using an attritor. Next, it was granulated with a spray dryer and pre-baked in the air at 850 ° C. for 2 hours. The obtained pre-baked powder was pulverized with an attritor. After pulverization, polyvinyl alcohol as a binder is added and granulated with a spray dryer to form a toroidal core having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 12 mm. The molded body is then placed in a firing furnace at 1320 ° C. It sintered and obtained the MnZn ferrite sintered compact sample of this invention. Magnetic characteristics were measured by applying a 10-turn winding to the sample. The specific resistance was measured by applying a Ga-In paste on the upper and lower surfaces of the sample. The results are shown in Table 1 and FIG.

また、比較品として、主成分が52.5mol%のFe、22.5mol%のZnO、残部MnOで、主成分100に対して添加物SiO、CaO、MoO、Bi 、Bを表1に示した添加量を添加したMnZnフェライトを発明品と同様の手順で作製した。透磁率測定、比抵抗測定及び平均結晶粒径測定も発明品と同様に行った。なお、表1において、添加量が、本発明の範囲内のものは発明品とし、範囲外のものは比較品とした。 Further, as comparative products, the main component is 52.5 mol% Fe 2 O 3 , 22.5 mol% ZnO and the balance MnO, and the additive SiO 2 , CaO, MoO 3 , Bi 2 O 3 with respect to the main component 100. It was prepared in P 2 O 5, B 2 O 3 the same procedure as inventions the MnZn ferrite added with added amounts shown in Table 1. Magnetic permeability measurement, specific resistance measurement and average crystal grain size measurement were also performed in the same manner as the invention. In Table 1, those with an addition amount within the range of the present invention were regarded as inventions, and those outside the range were regarded as comparative products.

また、従来品として主成分が52.5mol%のFe 、22.5mol%のZnO、残部MnOで、主成分100に対して添加物SiO 、CaOを表1に示した添加量を添加したMnZnフェライトを発明品と同様の手順で作製した。透磁率測定、比抵抗測定及び平均結晶粒径測定も発明品と同様に行った。 Further, as conventional products, the main components are 52.5 mol% Fe 2 O 3 , 22.5 mol% ZnO, and the remaining MnO, and the addition amounts of SiO 2 and CaO shown in Table 1 with respect to the main components 100 are as shown in Table 1. The added MnZn ferrite was produced in the same procedure as the product of the invention. Magnetic permeability measurement, specific resistance measurement and average crystal grain size measurement were also performed in the same manner as the invention.

表1は、発明品(1〜21)、比較品(1〜11)及び従来品の平均結晶粒径、比抵抗、1kHzにおける透磁率μ及び100kHzにおける透磁率μを示したものである。発明品全て(発明品1〜21)の試料で平均結晶粒径が30μm以上、100μm以下、焼結体比抵抗が20Ωcm以上、100Ωcm以下であり、1kHz時の透磁率が12000以上、150kHz時の透磁率が12500以上となっていることがわかる。   Table 1 shows the average crystal grain size, specific resistance, magnetic permeability μ at 1 kHz, and magnetic permeability μ at 100 kHz for the inventive products (1 to 21), comparative products (1 to 11) and conventional products. Samples of all inventive products (Inventive products 1 to 21) have an average crystal grain size of 30 μm or more and 100 μm or less, a sintered body specific resistance of 20 Ωcm or more and 100 Ωcm or less, and a magnetic permeability at 1 kHz of 12000 or more and 150 kHz. It can be seen that the magnetic permeability is 12,500 or more.

Figure 0005041480
Figure 0005041480

図1は、発明品6と従来品の初透磁率の周波数特性を示す。発明品は、測定を行った全周波数範囲で従来品と較べ透磁率が高く、広帯域にわたり高い初透磁率が得られていることから、ラインフィルタ用ノイズ対策部品の材料として有用である。   FIG. 1 shows the frequency characteristics of the initial permeability of Invention 6 and the conventional product. The inventive product is useful as a material for noise countermeasure parts for line filters because it has a higher magnetic permeability than the conventional product in the entire frequency range in which the measurement was performed and a high initial permeability over a wide band.

発明品6と従来品の透磁率(μ':実部複素透磁率、μ":虚部複素透磁率)の周波数特性を示すグラフ。The graph which shows the frequency characteristic of the magnetic permeability ((micro | micron | mu) ': real part complex magnetic permeability, (micro | micron | mu): imaginary part complex magnetic permeability) of the invention product 6 and a conventional product.

Claims (2)

主成分としてFeを52.0mol%以上53.0mol%以下、ZnOを19.0mol%以上23.5mol%以下、MnOを23.5mol%以上29.0mol%以下、副成分としてSiOを0.005wt%以下、CaOを0.05wt%以上0.2wt%以下、MoO0.1wt%以上0.5wt%以下、Biを0.005wt%以上0.1wt%以下、Bを0.005wt%以上0.1wt%以下、Pを0.005wt%以上0.1wt%以下を含有してなり、焼結体の平均結晶粒径が30μm以上、100μm以下であることを特徴とするMnZnフェライト。 Fe 2 O 3 the 52.0Mol% or more 53.0Mol% or less as a main component, ZnO and 19.0 mol% or more 23.5Mol% or less, less 29.0Mol% or more 23.5Mol% of MnO, SiO 2 as subcomponent Is 0.005 wt% or less, CaO is 0.05 wt% or more and 0.2 wt% or less, MoO 3 is 0.1 wt% or more and 0.5 wt% or less, and Bi 2 O 3 is 0.005 wt% or more and 0.1 wt% or less. , B 2 O 3 and 0.005 wt% or more 0.1 wt% or less, P 2 O 5 Ri greens contain more than 0.005 wt% 0.1 wt% or less, the average crystal grain size of the sintered body is more than 30μm , MnZn ferrite, characterized in der Rukoto below 100 [mu] m. 記焼結体比抵抗が20Ωcm以上、100Ωcm以下であることを特徴とする請求項1に記載のMnZnフェライト。 Before SL sintered body having a specific resistance not less than 20 .OMEGA.cm, MnZn ferrite according to claim 1, characterized in that not more than 100 .OMEGA.cm.
JP2007326652A 2007-12-19 2007-12-19 MnZn ferrite Active JP5041480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007326652A JP5041480B2 (en) 2007-12-19 2007-12-19 MnZn ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007326652A JP5041480B2 (en) 2007-12-19 2007-12-19 MnZn ferrite

Publications (2)

Publication Number Publication Date
JP2009152256A JP2009152256A (en) 2009-07-09
JP5041480B2 true JP5041480B2 (en) 2012-10-03

Family

ID=40921091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326652A Active JP5041480B2 (en) 2007-12-19 2007-12-19 MnZn ferrite

Country Status (1)

Country Link
JP (1) JP5041480B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104446408B (en) * 2013-09-25 2016-12-07 比亚迪股份有限公司 A kind of absorbing material and preparation method thereof
JP6411848B2 (en) * 2013-10-04 2018-10-24 株式会社トーキン Ferrite core and manufacturing method thereof
CN110054489A (en) * 2019-04-02 2019-07-26 华南理工大学 A kind of high amplitude magnetic conductivity MnZn Ferrite Material and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3653625B2 (en) * 1998-07-22 2005-06-02 ミネベア株式会社 High permeability Mn-Zn ferrite
JP2003068517A (en) * 2001-08-30 2003-03-07 Kawasaki Steel Corp Mn-Zn FERRITE
JP2004043262A (en) * 2002-07-15 2004-02-12 Jfe Chemical Corp Mn-Zn FERRITE AND ITS MANUFACTURING PROCESS
JP2004238211A (en) * 2003-02-03 2004-08-26 Jfe Chemical Corp Manganese-zinc ferrite
JP2006165479A (en) * 2004-12-10 2006-06-22 Tdk Corp Ferrite core and line filter

Also Published As

Publication number Publication date
JP2009152256A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP3108803B2 (en) Mn-Zn ferrite
CN106747395B (en) High-cutoff-frequency high-conductivity manganese-zinc ferrite material and preparation method thereof
US10679780B2 (en) Composite soft magnetic material and preparation method for same
CN101834047B (en) Ferrite material and laminated electronic element made of same
JP4694973B2 (en) MnCoZn ferrite and transformer core
JP2007150006A (en) Magnetic property recovery method of ferrite core
JP5089970B2 (en) MnCoZn ferrite and transformer core
JP3584439B2 (en) Mn-Zn ferrite and method for producing the same
JP3588693B2 (en) Mn-Zn ferrite and method for producing the same
JP5041480B2 (en) MnZn ferrite
JP2007204349A (en) Manufacturing method of low-loss oxide magnetic material
JP2010047438A (en) MnZn FERRITE AND MnZn FERRITE CORE
TW201814739A (en) Ferrite composition and electronic device
CN110342922B (en) Composite ferrite material, preparation method thereof and laminated inductor
JP2005330126A (en) MnZn FERRITE AND METHOD OF MANUFACTURING THE SAME
JP6314758B2 (en) MnZn ferrite and MnZn ferrite large core
JP2010120808A (en) MnZn FERRITE AND METHOD OF PRODUCING THE SAME
JP4750563B2 (en) MnCoZn ferrite and transformer core
JP2006199510A (en) HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni-BASED FERRITE
JP2009196841A (en) Manganese-zinc ferrite and manganese-zinc ferrite core
JP2005209708A (en) Transformer, ferrite core and manufacturing method therefor
JP2010215453A (en) NiCuZn FERRITE
JP2007031210A (en) Mn-Zn FERRITE
JP5660698B2 (en) Magnetic oxide material
JP7160720B2 (en) Heat resistant high permeability MnZn ferrite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

R150 Certificate of patent or registration of utility model

Ref document number: 5041480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250