KR20010072888A - Drugs for relieving carbonyl stress and peritoneal dialysates - Google Patents

Drugs for relieving carbonyl stress and peritoneal dialysates Download PDF

Info

Publication number
KR20010072888A
KR20010072888A KR1020017002299A KR20017002299A KR20010072888A KR 20010072888 A KR20010072888 A KR 20010072888A KR 1020017002299 A KR1020017002299 A KR 1020017002299A KR 20017002299 A KR20017002299 A KR 20017002299A KR 20010072888 A KR20010072888 A KR 20010072888A
Authority
KR
South Korea
Prior art keywords
peritoneal dialysis
carbonyl compound
carbonyl
dialysis solution
trapping agent
Prior art date
Application number
KR1020017002299A
Other languages
Korean (ko)
Other versions
KR100478181B1 (en
Inventor
도시오 미야타
Original Assignee
구로카와 기요시
도시오 미야타
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구로카와 기요시, 도시오 미야타 filed Critical 구로카와 기요시
Publication of KR20010072888A publication Critical patent/KR20010072888A/en
Application granted granted Critical
Publication of KR100478181B1 publication Critical patent/KR100478181B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/203Retinoic acids ; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/28Peritoneal dialysis ; Other peritoneal treatment, e.g. oxygenation
    • A61M1/287Dialysates therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/08Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock

Abstract

카르보닐화합물 트랩제를 유효성분으로 하는 복막투석액에 있어서의 복강내의 카르보닐 스트레스 개선제. 아미노구아니딘 등의 카르보닐화합물 트랩제에 의해, 복막투석액중에 생성 ·축적되는 카르보닐화합물이 불활성화, 또는 제거된다. 복막투석액의 액멸균중 및 보존중에 생성된 카르보닐화합물은, 미리 트랩제와 접촉시킴으로써 제거된다. 또 트랩제를 복막투석액에 첨가하거나, 카르보닐화합물 트랩용 카트리지를 사용하여 순환시킴으로써, 복막투석에 동반되어 복강내로 유출되는 환자혈액 유래의 카르보닐화합물의 제거도 가능해진다. 본 발명에 의해 카르보닐화합물에 의한 복막내 단백의 수식을 억제하여, 복막투석에 동반되는 복막상해를 줄일 수 있다.An intraperitoneal carbonyl stress improving agent in a peritoneal dialysis solution containing a carbonyl compound trapping agent as an active ingredient. Carbonyl compound trapping agents, such as aminoguanidine, inactivate or remove the carbonyl compound produced and accumulated in the peritoneal dialysis solution. The carbonyl compound produced during the liquefaction bactericidal and preservation of the peritoneal dialysis solution is removed by contacting the trapping agent in advance. In addition, by adding a trapping agent to the peritoneal dialysis solution or circulating using a carbonyl compound trap cartridge, the carbonyl compound derived from the patient's blood, which is accompanied by the peritoneal dialysis and flows out into the abdominal cavity, can also be removed. According to the present invention, modification of the intraperitoneal protein by the carbonyl compound can be suppressed, and the peritoneal injury accompanying peritoneal dialysis can be reduced.

Description

카르보닐 스트레스상태 개선제 및 복막투석액{Drugs for relieving carbonyl stress and peritoneal dialysates}Drugs for relieving carbonyl stress and peritoneal dialysates

만성 신부전 환자에게 행해지는 투석에는, 혈액투석과 복막투석이 있다. 복막투석이란, 복강내에 투석액을 일정시간 축류시켜, 체내의 노폐물을 복막을 통해 투석액속으로 배출시킨 후, 투석액을 회수함으로써 행해지는 투석방법이다. 복막투석은, 간헐적 복막투석법(IPD)과 지속적 외래복막투석법(CAPD:continuous ambulatory peritoneal dialysis)으로 크게 나뉜다. CAPD법은, IPD법의 장점을 도입, 복강내에 주입하는 관류액의 저류시간을 길게 하여, 1일 4회 정도의 액교환으로 하는 복막투석법이다.Dialysis performed in patients with chronic renal failure includes hemodialysis and peritoneal dialysis. Peritoneal dialysis is a dialysis method performed by axial flow of a dialysate in a peritoneal cavity for a predetermined time, discharging waste products in the body into the dialysate through the peritoneum, and then recovering the dialysate. Peritoneal dialysis is largely divided into intermittent peritoneal dialysis (IPD) and continuous ambulatory peritoneal dialysis (CAPD). The CAPD method is a peritoneal dialysis method which introduces the advantages of the IPD method, lengthens the retention time of the perfusion liquid injected into the abdominal cavity, and makes liquid exchange about four times a day.

복막투석은 간편하고 시간적인 구속이 적은 등의 장점을 가지지만, 복막투석을 장기간 계속하면 점점 제수능이 저하되어, 복부 단백질의 변성이나 경화, 복막융합 등이 일어나는 경우가 있는 것이 알려지고 있다.Peritoneal dialysis has advantages such as simple and low time constraints. However, it is known that deterioration of hydration capacity gradually decreases after peritoneal dialysis for a long period of time, resulting in degeneration of the abdominal protein, curing, and peritoneal fusion.

이들 원인의 일부는, 복막투석액에 포함되는 글루코오스에 있는 것으로 생각된다. 현재, 사용되고 있는 복막투석액의 대부분은, 침투압조절제로서 글루코오스를 함유한다. 글루코오스는 열에 대해 불안정하여, 멸균시에 일부가 분해되어, 단백질을 수식할 수 있는 반응성이 높은 카르보닐화합물이 분해산물로서 생성되는 것으로 생각된다. 또한, 글루코오스를 포함하는 복막투석액은, 멸균 후, 보존중에도 분해산물이 생성 ·축적되는 것으로 생각된다.Some of these causes are considered to be in glucose contained in the peritoneal dialysis solution. Currently, most of the peritoneal dialysis solution used contains glucose as a penetration regulator. Glucose is considered to be unstable to heat, and partly decomposes during sterilization, so that a highly reactive carbonyl compound capable of modifying the protein is produced as a degradation product. In addition, peritoneal dialysis solution containing glucose is considered to produce and accumulate decomposition products during storage after sterilization.

일반적으로 글루코오스의 분해는, 중성부근으로부터 염기성쪽에서 생기기 쉬운 것으로부터, 통상의 복막투석액으로는, 글루코오스의 안정성을 고려하여, 산성측(pH 5.0~5.4)의 pH를 주는 완충계가 사용되는 경우가 많다. 그러나, 이러한 산성 복막투석액은, 복강 마크로파지의 면역방어기구의 저하나 세균의 진입에 의한 복막염의 발생, 복막중피세포로의 상해성 등이 염려된다. 이러한 상반되는 문제점을 해소하기 위해, 중성부근에 있어서의 복막투석액중의 글루코오스의 분해에 유래하는 카르보닐화합물 생성방지, 또는 카르보닐화합물의 제거가 절실히 요망되고 있었다.In general, since the decomposition of glucose is likely to occur from the neutral side to the basic side, in general, peritoneal dialysis solution, in consideration of the stability of glucose, a buffer system which gives a pH of the acid side (pH 5.0 to 5.4) is often used. . However, such acid peritoneal dialysis solution is concerned about the deterioration of the immune defense mechanism of the abdominal macrophages, the occurrence of peritonitis due to the entry of bacteria, and the injury to peritoneal mesothelial cells. In order to solve these conflicting problems, it is urgently desired to prevent the production of carbonyl compounds or to remove the carbonyl compounds resulting from the decomposition of glucose in the peritoneal dialysis solution in the neutral vicinity.

한편, 고농도 글루코오스가 배합된 복막투석액은, 단백질을 수식하는 등, 복막에 있어 바람직하지 못하다는 관점에서, 보다 분해물의 생성이 낮은 글루코오스중합체를 사용한 복막투석액이 개발되고 있다(특개평10-94598호, Wilkie, M. E. et al., Perit. Dial. Int., 17:S47-50(1997)).On the other hand, from the viewpoint that the peritoneal dialysis solution containing high concentration of glucose is not preferable in the peritoneum, such as modifying the protein, a peritoneal dialysis solution using a glucose polymer having a lower decomposition product is being developed (Japanese Patent Application Laid-Open No. 10-94598). Wilkie, ME et al., Perit.Dial.Int., 17: S47-50 (1997).

또한 동일한 시점에서 침투압조절제로서 글루코오스를 대신하여 시클로덱스트린(특개평8-71146호), 2당류(특개평8-131541호), 아미노산(Faller, B. et al., Kidney Int., 50(suppl. 56), S81-85(1996))을 사용한 복막투석액도 제안되고 있다. 또한, 시스테인을 첨가하여 글루코오스의 분해를 억제한 복막투석액도 개시되어 있다(특개평5-105633호).At the same time, cyclodextrins (JP 8-71146), disaccharides (JP 8-131541), amino acids (Faller, B. et al., Kidney Int., 50 (suppl) were substituted for glucose as a penetration regulator. 56, peritoneal dialysis solution using S81-85 (1996)). Moreover, the peritoneal dialysis solution which suppressed the degradation of glucose by adding cysteine is also disclosed (Japanese Patent Laid-Open No. 5-105633).

이들 방법은 모두, 복막투석액중의 고농도 글루코오스에 기인하는 문제점의개선을 목적으로 한 것이다.These methods are all aimed at improving the problems caused by high concentration of glucose in peritoneal dialysis solution.

그런데, 만성 신부전 환자에서는, 고혈당의 유무에 관계없이 혈중이나 조직중에 반응성이 높은 카르보닐화합물이나 AGE(Advanced glycation end products)가 현저하게 축적되어 있는 것이 보고되어 있다(Miyata, T. et al., Kidney Int., 51:1170-1181(1997), Miyata, T. et al., J. Am. Soc. Nephrol., 7:1198-1206(1996), Miyata, T. et al., Kidney Int. 54:1290-1295(1998), Miyata, T. et al., J. Am. Soc. Nephrol. 9:2349-2356(1998)). 신부전에 있어서는, 비효소적 생화학반응에 의해 카르보닐화합물이 고부하상태(카르보닐 스트레스)로 되어, 단백질 수식이 항진되는 병태가 존재하고 있어, 당 ·지질로부터 카르보닐화합물이 생성되어 단백질을 수식하기 때문인 것으로 생각된다(Miyata, T. et al., Kidney Int. 55:389-399,(1999)). 카르보닐 스트레스는, 단순히 콜라겐이나 피브로넥틴(fibronectin) 등의 매트릭스단백질의 구축을 변화시킨다고 하는 문제 뿐 아니라, 카르보닐화합물이 가지는 각종 세포에 대한 생리활성 때문에, 복막투과성 항진 ·염증의 야기 등에도 관계하는 것으로 생각된다.However, in chronic renal failure patients, highly reactive carbonyl compounds and AGE (Advanced glycation end products) have been reported to accumulate in blood and tissues regardless of the presence of hyperglycemia (Miyata, T. et al., Kidney Int., 51: 1170-1181 (1997), Miyata, T. et al., J. Am. Soc. Nephrol., 7: 1198-1206 (1996), Miyata, T. et al., Kidney Int. 54: 1290-1295 (1998), Miyata, T. et al., J. Am. Soc.Nefrol. 9: 2349-2356 (1998). In renal failure, a condition in which a carbonyl compound becomes a high load state (carbonyl stress) by a non-enzymatic biochemical reaction and protein modification is enhanced, and a carbonyl compound is produced from sugar and lipids to modify the protein. (Miyata, T. et al., Kidney Int. 55: 389-399, (1999)). Carbonyl stress is not only a problem of changing the construction of matrix proteins such as collagen and fibronectin, but also related to peritoneal permeability and inflammation due to the physiological activity of various cells of the carbonyl compound. It is thought to be.

복막투석의 경우, 혈중의 노폐물은 복막을 통해 복막투석액중에 배설된다. 고침투압 복막투석액은, 신부전 환자의 혈중에 축적된 반응성이 높은 카르보닐화합물을, 복막을 사이에 두고 복강내의 복막투석액중에 모으는 작용이 있다. 그 때문에 복막투석액중의 카르보닐화합물 농도가 높은 카르보닐 스트레스상태가 초래되고, 복강내의 단백질이 카르보닐수식을 받아 복막의 기능이 저하되어, 복막경화증의 진전에 관여하는 것으로 생각된다.In the case of peritoneal dialysis, waste products in the blood are excreted in the peritoneal dialysis fluid through the peritoneum. The high-permeability peritoneal dialysis fluid has a function of collecting highly reactive carbonyl compounds accumulated in blood of renal failure patients in the peritoneal dialysis fluid across the peritoneum. Therefore, a carbonyl stress state with a high carbonyl compound concentration in the peritoneal dialysis solution is caused, the protein in the peritoneum receives carbonyl modification, and the function of the peritoneum decreases, which is thought to be involved in the development of peritoneal sclerosis.

실제로, 복막투석 환자에 있어서, 복강내가 도입된 글루코오스에 의해 카르보닐 스트레스상태로 되어 있는 것은, 내피 및 중피의 면역조직학적 검토로부터 증명되었다(Yamada, K. et al., Clin. Nephrol., 42:354-361(1994), Nakayama, M. et al., Kidney Int., 51:182-186(1997), Miyata, T. et al., J. Am. Soc. Nephrol. in press, Combet, S. et al., J. Am. Soc. Nephrol. in press, Inagi, R. et al., J. Am. Soc. Nephrol. in press).Indeed, in patients with peritoneal dialysis, the presence of carbonyl stress due to intraperitoneal glucose has been demonstrated from immunohistochemical examination of endothelial and mesothelial tissues (Yamada, K. et al., Clin. Nephrol., 42 : 354-361 (1994), Nakayama, M. et al., Kidney Int., 51: 182-186 (1997), Miyata, T. et al., J. Am. Soc.Nefrol. In press, Combet, S. et al., J. Am. Soc. Nephrol. In press, Inagi, R. et al., J. Am. Soc. Nephrol. In press).

본 발명은 신부전 환자의 치료에 사용되는 복막투석액에 관한 것이다.The present invention relates to peritoneal dialysis solution for use in the treatment of patients with renal failure.

도1은 복막투석액 및 복막투석배액중의 카르보닐화합물량을 나타내는 도이다.1 is a diagram showing the amount of carbonyl compound in peritoneal dialysis solution and peritoneal dialysis drainage liquid.

도2는 복막투석액 환자의 복막에 있어서의 카르보닐 수식단백의 조직적 국재를 나타내는 사진(상단) 및 그 모식도(하단)이다. 도중, A는 박리한 중피세포하의 결합조직중의 양성 개소를 나타낸다. B는 비후한 혈관벽의 양성개소를 나타낸다.Fig. 2 is a photograph (top) and a schematic diagram (bottom) showing the histological localization of carbonyl modified protein in the peritoneum of peritoneal dialysis fluid patients. In the meantime, A represents a positive location in the connective tissue under the mesothelial cells which have been separated. B represents the benign site of the thickened blood vessel wall.

도3은 글리옥살, 메틸글리옥살 및 3-데옥시글리코손을 첨가한 중피세포에 있어서의 VEGF mRNA의 발현을 나타내는 도이다. 여러 농도(0, 100, 200, 400μM)의 글리옥살(A), 3-데옥시글리코손(B) 및 메틸글리옥살(C)로 인큐베이터한 래트 중피세포배양으로부터 추출한 전RNA의 역전사를 행했다. VEGF 및 G3PDH cDNA를, 각각 30 및 21사이클의 PCR에 의해 증폭했다. 3회 연속 실험을 행하여 평균을 구했다. 각각의 실험 평균값에 관하여, G3PDH mRNA에 대한 VEGF mRNA의 비를 계산했다. 실험은 3회 행하고, 그 평균±S.D를 그래프로 했다. ※P<0.0005.Fig. 3 shows the expression of VEGF mRNA in mesothelial cells to which glyoxal, methylglyoxal and 3-deoxyglycosone were added. Reverse transcription of all RNAs extracted from rat mesothelial cell cultures incubated with glyoxal (A), 3-deoxyglycosone (B) and methylglyoxal (C) at various concentrations (0, 100, 200, 400 μM) was performed. VEGF and G3PDH cDNA were amplified by 30 and 21 cycles of PCR, respectively. Three consecutive experiments were performed to obtain an average. For each experimental mean value, the ratio of VEGF mRNA to G3PDH mRNA was calculated. The experiment was performed three times and the average ± S.D was graphed. ※ P <0.0005.

도4는 메틸글리옥살 첨가에 의한 미소혈관 내피세포에 있어서의 VEGF단백질의 산생을 나타내는 도이다. 인간 미소혈관 내피세포를 여러 농도(0, 200, 400μM)의 메틸글리옥살의 존재하에서 배양하고, ELISA에 의해 배양상청중으로 방출되는 VEGF단백질을 정량했다. 3회 실험의 대표적인 결과를 나타낸다. 데이터는 평균±range로 나타냈다. ※P<0.05, ※※P<0.01.Fig. 4 shows the production of VEGF protein in microvascular endothelial cells by methylglyoxal addition. Human microvascular endothelial cells were cultured in the presence of various concentrations of methylglyoxal (0, 200, 400 μM), and VEGF protein released into the culture supernatant was quantified by ELISA. Representative results of three experiments are shown. Data are expressed as mean ± range. ※ P <0.05, ※※ P <0.01.

도5는 메틸글리옥살을 첨가한 내피세포에 있어서의 VEGF mRNA의 발현을 나타내는 도이다. 인간 내피세포를 여러 농도(0, 100, 200, 400μM)의 메틸글리옥살의 존재하에서 배양하고, 전mRNA를 추출 후에 역전사반응을 행했다. VEGF 및 G3PDH cDNA를, 각각 30 및 21사이클의 PCR에 의해 증폭했다. 3회 연속으로 실험을 행해 평균을 구했다. 각각의 실험 평균값에 관하여, G3PDH mRNA에 대한 VEGF mRNA의 비를 계산했다. 실험은 3회 행하고, 그 평균±S.D를 그래프로 했다. ※P<0.05, ※※P<0.005, ※※※P<0.0001.Fig. 5 shows the expression of VEGF mRNA in endothelial cells to which methylglyoxal was added. Human endothelial cells were cultured in the presence of methylglyoxal at various concentrations (0, 100, 200, 400 μM), and total mRNA was extracted and reverse transcription was performed. VEGF and G3PDH cDNA were amplified by 30 and 21 cycles of PCR, respectively. The experiment was conducted three times in succession to find an average. For each experimental mean value, the ratio of VEGF mRNA to G3PDH mRNA was calculated. The experiment was performed three times and the average ± S.D was graphed. ※ P <0.05, ※※ P <0.005, ※※※ P <0.0001.

도6은 10일간 매일 메틸글리옥살을 복강내투여한 래트 복강조직에서의 VEGF mRNA의 발현을 나타내는 도이다. 복막에서의 VEGF 및 G3PDH mRNA의 발현을, 각각 28 및 16사이클의 RT-PCR에 의해 증폭했다. 3회 연속으로 실험을 행해 평균을 구했다. 각각의 실험 평균값에 관하여, G3PDH mRNA에 대한 VEGF mRNA의 비를 계산했다. 실험은 3회 행해, 그 평균±S.D를 그래프로 했다. ※※P<0.05.Figure 6 shows the expression of VEGF mRNA in rat peritoneal tissues intraperitoneally administered with methylglyoxal daily for 10 days. Expression of VEGF and G3PDH mRNA in the peritoneum was amplified by 28 and 16 cycles of RT-PCR, respectively. The experiment was conducted three times in succession to find an average. For each experimental mean value, the ratio of VEGF mRNA to G3PDH mRNA was calculated. The experiment was performed three times and the average ± S.D was graphed. ※※ P <0.05.

도7은 복막투석 환자의 복강내에서의 카르보닐 스트레스를 나타내는 도이다.Figure 7 shows the carbonyl stress in the abdominal cavity of peritoneal dialysis patients.

도8은 복막투석배액 인큐베이션에 의한 펜토시딘생성에 대한 아미노구아니딘의 첨가효과를 나타내는 도이다.FIG. 8 is a diagram showing the effect of addition of aminoguanidine to pentosidine production by intraperitoneal dialysis drainage incubation. FIG.

도9는 복막투석배액 인큐베이션에 의한 프로테인카르보닐생성에 대한 아미노구아니딘의 첨가효과를 나타내는 도이다.9 is a diagram showing the effect of the addition of aminoguanidine on the production of protein carbonyl by peritoneal dialysis drainage incubation.

도10은 3인의 복막투석 환자(환자 I, 환자 S 및 환자 K)의 복막투석(CAPD)배액중의 카르보닐화합물량에 대한, 아미노구아니딘의 첨가효과를 나타내는 도이다.Fig. 10 shows the effect of addition of aminoguanidine to the amount of carbonyl compounds in peritoneal dialysis (CAPD) fluid of three peritoneal dialysis patients (Patient I, Patient S, and Patient K).

도11은 산성환경에 있어서의 복막투석액중의 5-HFM생성에 대한, 아미노구아니딘의 첨가효과를 나타내는 도이다.Fig. 11 shows the effect of addition of aminoguanidine to 5-HFM production in peritoneal dialysis solution in an acidic environment.

도12는 중성환경에 있어서의 복막투석액중의 5-HFM생성에 대한, 아미노구아니딘의 첨가효과를 나타내는 도이다.Fig. 12 shows the effect of addition of aminoguanidine to 5-HFM production in peritoneal dialysis solution in neutral environment.

도13은 산성 및 중성환경에 있어서의 복막투석액중의 카르보닐화합물에 대한 아미노구아니딘의 첨가효과를 나타내는 도이다.Fig. 13 shows the effect of adding aminoguanidine to the carbonyl compound in the peritoneal dialysis solution in acidic and neutral environments.

도14는 복막투석액으로의 카르보닐화합물 트랩비드(trapping beads) 첨가에 의한 펜토시딘생성 억제효과를 나타내는 도이다.14 is a diagram showing the effect of inhibiting pentosidine production by adding carbonyl compound trapping beads to peritoneal dialysis solution.

도15는 복막투석액으로의 카르보닐화합물 트랩비드 첨가에 의한 카르보닐화합물 제거효과를 나타내는 도이다.Fig. 15 shows the effect of removing carbonyl compounds by addition of carbonyl compound trap beads to peritoneal dialysis solution.

도16은 디카르보닐용액으로의 활성탄 첨가에 의한 카르보닐화합물 제거효과를 나타내는 도이다.Fig. 16 shows the effect of removing carbonyl compounds by the addition of activated carbon to the dicarbonyl solution.

도17은 복막투석액으로의 활성탄 첨가에 의한 카르보닐화합물 제거효과를 나타내는 도이다.Fig. 17 shows the effect of removing carbonyl compounds by the addition of activated carbon to the peritoneal dialysis solution.

도18은 구아니딘을 사용했을 때의 글리옥살, 메틸글리옥살, 3-데옥시글루코손에 대한 트랩효과를 나타내는 도이다.Fig. 18 is a diagram showing the trapping effect on glyoxal, methylglyoxal and 3-deoxyglucosone when guanidine is used.

도19는 비구아나이드제에 메트포르민(Metformin)을 사용했을 때의, 글리옥살, 메틸글리옥살, 3-데옥시글루코손에 대한 트랩효과를 나타내는 도이다.Fig. 19 is a diagram showing a trapping effect on glyoxal, methylglyoxal and 3-deoxyglucosone when metformin is used for biguanide.

도20은 비구아나이드제에 부포르민(Buformin)을 사용했을 때의, 글리옥살, 메틸글리옥살, 3-데옥시글루코손에 대한 트랩효과를 나타내는 도이다.Fig. 20 is a diagram showing a trapping effect on glyoxal, methylglyoxal and 3-deoxyglucoson when buformin is used for biguanide.

도21은 비구아나이드제에 펜포르민(Phenformin)을 사용했을 때의, 글리옥살, 메틸글리옥살, 3-데옥시글루코손에 대한 트랩효과를 나타내는 도이다.Fig. 21 is a diagram showing the trapping effect on glyoxal, methylglyoxal and 3-deoxyglucoson when phenformin is used for biguanide.

도22는 아미노구아니딘을 사용했을 때의 글리옥살, 메틸글리옥살, 3-데옥시글루코손에 대한 트랩효과를 나타내는 도이다.Fig. 22 is a diagram showing the trapping effect on glyoxal, methylglyoxal and 3-deoxyglucosone when aminoguanidine is used.

도23은 SH화합물에 시스테인을 사용했을 때의 글리옥살, 메틸글리옥살, 3-데옥시글루코손에 대한 트랩효과를 나타내는 도이다.Fig. 23 shows the trapping effect on glyoxal, methylglyoxal, and 3-deoxyglucosone when cysteine is used for the SH compound.

도24는 SH화합물에 N-아세틸시스테인을 사용했을 때의 글리옥살, 메틸글리옥살, 3-데옥시글루코손에 대한 트랩효과를 나타내는 도이다.Fig. 24 shows the trapping effect on glyoxal, methylglyoxal, and 3-deoxyglucosone when N-acetylcysteine is used for the SH compound.

도25는 SH화합물에 GSH를 사용했을 때의 글리옥살, 메틸글리옥살, 3-데옥시글루코손에 대한 트랩효과를 나타내는 도이다.Fig. 25 is a diagram showing the trapping effect on glyoxal, methylglyoxal and 3-deoxyglucosone when GSH is used for the SH compound.

도26은 SH화합물에 알부민을 사용했을 때의 글리옥살, 메틸글리옥살, 3-데옥시글루코손에 대한 트랩효과를 나타내는 도이다.Fig. 26 shows the trapping effect on glyoxal, methylglyoxal, and 3-deoxyglucosone when albumin is used as the SH compound.

도27은 복막투석액에 SH화합물을 첨가했을 때의 펜토시딘의 생성 억제효과를 나타내는 도이다.Fig. 27 is a diagram showing the effect of inhibiting the production of pentosidine when the SH compound is added to the peritoneal dialysis solution.

발명의 개시Disclosure of the Invention

본 발명은 복막투석에 있어서의 카르보닐화합물에 의한 장해, 즉 카르보닐 스트레스상태의 개선을 위한 방법 및 이 방법을 실현하기 위한 투석액이나 약제의 제공을 과제로 한다. 본 발명에 있어서의 카르보닐화합물이란, 복막투석을 받는 환자에 유래하는 카르보닐화합물, 복막투석액 자체가 그 제조중 또는 보존중에 생성된 카르보닐화합물 및 복막투석중에 복강내에서 생성되는 카르보닐화합물이 대상으로 된다. 이들 카르보닐화합물에 의한 투석 환자에 대한 장해를, 가능한 한 작게 하는 것이 본 발명의 과제이다.An object of the present invention is to provide a method for improving the disorder caused by a carbonyl compound in peritoneal dialysis, that is, a carbonyl stress state, and a dialysate or drug for realizing the method. The carbonyl compound in the present invention includes a carbonyl compound derived from a patient undergoing peritoneal dialysis, a carbonyl compound produced in the peritoneal dialysis solution itself or during its storage, and a carbonyl compound produced in the peritoneal cavity during peritoneal dialysis. It becomes a target. It is a subject of the present invention to make the disorder to dialysis patients by these carbonyl compounds as small as possible.

본 발명자는, 환자의 복강내에 주입된 복막투석액중에 포함되는 반응성이 높은 카르보닐화합물은, 원래 복막투석액에 유래하는 것 만은 아니라고 하는 사실을 알게되었다. 즉, 복막투석 환자로부터 회수된 복막투석배액(排液)중의 글루코오스 이외의 카르보닐화합물은, 투석 전의 5배가 되어, 증가분은 혈액 유래의 카르보닐화합물로 생각되었다(도1). 이 사실로부터, 복강내의 복막투석액중의 카르보닐화합물은, 복막투석액의 가열멸균과정에서 생기는 카르보닐화합물, 또는 복막투석액의 보존중에 생성 ·축적된 카르보닐화합물에 더해, 혈액 유래의 카르보닐화합물 및 복강내에서 생성 ·축적되는 카르보닐화합물의 존재도 무시할 수 없는 것임을 알 수 있었다. 실제, 면역염색법을 사용한 복막투석 환자의 복막조직의 검사에 있어서도, 카르보닐 수식단백이 조직내에 국재(局在)하고 있었다(도2). 따라서, 복막투석에 동반하여 혈액으로부터 복강내에 유출하는 카르보닐화합물을 제거할 수 있으면, 카르보닐 스트레스상태의 개선이 보다 한층 효과적으로 행해질 것으로 추측된다.The inventors found out that the highly reactive carbonyl compound contained in the peritoneal dialysis solution injected into the peritoneal cavity of the patient does not originate from the peritoneal dialysis solution. That is, the carbonyl compounds other than glucose in the peritoneal dialysis drainage collected from the peritoneal dialysis patient were five times before dialysis, and the increase was considered to be a carbonyl compound derived from blood (Fig. 1). From this fact, the carbonyl compound in the peritoneal dialysis solution in addition to the carbonyl compound produced during the heat sterilization process of the peritoneal dialysis solution, or the carbonyl compound produced and accumulated during the storage of the peritoneal dialysis solution, the carbonyl compound derived from blood and It was also found that the presence of carbonyl compounds produced and accumulated in the abdominal cavity could not be ignored. Indeed, even in the examination of peritoneal tissues of peritoneal dialysis patients using immunostaining, carbonyl modified proteins were localized in the tissues (Fig. 2). Therefore, if the carbonyl compound flowing out of the abdominal cavity from the blood in conjunction with peritoneal dialysis can be removed, the carbonyl stress state can be improved more effectively.

본 발명자는, 신부전에 있어서는 생체내 단백질수식을 항진하는 병태가 존재하고 있어, 복막투석과 같이 복강내에 지속적으로 고농도 글루코오스를 주입하는 경우, 복강내의 카르보닐화합물이 축적된 복막투석액에 의해, 복강단백질은 한층 비효소적으로 수식을 받기 쉬운 상태에 놓여지는 것은 아닌가 생각했다(도7).The present inventors have a condition that promotes in vivo protein modification in renal failure, and in the case of continuously injecting high concentrations of glucose into the peritoneum like peritoneal dialysis, the peritoneal dialysis solution in which the carbonyl compound in the peritoneum is accumulated Thought to be placed in a state that is more susceptible to modification (figure 7).

이상과 같은 배경을 토대로, 본 발명자는 복막투석액에 유래하는 카르보닐화합물을 경감하는 투석액을 작성하기 위해 카르보닐화합물 트랩제가 유효한 것을 발견하고, 본 발명을 완성했다. 더욱이 본 발명자는, 혈중에 축적되는 카르보닐화합물을 중시하여, 카르보닐 스트레스에 의한 단백질수식을 중심으로 하여 복막투석 합병증을 저해할 수 있는 약제가 유용한 것을 발견하고 본 발명을 완성했다.Based on the above background, the present inventors have found that the carbonyl compound trapping agent is effective for producing a dialysis solution for reducing the carbonyl compound derived from the peritoneal dialysis solution, and completed the present invention. Furthermore, the present inventors focused on carbonyl compounds accumulated in the blood, and found a medicament capable of inhibiting peritoneal dialysis complications based on protein modification caused by carbonyl stress and completed the present invention.

즉 본 발명은, 카르보닐 스트레스상태 개선제와 그것을 응용한 복막투석액 및 약제에 관한 것으로, 보다 구체적으로는,That is, the present invention relates to a carbonyl stress state improving agent, a peritoneal dialysis solution and a drug applied thereto, and more specifically,

(1) 카르보닐화합물 트랩제를 유효성분으로 하는 복막투석에 있어서의 복강내 카르보닐 스트레스상태 개선제,(1) intraperitoneal carbonyl stress state improving agent in peritoneal dialysis containing carbonyl compound trapping agent as an active ingredient,

(2) (1)에 있어서, 카르보닐화합물 트랩제가, 불용성 담체에 고정화되어 있는 카르보닐 스트레스상태 개선제,(2) The carbonyl stress state improving agent according to (1), wherein the carbonyl compound trapping agent is immobilized on an insoluble carrier,

(3) (1)에 있어서, 카르보닐화합물 트랩제가, 복막투석액에 혼입시키기 위한 것인 카르보닐 스트레스상태 개선제,(3) The carbonyl stress state improving agent according to (1), wherein the carbonyl compound trapping agent is for incorporation into the peritoneal dialysis solution,

(4) (1) 내지 (3) 중 어느 하나에 있어서, 카르보닐화합물 트랩제가, 아미노구아니딘, 피리독사민, 히드라진, 또는 SH기 함유 화합물, 또는 그들의 유도체로 이루어진 군으로부터 선택되는 화합물인 카르보닐 스트레스상태 개선제,(4) The carbonyl compound according to any one of (1) to (3), wherein the carbonyl compound trapping agent is a compound selected from the group consisting of aminoguanidine, pyridoxamine, hydrazine, SH group-containing compounds, or derivatives thereof Stress improvers,

(5) (1) 내지 (3) 중 어느 하나에 있어서, 카르보닐화합물 트랩제가, 메일라드 반응(Maillard reaction)저해제인 카르보닐 스트레스상태 개선제,(5) The carbonyl stress state improving agent according to any one of (1) to (3), wherein the carbonyl compound trapping agent is a Maillard reaction inhibitor.

(6) (1)에 있어서, 카르보닐화합물 트랩제가, 카르보닐화합물을 흡착할 수 있는 복막투석액에 불용성 화합물인 카르보닐 스트레스상태 개선제,(6) The carbonyl stress state improving agent according to (1), wherein the carbonyl compound trapping agent is an insoluble compound in a peritoneal dialysis solution capable of adsorbing a carbonyl compound,

(7) (2) 및/또는 (6)의 카르보닐화합물 트랩제를 충전한 복막투석액중의 카르보닐화합물 트랩용 카트리지,(7) a cartridge for trapping carbonyl compounds in a peritoneal dialysis solution filled with the carbonyl compound trapping agent of (2) and / or (6),

(8) (7)의 카르보닐화합물 트랩용 카트리지에 복막투석액을 통과시키는 공정을 포함하는, 카르보닐화합물 함유량이 줄어든 복막투석액의 조제방법,(8) a method for preparing peritoneal dialysis solution with reduced carbonyl compound content, comprising passing the peritoneal dialysis solution to the carbonyl compound trap cartridge of (7),

(9) 다음의 공정을 포함하는, 카르보닐화합물 함유량이 줄어든 복막투석액의 조제방법,(9) a method for preparing a peritoneal dialysis solution with reduced carbonyl compound content, comprising the following steps:

a) (2) 및/또는 (6)의 카르보닐화합물 트랩제와 복막투석액을 접촉시키는 공정, 및a) contacting the peritoneal dialysis solution with the carbonyl compound trapping agent of (2) and / or (6), and

b) 카르보닐화합물 트랩제와 복막투석액을 분리하는 공정b) separating the carbonyl compound trapping agent and the peritoneal dialysis solution

(10) 카르보닐화합물 트랩제를 포함하는 복막투석액,(10) peritoneal dialysis solution containing a carbonyl compound trapping agent,

(11) (10)에 있어서, 제1실 및 제2실로 된 분획된 용기에 수용된 복막투석액에 있어서, 제1실에 환원당이 수용되고, 제2실에 카르보닐화합물 트랩제가 수용되어 있는 복막투석액,(11) The peritoneal dialysis solution according to (10), wherein the peritoneal dialysis solution contained in the divided chambers of the first chamber and the second chamber, wherein the reducing sugar is contained in the first chamber and the carbonyl compound trapping agent is contained in the second chamber. ,

(12) (10)에 있어서, 카르보닐화합물 트랩제가 복막투석액과 함께 복강내에 투여하기 위한 복막투석액,(12) The peritoneal dialysis solution according to (10), wherein the carbonyl compound trapping agent is administered intraperitoneally with the peritoneal dialysis solution,

에 관한 것이다.It is about.

또한 본 발명은, 복강내의 카르보닐 스트레스상태 개선방법에 있어서의 카르보닐화합물 트랩제의 사용에 관한 것이다. 본 발명은, 복막투석치료에 있어서의 카르보닐화합물 트랩제의 사용에 관한 것이다. 더욱이 본 발명은, 카르보닐 스트레스개선제의 제조방법에 있어서의 카르보닐화합물 트랩제의 사용에 관한 것이다.The present invention also relates to the use of a carbonyl compound trapping agent in a method for improving the carbonyl stress state in the abdominal cavity. The present invention relates to the use of a carbonyl compound trapping agent in peritoneal dialysis treatment. Moreover, this invention relates to the use of the carbonyl compound trapping agent in the manufacturing method of a carbonyl stress improvement agent.

본 발명에 있어서, 트랩의 대상이 되는 카르보닐화합물이란, 예를 들면 복막투석액의 제조과정 및 보존중에 생성하는 카르보닐화합물을 들 수 있다. 앞서 기술한 바와 같이, 침투압조절제로서 글루코오스를 고농도로 포함하는 복막투석액에는, 항상 카르보닐화합물 생성 가능성이 동반된다. 이러한 종류의 카르보닐화합물로서는, 예를 들면 이하와 같인 물질이 알려져 있다(Richard, J. U. et al., Fund. Appl. Toxic., 4:843-853(1984)).In this invention, the carbonyl compound used as a trap object is a carbonyl compound produced | generated during the manufacturing process and storage of a peritoneal dialysis solution, for example. As described above, the peritoneal dialysis solution containing high concentration of glucose as the penetration control agent is always accompanied by the possibility of producing carbonyl compounds. As this kind of carbonyl compound, the following substances are known, for example (Richard, J. U. et al., Fund. Appl. Toxic., 4: 843-853 (1984)).

·3-데옥시글루코손3-deoxyglucoson

·5-히드록시메틸푸르 푸랄(5-hydroxymethylfurfural, 이하 5-HMF로 생략함)5-hydroxymethylfurfural (5-hydroxymethylfurfural, hereinafter abbreviated as 5-HMF)

·포름알데히드Formaldehyde

·아세트알데히드Acetaldehyde

·글리옥살Glyoxal

·메틸글리옥살Methylglyoxal

·레불산· Lefoic acid

·푸르푸랄Furfural

·아라비노스Arabinos

본 발명에서는, 카르보닐화합물 트랩제를 투석시행중을 통해 사용함으로써, 복막투석액의 제조과정이나 보존중에 생성하는 카르보닐화합물 뿐 아니라, 신부전 환자의 혈중에 축적되어, 복막투석에 동반되어 복강내로 수송되는 이하와 같은 카르보닐화합물의 제거도 달성할 수 있다.In the present invention, by using the carbonyl compound trapping agent during dialysis, not only the carbonyl compound produced during the preparation or preservation of the peritoneal dialysis fluid, but also accumulated in the blood of the renal failure patient and transported into the peritoneal cavity due to peritoneal dialysis Removal of the following carbonyl compounds can also be achieved.

아스코르빈산에 유래하는 카르보닐화합물:Carbonyl Compounds Derived from Ascorbic Acid:

·데히드로아스코르빈산Dehydroascorbic acid

탄수화물, 지질, 또는 아미노산에 유래하는 카르보닐화합물:Carbonyl compounds derived from carbohydrates, lipids, or amino acids:

·글리옥살Glyoxal

·메틸글리옥살,Methylglyoxal,

·3-데옥시글루코손3-deoxyglucoson

·히드록시노네날Hydroxy nonenal

·말론디알데히드Malondialdehyde

·아크롤레인Acrolein

본 발명에 있어서의 카르보닐화합물 트랩제로서는, 이들 모든 카르보닐화합물에 대해, 화학적인 반응이나 흡착에 의해 카르보닐화합물의 단백질에 대한 수식활성을 잃게하는, 또는 저하시키는 것이 바람직하지만, 이들 카르보닐화합물 중에서 주요한 것에 대해서만 유효한 경우도 포함된다. 예를 들면 메틸글리옥살은, 카르보닐화합물 중에서도 비교적 반응성이 높은 것으로 되어 있어(Thornalley, R.J., Endocrinol. Metab. 3:149-166(1996), Inagi, R. et al., J. Am. Soc. Nephrol. in press 및 실시예 3 참조), 그 활성을 빼앗는 것은 병태생리학적인 의의가 크다. 따라서, 메틸글리옥살에 대해 유효한 화합물은, 본 발명에 있어서의 카르보닐화합물 트랩제로서 바람직하다고 할 수 있다. 구체적으로는, 실시예에도 나타내는 바와 같이, 활성탄, 구아니딘, 아미노구아니딘, 비구아나이드(beguanide)제, 시스테인, 또는 알부민 등의 화합물은, 메틸글리옥살에 대해 특히 유효한 카르보닐화합물 트랩제이다.As the carbonyl compound trapping agent in the present invention, it is preferable that all of these carbonyl compounds lose or modify the carbonyl compound's hydrophilic activity against proteins by chemical reaction or adsorption. Also included are those that are effective only for the major of the compounds. For example, methylglyoxal has relatively high reactivity among carbonyl compounds (Thornalley, RJ, Endocrinol. Metab. 3: 149-166 (1996), Inagi, R. et al., J. Am. Soc). Nephrol. In press and Example 3), the activity of the deprivation is significant pathophysiological significance. Therefore, the compound effective against methylglyoxal can be said to be preferable as a carbonyl compound trapping agent in this invention. Specifically, as shown in the examples, compounds such as activated carbon, guanidine, aminoguanidine, beguanide, cysteine, and albumin are particularly effective carbonyl compound trapping agents for methylglyoxal.

침투압조절제로서 사용하는 탄수화물에는, 글루코오스 보다도 안정성이 우수한 것도 보고되어 있지만, 가열멸균이나 보존중에 이들 카르보닐화합물의 생성을 완전하게 억제하는 것은 용이하지 않다. 따라서, 글루코오스 이외의 탄수화물을 사용하는 경우에도, 카르보닐화합물 트랩제의 사용에는 의미가 있다. 글루코오스 이외에 복막투석의 침투압조절제로서 사용하는 것이 가능한 탄수화물에는, 트레할로스(trehalose)(특개평7-323084), 가수분해 전분(특개평8-85701), 말티톨(maltitol)이나 락티톨(lactitol)(특개평8-131541), 또는 비환원성 올리고당이나 비환원성 다당(특개평10-94598) 등이 알려져 있다.Carbohydrates used as penetration pressure regulators have been reported to have better stability than glucose, but it is not easy to completely suppress the production of these carbonyl compounds during heat sterilization or storage. Therefore, even when using carbohydrates other than glucose, the use of the carbonyl compound trapping agent is meaningful. Examples of carbohydrates that can be used as a permeability regulator for peritoneal dialysis in addition to glucose include trehalose (JP-A-7-323084), hydrolyzed starch (JP-A-8-85701), maltitol and lactitol (extraordinary). 8-131541), or non-reducing oligosaccharides, non-reducing polysaccharides (Japanese Patent Application Laid-Open No. Hei 10-94598) and the like are known.

본 발명에 있어서의 카르보닐화합물 트랩제로서는, 카르보닐화합물과의 화학적인 반응이나 흡착에 의해 카르보닐화합물의 투석 환자에 대한 장해활성을 잃게하는 화합물, 또는 저하시키는 화합물로서, 그 화합물 그 자체는 투석 환자에 대해 안전한 물질을 사용한다. 이러한 화합물에는, 예를 들면 이하와 같은 것이 알려져 있다. 또한, 본 발명의 카르보닐화합물 트랩제는, 단독으로 사용하는 것 외에, 2종류 이상 배합제로서 사용하더라도 좋다.As the carbonyl compound trapping agent in the present invention, a compound which loses the damaging activity of a carbonyl compound to a dialysis patient by a chemical reaction or adsorption with a carbonyl compound, or a compound that lowers the compound itself. Use materials that are safe for dialysis patients. As such a compound, the following are known, for example. The carbonyl compound trapping agent of the present invention may be used alone or in combination of two or more kinds thereof.

·아미노구아니딘(Foote, E. F. et al., Am. J. Kidney Dis., 25:420-425(1995)).Aminoguanidine (Foote, E. F. et al., Am. J. Kidney Dis., 25: 420-425 (1995)).

·±2-이소프로필리덴히드라조노-4-옥소-티아졸리딘-5-일아세타닐리드(±2-isopropylidenehydrazono-4-oxo-thiazolidin-5-ylacetanilide:OPB-9195) (S.Nakamura,1997,Diabetes.46:895-899)± 2-isopropylidenehydrazono-4-oxo-thiazolidin-5-ylacetanilide (± 2-isopropylidenehydrazono-4-oxo-thiazolidin-5-ylacetanilide: OPB-9195) (S. Nakamura, 1997 , Diabetes. 46: 895-899)

더욱이 카르보닐화합물 트랩제로서는, 예를 들면 이하와 같은 화합물 또는 그들의 유도체로서, 카르보닐화합물 트랩제로서 기능하는 화합물을 사용할 수 있다. 또한, 유도체란, 화합물의 어느 위치에서 원자 또는 분자의 치환이 일어나고 있는 화합물을 가리킨다.Moreover, as a carbonyl compound trapping agent, the compound which functions as a carbonyl compound trapping agent can be used, for example as the following compounds or derivatives thereof. In addition, a derivative refers to the compound in which substitution of an atom or a molecule | numerator occurs in any position of a compound.

(1) 메틸구아니딘 등의 구아니딘유도체(특개소62-142114호, 특개소62-249908호, 특개평1-56614호, 특개평1-83059호, 특개평2-156호, 특개평2-765호, 특개평2-42053호, 특개평6-9380호, 특표평5-505189호).(1) Guanidine derivatives such as methyl guanidine (Japanese Patent Laid-Open Nos. 62-142114, JP-A 62-249908, JP-A-56614, JP-A-83059, JP-A 2-156, JP-A 2-765 Japanese Patent Application Laid-Open No. 2-42053, Japanese Patent Laid-Open No. 6-9380, Japanese Patent Laid-Open No. 5-505189).

(2) 술포닐히드라진 등의 히드라진유도체.(2) hydrazine derivatives such as sulfonylhydrazine.

(3) 피라졸론(특개평6-287179호), 피라졸린(특개평10-167965호), 피라졸(특개평6-192089호, 특개평6-298737호, 특개평6-298738호), 이미다졸리딘(특개평5-201993호, 특개평6-135968호, 특개평7-133264호, 특개평10-182460호), 히단토인(특개평6-135968호) 등의 2개의 질소원자를 갖는 5원복소환식 화합물.(3) pyrazolone (Japanese Patent Laid-Open No. 6-287179), pyrazoline (Japanese Patent Laid-Open No. 10-167965), pyrazole (Japanese Patent Laid-Open No. 6-192089, Japanese Patent Laid-Open No. 6-298737, Japanese Patent Laid-Open No. 6-298738), Two nitrogen atoms such as imidazolidine (Japanese Patent Laid-Open Publication No. 5-201993, Japanese Patent Laid-Open Publication No. Hei 6-135968, Japanese Patent Laid-Open Publication No. Hei 7-133264, Japanese Patent Application Laid-Open No. 10-182460) and Hydantoin 5-membered heterocyclic compound having a compound.

(4) 트리아졸(특개평6-192089호) 등의 3개의 질소원자를 갖는 5원복소환식 화합물.(4) 5-membered heterocyclic compounds having three nitrogen atoms, such as triazole (Japanese Patent Application Laid-Open No. Hei 6-192089).

(5) 티아졸린(특개평10-167965호), 티아졸(특개평4-9375호, 특개평9-59258호), 티아졸리딘(특개평5-201993호, 특개평3-261772호, 특개평7-133264호, 특개평8-157473호) 등의 1개의 질소원자와 1개의 유황원자를 갖는 5원복소환식 화합물.(5) Thiazoline (Japanese Patent Application Laid-Open No. Hei 10-167965), Thiazole (Japanese Patent Application Laid-Open No. Hei 4-9375, Japanese Patent Application Laid-Open No. Hei 9-59258), Japanese Patent Application Laid-Open No. Hei 5-201993; 5-membered heterocyclic compounds having one nitrogen atom and one sulfur atom, such as Japanese Patent Application Laid-Open No. Hei 7-133264 and 8-157473).

(6) 옥사졸(특개평9-59258호) 등의 1개의 질소원자와 1개의 산소원자를 갖는 5원복소환식 화합물.(6) 5-membered heterocyclic compounds having one nitrogen atom and one oxygen atom, such as oxazole (Japanese Patent Application Laid-Open No. Hei 9-59258).

(7) 피리딘(특개평10-158244호, 특개평10-175954호), 피리미딘(특표평7-500811호) 등의 함질소 6원복소환식 화합물.(7) Nitrogen-containing six-membered heterocyclic compounds such as pyridine (Japanese Patent Laid-Open Publication No. Hei 10-158244, Japanese Patent Laid-Open Publication No. Hei 10-175954) and pyrimidine (Japanese Patent Laid-Open Publication No. Hei 7-500811).

(8) 인다졸(특개평6-287180호), 벤조이미다졸(특개평6-305964호), 퀴놀린(특개평3-161441호) 등의 함질소축합 복소환식 화합물.(8) Nitrogen-containing condensed heterocyclic compounds such as indazole (Japanese Patent Laid-Open No. 6-287180), benzoimidazole (Japanese Patent Laid-Open No. 6-305964), and quinoline (Japanese Patent Laid-Open No. 3-161441).

(9) 벤조티아졸(특개평6-305964호) 등의 함황함질소축합 복소환식 화합물.(9) Sulfur-containing nitrogen-containing heterocyclic compounds such as benzothiazole (Japanese Patent Application Laid-Open No. Hei 6-305964).

(10) 벤조티오펜(특개평7-196498호) 등의 함황축합 복소환식 화합물.(10) Sulfur-containing condensed heterocyclic compounds such as benzothiophene (JP-A-7-196498).

(11) 벤조피란(특개평3-204874호, 특개평4-308586호) 등의 함산소축합 복소환식 화합물.(11) Oxygen-condensed heterocyclic compounds, such as benzopyran (Japanese Patent Laid-Open No. 3-204874, Japanese Patent Laid-Open No. 4-308586).

(12) 카르바조일(특개평2-156호, 특개평2-753호), 카르바진산(특개평2-167264호), 히드라진(특개평3-148220호) 등의 질소화합물.(12) Nitrogen compounds, such as carbazoyl (Japanese Patent Laid-Open No. 2-156 and Japanese Patent Laid-Open No. 2-753), carbazin acid (Japanese Patent Laid-Open No. 2-167264), and hydrazine (Japanese Patent Laid-Open No. 3-148220).

(13) 벤조퀴논(특개평9-315960호), 히드로퀴논(특개평5-9114호) 등의 퀴논류.(13) Quinones, such as benzoquinone (Japanese Patent Laid-Open No. 9-315960) and hydroquinone (Japanese Patent Laid-Open No. 5-9114).

(14) 지방족 디카르복실산(특개평1-56614호, 특개평5-310565호).(14) Aliphatic dicarboxylic acids (Japanese Patent Laid-Open No. Hei 1-56614, Japanese Patent Laid-Open No. 5-310565).

(15) 규소 함유 화합물(특개소62-249709호).(15) Silicon-containing compound (Japanese Patent Application Laid-Open No. 62-249709).

(16) 유기 게르마늄화합물(특개평2-62885호, 특개평5-255130호, 특개평7-247296호, 특개평8-59485호).(16) Organic germanium compounds (Japanese Patent Laid-Open No. 2-62885, Japanese Patent Laid-Open No. 5-255130, Japanese Patent Laid-Open No. 7-247296, Japanese Patent Laid-Open No. 8-59485).

(17) 후라보노이드류(특개평3-240725호, 특개평7-206838호, 특개평9-241165호, WO94/04520).(17) Flavonoids (Japanese Patent Application Laid-Open No. 3-240725, Japanese Patent Application Laid-Open No. 7-206838, Japanese Patent Application Laid-Open No. 9-241165, WO 94/04520).

(18) 알킬아민류(특개평6-206818호, 특개평9-59233호, 특개평9-40626호, 특개평9-124471호).(18) Alkylamines (Japanese Patent Application Laid-Open No. 6-206818, Japanese Patent Application Laid-Open No. 9-59233, Japanese Patent Application Laid-Open No. 9-40626, Japanese Patent Application Laid-Open No. 9-124471).

(19) 아미노산류(특표평4-502611호, 특표평7-503713호).(19) Amino acids (Japanese Patent Laid-Open No. 4-502611, Japanese Patent Laid-Open No. 7-503713).

(20) 아스코클로린(특개평6-305959호), 안식향산(WO91/11997), 피롤로나프틸리디늄(특개평10-158265호) 등의 방향족화합물.(20) Aromatic compounds, such as ascorroline (Japanese Patent Laid-Open No. Hei 6-305959), benzoic acid (WO 91/11997), and pyrrolonaphthyridinium (Japanese Patent Laid-Open No. Hei 10-158265).

(21) 폴리펩티드(특표평7-500580호).(21) Polypeptides (JP-A-7-500580).

(22) 피리독사민 등의 비타민류(WO97/09981).(22) Vitamins, such as pyridoxamine (WO97 / 09981).

(23) 글루타티온, 시스테인, N-아세틸시스테인 등의 SH기 함유 화합물.(23) SH group-containing compounds such as glutathione, cysteine and N-acetylcysteine.

(24) 환원형 알부민 등의 SH기 함유 단백.(24) SH group-containing proteins such as reduced albumin.

(25) 테트라사이클린계 화합물(특개평6-256280호).(25) Tetracycline compound (Japanese Patent Laid-Open No. 6-256280).

(26) 키토산류(특개평9-221427호).(26) Chitosans (Japanese Patent Laid-Open No. 9-221427).

(27) 탄닌류(특개평9-40519호).(27) Tannins (Japanese Patent Application Laid-Open No. 9-40519).

(28) 제4급 암모늄이온 함유 화합물.(28) Quaternary ammonium ion containing compound.

(29) 펜포르민, 부포르민, 또는 메트포르민 등의 비구아나이드제.(29) Biguanides, such as phenformin, buformin, or metformin.

(30) 이온교환 수지.(30) ion exchange resins.

(31) 활성탄, 실리카겔, 알루미나, 탄산칼슘 등의 무기 화합물.(31) Inorganic compounds such as activated carbon, silica gel, alumina and calcium carbonate.

이상과 같은 화합물에는, 일반적으로 메일라드(Maillard) 반응저해제로서 알려져 있는 화합물이 포함된다. 메일라드반응이란, 글루코오스 등의 환원당과 아미노산이나 단백질 사이에 생기는 비효소적인 당화반응으로, 1912년에 메일라드가 아미노산과 환원당 혼합물을 가열하면 갈색으로 착색되는 현상에 주목하여 보고했다(Maillard, L. C., Compt. Bend. Soc. Biol., 72:599(1912). 이 메일라드반응은, 식품의 가열처리나 저장사이에 생기는 갈변화, 방향성분의 생성, 정미(呈味), 단백질변성 등에 관여하고 있는 것으로부터, 식품화학분야에서 연구가 진행되어 왔다.Such compounds include compounds generally known as Maillard inhibitors. The Maillard reaction is a non-enzymatic glycosylation reaction between reducing sugars such as glucose and amino acids or proteins. In 1912, Maillard reported the fact that browning occurs when the mixture of amino acids and reducing sugars is heated (Maillard, LC). , Compt.Bend.Soc.Biol., 72: 599 (1912), this Maillard reaction is involved in the browning changes, heating, storage, flavoring and protein denaturation of foods during heating and storage. Since doing so, research has been advanced in the field of food chemistry.

그러나, 1968년 헤모글로빈의 미소획분인 글리코실헤모글로빈(HbAlc)이 생체내에서 동정되고, 더욱이 이것이 당뇨병 환자에게 있어서 증가하는 것이 판명되어(Rahbar, S., Clin. Chim. Acta, 22: 296(1968)), 그것을 계기로 생체내에 있어서의 메일라드반응의 의의 및 당뇨병합병증, 동맥경화 등의 성인병의 발증이나 노화의 진행과의 관계가 주목되도록 되어 왔다. 그리고, 이러한 생체내의 메일라드반응을 저해하는 물질의 탐색이 정력적으로 행해져, 상술의 화합물류가 메일라드반응 저해제로서 발견되었다.However, in 1968 glycosilhemoglobin (HbAlc), a small fraction of hemoglobin, was identified in vivo, and furthermore it was found to increase in diabetics (Rahbar, S., Clin. Chim. Acta, 22: 296 (1968). ), The significance of the Maillard response in vivo and the relationship between the onset of aging and the progression of aging such as diabetic complications and arteriosclerosis have been noted. Then, the search for a substance that inhibits the Maillard reaction in vivo was energetically performed, and the above-mentioned compounds were found as Maillard reaction inhibitors.

그러나, 이러한 메일라드반응 저해제가, 복막투석액이나 혈중 유래의 카르보닐화합물을 배제하여 복막투석 환자의 카르보닐 스트레스상태를 개선하고, 카르보닐 스트레스에 기인하는 복막투석 합병증을 저해할 수 있다고 하는 사실은, 전혀 알려져 있지 않았다.However, the fact that these Mailrad reaction inhibitors can remove the peritoneal dialysis fluid or blood-derived carbonyl compounds to improve the carbonyl stress state of peritoneal dialysis patients and inhibit the peritoneal dialysis complications caused by carbonyl stress , Was not known at all.

또한, 본 발명의 카르보닐화합물 트랩제에는, 상술의 메일라드반응 저해제로 대표되는 유기 화합물 외에, 이온교환 수지 등의 고분자화합물, 또는 활성탄이나 실리카겔, 알루미나, 탄산칼슘 등의 무기 화합물도 사용할 수 있다. 이들 화합물은 복막투석액에 대해 불용성 카르보닐화합물 트랩제로서, 그 카르보닐화합물 흡착능을 이용하여 카르보닐화합물을 트랩할 수 있다. 이들은 크로마토그래피의 충전제로서 알려져 있는 것이지만, 카르보닐 스트레스상태의 개선에 유용한 사실은 알려져 있지 않다.In addition, the carbonyl compound trapping agent of the present invention can be used in addition to the organic compounds represented by the aforementioned Maillard reaction inhibitors, polymer compounds such as ion exchange resins, or inorganic compounds such as activated carbon, silica gel, alumina and calcium carbonate. . These compounds are insoluble carbonyl compound trapping agents for the peritoneal dialysis solution, and the carbonyl compounds can be trapped using the carbonyl compound adsorption capacity. These are known as fillers for chromatography, but the fact that they are useful for improving the carbonyl stress state is not known.

종래, 활성탄을 사용한 흡착형 혈액정화기가, 약물중독이나 간성혼수시(肝性昏睡時)의 혈액정화나, 다장기부전으로서의 급성 신부전발증의 초기에 증가하는 내인성 ·외인성의 각종 톡신이나 혈관작동성 물질의 제거를 목적으로 한 혈액투석의 보조요법으로서 사용되고 있다. 그러나, 이러한 흡착형 혈액정화기가 복막투석액중 또는 투석중에 복강에 축적되는 카르보닐화합물의 제거에 유효하다는 사실은 전혀 알려져 있지 않았다.Conventionally, adsorption-type blood purifiers using activated carbon have various endogenous and exogenous toxins and vascular function that increase in the early stages of blood poisoning during drug poisoning or hepatic coma and acute renal development in multiple organ failure. It is used as an adjuvant therapy of hemodialysis for the purpose of removing substances. However, it is not known at all that such an adsorption type blood purifier is effective for the removal of carbonyl compounds accumulated in the peritoneal cavity in peritoneal dialysis solution or during dialysis.

또한, 특개소58-169458호 공보에는, 고체입자상 흡수제를 함유하는 복막투석액 및 그 복막투석액을 사용한 복막투석방법에 관한 발명이 기재되어 있다. 그러나, 동공보에 의하면, 고체입자상 흡수제는, 크레아티닌이나 저분자량 대사산물의 제거를 위해 첨가되고 있어, 이것이 복막투석액중 또는 투석중에 복강에 축적되는카르보닐화합물의 제거에 유용하다는 기재는 전혀 없다. 또한, 상기 복막투석방법을 사용함으로써, 복막투석 환자의 카르보닐 스트레스상태가 개선된다는 것은, 시사도 교사도 되어 있지 않다.Further, Japanese Patent Application Laid-Open No. 58-169458 discloses a peritoneal dialysis solution containing a solid particulate water absorbing agent and an invention related to a peritoneal dialysis method using the peritoneal dialysis solution. However, the publication discloses that the solid particulate water absorbing agent is added for removal of creatinine and low molecular weight metabolites, and there is no description that this is useful for removing carbonyl compounds accumulated in the peritoneal cavity in peritoneal dialysis solution or during dialysis. Furthermore, neither the teaching nor the teachings of the improvement of the carbonyl stress state in a peritoneal dialysis patient by using the above-mentioned peritoneal dialysis method are provided.

본 발명에 있어서의 카르보닐화합물 트랩제를 첨가하는 베이스가 되는 복막투석액의 조성은, 공지의 것으로 하면 좋다. 일반적인 복막투석액은, 침투압조절제, 완충제 및 무기 염류 등으로 구성되어 있다. 침투압조절제에는 앞서 열거한 바와 같은 당류가 사용된다. 완충제로서는, 주로 글루코오스의 안정성을 고려하여 산성측(pH 5.0-5.4)의 pH를 주는 완충계가 사용되는 경우가 많다. 물론, 침투압조절제에 글루코오스를 가하지 않은 것으로는, 보다 생리적인 pH인 7.0 전후의 pH를 주는 완충제를 이용할 수 있다. 또한, 글루코오스를 사용하면서 중성역의 pH를 이용할 수 있도록, 사용시에 pH를 조절하기 위한 완충계를 따로 포장하는 상품형태도 고안되고 있다. 또한, 본 발명에서는, 가열멸균이나 장기보존시의 글루코오스의 분해에 유래하는 카르보닐화합물이 제거되기 때문에, 종래 글루코오스의 분해를 위해 제제학적으로 조제가 곤란했던 중성역의 pH를 주는 완충계를 바람직하게 사용할 수 있다. 더욱이 복막투석액에는, 통상, 염화나트륨, 염화칼슘, 또는 염화마그네슘과 같은 무기 염류가 첨가된다. 이들의 염류는, 복막투석을 생리적인 조건과 비슷하게 하여, 생체적합성의 향상을 기대하여 첨가되는 것이다.The composition of the peritoneal dialysis solution serving as the base to which the carbonyl compound trapping agent in the present invention is added may be a known one. A general peritoneal dialysis solution is composed of a penetration regulator, a buffer, an inorganic salt, and the like. As the penetration regulator, sugars as listed above are used. As a buffer, the buffer system which gives the pH of the acidic side (pH 5.0-5.4) is mainly used in consideration of glucose stability. As a matter of course, when glucose is not added to the penetration regulator, a buffer that gives a pH of about 7.0, which is a more physiological pH, can be used. In addition, in order to use the pH of the neutral region while using glucose, a commercially available form of packaging for the buffer to adjust the pH at the time of use is also devised. In addition, in the present invention, since the carbonyl compound derived from the decomposition of glucose at the time of heat sterilization or long-term storage is removed, a buffer system giving a neutral pH that is difficult to formulate conventionally for the decomposition of glucose is preferable. Can be used. Furthermore, inorganic salts such as sodium chloride, calcium chloride, or magnesium chloride are usually added to the peritoneal dialysis solution. These salts are added in anticipation of improvement of biocompatibility by making peritoneal dialysis similar to physiological conditions.

본 발명의 카르보닐화합물 트랩제는, 이러한 공지의 처방에 대해, 복막투석액의 배합시에 첨가하고, 그대로 밀봉하여 가열멸균할 수 있다. 그렇게 함으로써, 가열멸균처리에 동반되는, 이들 주성분으로부터의 카르보닐화합물의 생성에 대해예방적인 작용을 기대할 수 있다. 또한, 제1실 및 제2실로 된 분획된 용기에 복막투석액을 수용하여, 제1실에 환원당을 수용하고, 제2실에 카르보닐화합물 트랩제를 수용하여, 사용직전에 혼합하더라도 좋다. 이 경우, 멸균시 및 보존시에 생성한 카르보닐화합물은, 혼합된 카르보닐화합물 트랩제와 신속하게 결합한다. 그리고, 복강내에 투여된 후, 여잉의 카르보닐화합물 트랩제가 혈중 유래의 카르보닐화합물을 포착한다. 복막투석액에 첨가되는 카르보닐화합물 트랩제는, 단독이더라도 좋고, 복수종을 혼합하여 사용할 수도 있다.The carbonyl compound trapping agent of the present invention can be added at the time of compounding the peritoneal dialysis solution, sealed as it is, and sterilized by heat for such a known formulation. By doing so, a preventive action can be expected for the production of carbonyl compounds from these main components that accompany the heat sterilization treatment. Further, the peritoneal dialysis solution may be accommodated in the divided chambers of the first chamber and the second chamber, the reducing sugar may be accommodated in the first chamber, the carbonyl compound trapping agent may be mixed in the second chamber, and mixed immediately before use. In this case, the carbonyl compound produced at the time of sterilization and storage is rapidly bonded with the mixed carbonyl compound trapping agent. After administration intraperitoneally, the excess carbonyl compound trapping agent captures the carbonyl compound derived from blood. The carbonyl compound trapping agent added to the peritoneal dialysis solution may be used alone or in combination of a plurality of kinds thereof.

한편, 카르보닐화합물 트랩제를 고정화한 담체나 자신복막투석액에 불용성 카르보닐화합물 트랩제와 복막투석액과의 접촉방법으로서는, 여러 형태가 생각된다. 예를 들면, 카르보닐화합물 트랩제를 내부에 고정화한 용기, 또는 입자나 섬유와 같은 담체에 고정한 카르보닐화합물 트랩제가 든 용기에 복막투석액을 수용하고, 보존중에 생성 ·축적되는 카르보닐화합물을 트랩시킬 수 있다. 후자에 있어서는, 불용성 담체를 여과 등에 의해 복막투석액으로부터 분리할 수 있다. 또 카르보닐화합물 트랩제를 고정화한 비드상이나 섬유상 등의 담체, 또는 자신이 불용성 카르보닐화합물 트랩제를 컬럼에 충전하여 카르보닐화합물 트랩용 카트리지로 하고, 이 카트리지에 복막투석액을 접촉시킨 후에 복강내에 도입할 수도 있다. 이러한 카트리지는, 복막투석 개시시의 공기혼입을 막기 위해, 미리 증류수 등을 충전해 두는 것이 바람직하다. 복강도입시에 카르보닐화합물 트랩용 카트리지에 접촉시키는 경우, 투석중에 축적되는 환자 유래의 카르보닐화합물을 제거할 수는 없지만, 투석액중의 카르보닐화합물의 제거는 가능하다. 또는 복막투석액을 소형 순환펌프를 사용하여 폐쇄계 회로내에서 순환시키는 복막투석법인 경우에 있어서는, 순환회로중에 카르보닐화합물 트랩제를 고정화한 상기 카르보닐화합물 트랩용 카트리지를 설치함으로써, 복막투석액 뿐 아니라, 투석중에 복강내에 축적되는 카르보닐화합물의 제거도 달성할 수 있다.On the other hand, various forms are considered as a contact method of an insoluble carbonyl compound trapping agent and a peritoneal dialysis solution to the carrier which fixed the carbonyl compound trapping agent, or a peritoneal dialysis solution. For example, a peritoneal dialysis solution is contained in a container in which a carbonyl compound trapping agent is immobilized therein, or a container containing a carbonyl compound trapping agent fixed in a carrier such as particles or fibers, and traps a carbonyl compound produced and accumulated during storage. You can. In the latter, the insoluble carrier can be separated from the peritoneal dialysis solution by filtration or the like. In addition, a bead, fibrous carrier or the like in which the carbonyl compound trapping agent is immobilized, or the insoluble carbonyl compound trapping agent is packed into a column for a carbonyl compound trap cartridge, and the peritoneal dialysis solution is brought into contact with the cartridge. You can also introduce. Such a cartridge is preferably filled with distilled water or the like beforehand in order to prevent air mixing at the start of peritoneal dialysis. When contacting the cartridge for carbonyl compound trap during intraperitoneal introduction, the carbonyl compound derived from the patient accumulated during dialysis cannot be removed, but the carbonyl compound in the dialysis solution can be removed. Alternatively, in the case of the peritoneal dialysis method in which the peritoneal dialysis solution is circulated in a closed system circuit using a small circulation pump, the carbonyl compound trap cartridge in which the carbonyl compound trapping agent is immobilized is provided in the circulation circuit, so that not only the peritoneal dialysis solution, Removal of carbonyl compounds that accumulate in the abdominal cavity during dialysis can also be achieved.

본 발명에 있어서의 카르보닐화합물 트랩제를 고정화하는 담체로서는, 인체에 대해 무해한 것, 복막투석액에 직접 접촉하는 재료로서 안정성 및 안정성을 갖는 것이라면 특별히 제한은 없고, 예를 들면 합성 또는 천연 유기 고분자화합물이나, 유리비드, 실리카겔, 알루미나, 활성탄 등의 무기 재료 및 이들의 표면에 다당류, 합성고분자 등을 코팅한 것 등을 들 수 있다. 카르보닐화합물 트랩제를 고정화 하기 위한 담체나 자신복막투석액에 대해 불용성 카르보닐화합물 트랩제는, 공지의 수식, 개질 또는 변성 등을 행함으로써, 물질투과성, 약액적합성, 보호강도, 흡착능력, 또는 카르보닐화합물에 대한 특이성을 높일 수 있다.The carrier for immobilizing the carbonyl compound trapping agent in the present invention is not particularly limited as long as it is harmless to the human body and has a stability and stability as a material which is in direct contact with the peritoneal dialysis solution. For example, a synthetic or natural organic high molecular compound And inorganic materials such as glass beads, silica gel, alumina, activated carbon, and the like coated with polysaccharides, synthetic polymers, and the like on the surfaces thereof. The insoluble carbonyl compound trapping agent is a substance permeability, chemical compatibility, protective strength, adsorption capacity, or carbon for a carrier for immobilizing the carbonyl compound trapping agent or a self-peritoneal dialysis solution. It can increase the specificity for the carbonyl compound.

고분자화합물로 된 담체로서는, 예를 들면 폴리메틸메타크릴레이트계 중합체, 폴리아크릴로니트릴계 중합체, 폴리술폰계 중합체, 비닐계 중합체, 폴리올레핀계 중합체, 플루오르계 중합체, 폴리에스테르계 중합체, 폴리아미드계 중합체, 폴리이미드계 중합체, 폴리우레탄계 중합체, 폴리아크릴계 중합체, 폴리스티렌계 중합체, 폴리케톤계 중합체, 실리콘계 중합체, 셀룰로오스계 중합체, 키토산계 중합체 등을 들 수 있다. 구체적으로는, 아가로오즈, 셀루로오스, 키틴, 키토산, 세팔로오스, 덱스트란 등의 다당류 및 그들의 유도체, 폴리에스테르, 폴리염화비닐, 폴리스티렌, 폴리술폰, 폴리에테르술폰, 폴리프로필렌, 폴리비닐알코올, 폴리알릴에테르술폰, 폴리아크릴산에스테르, 폴리메타크릴산에스테르, 폴리카보네이트, 아세틸화셀룰로오스, 폴리아크릴로니트릴, 폴리에틸렌테레프탈레이트, 폴리아미드, 실리콘 수지, 플루오르 수지, 폴리우레탄, 폴리에테르우레탄, 폴리아크릴아미드, 그들의 유도체 등을 들 수 있다. 이들 고분자재료는 단독, 또는 2종 이상을 조합하여 사용될 수 있다. 2종 이상 조합시키는 경우는, 그 중 적어도 1종 이상에 카르보닐화합물 트랩제가 고정화된다. 고정화되는 카르보닐화합물 트랩제는, 단독으로 고정화되는 것 외에, 2종류 이상을 고정화하더라도 좋다. 또한, 상기의 고분자재료는, 단일 중합체로서 사용되는 것 외에, 이종 중합체와의 공중합체로 할 수도 있다. 또한, 적당한 개선제를 첨가하거나, 방사선가교, 과산화물가교 등의 변성처리를 행하더라도 좋다.Examples of the carrier made of a high molecular compound include polymethyl methacrylate polymers, polyacrylonitrile polymers, polysulfone polymers, vinyl polymers, polyolefin polymers, fluorine polymers, polyester polymers and polyamides. Polymers, polyimide polymers, polyurethane polymers, polyacrylic polymers, polystyrene polymers, polyketone polymers, silicone polymers, cellulose polymers, chitosan polymers, and the like. Specifically, polysaccharides and derivatives thereof such as agarose, cellulose, chitin, chitosan, cephalos, and dextran, polyester, polyvinyl chloride, polystyrene, polysulfone, polyethersulfone, polypropylene, polyvinyl Alcohol, polyallyl ether sulfone, polyacrylic acid ester, polymethacrylic acid ester, polycarbonate, acetylated cellulose, polyacrylonitrile, polyethylene terephthalate, polyamide, silicone resin, fluorine resin, polyurethane, polyetherurethane, poly Acrylamide, derivatives thereof, etc. are mentioned. These polymeric materials can be used individually or in combination of 2 or more types. In the case of combining two or more kinds, the carbonyl compound trapping agent is immobilized on at least one of them. The immobilized carbonyl compound trapping agent may be immobilized alone, or two or more kinds thereof may be immobilized. In addition, the said polymeric material is used as a homopolymer, and can also be set as a copolymer with a heteropolymer. In addition, an appropriate improving agent may be added or a modification treatment such as radiation crosslinking or peroxide crosslinking may be performed.

담체의 형상에 제한은 없고, 예를 들면 막상, 섬유상, 중공사상(中空絲狀), 부직포상, 다공형상, 하니컴형성 등을 들 수 있다. 이들의 담체는, 두께, 표면적, 두께, 길이, 형상 및/또는 크기를 여러가지로 바꿈으로써, 복막투석액과의 접촉면적을 제어할 수 있다. 또한, 복막투석액을 수용하는 용기의 내벽이나 복막투석액 순환회로의 내부 등에 카르보닐화합물 트랩제를 고정할 수도 있다.There is no restriction | limiting in the shape of a support | carrier, For example, a film form, a fibrous form, a hollow fiber form, a nonwoven fabric form, a porous form, honeycomb formation, etc. are mentioned. These carriers can control the contact area with the peritoneal dialysis fluid by varying the thickness, surface area, thickness, length, shape and / or size. In addition, the carbonyl compound trapping agent may be fixed to the inner wall of the container containing the peritoneal dialysis fluid or the inside of the peritoneal dialysis fluid circulation circuit.

상기 담체에 카르보닐화합물 트랩제를 고정화 할 때에는, 공지의 방법, 예를 들면 물리적 흡착법, 생화학적 특이결합법, 이온결합법, 공유결합법, 그래프트화 등을 사용하면 좋다. 또 필요에 따라 스페이서를 담체와 카르보닐화합물 트랩제 사이에 도입하더라도 좋다. 카르보닐화합물 트랩제에 독성이 있는 경우 등, 담체로부터의 용출이 문제가 되는 경우에는, 용출량을 가능한 한 적게 하기 위해 카르보닐화합물 트랩제는 담체에 공유결합으로 고정화되어 있는 것이 바람직하다. 카르보닐화합물 트랩제를 담체에 공유결합을 할 때에는, 담체에 존재하는 관능기를 사용하면 좋다. 관능기로서는, 예를 들면 수산기, 아미노기, 알데히드기, 카르복실기, 티올기, 히드록실기, 실라놀기, 아미드기, 에폭시기, 숙시닐이미드기 등을 들 수 있지만, 이들에 제한되지 않는다. 공유결합의 예로서 에스테르결합, 에테르결합, 아미노결합, 아미드결합, 술피드결합, 이미노결합, 디술피드결합 등을 들 수 있다.When immobilizing the carbonyl compound trapping agent on the carrier, a known method such as physical adsorption, biochemical specific bonding, ionic bonding, covalent bonding, grafting or the like may be used. If necessary, a spacer may be introduced between the carrier and the carbonyl compound trapping agent. When elution from the carrier becomes a problem, such as when the carbonyl compound trapping agent is toxic, it is preferable that the carbonyl compound trapping agent is covalently immobilized to the carrier in order to reduce the elution amount as much as possible. When the carbonyl compound trapping agent is covalently bonded to the carrier, a functional group present in the carrier may be used. Examples of the functional group include a hydroxyl group, an amino group, an aldehyde group, a carboxyl group, a thiol group, a hydroxyl group, a silanol group, an amide group, an epoxy group, a succinylimide group, and the like, but are not limited thereto. Examples of covalent bonds include ester bonds, ether bonds, amino bonds, amide bonds, sulfide bonds, imino bonds, and disulfide bonds.

카르보닐화합물 트랩제가 고정화된 담체로서는, 예를 들면 술포닐히드라진기를 갖는 폴리스티렌담체(PS-TsNHNH2, ARGONAUT TECHNOLOGIES사) 등의 시판되는 것을 사용할 수도 있다.As the carrier on which the carbonyl compound trapping agent is immobilized, commercially available ones such as polystyrene carriers having a sulfonylhydrazine group (PS-TsNHNH2, ARGONAUT TECHNOLOGIES) can be used.

본 발명을 토대로하는 카르보닐화합물 트랩제를 고정화한 담체의 멸균은, 공지의 멸균법으로부터, 카르보닐화합물 트랩제나 담체 등의 종류에 따라 적당한 멸균법이 선택된다. 멸균처리에는 고압증기멸균, 감마선조사멸균, 가스멸균 등을 들 수 있다. 불용성 카르보닐화합물 트랩제나 담체에 결합된 카르보닐화합물 트랩제를 충전한 카트리지를 준비하고, 이를 복막투석액을 수용한 용기에 접속한 상태에서 양자를 동시에 멸균할 수도 있다.As for sterilization of the carrier on which the carbonyl compound trapping agent is immobilized based on the present invention, an appropriate sterilization method is selected from known sterilization methods in accordance with the kind of carbonyl compound trapping agent or carrier. Sterilization includes high pressure steam sterilization, gamma irradiation sterilization and gas sterilization. A cartridge filled with an insoluble carbonyl compound trapping agent or a carbonyl compound trapping agent bound to a carrier may be prepared, and both may be sterilized simultaneously while being connected to a container containing peritoneal dialysis solution.

복막투석액과 접촉하는 카르보닐화합물 트랩제가 적으면, 복막투석액중의 카르보닐화합물을 충분히 제거할 수 없게 되는 경우가 예상된다. 일반적으로는 복막투석중의 카르보닐화합물의 양을 미리 예측하는 것은 곤란하기 때문에, 환자에 대한 안전성을 보장할 수 있는 범위내에서 가능한 다량의 카르보닐화합물 트랩제가 활성을 유지할 수 있도록 하는 것이 효과적이다. 카르보닐화합물 트랩제의 용량은,담체로의 카르보닐화합물 트랩제의 고정화량, 또는 카르보닐화합물 트랩제가 고정화된 담체의 사용량을 변경하여 조정할 수 있다.When there is little carbonyl compound trapping agent in contact with a peritoneal dialysis liquid, the carbonyl compound in a peritoneal dialysis liquid cannot be removed sufficiently. In general, it is difficult to predict the amount of carbonyl compound in the peritoneal dialysis in advance, so it is effective to maintain the activity of the large amount of carbonyl compound trapping agent as long as the safety of the patient can be guaranteed. . The capacity of the carbonyl compound trapping agent can be adjusted by changing the amount of immobilization of the carbonyl compound trapping agent to the carrier or the amount of the carrier on which the carbonyl compound trapping agent is immobilized.

또는, 적당한 혼주용 연결기(connector)를 장비한 복막투석회로에, 카르보닐화합물 트랩제를 주입할 수도 있다. 이 경우는, 멸균시 및 보존시에 생성된 카르보닐화합물은, 회로중에서 포착된다.Alternatively, the carbonyl compound trapping agent may be injected into the peritoneal dialysis circuit equipped with a suitable mixing connector. In this case, the carbonyl compound produced at the time of sterilization and storage is captured in a circuit.

또한, 카르보닐화합물 트랩제를 직접 복강내에 투여하여, 복강내에서 복막투석액과 혼합할 수도 있다. 이 때 복막투석액 유래 및 혈중 유래의 카르보닐화합물은, 복강내에서 불활성화된다.In addition, the carbonyl compound trapping agent may be directly administered intraperitoneally and mixed with the peritoneal dialysis solution intraperitoneally. At this time, the carbonyl compound derived from peritoneal dialysis solution and blood is inactivated intraperitoneally.

또한, 복막투석액을 환자에게 주입하기 전 또는 복강내 저류중에, 카르보닐화합물 트랩제를 정맥주사 등에 의해 복막투석 환자내로 투여함으로써, 복강내의 카르보닐 스트레스상태의 개선을 꾀할 수도 있다.In addition, by administering the carbonyl compound trap agent into the peritoneal dialysis patient by intravenous injection or the like before injecting the peritoneal dialysis solution into the patient or intraperitoneal retention, the carbonyl stress state in the abdominal cavity can be improved.

이하에 본 발명에 의한 복막투석액의 바람직한 실시태양을 구체적으로 나타낸다.Below, the preferable embodiment of the peritoneal dialysis liquid which concerns on this invention is shown concretely.

먼저 베이스가 되는 투석액의 조성은, 일반적으로는 다음과 같은 처방이 이용된다.Generally, the following prescription is used for the composition of the dialysis liquid used as a base.

이들의 처방은 어디까지나 일반적인 것으로, 실제로는 환자의 증상에 맞춰 보다 적절한 조성이 채용된다.Their prescription is general, and in reality, a more appropriate composition is employed according to the symptoms of the patient.

글루코오스 1-5%w/mGlucose 1-5% w / m

나트륨이온 100-150meqSodium ion 100-150meq

칼륨이온 0-0.05meqPotassium Ion 0-0.05meq

마그네슘이온 0-2meqMagnesium ion 0-2meq

칼슘이온 0-4meqCalcium ion 0-4meq

염소이온 80-150meqChlorine Ion 80-150meq

완충제 10-50mMBuffer 10-50mM

(유산, 구연산, 능금산, 초산, 피르브산, 숙신산 등의 유기산)(Organic acids such as lactic acid, citric acid, nitric acid, acetic acid, pyrvic acid and succinic acid)

이상과 같은 기본처방에 대해, 본 발명에 의한 카르보닐화합물 트랩제의 유효량을 첨가한다. 예를 들면 아미노구아니딘을 첨가하는 경우에는, 1mM 이상, 바람직하게는 10mM 이상, 보다 바람직하게는 10mM 이상 100mM 이하의 농도가 되도록 첨가한다. 첨가량이 적은 경우에는, 제조 및 보존중에 발생하는 카르보닐화합물에 카르보닐화합물 트랩제가 소비되어 버려, 실제 투석시에 환자의 혈액이나 조직으로부터 투석액에 침출하는 카르보닐화합물을 처리할 수 없게 되는 경우가 예상된다. 특히 환자의 혈액이나 조직으로부터 침출하는 카르보닐화합물의 양을 미리 예측하는 것은 곤란하기 때문에, 환자에 대한 안전성을 보장할 수 있는 범위내에서 가능한 다량의 카르보닐화합물 트랩제가 활성을 유지할 수 있도록 하는 것이 효과적이다. 아미노구아니딘은, 동물에 대해 저독성인 것이 알려져 있다.「화학물질의 독성효과표(Registry of Toxic Effect of Chemical Substances)」(1978)에 의하면, 아미노구아니딘의 반치사량은, 래트 피하주사의 경우 1258mg/kg이고, 마우스에서는 963mg/kg이다. 또한, 수용성도 우수하다. 이 밖에 OPB-9195의 경우도 마찬가지로, 1mM 이상, 바람직하게는 10mM 이상, 보다 바람직하게는 10mM 이상 100mM 이하의 농도가 되도록 첨가한다.To the basic prescription as described above, an effective amount of the carbonyl compound trapping agent according to the present invention is added. For example, when aminoguanidine is added, it is added so as to have a concentration of 1 mM or more, preferably 10 mM or more, more preferably 10 mM or more and 100 mM or less. When the addition amount is small, the carbonyl compound trapping agent is consumed by the carbonyl compound generated during manufacture and storage, and the carbonyl compound leaching from the patient's blood or tissue into the dialysate may not be treated during actual dialysis. It is expected. In particular, it is difficult to predict the amount of carbonyl compound leaching from the blood or tissue of the patient in advance, so that it is possible to maintain the activity of a large amount of carbonyl compound trapping agent as long as possible to ensure safety for the patient. effective. It is known that aminoguanidine is lowly toxic to animals. According to the "Registry of Toxic Effect of Chemical Substances" (1978), the half dose of aminoguanidine is 1258 mg / in rat subcutaneous injection. kg and 963 mg / kg in mice. Moreover, it is excellent in water solubility. In addition, in the case of OPB-9195, it is added so that it may become 1mM or more, Preferably it is 10mM or more, More preferably, it is 10mM or more and 100mM or less.

상기와 같은 처방으로 배합된 본 발명에 의한 복막투석액은, 적당한 밀폐용기에 충전하여, 멸균처리한다. 멸균처리에는 고압증기멸균이나 열수멸균 등의 가열멸균이 유효하다. 이 경우, 고온으로 유해물질을 용출시키지 않고, 멸균 후에도 수송에 견디는 강도를 갖춘 용기를 사용한다. 구체적으로는 폴리염화비닐이나 폴리프로필렌, 폴리에틸렌, 폴리에스테르, 에틸렌초산비닐공중합체 등으로 된 가요성(flexible) 플라스틱 백을 들 수 있다. 또한, 외기의 영향에 의한 액의 열화를 피하기 위해, 복막투석액을 충전한 용기를 가스배리어성이 높은 포장재로 더 포장하더라도 좋다.The peritoneal dialysis solution according to the present invention formulated as described above is filled into a suitable sealed container and sterilized. Heat sterilization such as high pressure steam sterilization or hot water sterilization is effective for sterilization treatment. In this case, a container having a strength that withstands transportation even after sterilization is used without elution of harmful substances at high temperatures. Specific examples thereof include a flexible plastic bag made of polyvinyl chloride, polypropylene, polyethylene, polyester, ethylene vinyl acetate copolymer, and the like. In addition, in order to avoid deterioration of the liquid due to the influence of outside air, the container filled with the peritoneal dialysis solution may be further packed with a packaging material having high gas barrier property.

가열멸균 대신에, 여과멸균을 행할 수도 있다. 예를 들면, 공경 0.2㎛ 정도의 멤브레인필터를 갖춘 정밀여과기를 사용하여 여과함으로써 멸균한다. 이 경우는, 가열에 유래하는 카르보닐화합물의 생성을 방지할 수 있다. 여과멸균된 복막투석액은, 가요성 플라스틱 백 등의 용기에 충전된 후, 밀봉된다. 멸균에서 수송에 이르는 일련의 처리는, 현행 투석액의 제조와 조금도 다르지 않기 때문에, 동일한 공정으로 본 발명에 의한 복막투석액을 제조할 수 있다.Instead of heat sterilization, filter sterilization may be performed. For example, sterilization is performed by filtration using a precision filter equipped with a membrane filter having a pore size of about 0.2 μm. In this case, generation | occurrence | production of the carbonyl compound resulting from heating can be prevented. The peritoneal dialysis fluid that has been sterilized is filled in a container such as a flexible plastic bag and then sealed. Since the series of treatments from sterilization to transportation are no different from the production of the current dialysis solution, the peritoneal dialysis solution according to the present invention can be produced by the same process.

고압 가열멸균을 포함하는 가열멸균에 의해 멸균처리를 행하는 경우, 사용되는 카르보닐화합물 트랩제가 가열 등의 처리에 대해 충분히 안정하다면, 복막투석액 배합시에 상기 카르보닐화합물 트랩제를 미리 첨가한 후, 가열멸균조작을 행할 수 있다. 이렇게 하면, 가열시의 투석액 유래의 카르보닐화합물의 생성 ·축적을 억제할 수 있다. 물론, 보존시나 복막투석액중에도 상기 카르보닐화합물 트랩제가 기능하여, 카르보닐화합물의 생성 ·축적을 억제할 수 있다.In the case of sterilization by heat sterilization including high pressure heat sterilization, if the carbonyl compound trapping agent used is sufficiently stable for treatment such as heating, the carbonyl compound trapping agent is added in advance at the time of compounding the peritoneal dialysis solution, Heat sterilization can be performed. In this way, generation and accumulation of the carbonyl compound derived from the dialysate at the time of heating can be suppressed. Of course, the carbonyl compound trapping agent also functions during storage or in a peritoneal dialysis solution to suppress the production and accumulation of carbonyl compounds.

사용하는 카르보닐화합물 트랩제가 가열멸균에 불안정한 경우, 가열을 필요로 하지 않는 멸균법을 사용할 수도 있다. 이러한 멸균법에는, 예를 들면 여과멸균 등이 있다. 또한, 미리 가열멸균한 복막투석액에, 나중에 상기 카르보닐화합물 트랩제를 첨가하더라도 좋다. 첨가하는 시기는 특별히 제한되지 않는다. 예를 들면, 액을 멸균 후에 상기 카르보닐화합물 트랩제를 첨가하면, 복막투석중 뿐 아니라, 투석 전의 복막투석액 보존중 카르보닐화합물의 생성 및/또는 축적을 억제할 수 있기 때문에 바람직하다.If the carbonyl compound trapping agent used is unstable in heat sterilization, a sterilization method that does not require heating may be used. Such sterilization includes, for example, filter sterilization. In addition, the carbonyl compound trapping agent may be added later to the peritoneal dialysis solution previously sterilized by heat. The time of addition is not specifically limited. For example, it is preferable to add the carbonyl compound trapping agent after sterilizing the liquid, since the production and / or accumulation of the carbonyl compound can be suppressed not only during peritoneal dialysis but also during peritoneal dialysis solution storage before dialysis.

또는, 복막투석 직전 또는 동시에 상기 카르보닐화합물 트랩제를 첨가할 수도 있다. 예를 들면, 사용 직전까지 베이스가 되는 용액과 카르보닐화합물 트랩제를 상술의 연질 플라스틱 백 등에 따로따로 수용하여, 복막투석 개시 직전에 양자를 무균적으로 혼합한다. 이를 위해서는, 특개소63-19149호에 개시되어 있는 바와 같은 박리 가능한 접착부에 의해 구분되어진 가요성 플라스틱 백이 바람직하게 사용된다.Alternatively, the carbonyl compound trapping agent may be added immediately before or simultaneously with peritoneal dialysis. For example, the base solution and the carbonyl compound trapping agent are separately contained in the above-described soft plastic bag or the like until just before use, and both are aseptically mixed immediately before the start of peritoneal dialysis. For this purpose, a flexible plastic bag divided by a peelable adhesive portion as disclosed in Japanese Patent Application Laid-Open No. 63-19149 is preferably used.

또한, 복막투석회로 도중에 혼주를 위한 연결기부재를 설치하여, 상기 연결기로부터 카르보닐화합물 트랩제를 주입하더라도 좋다.In the middle of the peritoneal dialysis circuit, a connector member for mixing may be provided to inject a carbonyl compound trapping agent from the connector.

이러한 복막투석액의 조제방법은, 열에 불안정한 카르보닐화합물 트랩제 뿐 아니라, 열에 안정한 카르보닐화합물 트랩제에 대해서도 사용할 수 있다.Such a method for preparing the peritoneal dialysis solution can be used not only for the heat unstable carbonyl compound trapping agent but also for the heat stable carbonyl compound trapping agent.

더욱이 또한, 복막투석액을 소형 순환펌프를 사용하여 폐쇄계 회로내에서 순환시키는 복막투석법의 경우에 있어서는, 회로중 어느 하나의 개소에 카르보닐화합물 트랩제를 충전한 여과기를 장치할 수도 있다.Furthermore, in the case of the peritoneal dialysis method in which the peritoneal dialysis solution is circulated in a closed system circuit using a small circulation pump, a filter in which a carbonyl compound trapping agent is filled in any one of the circuits may be provided.

본 발명의 복막투석액은, 현행의 복막투석액과 동일한 복막투석처치에 이용된다. 즉, 투석 환자의 복강내에 본 발명에 의한 복막투석액을 적량 주입하고, 복막을 통해 생체내의 저분자량성분을 복막투석액내로 이행시킨다. 복막투석액은 간헐적으로 순환시키고, 환자의 병상에 따라 투석을 계속한다. 이 때 카르보닐화합물은, 크레아티닌이나 무기염류, 또는 염소이온 등의 투석성분과 함께, 혈중이나 복막내에서 복막투석액중으로 이행한다. 동시에, 카르보닐화합물 트랩제의 작용에 의해, 그 생체에 대한 장해활성을 빼앗겨, 무해화된다.The peritoneal dialysis solution of the present invention is used for the same peritoneal dialysis treatment as the current peritoneal dialysis solution. That is, a proper amount of the peritoneal dialysis solution according to the present invention is injected into the peritoneal cavity of the dialysis patient, and the low molecular weight component in vivo is transferred into the peritoneal dialysis fluid through the peritoneum. Peritoneal dialysis fluid circulates intermittently and continues dialysis according to the patient's condition. At this time, the carbonyl compound, together with a dialysis component such as creatinine, inorganic salts, or chlorine ions, transfers into the peritoneal dialysis solution in the blood or in the peritoneum. At the same time, by the action of the carbonyl compound trapping agent, the harmful activity to the living body is lost and innocuous.

발명을 실시하기 위한 최량의 형태Best Mode for Carrying Out the Invention

이하, 실시예에 의해 본 발명을 구체적으로 설명하지만, 본 발명은 이들 실시예에 의해 제한되지는 않는다.Hereinafter, although an Example demonstrates this invention concretely, this invention is not restrict | limited by these Examples.

[실시예 1] 복막투석액 및 복막투석배액중의 카르보닐화합물량의 측정Example 1 Measurement of Carbonyl Compounds in Peritoneal Dialysis Solution and Peritoneal Dialysis Drainage

복강내에 있어서의 카르보닐 스트레스의 발생을 증명하기 위해, 이하의 실험방법에 따라, 복막투석배액중의 카르보닐화합물량을 측정했다.In order to prove the occurrence of carbonyl stress in the abdominal cavity, the amount of carbonyl compound in the peritoneal dialysis drainage was measured according to the following experimental method.

1) 카르보닐화합물의 측정1) Measurement of Carbonyl Compound

복막투석액(Baxter Ltd.; Dianeal PD-2 2.5) 및 복막투석 환자에게 상기의 복막투석액을 투여하여 복강내에 하룻밤 저류 후의 복막투석배액을 각각 400μL 취하여, 1.5mM의 2,4-디니트로페닐히드라진(2,4-DNPH)(와코쥰야쿠제)을 0.5N 염산용액 400μL와 혼합 후, 30분간 실온에서 교반하고, 액중의 카르보닐화합물과 2,4-DNPH를 반응시켰다. 다음에 1M의 아세톤수용액 40μL를 첨가하고, 실온에서 5분간 교반하여 과잉의 2,4-DNPH를 아세톤과 반응시켜 제거한 후, 400μL의 n-헥산으로 3회 세정하고, 수층에 대해 360nm에 있어서의 흡광도를 마이크로플레이트용 분광광도계(Japan Molecular Devices co.; SPECTRAmax250)로 측정해다.Peritoneal dialysis solution (Baxter Ltd .; Dianeal PD-2 2.5) and peritoneal dialysis patients were treated with the above-mentioned peritoneal dialysis solution to obtain 400 μL of peritoneal dialysis drainage after overnight storage in the peritoneal cavity, and 1.5mM 2,4-dinitrophenylhydrazine ( 2,4-DNPH) (manufactured by Wako Pure Chemical Industries, Ltd.) was mixed with 400 µL of 0.5 N hydrochloric acid solution, stirred at room temperature for 30 minutes, and the carbonyl compound and 2,4-DNPH in the liquid were reacted. Next, 40 µL of 1 M acetone aqueous solution was added, and stirred at room temperature for 5 minutes to remove excess 2,4-DNPH with acetone, followed by washing three times with 400 µL of n-hexane, followed by 360 nm water layer. Absorbance was measured with a spectrophotometer for microplates (Japan Molecular Devices co .; SPECTRAmax250).

2) 검량선(calibration curve)의 작성2) Preparation of calibration curve

여러 농도의 글루코오스수용액을 조제하고, 1)과 동일하게 조작하여, 글루코오스와 글루코오스 유래의 카르보닐화합물량에 대한 검량선을 작성했다.Glucose aqueous solutions of various concentrations were prepared and operated in the same manner as in 1) to prepare a calibration curve for the amount of glucose and glucose-derived carbonyl compounds.

3) 카르보닐화합물의 정량3) Determination of Carbonyl Compounds

복막투석액 및 복막투석배액중의 글루코오스농도를 글루코오스 측정키트(와코쥰야쿠제, 글루코오스CII-Test Wako)를 사용하여 측정했다. 검량선으로부터 글루코오스 유래의 카르보닐화합물의 양을 구했다. 액중의 총카르보닐화합물의 양에서 글루코오스 유래의 카르보닐화합물의 양을 제해, 카르보닐화합물의 양으로 했다.Glucose concentrations in the peritoneal dialysis solution and the peritoneal dialysis drainage were measured using a glucose measurement kit (glucose CI-Test Wako). The quantity of the carbonyl compound derived from glucose was calculated | required from the analytical curve. The amount of carbonyl compound derived from glucose was subtracted from the amount of total carbonyl compound in the liquid to give an amount of carbonyl compound.

얻어진 결과를 도1에 나타낸다. 복강내에 하룻밤 저류된 후의 복막투석배액에서는, 투여 전의 복막투석액과 비교하여 카르보닐화합물량은 약 5배가 되어, 혈중에서 복강내로의 카르보닐화합물의 이행이 나타내어졌다.The obtained result is shown in FIG. In the peritoneal dialysis fluid after overnight storage in the abdominal cavity, the amount of carbonyl compound was about five times as compared with the peritoneal dialysis fluid before administration, and the transition of the carbonyl compound from the blood into the abdominal cavity was shown.

[실시예 2] 복막투석액 환자의 복막에 있어서의 카르보닐 수식단백의 조직적 국재Example 2 Histological Localization of Carbonyl Modified Protein in Peritoneum of Peritoneal Dialysis Solution Patients

복막투석 환자의 복막조직중의 카르보닐화합물을 말론디알데히드를 지표로 한 면역염색법에 의해 조사했다.Carbonyl compounds in the peritoneal tissues of peritoneal dialysis patients were examined by immunostaining with malondialdehyde as an index.

복막투석 환자(50세 남성, 복막투석력 5년)의 복막조직에 대해, Horie등의 방법(Horie, K. et al., J. Clin. Invest., 100, 2995-3004(1997))에 따라, 1차항체로서 마우스 항말론디알데히드 단일클론항체를 사용하여 면역염색을 행했다. 그 결과, 박리한 중피세포하의 결합조직 및 비후된 혈관벽에 강한 양성 소견을 인정했다(도2).For peritoneal dialysis of peritoneal dialysis patients (50-year-old male, peritoneal dialysis 5 years) to Horie et al. (Horie, K. et al., J. Clin. Invest., 100, 2995-3004 (1997)) Therefore, immunostaining was performed using mouse antimalondialdehyde monoclonal antibody as the primary antibody. As a result, strong positive findings were observed on the detached connective tissue under the mesothelial cells and the thickened blood vessel wall (FIG. 2).

말론디알데히드(MDA)는 과산화지질의 분해에 의해 생성되는 카르보닐화합물이다. 따라서, MDA 이외의 과산화지질 분해생성물인 4-히드록시-2-노네날 및 당산화반응의 결과 생성되는 카르복시메틸리진이나 펜토시딘에 대한 항체를 사용하여, 마찬가지로 면역염색을 행한 결과, 도2에서 나타내어진 양성부위와 동일한 개소가 양성이었다. 이 사실로부터, 복막투석 환자의 복막조직은, 과산화지질 분해생성물 및 당산화생성물 유래의 카르보닐화합물에 기인하는 카르보닐 스트레스의 항진에의해, 단백수식을 받고 있는 것을 알 수 있었다.Malondialdehyde (MDA) is a carbonyl compound produced by the decomposition of lipid peroxide. Therefore, similarly immunostaining was carried out using 4-hydroxy-2-nonenal, a lipid peroxidation product other than MDA, and an antibody against carboxymethyl lyzine or pentosidine produced as a result of glycosylation reaction. The same sites as the positive sites indicated by were positive. From this fact, it was found that the peritoneal tissue of the peritoneal dialysis patient was subjected to protein modification due to the promotion of carbonyl stress due to the carbonyl compound derived from the lipid peroxidation product and the glycosylation product.

[실시예 3] 메틸글리옥살에 의한 복막세포장해Example 3 Peritoneal Cell Injury by Methylglyoxal

장기간 복막투석에 의한 복막의 한외여과기능의 저하는, 확산에 의한 물질교환이 가능한 복막 표면적의 증가를 뒷받침하는 것이다(Krediet, R. T., 1999, Kidney Int. 55:341-356; Heimburger, O. et al., 1990, Kidney Int 38: 495-506; Imholz, A.L. et al., 1993, Kidney Int. 43: 1339-1346; Ho-dac-Pannekeet, M.M. et al., 1997, Perit. Dial. Int. 17: 144-150). 즉, 복막투석액중의 글루코오스가 확산하여 복강내로부터 유출함으로써 침투압구배에 의한 투석기능이 저하된다. 이는, 복막내의 혈관표면적의 증가에 의해 설명하는 것도 가능하다. 그리고 이 병태에는, 혈관내피 증식인자(VEGF)가 중요한 역할을 하고 있는 것으로 생각된다. VEGF는 혈관의 투과성을 항진하고(Senger, D. R. et al., 1983, Science 219: 983-985; Connolly, D.T. et al., 1989, J. Biol. Chem. 264: 20017-20024), NO의 합성을 자극하여 혈관을 확장시켜(Hood, J. D. et al., 1998, Am. J. Physiol. 274: H1054-1058), 염증반응을 유도한다(Clauss, M. et al., 1990, J. Exp. Med. 172: 1535-1545; Melder, R. J. et al., 1996, Nat. Med. 2: 992-997). 또한, VEGF는 강력한 혈관 신생인자로, 혈관상해를 회복시키는 기능을 갖는다(Thomas, K. A., 1996, J. Biol. Chem. 271: 603-606; Ferrara, N. et al., 1997, Endocr, Rev. 18: 4-25; Shoji, M. et al., 1998, Am. J. Pathol, 152: 399-411). 따라서, 투석액에 포함되는 글루코오스 분해산물이 VEGF산생에 미치는 효과를 검증했다.The decrease in the ultrafiltration function of the peritoneum by prolonged peritoneal dialysis supports the increase of peritoneal surface area that allows mass exchange by diffusion (Krediet, RT, 1999, Kidney Int. 55: 341-356; Heimburger, O. et. al., 1990, Kidney Int 38: 495-506; Imholz, AL et al., 1993, Kidney Int. 43: 1339-1346; Ho-dac-Pannekeet, MM et al., 1997, Perit.Dial.Int. 17: 144-150). That is, the glucose in the peritoneal dialysis solution diffuses and flows out of the intraperitoneal cavity, thereby degrading the dialysis function due to the infiltration pressure gradient. This can also be explained by the increase in blood vessel surface area in the peritoneum. In this condition, vascular endothelial growth factor (VEGF) is considered to play an important role. VEGF promotes vascular permeability (Senger, DR et al., 1983, Science 219: 983-985; Connolly, DT et al., 1989, J. Biol. Chem. 264: 20017-20024), and synthesis of NO Stimulation of blood vessels (Hood, JD et al., 1998, Am. J. Physiol. 274: H1054-1058) to induce an inflammatory response (Clauss, M. et al., 1990, J. Exp. Med. 172: 1535-1545; Melder, RJ et al., 1996, Nat. Med. 2: 992-997). In addition, VEGF is a potent angiogenic factor and has a function of repairing vascular injury (Thomas, KA, 1996, J. Biol. Chem. 271: 603-606; Ferrara, N. et al., 1997, Endocr, Rev 18: 4-25; Shoji, M. et al., 1998, Am. J. Pathol, 152: 399-411). Therefore, the effects of glucose degradation products contained in the dialysate on VEGF production were verified.

<3-1> 글루코오스 분해산물의 존재하에서의 복막중피 및 혈관내피세포 배양에 있어서의 VEGF의 발현<3-1> Expression of VEGF in Peritoneal Epithelial and Vascular Endothelial Cell Culture in the Presence of Glucose Degradation Products

6주 연령의 수컷 CD(SD)IGS 래트(Charles-River, Kanagawa, Japan)로부터 복막을 채취했다. 중피세포는 Hjelle등의 방법(Hjelle. J. T. et al., 1989, Perit. Dial. Int. 9: 341-347)을 토대로 단리하여, 10% 소태아혈청을 포함하는 달벡코개변이글배지(Dalbecco's modified Eagle's medium)(DMEM)에서 배양했다. 7~10계대째의 중피세포를, 여러 농도의 글루코오스 분해산물(글리옥살, 메틸글리옥살(Sigma, St. Louis, MO), 또는 3-데옥시글루코손(Fuji Memorial Research Institute, Otsuka Pharmaceutical Co., Kyoto, Japan에서 제공))의 존재하, CO2인큐베이터로 3시간 배양했다. VEGF mRNA의 발현해석은, 반적량적(semiquantitative) RT-PCR에 의해 행했다. Rneasy Mini Kit(Qiagen, Germany)를 사용하여 중피세포로부터 전RNA를 단리했다. RNA 5㎍을 올리고(dt)12-18프라이머(Gibco BRL, Gaithersburg, MD)와 200유닛의 RNase H-free의 역전사효소(Superscript II:Gibco BRL)를 사용하여 역전사하고, PCR증폭을 상기 기술한 조건으로 행했다(Miyata, T. et al., 1994, J. Clin. Invest. 93: 521-528). 사용한 올리고누클레오티드프라이머서열은, 래트 VEGF의 증폭에 사용한 프라이머에 대해서는 5'-ACTGGACCCTGGCTTTACTGC-3'(서열번호:1) 및 5'-TTGGTGAGGTTTGATCCGCATG-3'(서열번호:2)에서, 310bp의 증폭산물을 얻었다. 래트글리세르알데히드-3-포스페이트데히드로게나제(G3PDH)의 증폭에 사용한 프라이머는 5'-CCTGCACCACCAACTGCTTAGCCC-3'(서열번호:3) 및 5'-GATGTCATCATATTTGGCAGGTT-3'(서열번호:4)에서, 322bp의 단편을 증폭했다. G3PDH는RNA의 내부표준으로서 사용하여, 다른 시료간에서의 RNA레벨의 비교를 행했다. 각 시료는 DNA Thermal cycler(Perkin Elmer Ceus, Norwork, CT)를 사용하여, 94℃ 0.5분, 64℃ 1분, 72℃ 1.5분의 조건에서, 먼저 적당한 사이클수를 결정했다. 예비적인 실험으로서, 역전사 및 PCR증폭을 여러 RNA양을 사용하여, 16, 18, 21, 25, 28, 31 및 34사이클의 조건에서 행했다. 그 결과, VEGF mRNA의 증폭에서는 30사이클, G3PDH mRNA의 증폭에서는 21사이클의 조건에서, 가한 RNA와 정량적으로 상관한 PCR산물의 시그날이 얻어졌다. PCR산물은 1.5% 아가로즈겔로 전기영동하여, 에티디움 브로마이드로 염색한 후, 정량프로그램(NIH image)으로 시그날강도를 측정하여 정량화했다. 실험은, 각각의 글루코오스 분해산물 농도에 있어서 행했다. 3회 연속 실험에서 mRNA를 정량하여, 각 실험의 평균을 구했다. 합계 3~4회의 독립된 실험을 각 실험조건으로 행했다. 결과는 평균을 취해, 평균±S.D.로 나타내었다. 분산분석(ANOVA)에 의해 통계적 유의성을 평가했다. 이 분석에 의해 유의한 차이가 보여진 경우는, Scheffe의 t검정에 의해, 다른 메틸글리옥살 농도로 얻어진 결과를 비교했다.Peritoneum was taken from male CD (SD) IGS rats (Charles-River, Kanagawa, Japan) at 6 weeks old. Mesothelial cells were isolated based on Hjelle et al. (Hjelle. JT et al., 1989, Perit.Dial. Int. 9: 341-347), and Dalbecco's modified medium containing 10% fetal bovine serum. Incubated in Eagle's medium (DMEM). Mesothelial cells of the seventh to tenth passages were prepared by glucose degradation products of various concentrations (glyoxal, methylglyoxal (Sigma, St. Louis, MO), or 3-deoxyglucoson (Fuji Memorial Research Institute, Otsuka Pharmaceutical Co. (Provided by Kyoto, Japan)), and incubated for 3 hours in a CO 2 incubator. Expression analysis of VEGF mRNA was performed by semiquantitative RT-PCR. Whole RNA was isolated from mesothelial cells using the Rneasy Mini Kit (Qiagen, Germany). 5 μg of RNA was reverse transcribed using 12-18 primers (Gibco BRL, Gaithersburg, MD) and 200 units of RNase H-free reverse transcriptase (Superscript II: Gibco BRL), and PCR amplification was described above. Conditional (Miyata, T. et al., 1994, J. Clin. Invest. 93: 521-528). The oligonucleotide primer sequence used was amplified by 310 bp in 5'-ACTGGACCCTGGCTTTACTGC-3 '(SEQ ID NO: 1) and 5'-TTGGTGAGGTTTGATCCGCATG-3' (SEQ ID NO: 2) for the primer used for amplification of rat VEGF. Got it. Primers used for amplification of rat glyceraldehyde-3-phosphate dehydrogenase (G3PDH) were 5'-CCTGCACCACCAACTGCTTAGCCC-3 '(SEQ ID NO: 3) and 5'-GATGTCATCATATTTGGCAGGTT-3' (SEQ ID NO: 4) 322 bp fragment was amplified. G3PDH was used as an internal standard for RNA, and RNA levels were compared between different samples. Each sample was first determined a suitable number of cycles using a DNA thermal cycler (Perkin Elmer Ceus, Norwork, CT) at the conditions of 94 ° C 0.5 minutes, 64 ° C 1 minute, 72 ° C 1.5 minutes. As a preliminary experiment, reverse transcription and PCR amplification were performed under conditions of 16, 18, 21, 25, 28, 31 and 34 cycles using various RNA amounts. As a result, a signal of a PCR product quantitatively correlated with the added RNA was obtained under conditions of 30 cycles for VEGF mRNA amplification and 21 cycles for amplification of G3PDH mRNA. PCR products were electrophoresed with 1.5% agarose gel, stained with ethidium bromide, and then quantified by measuring signal intensity using a quantitative program (NIH image). The experiment was performed at each glucose decomposition product concentration. MRNA was quantified in three consecutive experiments and averaged for each experiment. A total of 3 to 4 independent experiments were conducted under each experimental condition. Results were averaged and expressed as mean ± SD. Statistical significance was assessed by ANOVA. When significant differences were found by this analysis, the results obtained at different methylglyoxal concentrations were compared by Scheffe's t-test.

0∼400μM의 여러 농도에 있어서, 글리옥살이나 3-데옥시글루코손은 VEGF의 발현을 변화시키지 않않다(도3A 및 B). 메틸글리옥살만이, 400μM의 농도에서 VEGF mRNA 의 발현을 자극했다(P<0.0005)(도3C). 역전사를 행하지 않은 RNA시료로부터는 PCR산물은 생성되지 않았다. 모든 세포는 생존 가능했다. 중피세포를 고농도 3-데옥시글루코손(0.625, 2.5 및 5mM)의 존재하에서 배양한 바, 세포의 생존율 저하가 보였다(세포 생존율은, 0.625, 2.5, 5mM의 3-데옥시글루코손 존재하에서, 각각 80,55, 8%였다). 세포의 생존율이 저하했기 때문에, VEGF mRNA 발현은 측정할 수 없었다. 이들 관찰결과로부터, 메틸글리옥살만을 이하의 실험에 사용했다.At various concentrations from 0 to 400 μM, glyoxal or 3-deoxyglucosone did not alter the expression of VEGF (FIGS. 3A and B). Only methylglyoxal stimulated the expression of VEGF mRNA at a concentration of 400 μM (P <0.0005) (FIG. 3C). No PCR product was generated from the RNA sample that was not reverse transcribed. All cells were viable. When the mesothelial cells were cultured in the presence of high concentration of 3-deoxyglucosone (0.625, 2.5 and 5 mM), there was a decrease in the viability of the cells (cell survival rate was 0.625, 2.5, 5 mM in the presence of 3-deoxyglucosone, 80,55 and 8%, respectively). Because cell viability decreased, VEGF mRNA expression could not be measured. From these observations, only methylglyoxal was used for the following experiments.

여러 농도의 메틸글리옥살 존재하에서 24시간 배양한 인간 미소혈관 내피세포의 배양상청중으로의 VEGF 단백질의 방출을, ELISA에 의해 측정했다. 인간 미소혈관 내피세포는 쿠라보(Osaka, Japan)로부터 구입하여, VEGF 결실 EGM-2배지(Takara, Tokyo, Japan)에서 배양했다. 메틸글리옥살과의 인큐베이트는 상기의 래트 복막중피세포와 동일하게 행했다. VEGF 단백질은, 2회 연속으로 조제한 배양상청에 대해, 키트(Quantikine: R&D Systems, Minneapolis, USA)를 사용하여 첨부한 설명서에 따라, 효소결합 면역흡착제분석(immunosorbant assay)(ELISA)에 의해 정량화했다. 실험은 3회 반복하여, 결과를 상기와 동일하게 통계해석했다.The release of VEGF protein into the culture supernatant of human microvascular endothelial cells cultured for 24 hours in the presence of various concentrations of methylglyoxal was measured by ELISA. Human microvascular endothelial cells were purchased from Kurabo (Osaka, Japan) and cultured in VEGF deleted EGM-2 medium (Takara, Tokyo, Japan). Incubation with methylglyoxal was performed in the same manner as the rat peritoneal mesothelial cells. The VEGF protein was quantified by the enzyme-linked immunosorbant assay (ELISA) according to the attached instructions using the kit (Quantikine: R & D Systems, Minneapolis, USA) for the culture supernatant prepared twice in succession. . The experiment was repeated three times, and the results were statistically analyzed in the same manner as above.

그 결과, 배지중으로의 메틸글리옥살의 첨가에 의해, 용량 의존적으로 VEGF의 증가가 인정되었다(도4). 메틸글리옥살 비존재하에서는, VEGF의 방출은 검출되지 않았다. 즉, 단백질 레벨에서도, 메틸글리옥살의 용량 의존적으로 VEGF 산생 ·방출이 자극되는 것이 보여졌다.As a result, an increase in VEGF was recognized in dose-dependent manner by the addition of methylglyoxal to the medium (Fig. 4). In the absence of methylglyoxal, no release of VEGF was detected. That is, even at the protein level, the dose-dependent VEGF production and release was stimulated by methylglyoxal.

다음에, 여러 농도(0∼400μM)의 메틸글리옥살 존재하에서 배양한 내피세포의 VEGF mRNA의 발현을 조사했다. 실험은 래트 중피세포의 경우와 동일하게 행했다. 단, 인간 VEGF의 증폭에는 5'-GGCAGAATCATCACGAAGTGGTG-3'(서열번호:5) 및 5'-CTGTAGGAAGCTCATCTCTCC-3'(서열번호:6)의 프라이머를 사용하여, 증폭된 단편은 271bp였다. 인간 G3PDH의 증폭에는 래트와 동일한 프라이머를 사용했다. 해석의 결과, VEGF mRNA의 발현은 용량 의존적으로 증가하는 것이 판명되었다(도5).Next, expression of VEGF mRNA in endothelial cells cultured in the presence of methylglyoxal at various concentrations (0-400 µM) was examined. The experiment was conducted in the same manner as in the case of rat mesothelial cells. However, the fragments amplified using primers of 5'-GGCAGAATCATCACGAAGTGGTG-3 '(SEQ ID NO: 5) and 5'-CTGTAGGAAGCTCATCTCTCC-3' (SEQ ID NO: 6) were 271 bp for amplification of human VEGF. The same primers as rats were used for amplification of human G3PDH. As a result of the analysis, the expression of VEGF mRNA was found to increase dose-dependently (Fig. 5).

<3-2> 메틸글리옥살이 복강내 투여된 래트의 복막조직에 있어서의 VEGF 발현<3-2> Expression of VEGF in Peritoneal Tissues of Rats Intraperitoneally Administered with Methylglyoxal

메틸글리옥살이 복막에 있어서의 VEGF mRNA의 발현에 미치는 생물학적 영향을 인 비보계에서 더 조사하기 위해, 래트의 복강에 여러 양의 메틸글리옥살을 10일간 투여하는 실험을 행했다. 6주 연령의 수컷 CD(SD) IGS 래트에게, 여러 농도의 메틸글리옥살을 포함하는 생리식염수 50ml/kg을 10일간, 매일 복강내에 투여했다. 복벽으로부터 복막을 단리하여 VEGF mRNA의 발현을 조사했다. 실험은 상기 래트 중피세포의 인비트로 실험과 동일하게 행했다. 단, 복막조직으로부터의 mRNA의 추출에는 ISOGEN(Nippon Gene, Tokyo, Japan)을 사용했다. 또한 PCR 증폭은, VEGF mRNA의 증폭에서는 28사이클, G3PDH mRNA의 증폭에서는 16사이클의 조건으로 행했다.In order to further investigate in vivo the biological effect of methylglyoxal on the expression of VEGF mRNA in the peritoneum, an experiment was conducted in which rats were infused with various amounts of methylglyoxal for 10 days. Six-week-old male CD (SD) IGS rats received 50 ml / kg of saline containing various concentrations of methylglyoxal intraperitoneally for 10 days. The peritoneum was isolated from the abdominal wall to examine the expression of VEGF mRNA. The experiment was performed in the same manner as the in vitro experiment of the rat mesothelial cells. However, ISOGEN (Nippon Gene, Tokyo, Japan) was used to extract mRNA from peritoneal tissue. PCR amplification was performed under conditions of 28 cycles for VEGF mRNA amplification and 16 cycles for amplification of G3PDH mRNA.

도6에 나타내는 바와 같이, 메틸글리옥살 농도에 의해, 복벽복막시료의 VEGF mRNA 발현은 유의하게 상승했다(P<0.05). 광학현미경 관찰에서는, 복막조직에 변화는 보이지 않았다(혈관수, 혈관벽, 간극 및 중피세포는 정상이었다).As shown in Fig. 6, the methylglyoxal concentration significantly increased the expression of VEGF mRNA in the peritoneal peritoneal sample (P <0.05). Under light microscopy, no changes were found in the peritoneal tissue (vessels, blood vessel walls, gaps and mesothelial cells were normal).

<3-3> 장기 복막투석 환자의 복막조직의 VEGF 및 카르복시메틸리진(CML)의 면역염색<3-3> Immunostaining of VEGF and Carboxymethyl Lysine (CML) in Peritoneal Tissue in Patients with Long-term Peritoneal Dialysis

복막투석 환자 9명의 복막조직에 있어서의 VEGF 및 카르복시메틸리진의 분포를 면역조직 화학분석에 의해 조사했다. 카르복시메틸리진은, 글리옥살이나 3-데옥시글루코손 등의 글루코오스 분해산물에 유래한다(Miyata, T. et al., 1999, Kidney Int. 55: 389-399). 따라서, 항카르복시메틸리진항체는, 글루코오스 분해산물로 수식된 단백질에 대한 마커(marker)로서 사용된다.The distribution of VEGF and carboxymethyl lysine in the peritoneal tissues of nine patients with peritoneal dialysis was examined by immunohistochemical analysis. Carboxymethyl lysine is derived from glucose degradation products such as glyoxal and 3-deoxyglucoson (Miyata, T. et al., 1999, Kidney Int. 55: 389-399). Thus, anticarboxymethyl lysine antibodies are used as markers for proteins modified with glucose breakdown products.

환자에 의한 동의서(informed consent)를 얻은 후, 카테테르 재삽입시에 9명의 비당뇨병 복막투석 환자로부터 복막조직을 단리했다(표1). 카테테르 재삽입의 필요성은, 카테테르의 손상, 위치의 어긋남 및/또는 폐색에 의해 생긴 것이다. 복막염 환자는 없었다. 신장기능이 정상인 남성 2명(48 및 58세)으로부터, 복부절개시에 정상인 복막조직을 단리했다.After informed consent was obtained, peritoneal tissue was isolated from nine non-diabetic peritoneal dialysis patients at catheter reinsertion (Table 1). The need for catheter reinsertion is caused by damage to the catheter, misalignment and / or occlusion. There were no patients with peritonitis. Two normal men (48 and 58 years old) with normal renal function were isolated from normal peritoneal tissue at the time of abdominal incision.

2㎛ 두께의 복막조직 조각을, 3-아미노프로필트리에톡시실란(Signa)을 코팅한 슬라이드에 마운트하고, 탈 파라핀 후, 증류수를 통과시키고 나서, Pronase(0.5mg/㎕:Dako, Glostrup, Denmark)를 포함하는 완충용액(0.05M Tris-HCl(pH 7.2), 0.1M NaCl)으로 실온에서 15분 인큐베이트했다. 슬라이드는, 0.5% Tween20을 포함하는 PBS로 세정하고, 4% 탈지유(skim milk)로 2시간 블록킹을 행한 후, 항VEGF 토끼 IgG(Santa Cruz Biotechnology, Santa Cruz, CA), 또는 항AGE 마우스 IgG(Ikeda, K. et al., 1996, Biochemistry 35: 8075-8083)(카르복시메틸리진을 항원결정인자(epitope)로 한다: Miyata, T. et al., 1997, Kidney Int. 51: 1170-1181)로 밤새, 4℃에서 휴미드 챔버(humid chamber)중에서 인큐베이트했다. 조각을 세정 후, 1:100 희석의 과산화효소결합 염소항토끼 IgG 또는 과산화효소결합 염소항마우스 IgG(Dako)로 2시간 실온에서 인큐베이트하고, 0.003% H2O2를 포함하는 3,3'-디아미노벤지딘용액으로 시그날을 검출했다. 또한, 과옥소산-시프염색에 의해 조직학적분석을 행했다. 면역염색은 2명에게서 독립적으로 관찰하여, 시그날강도와 분포의 평가를 행했다.A 2 μm thick piece of peritoneal tissue was mounted on a slide coated with 3-aminopropyltriethoxysilane (Signa), deparaffinized, and then passed through distilled water, followed by Pronase (0.5 mg / μl: Dako, Glostrup, Denmark). ) Was incubated for 15 minutes at room temperature with a buffer solution (0.05M Tris-HCl (pH 7.2), 0.1M NaCl). Slides were washed with PBS containing 0.5% Tween20 and blocked for 2 hours with 4% skim milk, followed by anti-VEGF rabbit IgG (Santa Cruz Biotechnology, Santa Cruz, CA), or anti-AGE mouse IgG ( Ikeda, K. et al., 1996, Biochemistry 35: 8075-8083) (carboxymethylazine is epitope: Miyata, T. et al., 1997, Kidney Int. 51: 1170-1181) Incubated overnight at 4 ° C. in a humid chamber. After washing the pieces, incubate at 1: 100 dilution with peroxidase-linked goat anti-rabbit IgG or peroxidase-linked goat anti-mouse IgG (Dako) for 2 hours at room temperature, containing 3,3 'containing 0.003% H 2 O 2 . The signal was detected with diaminobenzidine solution. In addition, histological analysis was performed by peroxo-acid staining. Immunostaining was observed independently in two patients, and signal intensity and distribution were evaluated.

결과는 표1에 나타냈다. 표중 「정상1」 및 「정상2」는 신장기능이 정상인피험자 유래의 시료, 「PD1」∼「PD9」는 복막투석 환자유래의 시료를 나타낸다. 대표적인 장기 복막투석 환자의 복막조직상(표1의 PD6)의 관찰에서는, 간질성 섬유증(fibrosis), 혈관벽의 두께 및 히아린증(hyalinosis)이 인정되었다. 중피세포 및 혈관벽에는, VEGF와 카르복시메틸리진이 함께 국재하고 있었다. 중피층에서는, VEGF의 시그날은 카르복시메틸리진의 시그날 보다도 약했다. 결과는, 다른 8명의 환자의 경우에도 동일했다. 정상인 복막시료(표1의 정상2)에서는, 복막투석시료에 비해, VEGF는 혈관벽에만 존재하고 있어, 중피층에서는 검출되지 않았다. 카르복시메틸리진은 중피층에서는 검출되지 않고, 혈관벽의 시그날도 지극히 약한 것이었다. 이들의 관찰은 다른 대조 정상시료에서도 동일했다. 정상 마우스 IgG를 사용한 경우는, 면역염색은 검출되지 않았다. 이와 같이, 복막투석 환자에 있어서만, 중피에서의 VEGF 발현과 카르복시메틸리진의 공국재(共局在)가 보여지는 사실은, 복막투석에 의해, 복막투석액중의 글루코오스 분해산물이, 요독증 환자에 있어서 실제로 VEGF 산생을 증강하고 있는 것을 시사하고 있다.The results are shown in Table 1. In the table, "normal 1" and "normal 2" indicate samples derived from a subject with normal renal function, and "PD1" to "PD9" indicate samples derived from peritoneal dialysis patients. In the peritoneal tissue images (PD6 in Table 1) of representative long-term peritoneal dialysis patients, interstitial fibrosis, vascular wall thickness, and hyalinosis were recognized. Mesothelial cells and blood vessel walls were co-localized with VEGF and carboxymethyl lysine. In the mesothelial layer, the signal of VEGF was weaker than that of carboxymethyl lysine. The results were the same for the other eight patients. In normal peritoneal samples (normal 2 in Table 1), VEGF was present only in the vessel wall, compared to peritoneal dialysis samples, and was not detected in the mesothelial layer. Carboxymethyl lysine was not detected in the mesothelial layer, and the signal of the blood vessel wall was extremely weak. Their observations were the same for the other control normal samples. When normal mouse IgG was used, no immunostaining was detected. Thus, the fact that the expression of VEGF in the mesothelioma and coadministration of carboxymethyl lysine is seen only in the peritoneal dialysis patients. Thus, peritoneal dialysis results in the degradation of glucose degradation products in the peritoneal dialysis solution. This suggests that VEGF production is actually enhanced.

복막투석 환자 복막조직에 있어서의 CML 및 VEGF의 면역조직 화학적 검출Immunohistochemical Detection of CML and VEGF in Peritoneal Tissue of Peritoneal Dialysis Patients 시료 성별 연령 복막투석기간 CML VEGF(세) (월) 중피층 혈관벽 중피층 혈관벽Sample Gender Age Peritoneal Dialysis Period CML VEGF (Month) Mesothelial Vessel Wall Mesothelial Vessel Wall 정상 1 M 48 - - ± - +정상 2 M 58 - - ± - +PD1 F 53 3 + + + +PD2 M 44 4 + + + +PD3 M 43 45 + + + +PD4 F 54 60 ++ ++ ++ +PD5 M 52 70 ++ ++ + +PD6 M 51 90 ++ ++ ++ ++PD7 M 45 105 ++ ++ ++ ++PD8 M 62 108 ++ ++ ++ ++PD9 M 66 110 ++ ++ ++ ++Normal 1 M 48--±-+ Normal 2 M 58--±-+ PD1 F 53 3 + + + + PD2 M 44 4 + + + + PD3 M 43 45 + + + + PD4 F 54 60 ++ ++ ++ + PD5 M 52 70 ++ ++ + + PD6 M 51 90 ++ ++ ++ ++ PD7 M 45 105 ++ ++ ++ PD8 M 62 108 ++ ++ ++ PD9 M 66 110 ++ ++ ++ ++

-:음성, ±:지극히 약한 시그날, +:양성, ++:강하게 양성-: Negative, ±: extremely weak signal, +: positive, ++: strongly positive

이상의 결과는, 복막투석 환자가 복막투석액중의 글루코오스 분해산물 등에 의해 카르보닐 스트레스상태에 놓여 있는 것을 뒷받침하는 것이고, 또한 메틸글리옥살이 복막세포로 VEGF의 산생을 증강시키는 것을 처음으로 실증하는 것이다. 복막투석액에 포함되는 글루코오스 분해산물이 복막의 투과성을 저하시키는 원인의 적어도 일부는, VEGF 산생의 항진과 또한 그에 동반되는 혈관신생의 자극에 의한 것이 시사된다.The above results support for the first time that peritoneal dialysis patients are placed under carbonyl stress by glucose degradation products in peritoneal dialysis solution, and also demonstrate for the first time that methylglyoxal enhances the production of VEGF into peritoneal cells. It is suggested that at least a part of the cause of the degradation of glucose permeate contained in the peritoneal dialysis solution is due to the enhancement of VEGF production and the accompanying stimulation of angiogenesis.

[실시예 4] 복막투석 환자의 투석액배액에 대한 카르보닐화합물 트랩제의 첨가효과Example 4 Addition Effect of Carbonyl Compound Trap Agent on Dialysis Fluid Drainage in Peritoneal Dialysis Patients

<4-1><4-1>

펜토시딘은 AGE 구조체의 하나로, 신부전 환자의 혈중에는 신체건강한 보통사람과 비교하여 약 20배의 축적이 인정되고 있다(Miyata, T. et al., J. Am. Soc. Nephrol., 7: 1198-1206(1996)). 복막투석 환자의 배액을 37℃로 인큐베이트한 경우에 증가하는 펜토시딘 및 단백질상에 존재하는 카르보닐기(단백질카르보닐)에 대한 아미노구아니딘의 첨가효과의 검토를 행했다.Pentosidine is one of the AGE constructs, and about 20 times the accumulation in the blood of renal failure patients is comparable to that of the average healthy body (Miyata, T. et al., J. Am. Soc. Nephrol., 7: 1198-1206 (1996). When the drainage of peritoneal dialysis patients was incubated at 37 ° C, the effect of the addition of aminoguanidine to the pentosidine and the carbonyl group (protein carbonyl) present on the protein was examined.

복막투석 환자의 하룻밤 저류배액을 원심 후, 상청을 여과멸균(공경 0.45㎛)하여, 아미노구아니딘(동경화성제)을 0, 1, 10, 100mM의 농도가 되도록 첨가하여, 37℃로 인큐베이트했다. 인큐베이트 기간은, 펜토시딘을 측정하는 경우는 1~2주간, 단백질카르보닐을 측정하는 경우에는 2주간으로 했다. 펜토시딘의 측정은, 6N HCl 중 110℃로 단백질을 가수분해한 후, HPLC(시마즈제작소제, LC-10A)로 정량했다(T.Miyata등, 1996, J. Am. Soc. Nephrol, 7:1198-1206, T.Miyata등, 1996, Proc. Natl. Acad. Aci. USA, 93:2353-2358). 단백질카르보닐의 측정은, 2,4-디니트로페닐히드라진(2,4-DNPH)(와코준야쿠제)와 반응시킨 후, 카르보닐기와 반응하여 생성한 히드라존의 흡광도를 측정(Japan Molecular Devices co.;SPECTRAmax250)함으로써 행했다(Levine, R. L. et al., Methods Enzymol., 233, 346-357(1994)).After centrifugation of the peritoneal dialysis patient overnight, the supernatant was filtered and sterilized (pore 0.45 µm), and aminoguanidine (curing agent) was added to a concentration of 0, 1, 10, 100 mM, and incubated at 37 ° C. . The incubation period was 1 to 2 weeks when pentosidine was measured and 2 weeks when protein carbonyl was measured. The measurement of pentosidine was quantified by HPLC (Shimazu Corporation, LC-10A) after hydrolysis of the protein at 110 ° C. in 6N HCl (T.Miyata et al., 1996, J. Am. Soc. Nephrol, 7). : 1198-1206, T. Miyata et al., 1996, Proc. Natl. Acad. Aci. USA, 93: 2353-2358). The protein carbonyl was measured by reacting with 2,4-dinitrophenylhydrazine (2,4-DNPH) (made by Wakojunyaku) and then measuring the absorbance of the hydrazone produced by reacting with a carbonyl group (Japan Molecular Devices co. (SPECTRAmax 250) (Levine, RL et al., Methods Enzymol., 233, 346-357 (1994)).

그 결과, 펜토시딘의 생성에 대해, 농도 의존적으로 아미노구아니딘의 억제효과가 인정되었다(도8). 마찬가지로, 단백질카르보닐의 생성에 대해서도, 농도 의존적으로 아미노구아니딘의 억제효과가 인정되었다(도9).As a result, the inhibitory effect of aminoguanidine was observed in a concentration-dependent manner for the production of pentosidine (FIG. 8). Similarly, the inhibitory effect of aminoguanidine was recognized in a concentration-dependent manner in the production of protein carbonyl (Fig. 9).

<4-2><4-2>

다음에, 이하의 실험방법에 따라, 복막투석 환자의 하룻밤 저류배액중의 글루코오스 이외의 카르보닐화합물량에 대한 아미노구아니딘의 첨가효과를 검토했다.Next, the effect of the addition of aminoguanidine to the amount of carbonyl compounds other than glucose in the overnight storage drainage of peritoneal dialysis patients was examined according to the following experimental method.

(A) 복막투석배액의 인큐베이션(A) Incubation of Peritoneal Dialysis Drainage

복막투석시행 환자의 배액을 채취하여, 공경 0.45㎛의 필터로 여과한 후, 아미노구아니딘(동경화성제)을 0, 10, 50 및 250mM의 농도가 되도록 가하여, 시료용액으로 했다. 시료용액 1ml를 취하여, 스크류캡부착 플라스틱 튜브에 분주한 후, 37℃로 15시간 인큐베이트했다. 또한, 시료용액은, 인큐베이션 직전까지 -30℃로 보존했다.The drainage of the peritoneal dialysis patient was collected, filtered through a filter with a pore size of 0.45 µm, and aminoguanidine (copper curing agent) was added so as to have concentrations of 0, 10, 50, and 250 mM, to prepare a sample solution. 1 ml of the sample solution was taken, dispensed into a screw tube with a screw cap, and then incubated at 37 ° C for 15 hours. In addition, the sample solution was stored at -30 degreeC until just before incubation.

(B) 카르보닐화합물의 정량(B) Determination of Carbonyl Compounds

1) 시료용액의 측정1) Measurement of sample solution

시료용액 400μL를 취하여, 1.5mM의 2,4-DNPH(와코쥰야쿠제)를 0.5N 염산용액 400μL와 혼합 후, 30분간 실온에서 교반하여, 시료용액중의 카르보닐화합물과 2,4-DNPH를 반응시켰다. 다음에, 1M의 아세톤수용액 40μL를 첨가하고, 실온에서 5분간 교반하여 과잉의 2,4-DNPH를 아세톤과 반응시켜 제거한 후, 시료용액을 400μL의 n-헥산으로 3회 세정하여, 수층에 대해 360nm에서의 흡광도를 마이크로플레이트용 분광광도계(Japan Molecular Devices co.; SPECTRAmax250)로 측정했다.Take 400 μL of sample solution, mix 1.5 mM 2,4-DNPH (made by Wako Pure Chemical) with 400 μL of 0.5 N hydrochloric acid solution, stir at room temperature for 30 minutes, and mix the carbonyl compound and 2,4-DNPH in the sample solution. Reacted. Next, 40 µL of an aqueous 1 M acetone solution was added and stirred at room temperature for 5 minutes to remove excess 2,4-DNPH with acetone, and then the sample solution was washed three times with 400 µL of n-hexane. Absorbance at 360 nm was measured with a spectrophotometer for microplates (Japan Molecular Devices co .; SPECTRAmax250).

2) 검량선의 작성2) Preparation of calibration curve

여러 농도의 글루코오스수용액을 조제하고, 1)과 동일하게 조작하여, 글루코오스와 글루코오스 유래의 카르보닐화합물량에 대한 검량선을 작성했다.Glucose aqueous solutions of various concentrations were prepared and operated in the same manner as in 1) to prepare a calibration curve for the amount of glucose and glucose-derived carbonyl compounds.

3) 카르보닐화합물의 정량3) Determination of Carbonyl Compounds

시료용액중의 글루코오스농도를 글루코오스 측정키트(와코쥰야쿠제, 글루코오스 CII-Test Wako)를 사용하여 측정했다. 검량선으로부터 글루코오스 유래의 카르보닐화합물량을 구했다. 복막투석배액중의 총카르보닐화합물의 양에서 글루코오스 유래의 카르보닐화합물의 양을 제하여, 카르보닐화합물의 양으로 했다.Glucose concentration in the sample solution was measured using a glucose measurement kit (wako Pure Chemical, Glucose CII-Test Wako). The amount of carbonyl compounds derived from glucose was calculated | required from the analytical curve. The amount of carbonyl compound derived from glucose was subtracted from the amount of total carbonyl compound in the peritoneal dialysis drainage to obtain the amount of carbonyl compound.

그 결과를 도10에 나타낸다. 복막투석 환자의 복막투석배액중의 글루코오스 이외의 카르보닐화합물량은, 인큐베이트하지 않는 것 및 37℃로 15시간의 인큐베이트를 한 것 모두, 아미노구아니딘의 농도가 증감함에 따라 감소했다.The results are shown in FIG. The amount of carbonyl compound other than glucose in the peritoneal dialysis drainage of peritoneal dialysis patients decreased as the concentration of aminoguanidine was increased or decreased incubated at 37 ° C for 15 hours.

이들 결과로부터, 카르보닐화합물 트랩제를 복막투석액에 첨가, 또는 환자에게 투여하는 것이, 복강내에 주입된 복막투석액중의 카르보닐화합물의 생성 및/또는 축적을 억제하기 위해 유효한 것이 명백해졌다. 그것에 의해, 복강내에 존재하는 복막투석액 유래 및 혈중 유래의 카르보닐화합물이 제거되어, 복막투석 환자의 카르보닐 스트레스상태가 개선된다.From these results, it became clear that the addition of the carbonyl compound trapping agent to the peritoneal dialysis solution or administration to the patient was effective for suppressing the production and / or accumulation of the carbonyl compound in the peritoneal dialysis solution injected intraperitoneally. As a result, the carbonyl compounds derived from the peritoneal dialysis fluid and the blood derived from the peritoneum are removed, and the carbonyl stress state of the peritoneal dialysis patient is improved.

[실시예 5] 복막투석액의 가열멸균과정에 있어서의 카르보닐화합물 트랩제의 첨가효과Example 5 Addition Effect of Carbonyl Compound Trap Agent in the Heat Sterilization Process of Peritoneal Dialysis Solution

복막투석액중에는 침투압조절제로서 고농도(1.35~4.0w/v%) 글루코오스가 포함되어 있다. 글루코오스는 열에 대해 불안정하여, 가열멸균이나 보존중에 분해된다. 글루코오스의 분해물로서, 5-히드록시메틸푸르푸랄(5-hydroxymethylfurfural;5HMF), 레불산, 아세트알데히드 등이 생성되는 것이 보고되어 있다(Richard, J. U. et al., Fund. Appl. Toxic.,4: 843-853(l984), Nilsson, C. B. et al., Perit. Dial. Int.,13: 208-213(1993)). 복막투석액의 가열멸균과정에서의 아미노구아니딘의 카르보닐화합물의 생성억제효과를 5-HMF, 카르보닐화합물량을 측정함으로써 검토했다. 또한, 글루코오스의 분해정도는 액 pH의 영향을 받는 것으로부터, 멸균 전의 pH가 산성(pH 5.3) 및 중성(pH 7.0) 2종류의 복막투석액을 조제하여, 실험에 제공했다. 멸균온도는 121℃로 했다.Peritoneal dialysis solution contains high concentration (1.35 ~ 4.0w / v%) glucose as penetration control agent. Glucose is unstable to heat and degrades during heat sterilization or storage. As a decomposition product of glucose, 5-hydroxymethylfurfural (5HMF), levulic acid, acetaldehyde and the like have been reported to be produced (Richard, JU et al., Fund.Appl. Toxic., 4: 843-853 (l984), Nilsson, CB et al., Perit.Dial.Int., 13: 208-213 (1993). The effect of inhibiting the production of the amino guanidine carbonyl compound during the heat sterilization of the peritoneal dialysis solution was examined by measuring the amount of 5-HMF and carbonyl compound. In addition, since the degree of decomposition of glucose was affected by the liquid pH, two types of peritoneal dialysis fluids with acidic pH (pH 5.3) and neutral pH (pH 7.0) before sterilization were prepared and used for the experiment. Sterilization temperature was 121 degreeC.

<5-1><5-1>

5-HMF의 측정은, 고속액체크로마토그래피(시마즈제작소제, LC-10A)를 사용하여, 측정했다(Nilsson, C. B. et al., Perit. Dial. Int.,13: 2O8-213(1993)).5-HMF was measured using high performance liquid chromatography (manufactured by Shimadzu Corporation, LC-10A) (Nilsson, CB et al., Perit.Dial. Int., 13: 2O8-213 (1993)). .

그 결과, 산성환경(도11) 및 중성환경(도12) 모두, 5-HMF의 생성에 대해, 농도 의존적으로 아미노구아니딘의 억제효과가 인정되었다.As a result, both the acidic environment (Fig. 11) and the neutral environment (Fig. 12), the inhibitory effect of aminoguanidine was observed in a concentration-dependent manner on the production of 5-HMF.

<5-2><5-2>

복막투석액중의 카르보닐화합물의 정량은, 실시예 1과 동일하게, 2,4-DNPH와 반응시킨 후, 흡광도를 측정함으로써 행했다(Levine, R. L. et al., Methods Enzymol.,233: 346-357(l994)). 멸균온도는 121℃로 했다.Quantitative determination of the carbonyl compound in the peritoneal dialysis solution was performed by reacting with 2,4-DNPH and measuring the absorbance as in Example 1 (Levine, RL et al., Methods Enzymol., 233: 346-357). (l994)). Sterilization temperature was 121 degreeC.

그 결과, 카르보닐화합물량에 관해서도, 농도 의존적으로 아미노구아니딘의 억제효과가 인정되었다(도13).As a result, also regarding the amount of carbonyl compounds, the inhibitory effect of aminoguanidine was recognized in a concentration-dependent manner (Fig. 13).

이들의 결과로부터, 복막투석액중에 카르보닐화합물의 생성을 억제하는 약제를 첨가하는 것이, 복막투석액중의 카르보닐화합물의 생성 및/또는 축적을 억제하기 때문에 매우 유효한 사실이 명백해졌다.From these results, it is evident that the addition of a drug that inhibits the production of the carbonyl compound in the peritoneal dialysis solution is very effective because it suppresses the production and / or accumulation of the carbonyl compound in the peritoneal dialysis solution.

[실시예 6] 복막투석액중의 펜토시딘 생성에 대한 카르보닐화합물 트랩비드의 첨가효과Example 6 Addition Effect of Carbonyl Compound Trap Bead on Pentosidine Formation in Peritoneal Dialysis Solution

가교한 폴리스티렌 수지에 술포닐히드라진기를 결합한 것(PS-TsNHNH2,ARGONAUT TECHNOLOGlES사)을 카르보닐화합물 트랩비드로서 사용하여, 복막투석액중의 카르보닐화합물의 제거효과를 검토했다. 복막투석액 및 카르보닐화합물 트랩비드를 첨가한 복막투석액을 37℃로 인큐베이트하여, 펜토시딘의 형성 억제효과를 확인했다. 카르보닐화합물 트랩비드가 들어간 튜브에, 디메틸술폭시드 100㎕를 가해 팽윤시킨 후, 복막투석액(Baxter Ltd.; Dianeal PD-4, 1.5) 800μL, 물에 용해한 150mg/mL 농도의 소혈청 알부민 200μL를 첨가하여, 37℃로 일주일간 인큐베이트했다. 인큐베이트 종료 후, 포아사이즈(pore size) 0.22㎛인 원심식 여과튜브(Millipore co.; UFC30W00)를 사용하여 비드를 제거했다. 다음에, 비드를 제거한 용액 50㎕에 10% 트리클로로초산 50㎕를 가하고, 원심하여 단백을 침전시켰다. 단백을 300㎕의 5% 트리클로로초산으로 세정하고, 건고(乾固)시켰다. 다음에, 6N HCl을 100㎕ 첨가하고, 110℃로 16시간 가열한 후, HPLC로 펜토시딘을 정량했다(T.Miyata등, 1996, J. Am. Soc. Nephrol.,7: 1198-1206, T, Miyata등, 1996, Proc. Natl. Acad. Sci. USA, 93: 2353-2358).The removal effect of the carbonyl compound in the peritoneal dialysis solution was examined using a combination of a sulfonylhydrazine group and a crosslinked polystyrene resin (PS-TsNHNH2, ARGONAUT TECHNOLOGlES) as a carbonyl compound trap bead. The peritoneal dialysis solution containing the peritoneal dialysis solution and the carbonyl compound trap bead was incubated at 37 ° C to confirm the inhibitory effect of pentosidine formation. 100 μl of dimethyl sulfoxide was added to the tube containing the carbonyl compound trap bead and swelled, followed by 800 μL of peritoneal dialysis solution (Baxter Ltd .; Dianeal PD-4, 1.5) and 200 μL of bovine serum albumin at 150 mg / mL concentration. In addition, it was incubated for one week at 37 degreeC. After incubation, beads were removed using a centrifugal filter tube (Millipore co .; UFC30W00) with a pore size of 0.22 μm. Next, 50 µl of 10% trichloroacetic acid was added to 50 µl of the beads from which the beads were removed, and the protein was precipitated by centrifugation. The protein was washed with 300 µl of 5% trichloroacetic acid and dried. Next, 100 µl of 6N HCl was added and heated to 110 ° C for 16 hours, and then pentosidine was quantified by HPLC (T. Miyata et al., 1996, J. Am. Soc. Nephrol., 7: 1198-1206). , T, Miyata et al., 1996, Proc. Natl. Acad. Sci. USA, 93: 2353-2358).

37℃로 인큐베이트했을 때에 생성되는 펜토시딘량을 도14에 나타냈다. 카르보닐화합물 트랩비드의 첨가에 의해, 펜토시딘의 생성이 현저히 억제되는 것이 판명되었다.The amount of pentosidine produced when incubated at 37 degreeC is shown in FIG. It was found that the addition of carbonyl compound trap beads significantly inhibited the production of pentosidine.

[실시예 7] 복막투석액중의 카르보닐화합물량에 대한 카르보닐화합물 트랩비드의 첨가효과Example 7 Effects of Carbonyl Compound Trap Beads on the Amount of Carbonyl Compounds in Peritoneal Dialysis Solution

카르보닐화합물 트랩비드에 의한 복막투석액중의 카르보닐화합물의 제거효과를 검토했다. 카르보닐화합물 트랩비드(PS-TsNHNH2, ARGONAUT TECHNOLOGIES사)가들어간 튜브에, 디메틸술폭시드 100㎕를 가하여 팽윤시킨 후, 복막투석액(Baxter Ltd.; Dianeal PD-4, 1.5) 900μL를 첨가하여, 로테이터(rotator)를 사용하여 실온에서 16시간 교반했다. 다음에, 카르보닐화합물 트랩비드가 들어간 현탁액을, 포아사이즈 0.22㎛인 원심식 여과튜브(Millipore co,; UFC30GV00)로 여과하여, 여액중의 카르보닐화합물량을 아래와 같이 하여 측정했다.The removal effect of the carbonyl compound in the peritoneal dialysis solution by the carbonyl compound trap bead was examined. To the tube containing the carbonyl compound trap bead (PS-TsNHNH2, ARGONAUT TECHNOLOGIES), swelled by adding 100 µl of dimethyl sulfoxide, and 900 µL of peritoneal dialysis solution (Baxter Ltd .; Dianeal PD-4, 1.5) was added to the rotator. It stirred at room temperature for 16 hours using the rotator. Next, the suspension containing the carbonyl compound trap beads was filtered through a centrifugal filter tube (Millipore co; UFC30GV00) having a pore size of 0.22 µm, and the amount of carbonyl compound in the filtrate was measured as follows.

<카르보닐화합물의 정량><Quantification of Carbonyl Compounds>

1) 시료용액의 측정1) Measurement of sample solution

시료용액 200μL와, 2,4-DNPH를 0.5N 염산에 녹인 용액(0.025%) 200μL를 혼합 후, 30℃로 30분간 반응시켰다. 다음에, 1M의 아세톤수용액 20μL를 첨가하여, 30℃로 10분간 인큐베이트한 후, 200μL의 n-헥산으로 3회 세정했다. 더욱이, 수층에 200μL의 옥탄올을 가하여 히드라존을 추출하고, 옥탄올층에 대해 360nm에 있어서의 흡광도를 마이크로플레이트용 분광광도계(Japan Mollecular Devices co.; SPECTRAmax250)로 측정했다.After mixing 200 µL of the sample solution and 200 µL of a solution (0.025%) in 2,4-DNPH dissolved in 0.5N hydrochloric acid, the mixture was reacted at 30 ° C for 30 minutes. Next, 20 µL of an aqueous 1 M acetone solution was added and incubated at 30 ° C. for 10 minutes, followed by washing three times with 200 µL of n-hexane. Furthermore, 200 µL of octanol was added to the aqueous layer to extract hydrazone, and the absorbance at 360 nm was measured with the microplate spectrophotometer (Japan Mollecular Devices Co .; SPECTRAmax250).

2) 검량선의 작성2) Preparation of calibration curve

여러 농도의 글루코오스수용액을 조제하고, 1)과 동일하게 조작하여, 글루코오스와 글루코오스 유래의 카르보닐화합물량에 대한 검량선을 작성했다.Glucose aqueous solutions of various concentrations were prepared and operated in the same manner as in 1) to prepare a calibration curve for the amount of glucose and glucose-derived carbonyl compounds.

3) 카르보닐화합물량의 정량3) Quantification of Carbonyl Compounds

시료용액중의 글루코오스농도를 글루코오스측정 키트(와코쥰약제, 글루코오스 CII-와코)를 사용하여 측정했다. 검량선으로부터 글루코오스 유래의 카르보닐화합물량을 구했다. 시료용액중의 총카르보닐화합물량으로부터 글루코오스 유래의 카르보닐화합물의 양을 제하여, 시료용액중의 카르보닐화합물의 양으로 했다.Glucose concentration in the sample solution was measured using a glucose measurement kit (Wakko Pharmaceutical, Glucose CII-Wakko). The amount of carbonyl compounds derived from glucose was calculated | required from the analytical curve. The amount of carbonyl compound derived from glucose was subtracted from the total amount of carbonyl compound in the sample solution to obtain the amount of carbonyl compound in the sample solution.

그 결과를 도15에 나타낸다. 복막투석액에 2mg의 카르보닐화합물 트랩비드를 첨가하여, 실온에서 16시간 교반함으로써, 카르보닐화합물량은 55% 감소했다. 또한, 첨가하는 카르보닐화합물 트랩비드의 양을 10mg까지 증가시킨 경우, 카르보닐화합물량은 더욱 감소했다.The results are shown in FIG. By adding 2 mg of carbonyl compound trap beads to the peritoneal dialysis solution and stirring at room temperature for 16 hours, the amount of carbonyl compound was reduced by 55%. In addition, when the amount of added carbonyl compound trap bead was increased to 10 mg, the amount of carbonyl compound further decreased.

이들 결과로부터, 카르보닐화합물 트랩제를 고정화한 담체를 사용하여, 복막투석액중의 카르보닐화합물의 생성 및/또는 축적을 억제할 수 있는 것이 명백해졌다.From these results, it became clear that the carrier and the carbonyl compound trapping agent were immobilized to suppress the production and / or accumulation of the carbonyl compound in the peritoneal dialysis solution.

[실시예 8] 활성탄에 의한 디카르보닐용액중의 카르보닐화합물 트랩작용Example 8 Trapping of Carbonyl Compounds in Dicarbonyl Solution by Activated Carbon

카르보닐화합물 트랩제로서 활성탄을 사용하여, 디카르보닐용액중의 카르보닐화합물의 제거효과를 검토했다. 활성탄(와코쥰야쿠공업제) 25㎍ 또는 5O㎍을 넣은 튜브에, 디카르보닐화합물을 인산완충액(이하 PBS라 생략)에 용해한 디카르보닐용액(모두 100μM)을 각각 9OO㎕ 분주했다. 디카르보닐화합물로서는, 글리옥살, 메틸글리옥살 및 3-데옥시글루코손을 사용했다. 이 튜브를 로테이터에 세팅하여 실온에서 19시간 교반했다. 교반 후, 튜브내의 용액을 포아사이즈 0.22㎛인 원심식 여과튜브(미리포아제, UFC30GVO0)로 여과하여, 각 디카르보닐화합물의 농도를 고속액체크로마토그래피를 사용하여 측정했다. 측정방법은, 공지의 방법에 따랐다.Activated carbon was used as the carbonyl compound trapping agent to examine the effect of removing the carbonyl compound in the dicarbonyl solution. Into a tube containing 25 µg or 50 µg of activated carbon (wako Pure Chemical Industries, Ltd.), 990 µl of dicarbonyl solution (all 100 µM) in which a dicarbonyl compound was dissolved in a phosphate buffer solution (hereinafter referred to as PBS) was dispensed. As the dicarbonyl compound, glyoxal, methylglyoxal and 3-deoxyglucoson were used. This tube was set to a rotator and stirred for 19 hours at room temperature. After stirring, the solution in the tube was filtered through a centrifugal filtration tube (milipase, UFC30GVO0) having a pore size of 0.22 µm, and the concentration of each dicarbonyl compound was measured using high performance liquid chromatography. The measuring method followed a well-known method.

결과는 도16에 나타냈다. 900㎕의 디카르보닐용액에 활성탄 25㎍을 첨가한 경우, 글리옥살(G0)에서 71%, 메틸글리옥살(MGO)에서 94%, 그리고 3-데옥시글루코손(3DG)에서는 93%가 활성탄에 의해서 트랩되어 있었다. 활성탄을 50㎍ 사용한 경우에는, 글리옥살에서 85%, 메틸글리옥살이나 3-데옥시글루코손에서는 98%로, 시험한 모든 디카르보닐화합물의 대부분이 활성탄에 의해 트랩되는 것을 확인할 수 있었다.The results are shown in FIG. When 25 μg of activated carbon was added to 900 μl of dicarbonyl solution, 71% for glyoxal (G0), 94% for methylglyoxal (MGO), and 93% for 3-deoxyglucosone (3DG) Trapped by When 50 µg of activated carbon was used, 85% in glyoxal and 98% in methylglyoxal or 3-deoxyglucoson showed that most of the dicarbonyl compounds tested were trapped by activated carbon.

[실시예 9] 활성탄에 의한 복막투석액중의 카르보닐화합물 트랩작용Example 9 Trapping of Carbonyl Compounds in Peritoneal Dialysis Solution by Activated Carbon

카르보닐화합물 트랩제로서 활성탄을 사용하여, 복막투석액중의 카르보닐화합물의 제거효과를 검토했다. 활성탄(와코쥰야쿠공업제) 25㎍ 또는 50㎍을 넣은 튜브에, 복막투석액(Baxter Ltd.; Dianeal PD-4, 1.5, 상품명)을 900㎕ 분주했다. 이 튜브를 로테이터에 세팅하여 실온에서 19시간 교반했다. 교반 후, 튜브내의 복막투석액을 포아사이즈 0.22㎛인 원심식 여과튜브(미리포아제, UFC30GV00)로 여과하여, 여액에 포함되는 글리옥살, 메틸글리옥살 및 3-데옥시글루코손의 농도를 고속액체 크로마토그래피를 사용하여 측정했다. 측정방법은, 공지의 방법에 따랐다.Activated carbon was used as the carbonyl compound trapping agent, and the effect of removing the carbonyl compound in the peritoneal dialysis solution was examined. 900 µl of peritoneal dialysis solution (Baxter Ltd .; Dianeal PD-4, 1.5, trade name) was dispensed into a tube containing 25 µg or 50 µg of activated carbon (manufactured by Wako Pure Chemical Industries, Ltd.). This tube was set to a rotator and stirred for 19 hours at room temperature. After stirring, the peritoneal dialysis solution in the tube was filtered with a centrifugal filtration tube (Mollipoase, UFC30GV00) having a pore size of 0.22 μm, and the concentration of glyoxal, methylglyoxal and 3-deoxyglucoson contained in the filtrate was changed to a high-speed liquid. Measured using chromatography. The measuring method followed a well-known method.

결과는 도17에 나타냈다. 900㎕의 복막투석액에 활성탄 25㎍을 첨가한 경우, 활성탄을 가하지 않은 복막투석액에 대해, 글리옥살(GO)에서 56%, 메틸글리옥살에서(MG0) 71%, 그리고 3-데옥시글루코손(3DG)에서는 62%가 활성탄에 의해 트랩되어 있었다. 활성탄을 50㎍ 사용한 경우에는, 글리옥살에서 64%, 메틸글리옥살에서 78%, 그리고 3-데옥시글루코손에서는 77%의 디카르보닐화합물이 활성탄에 의해 트랩되는 것을 확인할 수 있었다.The results are shown in FIG. When 25 μg of activated carbon was added to 900 μl of peritoneal dialysis solution, 56% in glyoxal (GO), 71% in methylglyoxal (MG0), and 3-deoxyglucosone 3DG), 62% was trapped by activated carbon. When 50 µg of activated carbon was used, it was confirmed that 64% of glyoxal, 78% of methylglyoxal, and 77% of 3-deoxyglucoson were trapped by activated carbon.

[실시예 1O] 글리옥살, 메틸글리옥살, 3-데옥시글루코손에 대한 구아니딘, 아미노구아니딘, 비구아나이드제의 트랩효과Example 1 Trapping Effects of Guanidine, Aminoguanidine, and Biguanide Agents on Glyoxal, Methylglyoxal, and 3-Deoxyglucoson

글리옥살, 메틸글리옥살, 3-데옥시글루코손의 혼합용액(각 1mM) 50㎕, 0.1M의 인산완충액(pH 7.4) 400㎕, 30mM의 구아니딘, 아미노구아니딘, 또는 비구아나이드제용액 50㎕를 혼합하여, 37℃로 인큐베이트했다. 비구아나이드제에는, 메트포르민(metformin), 부포르민(buformin) 및 펜포르민(phenformin)을 사용했다. 인큐베이트종료 후, 글리옥살, 메틸글리옥살, 3-데옥시글루코손을, o-페닐렌디아민을 사용하여 퀴녹살린유도체로 하고, 각각의 농도를 고속액체 크로마토그래피를 사용하여 측정했다.50 µl of a mixed solution of glyoxal, methylglyoxal or 3-deoxyglucose (1 mM each), 400 µl of 0.1 M phosphate buffer (pH 7.4), 50 µl of 30 mM guanidine, aminoguanidine, or biguanide solution It mixed and incubated at 37 degreeC. Metformin, buformin, and phenformin were used for the biguanide agent. After the end of incubation, glyoxal, methylglyoxal and 3-deoxyglucosone were made quinoxaline derivatives using o-phenylenediamine, and the respective concentrations were measured using high performance liquid chromatography.

결과는 도18(구아니딘), 도19(메트포르민), 도20(부포르민), 도21(펜포르민), 도22(아미노구아니딘)에 나타냈다. 구아니딘, 아미노구아니딘 및 어떤 비구아나이드제도, 특히 메틸글리옥살의 농도를 현저히 저하시키는 효과가 확인되었다. 또한 아미노구아니딘에 있어서는, 메틸글리옥살에 대해 극적으로 농도를 저하시키고, 또한 그 밖의 비구아나이드에서는 현저한 농도저감작용이 보이지 않았던 3-데옥시글루코손에 대해서도 농도를 현저히 저하시키고 있다.The results are shown in Fig. 18 (Guanidine), Fig. 19 (Metformin), Fig. 20 (Bupformin), Fig. 21 (Penformin), and Fig. 22 (Aminoguanidine). Guanidine, aminoguanidine and certain biguanides have been found to significantly lower the concentration of methylglyoxal, in particular. In aminoguanidine, the concentration is drastically decreased with respect to methylglyoxal, and also with 3-deoxyglucoson, in which no significant reduction in concentration was found in other biguanides.

[실시예 11] 글리옥살, 메틸글리옥살, 3-데옥시글루코손에 대한 SH제의 트랩효과Example 11 Trap Effect of SH Agents on Glyoxal, Methyl Glyoxal, and 3-Deoxyglucosone

글리옥살, 메틸글리옥살, 3-데옥시글루코손의 혼합용액(각 1mM) 50㎕, 0.1M의 인산완충액(pH 7.4) 400㎕, 30mM의 SH 화합물용액 50㎕를 혼합하여, 37℃로 인큐베이트했다. SH 화합물에는, 시스테인(cystein), N-아세틸시스테인(N-acetylcysteine) 및 GSH를 사용했다. 인큐베이트종료 후, 글리옥살, 메틸글리옥살, 3-데옥시글루코손을 o-페닐렌디아민을 사용하여 퀴녹살린유도체로 하고, 각각의 농도를 고속액체크로마토그래피를 사용하여 측정했다.50 µl of a mixed solution of glyoxal, methylglyoxal and 3-deoxyglucose (1 mM each), 400 µl of 0.1 M phosphate buffer (pH 7.4) and 50 µl of 30 mM SH compound solution were mixed and incubated at 37 ° C. Bait. Cysteine, N-acetylcysteine and GSH were used for the SH compound. After the end of incubation, glyoxal, methylglyoxal and 3-deoxyglucosone were made quinoxaline derivatives using o-phenylenediamine, and the respective concentrations were measured using high performance liquid chromatography.

결과는 도23(시스테인), 도24(N-아세틸시스테인) 및 도25(GSH)에 나타냈다.어느 SH 화합물에도, 글리옥살과 메틸글리옥살 양쪽에 대해, 현저히 농도를 저하시키는 작용이 확인되었다.The results are shown in Fig. 23 (cysteine), Fig. 24 (N-acetylcysteine) and Fig. 25 (GSH). The action of significantly lowering the concentration was confirmed for both glyoxal and methylglyoxal in any SH compound.

[실시예 12] 글리옥살, 메틸글리옥살, 3-데옥시글루코손에 대한 알부민의 트랩효과EXAMPLE 12 The Trap Effect of Albumin on Glyoxal, Methylglyoxal, and 3-Deoxyglucoson

글리옥살, 메틸글리옥살, 3-데옥시글루코손의 혼합용액(각 1mM) 50㎕, 0.1M의 인산완충액(pH 7.4) 400㎕, 1O0mg/ml의 소혈청 알부민용액 50㎕를 혼합하여, 37℃로 인큐베이트했다. 인큐베이트종료 후, 글리옥살, 메틸글리옥살, 3-데옥시글루코손을 o-페닐렌디아민을 사용하여 퀴녹살린유도체로 하고, 각각의 농도를 고속액체크로마토그래피를 사용하여 측정했다.50 µl of a mixed solution of glyoxal, methylglyoxal, and 3-deoxyglucosone (1 mM each), 400 µl of 0.1 M phosphate buffer (pH 7.4), and 50 µl of bovine serum albumin solution at 10 mg / ml were mixed. Incubated at ° C. After the end of incubation, glyoxal, methylglyoxal and 3-deoxyglucosone were made quinoxaline derivatives using o-phenylenediamine, and the respective concentrations were measured using high performance liquid chromatography.

결과는 도26에 나타냈다. 소혈청 알부민에는, 글리옥살과 메틸글리옥살의 농도를 현저히 저하시키는 작용이 확인되었다.The results are shown in FIG. Bovine serum albumin has been shown to significantly reduce the concentrations of glyoxal and methylglyoxal.

[실시예 13] 복막투석액에 SH 화합물을 첨가하여, 37℃로 인큐베이트했을 때의 펜토시딘의 생성 억제효과Example 13 Inhibition of Pentosidine Formation When SH Compound was Added to Peritoneal Dialysis Solution and Incubated at 37 ° C

복막투석액(Baxter Ltd.; Dianeal PD-4, 1.5) 490㎕, SH 화합물을 0.1M 인산완충액(pH 7.4)에 녹인 액 70㎕, 소혈청알부민을 복막투석액(Baxter Ltd.; Dianeal PD-4, 1.5)에 30mg/ml이 되도록 녹인 액 140㎕를 혼합하여, 37℃로 일주일간 인큐베이트했다. SH 화합물에는, 시스테인(cystein), N-아세틸시스테인(N-acetylcysteine), GSH 및 아미노구아니딘을 사용했다. 인큐베이트종료 후, 용액 50㎕에 10% 트리클로로초산 50㎕를 가하고, 원심하여 단백을 침전시켰다. 단백을 300㎕의 5% 트리클로로초산으로 세정하고, 건고시켰다. 다음에, 6N HCl을 100㎕ 첨가하고, 110℃로 16시간 가열한 후, 고속액체크로마토그래피로 펜토시딘을 정량했다(T.Miyata등, 1996, J. Am. Soc. Nephrol., 7:1198-1206, T.Miyata등, 1996, Proc. Natl. Acad. Sci. USA., 93:2353-2358).490 μl of peritoneal dialysis solution (Baxter Ltd .; Dianeal PD-4, 1.5), 70 μl of SH compound dissolved in 0.1 M phosphate buffer (pH 7.4), and bovine serum albumin in peritoneal dialysis solution (Baxter Ltd .; Dianeal PD-4, 140 μl of the solution dissolved in 1.5) to 30 mg / ml was mixed and incubated at 37 ° C. for one week. Cysteine, N-acetylcysteine, GSH, and aminoguanidine were used for the SH compound. After completion of incubation, 50 µl of 10% trichloroacetic acid was added to 50 µl of the solution, and centrifuged to precipitate the protein. The protein was washed with 300 μl 5% trichloroacetic acid and dried. Next, 100 µl of 6N HCl was added, the mixture was heated to 110 ° C for 16 hours, and pentosidine was quantified by high performance liquid chromatography (T. Miyata et al., 1996, J. Am. Soc. Nephrol., 7: 1198-1206, T. Miyata et al., 1996, Proc. Natl. Acad. Sci. USA., 93: 2353-2358).

결과는 도27에 나타냈다. SH 화합물의 첨가에 의해, 펜토시딘의 생성량이 현저히 억제되는 것을 확인할 수 있었다.The results are shown in FIG. By addition of the SH compound, it was confirmed that the amount of pentosidine produced was significantly suppressed.

본 발명에 의하면, 복막투석에 있어서 환자를 괴롭히고 있었던 카르보닐화합물에 의한 장해를, 간단히 제거할 수 있다. 공지의 복막투석액에 있어서는, 제조중에 생긴 카르보닐화합물과 함께, 투석에 의해 생체내에서 복강중에 침출한 카르보닐화합물에 의해, 투석 환자의 복막은 항상 카르보닐 스트레스상태에 놓여 있었다. 이에 대해 본 발명에서는, 복막투석액중에 생성되는 카르보닐화합물을 효과적으로 제거할 수 있기 때문에, 투석 환자의 카르보닐 스트레스개선에 공헌한다. 더욱이, 카르보닐화합물 트랩제의 복강내로의 도입, 또는 카르보닐화합물 트랩용 카트리지로의 투석액의 순환에 의해, 복강중에 침출한 카르보닐화합물도 효과적으로 불활성화, 또는 제거할 수 있다. 이와 같이, 본 발명은 복막투석에 동반되는 카르보닐화합물에 기인하는 복막장해를 포함하는 복막투석에 기인하는 장해의 대책으로서 대단히 유효한 접근(approach)을 제공하는 것이다.According to this invention, the obstacle by the carbonyl compound which annoyed the patient in peritoneal dialysis can be removed easily. In the known peritoneal dialysis solution, the peritoneum of the dialysis patient was always under carbonyl stress due to the carbonyl compound leached in vivo by dialysis together with the carbonyl compound produced during the production. In contrast, in the present invention, the carbonyl compound generated in the peritoneal dialysis solution can be effectively removed, thereby contributing to the improvement of carbonyl stress in dialysis patients. Further, by introducing the carbonyl compound trapping agent into the abdominal cavity or circulating the dialysate to the carbonyl compound trap cartridge, the carbonyl compound leached in the abdominal cavity can be effectively inactivated or removed. As such, the present invention provides a very effective approach as a countermeasure against disorders caused by peritoneal dialysis, including peritoneal disorders resulting from carbonyl compounds accompanying peritoneal dialysis.

또한, 본 발명에서는, 가열멸균이나 장기보존시의 글루코오스의 분해에 유래하는 카르보닐화합물이 제거되기 때문에, 종래 글루코오스의 분해를 위해 제제학적으로 조제가 곤란했던 중성역의 pH를 갖는 복막투석액을 제공할 수 있어, 보다 생리적인 복막투석요법이 가능해진다.In addition, in the present invention, since the carbonyl compound derived from the decomposition of glucose during heat sterilization or long-term preservation is eliminated, a peritoneal dialysis solution having a pH of neutral region, which has been difficult to prepare conventionally for the decomposition of glucose, is provided. It is possible to do more physiological peritoneal dialysis.

본 발명의 복막투석액은, 카르보닐화합물 트랩제와의 접촉 또는 투여라는 간단한 조작만으로 실시할 수 있어, 특수한 제조설비도 요구하지 않는다. 따라서, 본 발명에 의한 카르보닐화합물 트랩제와 그것을 이용한 복막투석액 및 그 제조방법은, 복막투석치료에 있어서의 새로운 치료개념을 창출해내는 것이다.The peritoneal dialysis solution of the present invention can be carried out only by a simple operation of contact or administration with a carbonyl compound trapping agent, and does not require any special manufacturing equipment. Accordingly, the carbonyl compound trapping agent according to the present invention, the peritoneal dialysis solution using the same, and a method for producing the same, create a new concept of treatment in peritoneal dialysis.

Claims (12)

카르보닐화합물 트랩제를 유효성분으로 하는 복막투석에 있어서의 복강내의 카르보닐 스트레스상태 개선제.Intraperitoneal carbonyl stress state improving agent in peritoneal dialysis containing a carbonyl compound trapping agent as an active ingredient. 제1항에 있어서, 카르보닐화합물 트랩제가, 불용성 담체에 고정화되어 있는 카르보닐 스트레스상태 개선제.The carbonyl stress state improving agent according to claim 1, wherein the carbonyl compound trapping agent is immobilized on an insoluble carrier. 제1항에 있어서, 카르보닐화합물 트랩제가, 복막투석액에 혼입시키기 위한 것인 카르보닐 스트레스상태 개선제.The carbonyl stress state improving agent according to claim 1, wherein the carbonyl compound trapping agent is for incorporation into the peritoneal dialysis solution. 제1항 내지 제3항 중 어느 한 항에 있어서, 카르보닐화합물 트랩제가, 아미노구아니딘, 피리독사민, 히드라진, 비구아나이드화합물, 또는 SH기 함유 화합물, 또는 그들 유도체로 이루어진 군으로부터 선택되는 화합물인 카르보닐 스트레스상태 개선제.The carbonyl compound trapping agent according to any one of claims 1 to 3, wherein the carbonyl compound trapping agent is a compound selected from the group consisting of aminoguanidine, pyridoxamine, hydrazine, biguanide compound, SH group-containing compound, or derivatives thereof. Carbonyl Stress Relievers. 제1항 내지 제3항 중 어느 한 항에 있어서, 카르보닐화합물 트랩제가, 메일라드반응 저해제인 카르보닐 스트레스상태 개선제.The carbonyl stress condition improving agent according to any one of claims 1 to 3, wherein the carbonyl compound trapping agent is a Maillard reaction inhibitor. 제1항에 있어서, 카르보닐화합물 트랩제가, 카르보닐화합물을 흡착할 수 있는 복막투석액에 불용성 화합물인 카르보닐 스트레스상태 개선제.The carbonyl stress state improving agent according to claim 1, wherein the carbonyl compound trapping agent is an insoluble compound in the peritoneal dialysis solution capable of adsorbing the carbonyl compound. 제2항 및/또는 제6항의 카르보닐화합물 트랩제를 충전한 복막투석액중의 카르보닐화합물 트랩용 카트리지.A cartridge for trapping carbonyl compounds in a peritoneal dialysis solution filled with the carbonyl compound trapping agent according to claim 2 and / or 6. 제7항의 카르보닐화합물 트랩용 카트리지에 복막투석액을 통과시키는 공정을 포함하는 카르보닐화합물 함유량이 줄어든 복막투석액의 조제방법.A method for preparing a peritoneal dialysis solution, wherein the carbonyl compound content is reduced, including the step of passing the peritoneal dialysis solution to the carbonyl compound trap cartridge of claim 7. a) 제2항 및/또는 제6항의 카르보닐화합물 트랩제와 복막투석액을 접촉시키는 공정, 및a) contacting the carbonyl compound trapping agent according to claim 2 and / or 6 with the peritoneal dialysis solution, and b) 카르보닐화합물 트랩제와 복막투석액을 분리하는 공정;b) separating the carbonyl compound trapping agent and the peritoneal dialysis solution; 을 포함하는, 카르보닐화합물 함유량이 줄어든 복막투석액의 조제방법.A method for preparing a peritoneal dialysis solution containing a reduced carbonyl compound content. 카르보닐화합물 트랩제를 포함하는 복막투석액.A peritoneal dialysis solution containing a carbonyl compound trapping agent. 제10항에 있어서, 제1실 및 제2실로 된 분획된 용기에 수용된 복막투석액에 있어서, 제1실에 환원당이 수용되고, 제2실에 카르보닐화합물 트랩제가 수용되어 있는 것인 복막투석액.The peritoneal dialysis solution according to claim 10, wherein the peritoneal dialysis solution contained in the divided chambers of the first chamber and the second chamber, the reducing sugar is contained in the first chamber, and the carbonyl compound trapping agent is contained in the second chamber. 제10항에 있어서, 카르보닐화합물 트랩제가 복막투석액과 함께 복강내에 투여하기 위한 것인 복막투석액.The peritoneal dialysis solution according to claim 10, wherein the carbonyl compound trapping agent is for administration intraperitoneally with the peritoneal dialysis solution.
KR10-2001-7002299A 1998-08-24 1999-08-23 Drugs for relieving carbonyl stress and peritoneal dialysates KR100478181B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1998-237108 1998-08-24
JP23710898 1998-08-24
JP15539399 1999-06-02
JP1999-155393 1999-06-02

Publications (2)

Publication Number Publication Date
KR20010072888A true KR20010072888A (en) 2001-07-31
KR100478181B1 KR100478181B1 (en) 2005-03-23

Family

ID=26483408

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-7002299A KR100478181B1 (en) 1998-08-24 1999-08-23 Drugs for relieving carbonyl stress and peritoneal dialysates

Country Status (9)

Country Link
US (3) US6919326B1 (en)
EP (2) EP2070535B1 (en)
JP (1) JP3811008B2 (en)
KR (1) KR100478181B1 (en)
CN (1) CN1150034C (en)
AU (1) AU756847B2 (en)
CA (2) CA2664159C (en)
NO (1) NO329652B1 (en)
WO (1) WO2000010606A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436969B1 (en) 1995-09-12 2002-08-20 Kansas University Medical Center Research Institute Inc. Dialysis solutions and methods
AU756847B2 (en) 1998-08-24 2003-01-23 Kurokawa, Kiyoshi Carbonyl-stress improving agent and peritoneal dialysate
AU4078300A (en) * 1999-04-06 2000-10-23 Kansas University Medical Center Improved dialysis solutions and methods
WO2000069466A1 (en) * 1999-05-12 2000-11-23 Kurokawa, Kiyoshi Trapping agent for blood carbonyl compounds
JP4719393B2 (en) 1999-10-06 2011-07-06 敏男 宮田 Carbonyl stress improver
CN100355452C (en) 1999-12-20 2007-12-19 黑川清 Carbonyl stress-ameliorating agents
JP4882054B2 (en) 2000-09-13 2012-02-22 独立行政法人科学技術振興機構 Peritoneal dialysate and preparation method thereof
WO2002047677A1 (en) * 2000-12-12 2002-06-20 Tokai University Educational System Agents for ameliorating carbonyl stress
JP2003019198A (en) * 2001-07-06 2003-01-21 Jms Co Ltd Peritoneal dialysate
AU2003284594B2 (en) * 2002-11-21 2009-01-15 Kowa Co., Ltd Peritoneal dialysis method
US8038639B2 (en) 2004-11-04 2011-10-18 Baxter International Inc. Medical fluid system with flexible sheeting disposable unit
US8029454B2 (en) 2003-11-05 2011-10-04 Baxter International Inc. High convection home hemodialysis/hemofiltration and sorbent system
CA2547887C (en) 2003-12-05 2013-05-28 Tokai University Educational System Protein modifier production inhibitor
US7384558B2 (en) * 2004-07-26 2008-06-10 Baxter International Inc. Compositions capable of inhibiting reactive oxygen and carbonyl species
JPWO2006115067A1 (en) * 2005-04-20 2008-12-18 株式会社林原生物化学研究所 Peritoneal dialysate
CA2624090A1 (en) * 2005-05-24 2006-11-30 Tokai University Educational System Peritoneum protecting agent
US8543420B2 (en) * 2007-09-19 2013-09-24 Fresenius Medical Care Holdings, Inc. Patient-specific content delivery methods and systems
WO2007097922A2 (en) * 2006-02-07 2007-08-30 The Regents Of Northwestern University Receptor-based blood detoxification system
JP4004523B1 (en) * 2006-04-21 2007-11-07 株式会社日本トリム Dialysate preparation water, dialysate using the same, dialysate production method and dialyzer
US8777891B2 (en) * 2006-07-27 2014-07-15 Fresenius Medical Care Holdings, Inc. Apparatus and methods for early stage peritonitis detection and for in vivo testing of bodily fluid
US8728023B2 (en) * 2006-07-27 2014-05-20 Fresenius Medical Care Holdings, Inc. Apparatus and methods for early stage peritonitis detection including self-cleaning effluent chamber
US8801652B2 (en) * 2006-07-27 2014-08-12 Fresenius Medical Care Holding, Inc. Early stage peritonitis detection apparatus and methods
US8114276B2 (en) 2007-10-24 2012-02-14 Baxter International Inc. Personal hemodialysis system
CN101678162B (en) * 2008-01-25 2013-10-09 弗雷塞尼斯医疗保健控股公司 Apparatus and methods for early stage peritonitis detection including self-cleaning effluent chamber
WO2009113578A1 (en) 2008-03-13 2009-09-17 味の素株式会社 Carbonyl compound remover
US9348975B2 (en) 2008-05-02 2016-05-24 Baxter International Inc. Optimizing therapy outcomes for peritoneal dialysis
US8882700B2 (en) 2008-05-02 2014-11-11 Baxter International Inc. Smart patient transfer set for peritoneal dialysis
US8057679B2 (en) 2008-07-09 2011-11-15 Baxter International Inc. Dialysis system having trending and alert generation
US8698741B1 (en) 2009-01-16 2014-04-15 Fresenius Medical Care Holdings, Inc. Methods and apparatus for medical device cursor control and touchpad-based navigation
EP2391404B1 (en) 2009-01-30 2013-01-16 Baxter International Inc. Transfer sets for therapy optimization
FR2945043B1 (en) 2009-04-30 2019-07-26 Roquette Freres PROCESS FOR PURIFYING GLUCOSE POLYMERS FOR PERITONEAL DIALYSIS SOLUTIONS
US8282829B2 (en) 2009-05-20 2012-10-09 Baxter International Inc. System and method for automated data collection of twenty-four hour ultrafiltration and other patient parameters using wired or wireless technology
US9020827B2 (en) 2009-10-16 2015-04-28 Baxter International Inc. Peritoneal dialysis optimized using a patient hand-held scanning device
US8632485B2 (en) * 2009-11-05 2014-01-21 Fresenius Medical Care Holdings, Inc. Patient treatment and monitoring systems and methods
CN103052389A (en) 2010-07-23 2013-04-17 学校法人东海大学 Oral medicinal composition for patients undergoing peritoneal dialysis and method for using same
ES2806056T3 (en) 2011-06-24 2021-02-16 Richard W C Lo Multiple container systems and uses thereof
FR3055898B1 (en) 2016-09-15 2018-11-02 Roquette Freres NOVEL GLUCOSE POLYMERS FOR PERITONEAL DIALYSIS
GR20160100569A (en) * 2016-11-04 2018-08-29 Πανεπιστημιο Πατρων Method for the flurometric detection and quantification of the carbonyl groups of proteins
CN109364098B (en) * 2018-11-30 2021-09-21 威高泰尔茂(威海)医疗制品有限公司 Neutral pH peritoneal dialysis solution and preparation process thereof
CN110327886B (en) * 2019-06-12 2021-12-07 太原理工大学 Zeolite imidazate framework material and preparation method and application thereof

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284531A (en) 1965-07-06 1966-11-08 Dow Chemical Co Removing carbonyl sulfide with an anhydrous, basic, anion resin
US3793187A (en) 1971-08-19 1974-02-19 Erdoelchemie Gmbh Process for removing carbonyl compounds from hydrocarbons
US4131544A (en) 1976-08-03 1978-12-26 Nasik Elahi Macroencapsulated sorbent element and process for using the same
US4171283A (en) 1976-08-04 1979-10-16 Kuraray Co., Ltd. Hemoperfusion adsorbents
GB2097696B (en) 1981-05-04 1985-07-10 Purdue Research Foundation Sorbent mixture for use in hemodialysis
EP0089135A1 (en) 1982-03-17 1983-09-21 The Curators Of The University Of Missouri Peritoneal dialysis solution containing sorbents
US5114943A (en) 1984-03-19 1992-05-19 The Rockefeller University Amino-substituted pyrimidines, derivatives and methods of use therefor
US5852009A (en) 1984-03-19 1998-12-22 The Rockefeller University Compositions, including pharmaceutical compositions, for inhibiting the advanced glycosylation of proteins, and therapeutic methods based thereon
US4758583A (en) 1984-03-19 1988-07-19 The Rockefeller University Method and agents for inhibiting protein aging
US5334617A (en) 1984-03-19 1994-08-02 The Rockefeller University Amino acids useful as inhibitors of the advanced glycosylation of proteins
US4665192A (en) 1984-03-19 1987-05-12 The Rockefeller University 2-(2-furoyl)-4(5)-2(furanyl)-1H-imidazole
US4983604A (en) 1987-11-13 1991-01-08 The Rockefeller University Inhibitors of nonenzymatic cross-linking
US5272176A (en) 1984-03-19 1993-12-21 The Rockefeller University Advanced glycation inhibitors containing amino-benzoic acids and derivatives, and methods of use
JPS62249908A (en) 1986-04-21 1987-10-30 Lion Corp Crosslinking reaction inhibitor for collagen
JPS62249909A (en) 1986-04-21 1987-10-30 Lion Corp Crosslinking reaction inhibitor for collagen
JPS62249709A (en) 1986-04-24 1987-10-30 松下電工株式会社 Method of dyeing wood
JPH0626563B2 (en) 1986-07-10 1994-04-13 株式会社新素材総合研究所 Medical container and manufacturing method thereof
US5026341A (en) 1987-05-22 1991-06-25 Robert Giebeler Low speed disengageable damper
JP2548223B2 (en) 1987-08-27 1996-10-30 第一製薬株式会社 Kidney disease treatment
JPS6456614A (en) 1987-08-27 1989-03-03 Ono Pharmaceutical Co Maillard reaction inhibitor
JPS6483059A (en) 1987-09-25 1989-03-28 Ono Pharmaceutical Co Guanidine derivative, its production and maillard reaction inhibitor containing said derivative as active component
JPH0534496Y2 (en) 1987-10-03 1993-09-01
JPS6456615U (en) 1987-10-03 1989-04-10
JPH02753A (en) 1987-12-24 1990-01-05 Ono Pharmaceut Co Ltd Carbazoyl derivative, its production and maillard reaction inhibitor containing the same derivative as active component
EP0323590A3 (en) 1987-12-24 1990-05-02 Ono Pharmaceutical Co., Ltd. Carbazoyl derivatives
JPH02765A (en) 1988-01-16 1990-01-05 Ono Pharmaceut Co Ltd Aminoguanidine derivative and maillard reaction inhibitor containing the same derivative as active component
EP0339496A3 (en) 1988-04-26 1991-05-08 Ono Pharmaceutical Co., Ltd. Aminoguanidine derivatives
JP2652556B2 (en) 1988-08-29 1997-09-10 株式会社浅井ゲルマニウム研究所 Organic germanium compound and method for producing the same
JP2817219B2 (en) 1988-09-08 1998-10-30 武田薬品工業株式会社 Carbazic acid derivative, its production method and preparation
JPH04502611A (en) 1988-09-28 1992-05-14 ペプタイド・テクノロジー・リミテッド Compounds and methods for inhibiting collagen crosslinking
EP0436611A4 (en) 1988-09-28 1992-03-11 Peptide Technology Ltd Compound and method for the retardation of collagen cross-linking
CA2011899A1 (en) 1989-03-13 1990-09-13 Masaaki Toda Benzopyran derivatives
US5032281A (en) * 1989-08-09 1991-07-16 Daicel Chemical Industries, Ltd. Separating membrane and separation method
JPH03148220A (en) 1989-11-02 1991-06-25 Otsuka Pharmaceut Co Ltd Glycated protein decomposing agent
JPH03161441A (en) 1989-11-20 1991-07-11 Senjiyu Seiyaku Kk Maillard reaction inhibitor
JPH03240725A (en) 1990-02-15 1991-10-28 Senjiyu Seiyaku Kk Maillard reaction inhibitor
EP0474874B1 (en) 1990-02-19 1995-10-18 Senju Pharmaceutical Co., Ltd. Maillard Reaction inhibitor compositions
AU7316591A (en) 1990-02-28 1991-09-18 Upjohn Company, The Use of 3-guanidinopropionic acid in the treatment and prevention of metabolic disorders
JPH03261772A (en) 1990-03-09 1991-11-21 Suntory Ltd Thiazolidine compound and glycation inhibitor containing the same
JPH05310565A (en) 1990-04-03 1993-11-22 Univ Rockefeller High glycosylation inhibitory composition for protein and inhibitory method
JPH049375A (en) 1990-04-25 1992-01-14 Takeda Chem Ind Ltd Thiourea derivative and age generation inhibitor
JPH059114A (en) 1990-08-29 1993-01-19 Takeda Chem Ind Ltd Preventive and therapeutic agent for diabetic complication
JP2512628B2 (en) * 1990-11-21 1996-07-03 株式会社ニッショー Peritoneal filtration device
JPH04308586A (en) 1991-04-05 1992-10-30 Ono Pharmaceut Co Ltd Benzopyrane derivative
JPH05201993A (en) 1991-08-27 1993-08-10 Otsuka Pharmaceut Co Ltd Maillard reaction-inhibiting agent
EP0666753B9 (en) 1991-09-09 2002-06-12 Peptech Limited Use of peptides FOR THE TREATMENT OF THE COMPLICATIONS AND PATHOLOGY OF DIABETES
JPH05105633A (en) * 1991-10-14 1993-04-27 Shimizu Seiyaku Kk Glucose preparation and its production
US5246971A (en) 1991-12-16 1993-09-21 Washington University Method of inhibiting nitric oxide formation
DE4204561A1 (en) 1992-02-13 1993-08-19 Falk Witt Filter element for dialysis machine - consists of activated carbon@ particles subjected to periodic changes of pressure to change position of particles relative to each other
JPH05255130A (en) 1992-03-16 1993-10-05 Asai Gerumaniumu Kenkyusho:Kk Agent for controlling and improving maillard reaction
DE59206619D1 (en) * 1992-04-06 1996-07-25 Baxter Int Aqueous peritoneal dialysis solution
US5827820A (en) 1992-04-06 1998-10-27 Baxter International Inc. Aqueous peritoneal dialysis solution
DE4222980A1 (en) 1992-07-13 1994-01-20 Cassella Ag Use of 2- (N- (2-aminoethyl) amino) -acetic acid derivatives
WO1994004520A1 (en) 1992-08-11 1994-03-03 Immuno Japan Inc. Ascofuranone, and hypolipidemic agent, hypoglycemic agent and glycation inhibitor each containing ascofuranone derivative as active ingredient
JPH0816057B2 (en) 1992-09-10 1996-02-21 田村 學造 Glycation inhibitors
JPH06135698A (en) 1992-10-23 1994-05-17 Shinko Electric Co Ltd Load controller for forklift
JP3267698B2 (en) 1992-10-27 2002-03-18 株式会社三和化学研究所 Hydantoin derivatives and salts thereof, and Maillard reaction inhibitors containing them as active ingredients
CA2103189C (en) 1992-11-17 2005-05-03 Lorne M. Golub Tetracyclines including non-antimicrobial chemically-modified tetracyclines inhibit excessive collagen crosslinking during diabetes
JPH06192089A (en) 1992-12-25 1994-07-12 Yamanouchi Pharmaceut Co Ltd Inhibitor of mailard reaction
JPH06287179A (en) 1993-04-02 1994-10-11 Yamanouchi Pharmaceut Co Ltd 5-hydroxypyrazoline derivative
JPH06298738A (en) 1993-04-15 1994-10-25 Yamanouchi Pharmaceut Co Ltd 5-aminopyrrazole derivative
JPH06287180A (en) 1993-03-31 1994-10-11 Yamanouchi Pharmaceut Co Ltd Amidinoidazole derivative
JPH06298737A (en) 1993-04-13 1994-10-25 Yamanouchi Pharmaceut Co Ltd Pyrrazole derivative
US5677322A (en) 1993-02-26 1997-10-14 Otsuka Pharmaceutical Co., Ltd. Maillard reaction inhibitor
JPH06305964A (en) 1993-02-26 1994-11-01 Otsuka Pharmaceut Co Ltd Inhibitor of maillard reaction
JPH06305969A (en) 1993-04-27 1994-11-01 Yoshitomi Pharmaceut Ind Ltd Suppository
DE69433348T2 (en) 1993-12-21 2004-08-26 Eli Lilly And Co., Indianapolis Use of raloxifene and its analogs in the manufacture of a medicament for inhibiting LDL oxidation and atherosclerosis
JPH07206838A (en) 1994-01-14 1995-08-08 Immuno Japan:Kk New ascofuranone derivative and blood lipid-lowering agent, hypoglycemic agent, glycation-inhibiting agent and antioxidizing agent containing the same as active ingredient
FR2716199B1 (en) 1994-02-15 1996-04-26 Roquette Freres Process for the manufacture of a starch hydrolyzate with a low polymolecularity index, a new starch hydrolyzate thus obtained and its use in peritoneal dialysis.
JPH07247296A (en) 1994-03-08 1995-09-26 Asai Gerumaniumu Kenkyusho:Kk Organogermanium compound
JP3589701B2 (en) 1994-05-31 2004-11-17 味の素ファルマ株式会社 Peritoneal dialysis solution containing trehalose
SE9402472L (en) 1994-07-13 1996-01-14 Forskarpatent I Linkoeping Ab Modified surfaces
JPH0859485A (en) 1994-08-26 1996-03-05 Sanwa Kagaku Kenkyusho Co Ltd Maillard reaction inhibitor consisting mainly of 3-oxygermylpropionic acid compound
JPH0871146A (en) 1994-09-09 1996-03-19 Baxter Kk Peritoneum dialyzing liquid containing cyclodextrin or derivative thereof
JPH08157473A (en) 1994-10-06 1996-06-18 Nissan Chem Ind Ltd Pyrazole-based thiazolidines
JP3644024B2 (en) 1994-11-04 2005-04-27 順子 清水 Peritoneal dialysate
JPH08131542A (en) * 1994-11-11 1996-05-28 Baxter Kk Peritoneum dialysing liquid conditioning solution set
US5855882A (en) 1995-04-05 1999-01-05 The Picower Institute For Medical Research Methods for inhibiting the cross-linking of advanced glycosylation endproducts
WO1996031537A1 (en) * 1995-04-05 1996-10-10 The Picower Institute For Medical Research Agents for binding to advanced glycosylation endproducts, and methods of their use
JPH0940519A (en) 1995-07-26 1997-02-10 Nippon Flour Mills Co Ltd Maillard reaction inhibitor and cosmetic material
JPH0940626A (en) 1995-07-27 1997-02-10 Kissei Pharmaceut Co Ltd Bis(2-hydroxyphenylalkylamine) derivative
JPH0959258A (en) 1995-08-11 1997-03-04 Ono Pharmaceut Co Ltd Guanidyl derivative
JPH0959233A (en) 1995-08-25 1997-03-04 Kissei Pharmaceut Co Ltd Ortho-hydroxynaphthylalkylamine derivative
US5944684A (en) * 1995-08-31 1999-08-31 The Regents Of The University Of California Wearable peritoneum-based system for continuous renal function replacement and other biomedical applications
US5744451A (en) 1995-09-12 1998-04-28 Warner-Lambert Company N-substituted glutamic acid derivatives with interleukin-1 β converting enzyme inhibitory activity
JPH09124471A (en) 1995-10-30 1997-05-13 Kissei Pharmaceut Co Ltd Inhibitor of maillard reaction
US6727285B1 (en) 1995-11-07 2004-04-27 George M. Haik, Jr. Use of D-arginine and/or L-arginine to protect the amino groups of biological substances from damage, inactivation, or modification by toxic carbonyls and/or dicarbonyls
JP3147143B2 (en) 1995-11-10 2001-03-19 宇部興産株式会社 Vertical crusher
JPH09221427A (en) 1996-02-14 1997-08-26 Mikio Ito Agent for hemorrhoids
JP3872834B2 (en) 1996-03-04 2007-01-24 第一製薬株式会社 Maillard reaction inhibitor
JP3988838B2 (en) 1996-05-29 2007-10-10 日本製粉株式会社 Cosmetics
JP3630857B2 (en) 1996-06-17 2005-03-23 キヤノン株式会社 Ophthalmic imaging equipment
US5868936A (en) 1996-06-20 1999-02-09 Baxter International Inc. Affinity membrane system and method of using same
JPH1094598A (en) 1996-07-31 1998-04-14 Baxter Internatl Inc Peritoneal dialysis liquid
JPH10158265A (en) 1996-11-29 1998-06-16 Nippon Zoki Pharmaceut Co Ltd Pyrrolonaphthyridinium derivative
JPH10158244A (en) 1996-12-02 1998-06-16 Kissei Pharmaceut Co Ltd 5-aminoalkyl-4-aminomethyl-3-hydroxypyridine derivative and maillard reaction inhibitor containing the same
JPH10175954A (en) 1996-12-12 1998-06-30 Kissei Pharmaceut Co Ltd 4-aminomethyl-3-hydroxypyridine derivative and maillard reaction inhibitor containing the same
JPH10182460A (en) 1996-12-27 1998-07-07 Nippon Zoki Pharmaceut Co Ltd 3-deoxyglucosone generation inhibitor
AU756847B2 (en) 1998-08-24 2003-01-23 Kurokawa, Kiyoshi Carbonyl-stress improving agent and peritoneal dialysate
WO2000069466A1 (en) 1999-05-12 2000-11-23 Kurokawa, Kiyoshi Trapping agent for blood carbonyl compounds
JP4719393B2 (en) 1999-10-06 2011-07-06 敏男 宮田 Carbonyl stress improver
CN100355452C (en) 1999-12-20 2007-12-19 黑川清 Carbonyl stress-ameliorating agents

Also Published As

Publication number Publication date
EP1108434A1 (en) 2001-06-20
EP2070535B1 (en) 2015-07-08
JP3811008B2 (en) 2006-08-16
CA2339879C (en) 2011-11-15
CN1324248A (en) 2001-11-28
NO329652B1 (en) 2010-11-22
CA2664159A1 (en) 2000-03-02
EP2070535A1 (en) 2009-06-17
CA2664159C (en) 2013-06-04
US7297689B2 (en) 2007-11-20
US20050267045A1 (en) 2005-12-01
AU5304599A (en) 2000-03-14
EP1108434B1 (en) 2014-05-14
US20070020341A1 (en) 2007-01-25
AU756847B2 (en) 2003-01-23
NO20010931D0 (en) 2001-02-23
US6919326B1 (en) 2005-07-19
WO2000010606A1 (en) 2000-03-02
US7745613B2 (en) 2010-06-29
CA2339879A1 (en) 2000-03-02
CN1150034C (en) 2004-05-19
NO20010931L (en) 2001-04-23
EP1108434A4 (en) 2008-03-26
KR100478181B1 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
KR100478181B1 (en) Drugs for relieving carbonyl stress and peritoneal dialysates
EP1585531B1 (en) Biocompatible dialysis fluids containing icodextrins
EP0958832B1 (en) Albumin containing peritoneal dialysis fluid
JPH05345021A (en) Peritoneal dialysis liquid usable for minimizing damages and biological side effects produced by peritonitis
JP2011173904A (en) Carbonyl stress-ameliorating agent
KR101343369B1 (en) peritoneal dialysis fluid
KR100778611B1 (en) Compositions for peritoneal dialysis
Musi et al. Effects of acidity, glucose degradation products, and dialysis fluid buffer choice on peritoneal solute and fluid transport in rats
JP2006305345A (en) Drug for relieving carbonyl stress state and peritoneal dialysate
JP4719393B2 (en) Carbonyl stress improver
JP4526192B2 (en) Blood carbonyl compound trapping agent
JP2000038348A (en) Albumin-containing peritoneal dialysis solution
US20040229771A1 (en) Method of reducing decline of or preserving residual renal function
JP2006000482A (en) Biocompatible liquid preparation, method for its production and method for its preservation
Szary et al. Diffusive permeability of rabbit peritoneum for small solutes in vitro: effect of gentamicin and insulin
JPWO2002047677A1 (en) An agent for improving carbonyl stress

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
N231 Notification of change of applicant
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
E902 Notification of reason for refusal
B701 Decision to grant
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140228

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee