KR20010055808A - Fabrication method of Fe-Cr-Co permanent magnet - Google Patents

Fabrication method of Fe-Cr-Co permanent magnet Download PDF

Info

Publication number
KR20010055808A
KR20010055808A KR1019990057118A KR19990057118A KR20010055808A KR 20010055808 A KR20010055808 A KR 20010055808A KR 1019990057118 A KR1019990057118 A KR 1019990057118A KR 19990057118 A KR19990057118 A KR 19990057118A KR 20010055808 A KR20010055808 A KR 20010055808A
Authority
KR
South Korea
Prior art keywords
powder
permanent magnet
sintered
hours
temperature
Prior art date
Application number
KR1019990057118A
Other languages
Korean (ko)
Inventor
최승덕
박언병
양충진
Original Assignee
이구택
포항종합제철 주식회사
신현준
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사, 신현준, 재단법인 포항산업과학연구원 filed Critical 이구택
Priority to KR1019990057118A priority Critical patent/KR20010055808A/en
Publication of KR20010055808A publication Critical patent/KR20010055808A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE: A method for manufacturing an Fe-Cr-Co permanent magnet is provided to achieve an inexpensive and simple manufacturing process and realize a sintered Fe-Cr-Co permanent magnet which has excellent crushability and plasticity, a high sintered density and temperature, and superior magnetic characteristic. CONSTITUTION: Fe, Cr, Co are prepared as principle components for an Fe-Cr-Co permanent magnet. Fe, Cr, Co are manufactured, respectively, as crystallite powder after being quenched by using a quenching technology. The quenched powder is grinded as fine powder. The fine powder is mixed with a binder and sintered for 0.5 to 4 hours at temperature ranging from 1100 to 1350°C. An external field of 1-5KOe is loaded at a temperature ranging from 600 to 700°C and the sintered body is thermally processed for 0.5 to 4 hours during the magnetic field. After being maintained for 1 to 10 hours at a temperature of 550-620°C, the body is cooled down to 480°C at a speed of 1-20°C/hr., to be seasoning processed, thereby becoming magnetized.

Description

철-크롬-코발트계 영구자석의 제조방법{Fabrication method of Fe-Cr-Co permanent magnet}Fabrication method of iron-chromium-cobalt-based permanent magnets {Fabrication method of Fe-Cr-Co permanent magnet}

본 발명은 Fe-Cr-Co계 영구자석용 자성합금을 급속냉각기술을 이용하여 결정질의 분말로 제조한 후, 적절한 입도로 분쇄 성형하여 얻어진 성형체를 소결한 후 열처리를 행하여 온도특성이 뛰어난 소결 Fe-Cr-Co계 영구자석을 경제적으로 제조하는 Fe-Cr-Co계 영구자석의 제조방법에 관한 것이다.According to the present invention, a magnetic alloy for Fe-Cr-Co-based permanent magnet is manufactured into crystalline powder using a rapid cooling technique, and then sintered a molded product obtained by pulverizing to an appropriate particle size, followed by heat treatment to sintered Fe having excellent temperature characteristics. The present invention relates to a method for producing a Fe-Cr-Co permanent magnet for economically manufacturing a -Cr-Co permanent magnet.

Fe, Cr, Co를 주성분으로 하는 자석합금인 Fe-Cr-Co계 합금은 일반적으로 용해주조법(일본국 특허공보 소59-143020호 및 소59-143204호 참조)이나, 용해압연법(일본국 특허공보 소62-106603호 및 소56-21049호 참조)으로 제조되고 있다.Fe-Cr-Co alloys, which are magnetic alloys containing Fe, Cr, and Co as a main component, are generally melt casting methods (see Japanese Patent Publications Nos. 59-143020 and 59-143204), or melt-rolling methods (Japan). Patent Publications Nos. 62-106603 and 56-21049.

또한, 소형이고 복잡한 형상을 갖는 자석 등은 분말야금법에 의하여 제조되기도 한다. 분말야금법에 의해 소결 Fe-Cr-Co계 자석을 제조할 때는 통상 원료분말을 소정의 조성으로 칭량한 후 혼합하여 성형, 소결, 열처리하는 과정을 거치며, 이 때 원료가 되는 분말로는In addition, a magnet and the like having a small and complicated shape may be manufactured by powder metallurgy. When manufacturing a sintered Fe-Cr-Co magnet by the powder metallurgy method, the raw material powder is weighed to a predetermined composition and then mixed, molded, sintered and heat treated.

(1) 자석을 구성하는 각 원소의 단체 금속분말, 즉 Fe, Cr, Co, Si, Ti 등의분말을 소정량 혼합한 것,(1) A single metal powder of each element constituting the magnet, that is, a powder of a predetermined amount such as Fe, Cr, Co, Si, Ti, etc. is mixed;

(2) 자석을 구성하는 각 원소를 미리 Fe와 합금한 것을 분말화한 Fe-Cr이나 Fe-Ti, Fe-Si 합금분말을 소정량 혼합한 것,(2) mixing a predetermined amount of powdered Fe-Cr, Fe-Ti, and Fe-Si alloy powders in which alloys of the elements constituting the magnet with Fe in advance are powdered;

또는 위 (1), (2)항의 분말과 함께 (3) 소정의 자석성분을 함유하는 합금의 용탕을 분무하는 것에 의해 얻어진 자석 합금분말 등이 사용된다.Or a magnetic alloy powder obtained by spraying a molten alloy of an alloy containing a predetermined magnetic component together with the powder of the above (1) and (2).

그렇지만 이들 원료분말을 사용하여 소결 Fe-Cr-Co계 자석을 제조할 때는 다음과 같은 결점이 있다. 즉 (1)의 분말을 사용했을 때는 Ti, Si 등의 산화에 의해 성형성 및 소결성이 저하되며, 분말가격이 비싼 단점이 있다. (2)의 분말을 사용했을 때는 금속분말이 단독으로 존재하는 (1)에 비해 산화는 완화되나 극히 경질이므로 소성변형 저항을 크게 하는 원인이 되어 성형성이 저하하는 문제점이 있다. 또한, (3)의 분말을 사용했을 때는 (1), (2) 분말을 사용했을 때에 비해 균일한 조성을 갖는 소결체가 얻어지나 용탕의 물 또는 가스분무에 의해 산화하기 쉬우며 극히 경질이므로 성형성이 저하하게 되는 문제점이 있다.However, there are the following drawbacks when producing sintered Fe-Cr-Co magnets using these raw powders. That is, when the powder of (1) is used, moldability and sinterability are reduced by oxidation of Ti, Si, etc., and there is a disadvantage that the powder price is expensive. When the powder of (2) is used, the oxidation is relaxed compared to (1) in which the metal powder is present alone, but since it is extremely hard, there is a problem that the plastic deformation resistance is increased and moldability is lowered. In addition, when the powder of (3) is used, a sintered body having a uniform composition is obtained as compared with the use of the powders (1) and (2). However, it is easy to oxidize by water or gas spraying of the molten metal and is extremely hard. There is a problem that is lowered.

또한, 상기 원료분말을 사용하여 Fe-Cr-Co 합금화를 충분히 진행시키기 위해서는 고온에서 장시간 소결해야 하며, 원료분말 자체의 입도를 될 수 있는 한 작게, 바람직하게는 200메쉬(74㎛) 이하로 하여야 하는데, 이렇게 미세한 분말로 제조하면 성형성이 충분치 않고 또한 가격도 비싸 비경제적일 뿐 아니라, 분말의 성형성이 부족한 성형체를 소결하여 얻어진 소결체는 치밀한 조직이 얻어지지 않으며 자석의 자기특성도 저하되는 문제점이 있다.In addition, in order to sufficiently advance the Fe-Cr-Co alloying using the raw material powder, it must be sintered at a high temperature for a long time, and the particle size of the raw material powder itself should be as small as possible, preferably 200 mesh (74 μm) or less. However, when the powder is manufactured in such fine powder, the moldability is not sufficient and the price is expensive, and the sintered body obtained by sintering the molded body lacking the moldability of the powder does not have a dense structure and the magnetic properties of the magnet are also deteriorated. There is this.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 오랜 연구와 실험을 통하여 발명된 것으로, 목적하는 조성의 Fe-Cr-Co계 합금분말을 직접 일공정에 의한 급속냉각기술을 이용하여 제조함으로써 분쇄성 및 성형성이 양호하고, 높은 소결밀도를 갖으며, 온도 및 자기특성이 뛰어난 소결형 Fe-Cr-Co계 영구자석을 값싸고 단순한 공정으로 제조하는 Fe-Cr-Co계 영구자석의 제조방법을 제공하고자 하는데 그 목적이 있다.The present invention has been invented through a long research and experiment to solve the problems of the prior art as described above, by producing a Fe-Cr-Co-based alloy powder of the desired composition by using a quick cooling technology by one step directly Fabrication of Fe-Cr-Co permanent magnets, which manufactures sintered Fe-Cr-Co permanent magnets with good crushability and formability, high sintering density, and excellent temperature and magnetic properties in a simple and inexpensive process. The purpose is to provide a method.

상기의 목적을 달성하기 위한 본 발명의 Fe-Cr-Co계 영구자석의 제조방법은, Fe, Cr, Co를 주요성분으로 하는 Fe-Cr-Co계 영구자석을 제조하는 방법에 있어서, Fe-Cr-Co계 합금을 급속냉각기술을 이용하여 미세 결정질의 급냉형 분말로 제조하고, 상기 급냉형 분말을 미세분말로 분쇄하고, 바인더를 혼합하여 1100∼1350℃의 온도범위에서 0.5∼4시간 소결한 후, 상기 소결체를 600∼700℃ 온도범위에서 1∼5KOe의 외부자장을 부하하면서 0.5∼4시간 자장중 열처리를 행하고, 550∼620℃의 온도에서 1∼10 시간유지한 후 480℃까지 1∼20℃/hr의 속도로 냉각하면서 시효 열처리를 행하여 자석화하는 것을 특징으로 한다.Fe-Cr-Co-based permanent magnet production method of the present invention for achieving the above object, in the method for producing a Fe-Cr-Co-based permanent magnet containing Fe, Cr, Co as a main component, Fe- Cr-Co-based alloys are prepared into crystalline quenching powder using rapid cooling technology, the quenching powder is pulverized into fine powder, the binder is mixed and sintered at a temperature range of 1100 to 1350 ° C for 0.5 to 4 hours. Thereafter, the sintered body was heat-treated in a magnetic field for 0.5 to 4 hours while loading an external magnetic field of 1 to 5 KOe in a temperature range of 600 to 700 ° C, and maintained at a temperature of 550 to 620 ° C for 1 to 10 hours, then up to 480 ° C. It is characterized by carrying out aging heat treatment while cooling at a rate of -20 ° C / hr to magnetize.

또한, 본 발명은, 상기 제조방법에 있어서, 급냉형 분말의 제조공정은 6∼50m/sec의 냉각회전체 속도로 냉각하여 1∼50㎛의 미세 결정질의 급냉형 분말을 제조하는 것을 특징으로 한다.The present invention is also characterized in that, in the above production method, the quenching powder production process is performed at a cooling rotor speed of 6 to 50 m / sec to produce a fine crystalline quenching powder of 1 to 50 µm. .

이하에서는 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서는 우선 용융상태의 Fe-Cr-Co계 합금을 대한민국 특허 제48371호에 제시된 것과 같은 축출형 용융회전법을 사용하여 6∼50m/sec의 급속냉각기의 회전체 속도(wheel speed)로 냉각시킴으로써 미세결정질(1∼50㎛)의 급속냉각형 분말을 얻는다. 이때, 급속냉각기의 회전체 속도가 6m/sec 이하인 때에는 용융상태의 합금을 축출해 주는 힘이 약하여 분말을 얻기 어렵고, 회전체 속도가 50m/sec 이상이 되어도 상관은 없으나 작업상 문제가 있으므로 회전체 속도는 6∼50m/sec로 하는 것이 바람직하다. 이때 분말의 입자형태는 단섬유(flake) 형상을 갖는다.In the present invention, first, the Fe-Cr-Co-based alloy in the molten state is cooled at a wheel speed of a rapid cooler of 6 to 50 m / sec by using an ejection type melt rotation method as described in Korean Patent No. 48371. In this way, a microcrystalline (1-50 µm) rapid cooling powder is obtained. At this time, when the speed of the rotating body of the rapid cooler is 6 m / sec or less, the force for discharging the alloy in the molten state is weak to obtain powder, and the rotating body may be 50 m / sec or more. It is preferable to set the speed to 6-50 m / sec. At this time, the particle form of the powder has a flake shape.

상기 급냉형 분말을 헥산(hexane), 아세톤(aceton), 알코올(alcohol) 등의 유기 용매나, 아르곤 가스 등의 불화성 분위기 혹은 공기 중에서 분쇄과정을 통하여 250메쉬(mesh) 이하의 입도를 갖는 미세 분말로 제조한다.The quenched powder has a particle size of 250 mesh or less through a pulverization process in an organic solvent such as hexane, acetone, alcohol, or an inert atmosphere such as argon gas or air. Prepared as a powder.

위와 같이 급속냉각 후에 분쇄하여 미세 분말을 제조하는 경우 산화하기 쉬운 Ti이나 Si 등의 첨가원소의 산화에 의해 성형성과 소결성이 저하되는 현상은 거의 없어 성형밀도와 소결밀도가 향상되며, 소결후의 조직이 아주 균일하여 자기특성 향상에 유익하게 된다.When the fine powder is prepared by pulverization after rapid cooling as described above, moldability and sinterability are hardly deteriorated by oxidation of additive elements such as Ti or Si, which are easy to oxidize, and thus the molding density and sintering density are improved, and the structure after sintering is improved. It is very uniform, which is beneficial for improving magnetic properties.

상기와 같이 분쇄된 급냉분말을 왁스(wax) 등의 바인더와 혼합한다. 이때 바인더는 0.5∼3wt% 혼합하며, 알코올이나 아세톤 등의 유기용매에 녹여 액체상태로 하여 혼합하는 것이 급냉분말에 균일하게 도포되므로 바람직하다. 바인더의 양이 0.5wt% 이하에서는 바인더로서의 충분한 효과를 기대하기 어렵고, 3wt% 이상에서는 그 양이 너무 많아 성형이 어렵고 나중에 소결과정에서 완전히 바인더를 제거하기 어렵다.The quenched powder pulverized as described above is mixed with a binder such as wax. At this time, the binder is 0.5 to 3wt% mixed, dissolved in an organic solvent such as alcohol or acetone and mixed in a liquid state is preferable because it is uniformly applied to the quench powder. If the amount of the binder is 0.5wt% or less, it is difficult to expect a sufficient effect as a binder. If the amount of the binder is 3wt% or more, the amount is too large, so that molding is difficult and it is difficult to completely remove the binder later in the sintering process.

이와 같이 바인더가 혼합된 분말을 금형속에 충진시킨 후 1∼10ton/㎠의 압력으로 압축성형하여 성형체를 제조하는 것이 바람직한데, 그 이유는 성형압이 1ton/㎠ 이하에서는 성형압이 낮아 강도를 유지하기 어렵고, 10ton/㎠ 이상에서는 성형압이 높아 금형의 손상이 심하기 때문이다.As described above, it is preferable to prepare a molded body by filling a powder mixed with a binder into a mold and compression molding at a pressure of 1 to 10 ton / cm 2, because the molding pressure is low at a molding pressure of 1 ton / cm 2 or less to maintain strength. This is because the mold pressure is high at 10 ton / cm 2 or more, and the mold is severely damaged.

상기와 같이 얻어진 성형체를 진공 또는 아르곤이나 수소 분위기 중에서 소결처리하여 치밀화를 시킨다. 이때 소결조건은 1100∼1350℃의 온도범위에서 0.5∼4시간 행하는 것이 바람직하다. 여기서 소결온도 1100℃ 이하에서는 소결온도가 낮아 충분한 밀도화가 일어나지 않기 때문에 자기특성이 저하되고, 1350℃ 이상에서는 소결온도가 지나치게 높아 용융(melting)이 일어나 형상이 무너지게 되므로 소결온도를 1100∼1350℃로 하는 것이 바람직하다.The molded article obtained as described above is subjected to sintering under vacuum or argon or hydrogen atmosphere to densify. At this time, the sintering conditions are preferably carried out for 0.5 to 4 hours in the temperature range of 1100 ~ 1350 ℃. In this case, the sintering temperature is lower than 1100 ° C., so that the magnetic properties are lowered because the sintering temperature is not low enough. It is preferable to set it as.

다음 상기 소결체를 600∼700℃ 온도범위에서 1∼5KOe의 외부자장 중에서 0.5∼4시간 유지하여 자장중 열처리를 행한다. 자장중 열처리를 행하는 이유는 열처리 중 석출하는 Fe-Co계 조성의 석출물(이 석출물이 강자성을 보임)의 양을 증가시키면서 석출하는 동안의 방향성을 가지고 성장하게끔 배열효과를 주기 위함이다. 상기의 자장처리는 0.5시간 이하로 하면 석출물의 석출이 완전하지 않아 자기특성이 저하되고, 4시간 이상으로 하면 석출물의 크기가 조대해지기 때문에 자기특성이 저하하므로 자장처리는 0.5∼4시간 행하는 것이 바람직하다.Next, the sintered compact is maintained for 0.5 to 4 hours in an external magnetic field of 1 to 5 KOe in a temperature range of 600 to 700 ° C. to perform heat treatment in the magnetic field. The reason of the heat treatment in the magnetic field is to increase the amount of precipitates of Fe-Co-based composition (the precipitates show ferromagneticity) that precipitate during the heat treatment, and to give an alignment effect to grow with the orientation during precipitation. When the magnetic field treatment is 0.5 hours or less, the precipitation of the precipitate is incomplete, and the magnetic properties are lowered. When the magnetic field treatment is 4 hours or longer, the size of the precipitate becomes coarse. desirable.

시효처리는 550∼650℃의 온도구간에서 1∼2시간 유지한 후 1∼20℃/hr의 속도로 480℃까지 냉각하여 행한다. 시효처리의 온도가 550℃ 이하인 경우에는 그 효과가 충분치 않고, 650℃ 이상인 경우에는 석출물이 성장하여 자장처리 효과가 감소하므로 시효처리 온도는 550∼650℃로 제한하는 것이 바람직하다.The aging treatment is carried out at a temperature range of 550 to 650 ° C. for 1 to 2 hours and then cooled to 480 ° C. at a rate of 1 to 20 ° C./hr. If the temperature of the aging treatment is 550 ° C. or less, the effect is not sufficient. If the temperature is 650 ° C. or higher, the precipitate grows and the magnetic field treatment effect is reduced, so the aging treatment temperature is preferably limited to 550 to 650 ° C.

이하에서는 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

Cr, Co, Si, Ti, Fe 인곳트(ingot)를 26wt%Cr-12%Co-0.45%Si-0.45%Ti-bal.Fe 조성으로 칭량하고, 아르곤(Ar) 가스 분위기 중에서 플라즈마 아크로 완전 용융한 후, 축출형 용융회전기에 의해 단섬유(flake) 형상의 급냉 분말을 제조하였으며, 이 때의 냉각속도, 즉 냉각회전체의 회전속도는 8.51∼32.7m/sec로 변화시켰다.Cr, Co, Si, Ti, Fe ingots are weighed in a 26wt% Cr-12% Co-0.45% Si-0.45% Ti-bal.Fe composition and melted completely with a plasma arc in an argon (Ar) gas atmosphere. After that, a quench powder having a flake shape was produced by an extracting melt rotor, and the cooling speed at this time, that is, the rotation speed of the cooling rotor was changed to 8.51 to 3.32 m / sec.

상기와 같이 제조된 급냉분말에 대하여 X-선 회절분석을 행하여 그 결과를 다음의 표 1에 나타내었다. 표 1에서 알 수 있는 바와 같이 모두 결정질 조직으로 나타났다.X-ray diffraction analysis was performed on the quench powder prepared as described above, and the results are shown in Table 1 below. As can be seen in Table 1 all appeared crystalline tissue.

자석합금조성Magnetic Alloy Composition 급냉회전체속도(m/sec)Rapid cooling body speed (m / sec) 급냉기지조직Quench Base Organization 급냉분말No.Quenching powder 26%Cr-12%Co-0.45%Si-0.45%Ti-bal.Fe26% Cr-12% Co-0.45% Si-0.45% Ti-bal.Fe 8.508.50 결정질Crystalline 1One 발명재Invention 26%Cr-12%Co-0.45%Si-0.45%Ti-bal.Fe26% Cr-12% Co-0.45% Si-0.45% Ti-bal.Fe 16.3616.36 결정질Crystalline 22 26%Cr-12%Co-0.45%Si-0.45%Ti-bal.Fe26% Cr-12% Co-0.45% Si-0.45% Ti-bal.Fe 24.6024.60 결정질Crystalline 33 26%Cr-12%Co-0.45%Si-0.45%Ti-bal.Fe26% Cr-12% Co-0.45% Si-0.45% Ti-bal.Fe 32.7232.72 결정질Crystalline 44

상기와 같이 제조된 급냉분말을 알콜용매에서 아트리터(attritor)를 사용하여 분쇄한 후, 400메쉬(mesh)의 ASTM E11에서 규정한 체(sieve)를 사용하여 분급함으로써 38 마이크로미터 이하의 입도의 분말을 얻었다.The quenched powder prepared as described above was pulverized in an alcohol solvent using an attritor, and then classified using a sieve specified in ASTM E11 of 400 mesh to obtain a particle size of 38 micrometers or less. A powder was obtained.

이와 같이 분쇄된 분말은 8ton/㎠의 수직압력으로 성형하였으며, 이들 성형체를 1350℃에서 1시간 진공 분위기에서 소결처리하였다.The powder thus pulverized was molded at a vertical pressure of 8 ton / cm 2, and these molded bodies were sintered at 1350 ° C. for 1 hour in a vacuum atmosphere.

이 소결체를 1250℃에서 10분간 용체화처리 후 600∼700℃ 온도구간에서 4.5KOe의 외부자장 중에서 1시간 자장중 열처리를 행한 후, 620℃에서 1시간 유지한 후 480℃까지 5℃/hr의 속도로 냉가시켜 영구자석 시편을 얻었다.After sintering the sintered body at 1250 ° C for 10 minutes, heat treatment was performed for 1 hour in a magnetic field of 4.5 KOe at a temperature range of 600 to 700 ° C for 1 hour, and then maintained at 620 ° C for 1 hour, followed by 5 ° C / hr up to 480 ° C. After cooling at a rate, permanent magnet specimens were obtained.

상기와 같이 제조된 영구자석 시편에 대한 밀도 및 자기특성을 측정하고, 그 결과를 상기 표 1의 자석합급을 종래의 주조법 및 압연법에 의해 제조한 영구자석에 대한 값과 비교하여 다음의 표 2에 나타내었다.The density and magnetic properties of the permanent magnet specimens prepared as described above were measured, and the results were compared with those of the permanent alloy manufactured by the casting and rolling methods of the magnet alloy of Table 1 below. Shown in

시편No.Specimen No. 급냉회전체속도(m/sec)Rapid cooling body speed (m / sec) 자 기 특 성Self-characteristics 비 고Remarks 잔류자속밀도(Br)(G)Residual magnetic flux density (Br) (G) 보자력(Hc)(Oe)Coercive force (Hc) (Oe) 최대자기에너지적(BH)max (MGOe)Maximum magnetic energy product (BH) max (MGOe) 종래재Conventional aa -- 13,00013,000 600600 5.505.50 종래 주조법Conventional casting method bb -- 12,00012,000 550550 4.504.50 종래 압연법Conventional rolling method 발명재Invention 1One 8.518.51 13,20013,200 618618 5.715.71 급냉분말Quenching powder 22 16.6116.61 13,15013,150 612612 5.625.62 급냉분말Quenching powder 33 24.6024.60 13,05013,050 605605 5.585.58 급냉분말Quenching powder 44 32.7232.72 12,80012,800 582582 5.345.34 급냉분말Quenching powder

상기 표 2에 나타난 바와 같이, 본 발명에 따라 제조된 소결 영구자석[발명재(1-4)]이 종래의 주조법으로 제조된 영구자석[종래재 a]에 비하여 자기특성이 동등 이상으로 우수하고, 종래의 압연법으로 제조된 영구자석[종래재 b]에 비해서는 월등히 자기특성이 향상됨으로 알 수 있다.As shown in Table 2, the sintered permanent magnet [invention material (1-4)] prepared in accordance with the present invention is superior in magnetic properties to that of the permanent magnets [conventional material a] produced by the conventional casting method or more. It can be seen that the magnetic properties are significantly improved compared to the permanent magnets [conventional material b] manufactured by the conventional rolling method.

이상에서 상세히 설명한 바와 같이, 본 발명의 Fe-Cr-Co계 영구자석의 제조방법을 사용하면, 목적하는 조성의 Fe-Cr-Co계 합금분말을 직접 일공정에 의한 급속냉각기술을 이용하여 제조함으로써 분쇄성 및 성형성이 양호하고, 높은 소결밀도를 갖으며, 온도 및 자기특성이 뛰어난 소결형 Fe-Cr-Co계 영구자석을 값싸고 단순한 공정으로 제조할 수 있게 된다.As described in detail above, when the Fe-Cr-Co-based permanent magnet manufacturing method of the present invention is used, Fe-Cr-Co-based alloy powder of the desired composition is prepared by using a quick cooling technique by one step directly As a result, a sintered Fe-Cr-Co permanent magnet having good crushability and moldability, high sintered density, and excellent temperature and magnetic properties can be manufactured in a simple and inexpensive process.

Claims (2)

Fe, Cr, Co를 주요성분으로 하는 Fe-Cr-Co계 영구자석을 제조하는 방법에 있어서,In the method for manufacturing a Fe-Cr-Co-based permanent magnet containing Fe, Cr, Co as a main component, Fe-Cr-Co계 합금을 급속냉각기술을 이용하여 미세 결정질의 급냉형 분말로 제조하고,Fe-Cr-Co-based alloy is prepared as a fine crystalline quenching powder using a rapid cooling technology, 상기 급냉형 분말을 미세분말로 분쇄하고, 바인더를 혼합하여 1100∼1350℃의 온도범위에서 0.5∼4시간 소결한 후,After pulverizing the quenching powder into fine powder, mixed with a binder and sintered at a temperature range of 1100 to 1350 ° C. for 0.5 to 4 hours, 상기 소결체를 600∼700℃ 온도범위에서 1∼5KOe의 외부자장을 부하하면서 0.5∼4시간 자장중 열처리를 행하고,The sintered body was heat-treated in a magnetic field for 0.5 to 4 hours while loading an external magnetic field of 1 to 5 KOe in a temperature range of 600 to 700 ° C, 550∼620℃의 온도에서 1∼10 시간유지한 후 480℃까지 1∼20℃/hr의 속도로 냉각하면서 시효 열처리를 행하여 자석화하는 것을 특징으로 하는 Fe-Cr-Co계 영구자석의 제조방법.A method of producing a Fe-Cr-Co permanent magnet characterized in that it is subjected to aging heat treatment while maintaining the temperature at a temperature of 550 to 620 ° C. for 1 to 10 hours and cooling to 480 ° C. at a rate of 1 to 20 ° C./hr. . 제1항에 있어서, 상기 급속냉각기술을 이용한 급냉형 분말의 제조공정은 6∼50m/sec의 냉각회전체 속도로 냉각하여 1∼50㎛의 미세 결정질의 급냉형 분말을 제조하는 것을 특징으로 하는 Fe-Cr-Co계 영구자석의 제조방법.The method of claim 1, wherein the quenching powder manufacturing process using the rapid cooling technique is cooled to a cooling rotor speed of 6 to 50m / sec to produce a fine crystalline quenching powder of 1 to 50㎛ Method for producing a Fe-Cr-Co permanent magnet.
KR1019990057118A 1999-12-13 1999-12-13 Fabrication method of Fe-Cr-Co permanent magnet KR20010055808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990057118A KR20010055808A (en) 1999-12-13 1999-12-13 Fabrication method of Fe-Cr-Co permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990057118A KR20010055808A (en) 1999-12-13 1999-12-13 Fabrication method of Fe-Cr-Co permanent magnet

Publications (1)

Publication Number Publication Date
KR20010055808A true KR20010055808A (en) 2001-07-04

Family

ID=19625373

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990057118A KR20010055808A (en) 1999-12-13 1999-12-13 Fabrication method of Fe-Cr-Co permanent magnet

Country Status (1)

Country Link
KR (1) KR20010055808A (en)

Similar Documents

Publication Publication Date Title
US4585473A (en) Method for making rare-earth element containing permanent magnets
US4801340A (en) Method for manufacturing permanent magnets
KR100360533B1 (en) Method for producing high silicon steel, and silicon steel
US4994109A (en) Method for producing permanent magnet alloy particles for use in producing bonded permanent magnets
EP0632471A2 (en) Permanent magnet containing rare earth metal, boron and iron
KR20000067821A (en) Method for the preparation of a rare earth permanent magnet
JPH0354806A (en) Manufacture of rare-earth permanent magnet
KR950013978B1 (en) Alico magnet manufacturing method
KR100256358B1 (en) The manufacturing method for sintering magnetic alloy with fe-si line
KR20010055808A (en) Fabrication method of Fe-Cr-Co permanent magnet
JPS6320411A (en) Production of material for permanent magnet
JPS61295342A (en) Manufacture of permanent magnet alloy
KR0122333B1 (en) Al-ni-co permanent magnet alloy producing method
KR100262488B1 (en) Method of manufacturing sintered fe-si type soft magnets
JPH058562B2 (en)
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JP2643329B2 (en) Rare earth-cobalt sintered magnet with excellent magnetic properties and mechanical strength
JP3053344B2 (en) Rare earth magnet manufacturing method
JPH01175207A (en) Manufacture of permanent magnet
JPS6117125B2 (en)
Ozawa et al. Microstructures and magnetic properties of Nd-Fe-BX (X= Co, Zr) alloys produced by a metallic mold casting method
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JPS5827321B2 (en) Permanent magnet manufacturing method
KR20010057613A (en) Fabrication method of thermosetting bonded Fe-Cr-Co magnet

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid