KR20010051032A - 벤조피라닐 구아니딘 유도체, 그의 제조방법 및 그를포함하는 약학적 조성물 - Google Patents

벤조피라닐 구아니딘 유도체, 그의 제조방법 및 그를포함하는 약학적 조성물 Download PDF

Info

Publication number
KR20010051032A
KR20010051032A KR1020000060467A KR20000060467A KR20010051032A KR 20010051032 A KR20010051032 A KR 20010051032A KR 1020000060467 A KR1020000060467 A KR 1020000060467A KR 20000060467 A KR20000060467 A KR 20000060467A KR 20010051032 A KR20010051032 A KR 20010051032A
Authority
KR
South Korea
Prior art keywords
methyl
benzopyran
cyano
dihydro
hydroxy
Prior art date
Application number
KR1020000060467A
Other languages
English (en)
Other versions
KR100429609B1 (ko
Inventor
유성은
이선경
이규양
김낙정
서지희
신화섭
이병호
서호원
임홍
김선옥
조인선
남궁미애
장동수
박영숙
황선경
Original Assignee
우종일
동부한농화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우종일, 동부한농화학 주식회사 filed Critical 우종일
Priority to AU11750/01A priority Critical patent/AU1175001A/en
Priority to PCT/KR2000/001189 priority patent/WO2001029023A1/en
Priority to EP00973213A priority patent/EP1228058B1/en
Priority to CA002387727A priority patent/CA2387727C/en
Priority to DE60007168T priority patent/DE60007168T2/de
Priority to MXPA02003898A priority patent/MXPA02003898A/es
Priority to CNB008146551A priority patent/CN1229371C/zh
Priority to US09/693,082 priority patent/US6323238B1/en
Priority to ES00973213T priority patent/ES2210009T3/es
Priority to JP2001531823A priority patent/JP3999515B2/ja
Priority to BRPI0015227-7A priority patent/BR0015227B1/pt
Publication of KR20010051032A publication Critical patent/KR20010051032A/ko
Priority to HK03103787A priority patent/HK1051538A1/xx
Application granted granted Critical
Publication of KR100429609B1 publication Critical patent/KR100429609B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • C07D311/68Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with nitrogen atoms directly attached in position 4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 하기 화학식 1로 표시되는 벤조피라닐 구아니딘 유도체, 그의 제조방법 및 그를 포함하는 약학적 조성물에 관한 것으로서, 본 발명에 의한 벤조피라닐 구아니딘 유도체는 허혈 심장에 대한 보호작용, 신경세포 보호작용, NO의 생성 억제작용, 지질 과산화 억제작용, 활성산소 생성 저해 및 소멸작용의 항산화작용, 뇌허혈-재관류 및 저산소성 뇌손상 보호작용, 허혈망막에 대한 보호작용, 당뇨성 신경증에 대한 보호작용, 신생혈관 형성 억제작용, 세포증식 저해작용 등 매우 다양하고 폭넓은 약리 작용을 나타내고 부작용도 적으므로, 하기 화학식 1로 표시되는 벤조피라닐 구아니딘 유도체 또는 약학적으로 허용되는 그의 염을 유효성분으로 함유하는 약학적 조성물은 심장보호제, 신경세포 보호제, 뇌손상 보호제, 보관용 장기 보호제, NO 생성 저해제, 항산화제, 신생혈관 생성 억제제 또는 혈관 재협착 (restenosis) 억제제로 사용될 수 있다.
상기식에서, R1, R2, R3, R4, R5, R6, n 및 *은 명세서내에 기재된 바와 같다.

Description

벤조피라닐 구아니딘 유도체, 그의 제조방법 및 그를 포함하는 약학적 조성물{Benzopyranyl guanidine derivatives, method for preparation thereof and pharmaceutical compositions containing the said derivatives}
본 발명은 하기 화학식 1로 표시되는 벤조피라닐 구아니딘 유도체, 그의 제조방법 및 그를 포함하는 약학적 조성물에 관한 것으로, 구체적으로 허혈 심장에 대한 보호작용, 신경세포 보호작용, NO의 생성 억제작용, 지질 과산화 억제작용, 활성산소 생성 저해 및 소멸작용의 항산화작용, 뇌허혈-재관류 및 저산소성 뇌손상 보호작용, 허혈망막에 대한 보호작용, 당뇨성 신경증에 대한 보호작용, 신생혈관 형성 억제작용, 세포증식 저해작용 등 매우 다양하고 폭넓은 약리 작용을 나타내고 부작용도 적은 하기 화학식 1로 표시되는 벤조피라닐 구아니딘 유도체 또는 약학적으로 허용되는 그의 염을 유효성분으로 함유하는 약학적 조성물에 관한 것이다.
화학식 1
상기 식에서, R1, R2, R3, R4, R5, R6, n 및 *은 명세서 내에 기재된 바와 같다.
허혈성 심질환은 심근의 산소 요구량과 산소 공급량의 균형 상태가 깨져 공급량이 요구량에 비해 현저히 부족할 때 심근허혈 (myocardial ischemia)의 결과로 나타난다. 대부분의 경우 관상동맥질환이 허혈성 심질환을 일으키는 주원인인데, 관상동맥의 내경이 좁아지면 충분한 양의 혈액이 공급되지 못하므로 산소 요구량을 충족시키지 못해 협심증, 심근경색, 급성 심장마비, 부정맥 등을 초래하게 된다 [G.J. Grover, Can. J. Physiol. 75, 309(1997); G.D. Lopaschuk et al., Science & Medicine 42 (1997)]. 또한 허혈성 심혈관 질환은 관상동맥질환 외에 다른 복합적인 요인에 의해서도 발병되므로, 관상동맥 성형술 등의 수술 요법 뿐만 아니라 다른 약물 요법도 필요하다. 허혈성 심혈관 질환의 치료를 위해서는 항혈전제, 동맥경화 치료제 등의 약물이 사용되며, 대표적인 약물로는 베타 차단제, 질산염 (nitrate), 니페디핀 등의 칼슘길항제, 혈전용해제, 아스피린, ACE (angiotensinogen converting enzyme) 저해제 등이 사용되고 있다.
한편 아트왈 등에 의해 하기 화학식 2의 구조식을 갖는 피라닐 시아노구아니딘계 화합물 (BMS-180448)이 기존의 칼륨통로 개방제와는 달리 심장에 존재하는 KATP(ATP-sensitive potassium channel)에 선택적으로 작용하는 것이 보고된 바 있다 [K.S. Atwal et al., J. Med. Chem. 36, 3971 (1993); K.S. Atwal et al., J. Med. Chem. 38, 1966 (1995)]. 이 화합물은 혈관을 이완시키는 효과가 비교적 작아서 혈압을 감소시키지 않으면서도 허혈 심장을 보호하므로, 새로운 허혈심장질환 치료제로서의 개발 가능성을 제시하였다.
심장마비 등으로 인해 뇌로 가는 전 혈류가 일시적으로 차단되거나 혈전 등에 의해 뇌의 일부 영역에서 혈류가 막히는 등 뇌허혈이 발생하면 뇌가 손상된다 [M.D. Ginsberg, Neuroscientist 1, 95 (1995)]. 또한 혈전이 소실되어 재관류가 일어나는 것에 의해서도 상당한 영역의 뇌가 손상된다. 뇌허혈-재관류에 의한 뇌손상을 방지하고 치료하기 위해서는 뇌허혈-재관류에 의한 병적 과정을 차단하여 허혈 부위가 손상되지 않도록 하고 손상된 부위의 기능을 정상화시킬 수 있어야 한다. 현재 이러한 목적으로 흥분성 아미노산 길항제 (excitatory amino acid antagonist), 항산화제 등의 신경보호제들을 사용하고 있다.
신경세포의 손상 또는 사멸은 뇌졸중, 뇌외상, 알츠하이머 병, 파킨슨 병, 신생아 저산소증, 녹내장, 당뇨성 신경증에 이르는 여러 가지 신경계 질환의 주원인으로 알려져 있다 [G.J. Zoppo et al., Drugs 54, 9 (1997); I. Sziraki et al., Neurosci. 85, 1101 (1998)]. 신경세포를 손상시키는 대표적인 요인으로는 신경세포 내 철 농도의 증가, 활성산소의 증가, 산화물질의 증가 등을 꼽을 수 있다 [M.P. Mattson et al., Methods Cell Biol. 46, 187 (1995); Y. Goodman et al., Brain Res. 706, 328 (1996)].
신경세포 내에 철 농도가 증가하면 NO 등의 산소 유리기 (oxygen free radical)가 형성된다. 산소 유리기가 과도하게 많이 생성되면 그로 인해 지질 과산화가 촉진되고 산화 물질이 증가하여 세포 내에 축적된다. 세포 내에 축적된 산화 물질은 상기와 같은 노화 및 치매 등의 퇴행성 신경계 질환 외에 관절염 등의 염증성 질환, 동맥경화증, 심근경색증 등을 일으킬 뿐만 아니라, 허혈성 질환에 있어서 재관류시 조직이 손상되거나 세균이 감염되어 장기가 내독소에 의해 손상되는 등 각종 급만성 조직 또는 장기의 손상을 일으키는 것으로 알려져 있다.
따라서 신경세포 내 철 농도의 증가에 의한 신경세포의 손상을 방지하고 지질 과산화를 방지하며 내독소 등에 의한 NO의 생성 및 활성산소를 억제하는 물질을 개발함으로써, 신경세포의 손상 또는 사멸에 기인한 여러 가지 질병을 예방 또는 치료할 수 있다. 현재 항산화 물질들이 신경세포 내 철에 의한 신경세포의 손상과 사멸을 완화시킨다는 결과가 보고되었고, 산화적 스트레스에 의한 신경세포의 손상을 막아주는 약물을 개발하고자 하는 노력이 진행 중이다 [Y. Zhang et al., J. Cereb. Blood Flow Metab. 13, 378 (1993)].
분만시 산소 결핍으로 인해 발생되는 태아의 저산소성 뇌손상은 에너지 생성 감소, 산소 유리 라디칼에 의한 세포막 손상, 흥분성 신경 전달물질의 유리 및 이들과 연관된 세포내 칼슘과 아연의 변화 등이 상호 작용하여 초래된다고 보고되어 있다. 신생아 저산소증은 심한 경우에는 사망률이 높으며 (약 1/3), 운동장애, 학습능력 장애, 간질, 이긴장증 (dystonia), 정신지체장애, 경련 등의 평생을 통한 심각한 장애를 일으킬 수 있으므로 전세계적으로 심각한 질환중의 하나로 되고 있다 [C. F. Loid et. al. Physiology and Behavior 68; 263-269 (2000)]. 이에 따라 항산화효소, 알로푸리놀 (allopurinol), 비타민 C 및 E, 유리라디칼 제거제, 흥분성 신경물질의 억제제, 니모디핀 (nimodipine)이나 프루나리진 (flunarizine) 등의 칼슘통로 차단제, NO 생성 억제제, 고혈당 및 저체온 요법 등에 의한 뇌보호 효과에 대한 연구들이 진행되고 있으나, 실제 임상에서는 시도되지 못하고 있다. 임상에의 실제 적용을 위하여는 더 많은 연구가 필요할 것이다.
광신경의 변화와 함께 광신경의 손상에 의해 발생되는 녹내장은 실명의 가장 큰 원인 중의 하나이다. 사람의 광신경은 약 백만 개의 액손으로 구성되어 있으며, 대부분은 신경절에, 나머지는 내핵층의 안쪽에 존재한다. 녹내장에 나타나는 광신경의 굴착현상은 신경사멸 및 신경절 세포와 액손의 손실로부터 발생되는 것으로 생각된다 [N.N. Osborne, et. Al. Survey of Ophthalmology, 43; suppl. S102-S128 (1999)]. 신경보호제들은 녹내장의 망막신경 특히 신경절세포의 사멸을 직간접적으로 보호할 수 있다. 따라서 NMDA (N-Acetyl aspartate) 수용체의 길항제, 베타 차단제, 칼슘 길항제, 항산화제등이 허혈에 의해 유발된 신경세포의 사멸을 보호하는데 유용될 수 있다.
또한 당뇨성 신경증 또는 당뇨성 말초신경의 장애를 일으키는 원인과 기전도 아직 확실히 규명되지는 않았지만, 미세혈관장애로 인한 말초신경의 경색 (infarction)이 이를 유발 또는 악화시키는 주요 원인으로 제시되고 있다. 현재 지방산의 대사 및 신경 재생을 촉진시키는 아세틸-L-카르니틴 (Acetyl-L-Carnitine, ALC), 향신경성 인자 (Neurotrophic factor)를 유리시키는 프로셉티드 (Prosaptide) 등이 각각 임상 진행중이며, 최근에는 NMDA (N-methyl-D-Aspartate) 수용체를 조절하여 혈관성 치매에 좋은 효과를 보인 메만틴 (Memantine)이 당뇨성 신경증의 임상시험을 계획하고 있어 다양한 기전의 신경보호제들이 당뇨성 신경증의 치료제로 개발될 가능성이 높다고 본다.
한편 인체질환 중에서 암이 차지하는 비율은 점차로 증가하고 있는 추세인데, 신생혈관 형성 (angiogenesis)으로 알려진 미세한 혈관의 형성이 고형암 증식과 전이 활성의 핵심과정으로 인식되고 있다 [Folkma, J. et al., (1992) J. Biol. Chem. 267: 10931-10934]. 신생혈관 형성은 혈관신생 유도인자와 억제제의 균형에 의해 조절되는데 이러한 인자들이 불균형을 이룰 때 신생혈관이 다량 형성된다. 혈관형성은 다양한 생리적 현상들, 즉 배 발생 (embryonic development), 상처치유, 만성염증, 혈관종 (hemangiomas), 당뇨병성 망막증 (diabetic retinopathy), 류마티스성 관절염 (rheumatoid arthritis), 건선 (psoriasis), AIDS 합병증 및 악성종양의 성장, 전이 등과 밀접한 관련이 있다 [Forkman, J., Klagsbrun. M. (1987) Science 235: 442-447]. 혈관형성은 혈관 내피세포의 이동과 증식, 혈관 세포로의 분화로 이어지는 일련의 작용들을 포함하며, 이러한 혈관 형성은 암의 성장과 전이에 있어 중요한 선행과정으로 알려져 있다. 즉, 암의 진행성 성장은 숙주세포로부터의 혈관 형성을 필요로 하므로, 종양으로부터 유래한 혈관형성 촉진인자들이 혈관 내피세포를 자극하여 종양 덩어리로 새로운 혈관형성을 유발시킨다. 그런 다음 악성종양 주변에 많이 형성된 혈관들에 의해 암세포의 전이도 용이하게 일어난다. 따라서 이러한 신생혈관 형성의 억제는 암의 성장 및 전이의 억제를 유도할 수 있으며, 신생혈관 형성 유도인자를 발견하고 이의 작용 메카니즘을 밝히며 신생혈관 형성을 억제하는 인자들을 발견하는 것은 항암제 개발을 위한 중요한 연구로 주목받고 있다.
현재까지 알려진 혈관형성 억제인자들로는 프로스타민 (prostamine), 종양괴사인자 (tumor necrosis factor)와 같은 단백질들, 혈관이 없는 조직인 연골에서 유래한 인자들, 지혈성 스테로이드 (angiostatic steroids)라 불리는 코르티손 (cortisone)과 여러 종류의 스테로이드 유도체들이 있으며, 하이드로코르티손 (hydrocortisone)의 경우는 헤파린 (heparin)과 함께 처리할 때 항혈관 형성 효과를 나타내는 것으로 알려져 있다 [Lee, A. et al., (1983) Science 221: 1185-1187; Crum, R. et al., (1985) Science 230: 1375-1378]. 그러나 이러한 물질들은 세포독성 때문에 효과적인 암 치료제로서 사용하는데 어려움이 있다.
혈관의 인티마 (intima)에 침착물 (placque)이 증가함으로써 혈관내경이 좁아져 발생하는 관상혈관 협착증 환자들에 대해 현재 외과적 시술 (PCI, percutaneous coronary intervention)이 95% 이상의 성공률을 보이고 있지만, 시술을 받은 환자의 20-50%에서 시술 후 6개월 이내에 혈관내경이 다시 좁아지는 재협착 (restenosis)이 발생하여 문제로 제기되고 있다 [Bult, H, (2000) Tips 21 279]. 재협착은 그 원인이 확실히 규명되지는 않았지만 인티마의 손상에 의한 혈전의 생성, 평활근 세포의 이동 및 증식이 재협착을 일으키는 주요 세포기전으로 알려져 있으며, 동맥경화와는 달리 혈장 지질의 농도나 조성에 비례하는 것은 아니다.
재협착증의 치료는 아직 정확한 발병의 원인이 규명되지 않았고 적당한 동물 질환 모델이 확립되지 않았기 때문에 어려움이 따르지만, 글리코프로테인 (glycoprotein) IIb/IIIa 길항제, 항산화제 프로부콜 (probucol) 등이 임상에서 긍정적인 결과를 나타내고 있다 [Bult, H, (2000) Tips 21 279]. 또한 재협착은 세포증식이 빠르게 일어나 발생되므로 세포증식을 억제하는 약물들의 개발도 추진되고 있다.
이에 본 발명자들은 상기와 같은 약리 효과를 나타내는 화합물을 개발하기 위해 노력하던 중, 상기 화학식 1로 표시되는 벤조피라닐 구아니딘 유도체를 합성하고 이들 화합물이 허혈성 심혈관 질환에 대한 심장보호 효과가 우수할 뿐만 아니라 뇌허혈-재관류 및 저산소성 뇌손상을 방지하며 신경세포 보호 작용, NO 생성 저해 작용, 지질 과산화 억제 작용 및 활성산소 생성 억제작용의 항산화작용, 허혈망막에 대한 보호작용, 당뇨성 신경증에 대한 보호작용, 신생혈관 형성 억제작용, 세포증식 억제작용 등 다양한 약리 효과를 나타내므로 심근경색, 협심증, 심부전증의 심혈관계 질환; 뇌졸중; 신경세포의 손상 또는 사멸로 인한 신생아 저산소증, 녹내장, 당뇨성 신경증, 뇌외상의 신경세포의 손상과 관련된 질환; 퇴행성 신경질환 및 동맥경화의 산소 라디칼과 관련된 질환; 암, 당뇨성 망막증의 신생혈관 형성에 관련된 질환; 혈관 재협착 (restenosis) 등 여러 가지 질환의 예방 및 치료제로서, 또한 심장, 콩팥, 간, 조직의 보관 및 심혈관계 수술시 장기 (organs)의 보호제로 사용될 수 있다는 것을 밝힘으로써 본 발명을 완성하였다.
본 발명의 목적은 상기 화학식 1로 표시되는 새로운 벤조피라닐 구아니딘 유도체 및 약학적으로 허용되는 그의 염을 제공하는 것이다.
또한 본 발명의 목적은 상기 화학식 1로 표시되는 새로운 벤조피라닐 구아니딘 유도체의 제조방법을 제공하는 것이다.
또한 본 발명의 목적은 상기 화학식 1로 표시되는 새로운 벤조피라닐 구아니딘 유도체 또는 약학적으로 허용되는 그의 염을 유효성분으로 함유하는 심장보호제, 신경세포 보호제, 뇌손상 보호제, 보관용 및 심혈관계 수술시의 장기 보호제, NO 생성 저해제, 및 지질 과산화 저해제 등의 항산화제, 신생혈관 생성 억제제 또는 혈관 재협착 (restenosis) 억제제용 약학적 조성물을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명에서는 하기 화학식 1로 표시되는 벤조피라닐 구아니딘 유도체 및 약학적으로 허용되는 그의 염을 제공한다.
화학식 1
상기 식에서,
R1은 H, 할로겐, CF3, NO2, CN, ORa,, COORa, NH2, NHS(O)mRa,또는 S(O)mRa이며, 이때 Ra는 H, C1∼C4의 직쇄 또는 측쇄 알킬 또는 아릴이고 m은 0∼2의 정수이고;
R2는 C1∼C4의 직쇄 또는 측쇄 알킬이고;
R3는 CH2ORa,또는이며, 이때 Ra는 상기 정의한 바와 같고, Rb및 Rc는 각각 독립적으로 C1∼C4의 직쇄 또는 측쇄 알킬이고, Z는 C1∼C5의 직쇄 또는 측쇄 알킬이고;
R4는 OH, H, 할로겐, ONO2또는이며, 이때 Ra는 상기 정의한 바와 같고;
R5및 R6는 각각 독립적으로 H, 할로겐, C1∼C3의 직쇄 또는 측쇄 알킬, ORa, CX3, NO2, CO2Ra,또는 SO3Ra이며, 이때 Ra는 상기 정의한 바와 같고 X는 할로겐이고;
n은 0∼2의 정수이다.
또한 *은 광학 활성의 위치를 나타낸다.
보다 바람직하게는 상기 화학식 1의 화합물에서
R1은 NO2, CN, NH2또는 S(O)mRa이며, 이때 Ra는 C1∼C2의 직쇄 또는 측쇄 알킬 또는 아릴이고, m은 0∼2의 정수이고;
R2는 CH3이고;
R3또는이며, 이때 Rb및 Rc는 각각 독립적으로 C1∼C3의 직쇄 또는 측쇄 알킬이고, Z는 C1∼C5의 직쇄 또는 측쇄 알킬이고;
R4는 OH, H,이며, 이때 Ra는 C1∼C3의 직쇄 또는 측쇄 알킬이고;
R5및 R6는 각각 독립적으로 H, 할로겐, C1∼C3의 직쇄 또는 측쇄 알킬, ORa, CX3또는 NO2이며, 이때 Ra는 C1∼C3의 직쇄 또는 측쇄 알킬이고 X는 할로겐이고;
n은 0∼2의 정수이다.
또한 본 발명은 상기 화학식 1로 표시되는 벤조피라닐 구아니딘 유도체, 약학적으로 허용되는 그의 염뿐만 아니라 그로부터 제조될 수 있는 가능한 용매화물 및 수화물을 모두 포함한다.
본 발명의 상기 화학식 1로 표시되는 벤조피라닐 구아니딘 유도체는 라세믹 혼합물 뿐만 아니라 2, 3, 4번 위치 중 하나 이상에 광학 활성을 갖는 모든 광학 이성질체를 포함한다. 상기 화학식 1에서 2, 3, 4번 위치 모두에 광학 활성을 갖는 경우, 본 발명에 의한 3,4-디하이드로 벤조피란 형태의 화합물은 하기 화학식 3으로 표시되는 (I1), (I2), (I3) 및 (I4)와 같은 광학 이성질체로 존재한다.
상기 식에서, R1, R2, R3, R4, R5, R6및 n은 앞에서 정의한 바와 같다.
상기 화학식 1의 화합물들 중 특히 바람직한 화합물은 구체적으로 하기와 같다.
1) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
2) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
3) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-클로로페닐)구아니딘;
4) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-클로로페닐)구아니딘;
5) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-니트로페닐)구아니딘;
6) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸페닐)구아니딘;
7) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸페닐)구아니딘;
8) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시페닐)구아니딘;
9) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시페닐)구아니딘;
10) (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
11) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
12) (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-클로로페닐)구아니딘;
13) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-클로로페닐)구아니딘;
14) (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸페닐)구아니딘;
15) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸페닐)구아니딘;
16) (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시페닐)구아니딘;
17) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시페닐)구아니딘;
18) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메틸페닐)구아니딘;
19) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메틸페닐)구아니딘;
20) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시벤질)구아니딘;
21) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시벤질)구아니딘;
22) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
23) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
24) (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
25) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
26) (2R, 3R, 4S)-N"-시아노-N-(3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
27) (2R, 3S, 4R)-N"-시아노-N-(3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
28) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-히드록시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
29) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-히드록시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
30) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
31) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
32) (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-클로로페닐)구아니딘;
33) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-클로로페닐)구아니딘;
34) (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-트리플루오로메틸페닐)구아니딘;
35) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-트리플루오로메틸페닐)구아니딘;
36) (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-클로로벤질)구아니딘;
37) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-클로로벤질)구아니딘;
38) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-아세톡시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
39) (2S)-N"-시아노-N-(6-니트로-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
40) (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
41) (2S, 3S, 4R)-N"-시아노-N-(6-아세톡시아미노-3,4-디하이드로-3-히드록시 -2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
42) (2S, 3S, 4R)-N"-시아노-N-(6-메탄술포닐아미노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
43) (2S, 3S, 4R)-N"-시아노-N-(6-시아노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
44) (2S, 3R, 4S)-N"-시아노-N-(6-시아노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
45) (2S, 3S, 4R)-N"-시아노-N-(6-시아노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
46) (2S, 3R, 4S)-N"-시아노-N-(6-시아노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
47) (2S, 3S, 4R)-N"-시아노-N-(6-브로모-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
48) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3,4-디메톡시벤질)구아니딘;
49) (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3,4-디메톡시벤질)구아니딘;
50) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시벤질)구아니딘;
51) (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시벤질)구아니딘;
52) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-니트로벤질)구아니딘;
53) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸벤질)구아니딘;
54) (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸벤질)구아니딘;
55) (2S, 3S, 4R)-N"-시아노-N-(6-메탄술포닐옥시-3,4-디하이드로-3-히드록시 -2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
56) (2R, 3S, 4R)-N"-시아노-N-(6-메탄술포닐옥시-3,4-디하이드로-3-히드록시 -2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
57) (2S, 3R, 4S)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
58) (2R, 3R, 4S)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
59) (2R, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
60) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-([1,3]디옥솔란-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘;
61) (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-([1,3]디옥솔란-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘;
62) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-([1,3]디옥산-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘;
63) (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-([1,3]디옥산-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘;
64) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-([1,3]-5,5-디메틸디옥산-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘;
65) (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-([1,3]-5,5-디메틸디옥산-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘;
66) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디에톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
67) (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디에톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
68) (2S, 3S, 4R)-N"-시아노-N-(6-메톡시카르보닐-3,4-디하이드로-3-히드록시 -2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
69) (2R, 3S, 4R)-N"-시아노-N-(6-메톡시카르보닐-3,4-디하이드로-3-히드록시 -2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
70) (3S, 4R)-N"-시아노-N-(8-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
71) (2S, 3S, 4R)-N"-시아노-N-(8-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘; 또는
72) (2R, 3S, 4R)-N"-시아노-N-(8-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘
상기 화학식 1의 화합물들 중에서 더욱 바람직한 화합물은 하기와 같다.
(2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘
(2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘
(2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-아세톡시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘
본 발명의 화학식 1의 화합물은 약학적으로 허용가능한 염의 형태로 사용할 수 있으며, 염으로는 약학적으로 허용가능한 유리산 (free acid)에 의해 형성된 산부가염이 유용하다. 유리산으로는 유기산과 무기산을 사용할 수 있으며, 무기산으로는 염산, 브롬산, 황산, 아황산, 인산 등을 사용할 수 있고 유기산으로는 구연산, 초산, 젖산, 말레인산, 후마린산, 글루콘산, 메탄술폰산, 글리콜산, 숙신산, 타르타르산, 4-톨루엔술폰산, 갈락투론산, 엠본산, 글루탐산, 아스파르트산 등을 사용할 수 있다.
본 발명에 따른 산 부가염은 통상의 방법, 예를 들면 화학식 1의 화합물을 과량의 산 수용액 중에 용해시키고, 이 염을 수혼화성 유기 용매, 예를 들면 메탄올, 에탄올, 아세톤 또는 아세토니트릴을 사용하여 침전시켜서 제조할 수 있다. 동량의 화학식 1의 화합물 및 물 중의 산 또는 알코올 (예, 글리콜 모노메틸에테르)을 가열하고, 이어서 이 혼합물을 증발시켜서 건조시키거나 또는 석출된 염을 흡인 여과시켜 제조할 수도 있다.
또한 본 발명의 화합물은 염기로 인해 형성된 약학적으로 허용 가능한 금속염일 수도 있다. 본 발명에 따른 화학식 1로 표시되는 화합물의 알칼리 금속 또는 알칼리토금속 염은, 예를 들면 화학식 1의 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리토금속 수산화물 용액 중에 용해하고 비용해 물질을 여과한 후 여액을 증발, 건조시켜 얻을 수 있다. 나트륨, 칼륨 또는 칼슘염이 제약상 적합하다. 대응하는 은염은 알칼리 금속 또는 알칼리토금속 염을 적당한 은염 (예, 질산은)과 반응시켜 얻을 수 있다.
또한 본 발명에서는 상기 화학식 1의 벤조피라닐 구아니딘 유도체의 제조방법을 제공한다.
구체적으로 본 발명은 하기 반응식 1로 표시되는 화학식 1의 벤조피라닐 구아니딘 유도체의 제조방법을 제공한다 (제조방법 Ⅰ).
상기 식에서, R1, R2, R3, R4, R5, R6및 n은 앞에서 정의한 바와 같다.
또한 본 발명은 하기 반응식 2로 표시되는 화학식 1의 벤조피라닐 구아니인 유도체의 제조방법을 제공한다 (제조방법 Ⅱ).
상기 식에서, R1, R2, R3, R4, R5, R6및 n은 앞에서 정의한 바와 같다.
또한 본 발명에서는 상기 반응식 1 또는 반응식 2에 의해 제조된 화합물 (I')을 사용하여, 하기 반응식 3에 의해 화학식 1의 화합물을 제조하는 방법을 제공한다.
상기 식에서, R1, R2, R3, R4, R5, R6및 n은 앞에서 정의한 바와 같다.
이 반응을 통하여 R1, R2, R3, R4, R5및 R6의 치환기 종류를 바꿀 수 있으며 3번 위치와 4번 위치 사이에 이중결합을 도입할 수 있다.
본 발명에서는 출발물질로서 각각의 광학 이성질체를 사용함으로써 화학식 1의 화합물을 각각의 광학 이성질체로서 제조할 수 있다. 또한 출발물질로 광학 이성질체의 혼합물을 사용함으로써 화학식 1의 화합물을 광학 이성질체의 혼합물로 제조하고 혼합물을 분리하여 각각의 광학 이성질체를 얻을 수 있다. 광학 이성질체의 분리는 통상적인 칼럼 크로마토그래피 또는 재결정 방법을 실시하여 분리할 수 있다.
이하 본 발명에 의한 화학식 1의 벤조피라닐 구아니딘 유도체의 제조방법을 보다 상세히 설명한다.
I. 출발물질의 제조
상기 반응식 1 또는 반응식 2에서 출발물질로 사용한 아미노알코올 화합물 (Ⅲ)은 하기 반응식 4에 의해 제조될 수 있다.
상기 식에서, R1, R2및 R3는 앞에서 정의한 바와 같고, (OZ)는 이탈기를 나타내며 Hal은 할로겐 원자를 나타낸다.
상기 반응식 4에서 에폭시 화합물 (Ⅱ)의 제조는 본 발명자들에 의해 획득된 미국 특허 제5,236,935호 및 대한민국 특허 제094,546호에 기술되어 있는 방법에 따른 것이다.
또한 상기 에폭시 화합물 (Ⅱ)은 공지된 방법에 의해 프로파질에테르 유도체로부터 제조할 수 있다 (J. Med. Chem. 26, 1582 (1983)).
(1) 올레핀 화합물 (Ⅷ)의 제조
상기 반응식 4에서 올레핀 화합물 (Ⅷ)은 하기 화학식 4와 같은 거울상 이성질체 (Ⅷ1) 및 (Ⅷ2)로 존재한다.
상기 식에서, R1, R2및 R3는 앞에서 정의한 바와 같다.
올레핀 화합물 (Ⅷ)은 각각 화학식 4의 올레핀 화합물 (Ⅷ1)과 올레핀 화합물 (Ⅷ2)로서 개별적으로 분리하여 얻을 수 있다. 본 발명자들에 의한 대한민국 특허 출원번호 제96-7399호에 기재된 방법에 따라 올레핀 화합물 (Ⅷ)를 제조할 수 있으며, 상기 반응식 4에서 알코올 화합물 (Ⅶ)로부터 올레핀 화합물 (Ⅷ)의 광학 이성질체를 제조하는 방법은 구체적으로 하기 반응식 5와 같다.
상기 식에서, R1, R2및 R3는 앞에서 정의한 바와 같다.
(2) 에폭시 화합물 (Ⅱ)의 제조
상기 반응식 5에서 제조된 화합물 (Ⅷ1)과 화합물 (Ⅷ2)을 각각 출발물질로 사용하여 반응시킴으로써, 하기 반응식 6에서와 같이 화합물 (Ⅷ1)로부터는 에폭시 화합물 (Ⅱ1)과 (Ⅱ2)를 제조할 수 있고, 화합물 (Ⅷ2)로부터는 에폭시 화합물 (Ⅱ3)과 (Ⅱ4)를 제조할 수 있다.
상기 식에서, R1, R2및 R3는 앞에서 정의한 바와 같다.
이 반응으로 제조된 에폭시 화합물 (Ⅱ1)과 (Ⅱ2)은 개별적으로 분리할 수 있으며, 이 화합물을 분리하여 다음 반응에 사용할 수도 있고 분리하지 않고 다음 반응에 사용할 수도 있다. 또한 에폭시 화합물 (Ⅱ3)과 (Ⅱ4)도 개별적으로 분리할 수 있으며, 이 화합물을 분리하여 다음 반응에 사용할 수도 있고 분리하지 않고 다음 반응에 사용할 수도 있다.
에폭시 화합물 (Ⅱ1)과 (Ⅱ2) 및 에폭시 화합물 (Ⅱ3)과 (Ⅱ4)은 본 발명자들에 의해 획득된 미국 특허 제5,236,935호 및 대한민국 특허 제094,546호에 기술되어 있는 방법에 의해 올레핀 화합물 (Ⅷ1)과 올레핀 화합물 (Ⅷ2)로부터 제조할 수 있다.
또 다른 방법으로 Mn(Ⅲ)살렌 (salen) 에폭시화 촉매를 사용하여 올레핀 화합물 (Ⅷ1) 또는 (Ⅷ2)로부터 에폭시 화합물의 광학 이성질체 (Ⅱ1), (Ⅱ2), (Ⅱ3) 또는 (Ⅱ4)를 각각 독립적으로 제조할 수 있다 [E.N. Jacobsen et al., Tetrahedron Lett. 38, 5055 (1991)]. 이 때, (R,R)-Mn(Ⅲ)살렌 촉매를 사용하면 올레핀 화합물 (Ⅷ1)으로부터 에폭시 화합물 (Ⅱ1)을 제조하고 올레핀 화합물 (Ⅷ2)로부터 에폭시 화합물 (Ⅱ3)을 제조할 수 있다. 또한 (S,S)-Mn(Ⅲ)살렌 촉매를 사용하면 올레핀 화합물 (Ⅷ1)로부터 에폭시 화합물 (Ⅱ2)를 제조하고 올레핀 화합물 (Ⅷ2)로부터 에폭시 화합물 (Ⅱ4)을 제조할 수 있다. 이 반응에서 산화제로는 NaOCl을 사용하며 반응용매로는 염화메틸렌과 물의 혼합용매를 사용한다.
(3) 아미노알코올 화합물 (Ⅲ)의 제조
상기 반응식 4에서 적절한 용매 하에서 에폭시 화합물 (Ⅱ)을 암모니아 가스 (NH3) 또는 암모늄 하이드록사이드 (NH4OH)와 반응시켜 아미노알코올 화합물 (Ⅲ)을 제조한다. 이 때 반응용매는 메탄올, 에탄올 또는 이소프로필알코올 등의 알코올계 용매를 사용하는 것이 바람직하고, 반응온도는 5 ℃에서 용매의 끓는점 사이로 하는 것이 바람직하다.
이 반응에서 출발물질로 에폭시 화합물 (Ⅱ1), (Ⅱ2), (Ⅱ3) 및 (Ⅱ4)를 각각 개별적으로 사용한 경우에는 하기 화학식 5 및 화학식 6의 아미노알코올 화합물 (Ⅲ1), (Ⅲ2), (Ⅲ3) 및 (Ⅲ4)를 개별적으로 수득할 수 있다. 또한 이 반응에서 에폭시 화합물 (Ⅱ1) 및 (Ⅱ2)의 혼합물을 출발물질로 사용한 경우, 제조된 아미노알코올 화합물은 하기 화학식 5와 같이 화합물 (Ⅲ1) 및 (Ⅲ2)의 혼합물이다. 에폭시 화합물 (Ⅱ3) 및 (Ⅱ4)의 혼합물을 출발물질로 사용한 경우에는, 제조된 아미노알코올 화합물은 하기 화학식 6과와 같이 화합물 (Ⅲ3) 및 (Ⅲ4)의 혼합물이다.
상기 식에서, R1, R2및 R3는 앞에서 정의한 바와 같다.
상기 식에서, R1, R2및 R3는 앞에서 정의한 바와 같다.
Ⅱ. 제조방법 Ⅰ
상기 반응식 1로 표시되는 화학식 1의 화합물의 제조방법은 적절한 용매에서 아미노알코올 화합물 (Ⅲ)과 티오우레아 화합물 (Ⅳ)을 적절한 축합제 존재 하에서 반응시키는 것으로 이루어진다. 이 반응으로 화학식 1의 화합물 중 R4가 OH인 화합물 (I')을 제조할 수 있다.
이 때, 축합제로는 수용성 카르보디이미드 축합제인 1-[3-(디메틸아미노)프로필]-3-에틸카르보디이미드 하이드로클로라이드 또는 N,N'-디시클로헥실카르보디이미드를 사용하는 것이 바람직하다. 더욱 바람직하기로는 수용성 카르보디이미드 축합제를 사용한다.
축합제는 아미노알코올 화합물 (Ⅲ)에 대하여 1∼3 당량 첨가하는 것이 바람직하고, 티오우레아 화합물 (Ⅳ)은 아미노알코올 화합물 (Ⅲ)에 대하여 1∼2 당량 첨가하는 것이 바람직하다.
반응 용매로는 염화메틸렌, 클로로포름, 디메틸포름아미드, 디메틸술폭시드, 테트라히드로퓨란, 1,2-디클로로에탄, 디옥산을 사용하는 것이 바람직하고, 반응온도는 5∼40 ℃로 하는 것이 바람직하다.
상기 반응에서 아미노알코올 화합물 (Ⅲ)의 광학 이성질체를 각각 개별적으로 출발물질로서 사용한 경우에는, 출발물질로 사용한 화합물 각각의 광학 활성을 그대로 갖는 화합물을 광학 이성질체로서 개별적으로 얻을 수 있다. 즉, 아미노알코올 화합물 (Ⅲ1), (Ⅲ2), (Ⅲ3) 및 (Ⅲ4)로부터 각각 화학식 1의 화합물 (I1), (I2), (I3) 및 (I4)을 얻을 수 있다. 또한 아미노알코올 화합물 (Ⅲ1)과 (Ⅲ2)의 혼합물로부터 각각 화학식 1의 화합물 (I1)과 (I2)의 혼합물을 얻고, 아미노알코올 화합물 (Ⅲ3)과 (Ⅲ4)의 혼합물로부터 각각 화학식 1의 화합물 (I3) 및 (I4)을 얻을 수 있다. 광학 이성질체의 혼합물로서 얻어진 화학식 1의 화합물은 반응 종료 후 광학 이성질체를 분리하여 각각 개별적으로 얻을 수 있다. 광학 이성질체는 통상의 칼럼 크로마토그래피 또는 재결정 방법으로 분리할 수 있다.
한편 상기 반응에서 사용한 티오우레아 화합물 (Ⅳ)은 하기 반응식 7과 같이 이소시아네이트 화합물 (Ⅸ)를 에탄올 용매 하에서 소듐시아나마이드 (NaNHCN)와 반응시켜 제조할 수 있다. 이때, 반응 온도는 용매의 끓는점 부근으로 하는 것이 바람직하다.
상기 식에서, R5, R6및 n은 앞에서 정의한 바와 같다.
Ⅲ. 제조방법 Ⅱ
상기 반응식 2로 표시되는 화학식 1의 화합물의 제조방법은
1) 적절한 용매에서 아미노알코올 화합물 (Ⅲ)과 디페닐시아노카본이미데이트 (Ⅹ)를 염기 존재 하에 반응시켜 화합물 (V)를 제조하는 단계 (단계 1); 및
2) 적절한 용매에서 화합물 (V)를 아민 화합물 (Ⅵ)과 반응시켜 화학식 1의 화합물 (I')을 제조하는 단계 (단계 2)로 이루어진다.
이 반응으로 화학식 1의 화합물 중 R4가 OH인 화합물 (I')을 제조할 수 있다.
단계 1에서 염기로는 무기 염기와 유기 염기를 사용할 수 있다. 즉, 탄산칼슘 (CaCO3), 수산화나트륨 (NaOH), 수산화칼륨 (KOH), 탄산나트륨 (Na2CO3), 탄산수소나트륨 (NaHCO3) 등의 무기 염기, 소듐메톡사이드 (CH3ONa), 소듐에톡사이드 (CH3CH2ONa) 등의 알코올의 금속염, 아세트산나트륨 (CH3COONa), 암모니아의 금속염, 1,8-디아자비시클로[5.4.0]운데크-7-엔 (1,8-diazabicyclo〔5.4.0〕undec-7-ene, DBU), 1,5-디아자비시클로[4.3.0]논-5-엔 (1,5-diazabicyclo〔4.3.0〕non-5-ene, DBN)과 같은 바이시클릭 아미딘 (bicyclic amidine), 트리에틸아민, N,N-디이소프로필에틸아민, 피리딘, 루티딘, N,N-디메틸아닐린, 4-(디메틸아미노)피리딘, 1,4-디아자비시클로[2.2.2]옥탄 (DABCO) 등의 유기 염기를 사용할 수 있다. 더욱 바람직하기로는 트리에틸아민, N,N-디이소프로필에틸아민, 피리딘, 1,8-디아자비시클로[5.4.0]운데크-7-엔, 4-(디메틸아미노)피리딘 등의 삼차아민을 사용하는 것이 바람직하다.
염기는 아미노알코올 화합물 (Ⅲ)을 기준으로 하여 1∼3 당량 첨가하는 것이 바람직하고, 디페닐시아노카본이미데이트 (Ⅹ)는 1∼2 당량 첨가하는 것이 바람직하다.
반응 용매로는 에탄올, 이소프로판올과 같은 알코올계 용매, 디메틸포름아미드 (DMF), 디메틸술폭사이드 (DMSO), 클로로포름 등을 사용하는 것이 바람직하다.
반응 온도는 5 ℃에서 용매의 끓는점 사이로 하는 것이 바람직하다.
단계 2에서 아민 화합물 (Ⅵ)은 아미노알코올 화합물 (Ⅲ)을 기준으로 하여 1∼5 당량 첨가하는 것이 바람직하다.
반응 용매로는 에탄올, 이소프로판올과 같은 알코올계 용매, 디메틸포름아미드 (DMF), 디메틸술폭시드, 클로로포름, 염화메틸렌, 테트라히드로퓨란 (THF) 등을 사용하는 것이 바람직하다. 반응 온도는 5 ℃에서 용매의 끓는점 사이로 하는 것이 바람직하다.
또한 이 때 추가적으로 염기를 더 첨가하여 반응시킬 수도 있다. 염기는 상기에서 언급한 것들을 사용하는 것이 바람직하다.
상기 반응에서 아미노알코올 화합물 (Ⅲ)의 광학 이성질체를 개별적으로 사용한 경우 화합물 (I')을 각각의 광학 이성질체로서 얻을 수 있다. 또한 아미노알코올 화합물 (Ⅲ1)과 (Ⅲ2)의 혼합물 또는 아미노알코올 화합물 (Ⅲ3)과 (Ⅲ4)의 혼합물을 출발물질로 사용하한 경우에는 각각 화합물 (I1)과 (I2)의 혼합물 또는 화합물 (I3)과 (I4)의 혼합물이 얻어진다. 이 때에는 반응 종료 후 혼합물을 분리하여 화합물 (I')의 광학 이성질체를 각각 얻을 수 있다. 광학 이성질체는 통상의 칼럼 크로마토그래피 또는 재결정 방법을 사용하여 분리할 수 있다.
Ⅳ. 화합물 (I')로부터 화합물 (I)의 제조
상기 반응식 1 또는 반응식 2를 통해 제조된 화합물 (I')를 사용하여 상기 반응식 3과 같이 반응시킴으로써, R1, R2, R3, R4, R5및 R6의 치환기 종류를 바꿀 수 있으며 3번 위치와 4번 위치 사이에 이중결합을 도입할 수 있다.
반응식 3의 반응에 사용되는 화합물 및 반응 조건은 제조하고자 하는 화합물의 구조, 즉 R1, R2, R3, R4, R5및 R6의 종류와 3번 위치와 4번 위치 사이에 이중결합의 유무에 의해 결정된다. 따라서 본 발명은 상기 반응식 3에 의해 화합물 (I')로부터 화학식 1의 화합물을 제조할 수 있는 모든 가능한 반응, 반응 시약 및 반응 조건을 포함한다. 또한 반응식 3에 의한 화학식 1의 제조방법 중에서 몇가지의 제조방법을 하기에서 구체적으로 설명하나, 이는 하나의 예시일 뿐으로 그 제조방법, 반응 시약 및 반응 조건이 이에 한정되는 것은 아니다.
(1) R4에 아세톡시기의 도입
적절한 염기와 적절한 촉매 존재 하에서 하기 반응식 8에서와 같이 화합물 (I')를 아세트산 무수물과 반응시킴으로써 R4에 아세톡시기를 도입할 수 있다.
상기 식에서, R1, R2, R3, R5, R6및 n은 앞에서 정의한 바와 같다.
이 때, 염기로는 상기에서 언급한 염기를 사용하는 것이 바람직하다. 더욱 바람직하게는 트리에틸아민, 피리딘 또는 N,N-디이소프로필에틸아민을 사용한다.
촉매로는 4-(디메틸아미노)피리딘을 사용하는 것이 바람직하다.
염기는 화합물 (I')에 대하여 1∼3 당량 첨가하는 것이 바람직하고, 촉매는 화합물 (I')에 대하여 0.05∼0.5 당량 첨가하는 것이 바람직하다.
반응 용매는 염화메틸렌, 클로로포름, 테트라히드로퓨란 (THF), 아세토니트릴 등을 사용하는 것이 바람직하고, 반응 온도는 0∼40 ℃로 하는 것이 바람직하다.
(2) 3번 위치와 4번 위치 사이에 이중결합의 도입
상기 반응식 8에서 제조한 아세테이트 화합물 (Ia)를 적절한 용매 하 적절한 염기를 첨가하여 하기 반응식 9와 같이 반응시킴으로써, R4에는 수소를, 그리고 3번 위치와 4번 위치 사이에는 이중결합을 도입할 수 있다.
상기 식에서, R1, R2, R3, R5, R6및 n은 앞에서 정의한 바와 같다.
이 때, 염기로는 상기에서 언급한 것들을 사용하는 것이 바람직하다. 더욱 바람직하기로는 1,8-디아자비시클로[5.4.0]운데크-7-엔, 1,5-디아자비시클로[4.3.0]논-5-엔, 1,4-디아자비시클로[2.2.2]옥탄을 사용한다. 염기는 화합물 (Ia)에 대하여 1∼23 당량 사용하는 것이 바람직하다.
반응 용매는 톨루엔, 벤젠, 자일렌, 디옥산 등을 사용하는 것이 바람직하다. 반응 온도는 5 ℃에서 용매의 끓는점 사이로 하는 것이 바람직하다.
(3) R1에 NH2의 도입
R1이 NO2인 화합물 (Ic)를 하기 반응식 10에 의해 환원시킴으로써 화학식 1의 화합물 중 R1이 NH2인 화합물 (Id)를 제조할 수 있다.
상기 식에서, R2, R3, R5, R6및 n은 앞에서 정의한 바와 같다.
이 때, 니트로기는 적절한 용매에서 백금, 팔라듐 부착 목탄 (Pd/C; palladium on carbon) 또는 라니-니켈 등과 같은 금속 촉매를 이용하여 수소화 반응을 통해 환원시킬 수 있다. 반응 용매는 메탄올 또는 에탄올 등의 알코올계 용매나 에틸 아세테이트를 사용할 수 있다.
또 다른 방법으로는 CuSO4, Cu(OAc)2, CoCl2, SnCl2, 또는 NiCl2등의 존재 하에 NaBH4등의 환원제로 환원시킬 수도 있다. 이 때 용매로는 물과 메탄올의 혼합용매를 사용하는 것이 바람직하고 반응온도는 상온으로 하는 것이 바람직하다.
(4) R1의 도입
상기 반응식 10에 의해 제조된 화합물 (Id)를 적절한 용매에서 염기 존재 하에 아실클로라이드 또는 산무수물과 반응시켜 R1인 화학식 1의 화합물을 제조할 수 있다. 이 때, 염기는 상기에서 언급한 것을 사용하는 것이 바람직하다. 더욱 바람직하기로는 트리에틸아민, N,N-디이소프로필에틸아민, 피리딘, 4-(디메틸아미노)피리딘을 사용한다. 용매로는 염화메틸렌, 클로로포름, 디메틸술폭사이드, 디메틸포름아미드, 테트라히드로퓨란, 디옥산을 사용하는 것이 바람직하다.
(5) R1에 -NHS(O)mRa의 도입
상기 반응식 10에 의해 제조된 화합물 (Id)를 적절한 용매에서 염기 존재 하에 알킬설포닐클로라이드 또는 아릴설포닐클로라이드와 반응시켜 R1이 NHS(O)mRa인 화학식 1의 화합물을 제조할 수 있다. 이 때, 염기는 상기에서 언급한 것을 사용하는 것이 바람직하다. 더욱 바람직하기로는 트리에틸아민, N,N-디이소프로필에틸아민, 피리딘, 4-(디메틸아미노)피리딘을 사용한다. 용매로는 염화메틸렌, 클로로포름, 디메틸술폭사이드, 디메틸포름아미드, 테트라히드로퓨란, 디옥산을 사용하는 것이 바람직하다.
또한 본 발명에서는 상기 화학식 1로 표시되는 벤조피라닐 구아니딘 유도체 또는 약학적으로 허용되는 그의 염을 유효성분으로 함유하는 심장보호제, 신경세포 보호제, 뇌손상 보호제, NO 생성 저해제, 지질 과산화 억제제 또는 신생혈관 생성 및 혈관 재협착 (restenosis) 억제제용 약학적 조성물을 제공한다.
흰쥐 적출 혈관을 사용한 실험에서 본 발명의 화합물들은 종래의 허혈심장 치료제인 크로마칼림 또는 BMS-180448에 비하여 현저하게 낮은 혈관 이완작용을 나타내었다. 본 발명에 의한 화합물이 심장에 있는 KATP에 작용하면 심장을 보호하게 되고 말초혈관에 있는 KATP에 작용하면 혈관을 이완시켜 혈압을 떨어뜨리게 된다. 즉, 심장보호작용에 있어서 혈관이완작용은 하나의 부작용이라고 할 수 있다. 이와 같이 본 발명의 화합물들은 혈관이완작용이 작으므로 이로 인한 부작용이 없고, 심장에 대해 선택적으로 작용하며 심장보호기능이 우수하다는 것을 알 수 있다.
흰쥐를 이용한 허혈심근 손상 모델에서는 본 발명의 화합물들은 우수한 항허혈 작용을 나타내었으며, BMS-180448의 것과 유사하거나 더 우수한 항허혈 작용을 나타내었다. 더욱이 본 발명의 화합물들은 BMS-180448와는 달리 혈관 이완작용이 현저하게 약하므로 심장 선택성 항허혈 작용이 더 우수하다는 것을 알 수 있다. 또한 비글견 (beagle dog)을 이용한 허혈심근 손상 모델에서도 본 발명의 화합물은 위험영역에 대한 심근경색율이 유의적으로 감소된 수치를 보이며, 특히 대조물질인 BMS-180448보다 더 우수한 항허혈 작용을 나타내었다.
이와 같이 본 발명의 화합물들은 혈관 이완작용을 나타내지 않고 혈압을 감소시키지 않으면서도 중간 크기 동물에서도 우수한 항허혈 작용을 나타내므로, 허혈성 심장질환에 의한 심근 수축기능 저하 등 허혈성 심혈관 질환과 관련된 질병의 예방제 또는 치료제 및 심근경색, 협심증, 심장마비의 예방 및 치료를 위한 심장보호제로서 사용될 수 있다.
또한 본 발명의 화합물들은 신경세포를 보호하는 작용을 나타낸다. 구체적으로 철에 의한 신경세포의 손상을 농도 의존적으로 보호하였으며, 쥐의 눈을 이용한 in vivo 망막 허혈 모델에서 세포사멸을 농도 의존적으로 보호하였다. 당뇨성 신경증 동물 모델에서도 신경 전도 속도 및 동통 반응 측정에서 신경 보호효과를 나타내었다. 또한 신생백서의 국소적 저산소성 모델에서 자기공명분광 변화의 분석 결과, 세포손상 (apoptosis)의 중요한 지표가 되는 Lipid/NAA (N-acetyl aspartate) 및 Lipid/Cr (creatine)의 비를 유의성있게 저하시킴으로써 뇌 보호효과를 나타내었다. 따라서 본 발명의 화합물들은 신경세포 보호제로서 사용될 수 있으며, 신경세포의 손상 또는 괴사에 의해 유발되는 뇌졸중, 치매, 신생아 저산소증, 녹내장, 당뇨성 신경증, 뇌외상과 같은 신경질환에도 유용하게 사용될 수 있다.
또한 본 발명의 화합물들은 철 및 구리에 의한 지질 과산화를 억제하며, 혈관 평활근 세포인 A7r5세포에서도 저밀도 지질단백 (low density lipoprotein)의 산화를 억제하였는데 이때 과산화수소로 산화적 스트레스를 가한 경우에 항산화효과가 더욱 뚜렷하였다. 또한 과산화수소에 의해 유발된 A7r5 및 HUVEC 세포 내 활성산소를 저해하였으며, 과산화라디칼 발생제로 AAPH (2,2'-azobis(2-aminopropane)dihydrochloride)를 사용한 ORAC (oxygen radical absorbance capacity) 실험에서 라디칼 흡수 효과를 나타내었다. 따라서 본 발명의 화합물들은 지질 과산화 억제제로 사용될 수 있으며, 활성산소에 의해 지질 과산화가 촉진되고 신경세포 내에 산화물질이 축적되어 유발되는 뇌졸중, 치매 등의 퇴행성 신경 질환 및 동맥경화 등의 질환에 유용하게 사용될 수 있다.
또한 본 발명의 화합물들은 LPS (lipopolysaccharide)와 같은 내독소에 의해 NO (nitric oxide)의 생성이 촉진되는 것을 저해한다. 특히 NO 생성을 농도 의존적으로 저해한다. 따라서 본 발명의 화합물들은 NO 생성 저해제로 사용될 수 있으며, NO가 다량 생성되어 발생되는 신경세포의 손상 및 조직 또는 장기가 손상되어 유발되는 관절염 등의 염증성 질환, 동맥경화증, 심근경색, 뇌졸중, 치매 등과 같은 질환에 유용하게 사용될 수 있다.
또한 본 발명의 화합물들은 뇌허혈-재관류에 의한 뇌손상을 보호하는 효과가 매우 우수하다. 특히 종래의 뇌손상 보호 물질인 MK801보다도 뇌손상 보호 효과가 우수하며, MK801 처리군에서는 쥐의 운동성이 감소하는 등의 부작용이 나타나지만, 본 발명의 화합물을 투여한 경우에는 운동성을 포함한 어떠한 행동의 변화도 나타나지 않는 등 부작용이 적은 장점이 있다. 따라서 본 발명의 화합물들은 뇌허혈-재관류에 의한 뇌손상 보호제로 사용될 수 있으며, 혈전에 의해 유도되는 허혈성 뇌혈관 장애 등 뇌가 손상되어 유발되는 여러 가지 질환에 유용하게 사용될 수 있다.
엔지오텐신 Ⅱ을 투여하여 신생혈관 형성을 유도한 경우 본 발명의 화합물들은 신생혈관 형성을 매우 효과적으로 억제한다. 특히 신생혈관 형성을 농도 의존적으로 억제하며, 본 발명의 화합물의 투여 농도에 따라서 신생혈관의 형성을 거의 완벽하게 억제할 수 있다. 따라서 본 발명의 화합물들은 신생혈관 형성 억제제로서 사용될 수 있으며, 신생혈관 형성으로부터 비롯되는 류마티스성 관절염, 건선, 에이즈 합병증 및 암 등과 같은 여러 가지 질병 치료에 유용하게 사용될 수 있다.
또한 [3H]-Thymidine을 이용하여 혈관평활근 세포 증식억제 실험을 실시한 결과, 안지오텐신 II에 의해 촉진된 DNA 합성을 유의성있게 억제함으로써 세포증식을 막아 관상혈관 시술 후의 재협착 (restenosis)을 예방, 치료하는데 유용하게 사용될 수 있다.
또한 본 발명의 화합물들은 상기와 같이 허혈-재관류에 의한 뇌, 심장 및 망막 등의 손상에 대한 보호효과가 있으므로, 심장, 콩팥, 간, 조직의 보관용 및 심혈관계 수술시 장기 (organ)보호에 유용하게 사용될 수 있다.
화학식 1의 화합물은 임상투여시에 경구 또는 비경구로 투여가 가능하며 일반적인 의약품제제의 형태로 사용될 수 있다.
본 발명의 화학식 1의 화합물은 실제 임상투여 시에 경구 및 비경구의 여러 가지 제형으로 투여될 수 있는데, 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다.
경구투여를 위한 고형 제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형 제제는 하나 이상의 화학식 1의 화합물에 적어도 하나 이상의 부형제 예를 들면, 전분, 탄산칼슘, 수크로스 또는 락토오스, 젤라틴 등을 섞어 조제할 수 있다. 또한 단순한 부형제 이외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용할 수 있다. 경구 투여를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.
비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함된다. 비수성용제, 현탁용제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔 (witepsol), 마크로골, 트윈 (tween) 61, 카카오지, 라우린지, 글리세롤, 젤라틴 등이 사용될 수 있다.
투약 단위는, 예를 들면 개별 투약량의 1, 2, 3 또는 4배로, 또는 1/2, 1/3 또는 1/4배를 함유할 수 있다. 개별 투약량은 바람직하기로는 유효 화합물이 1회에 투여되는 양을 함유하며, 이는 통상 1일 투여량의 전부, 1/2, 1/3 또는 1/4배에 해당한다.
화학식 1의 화합물의 유효용량은 0.1∼100 mg/kg 이고, 바람직하기로는 0.1 ∼20 mg/kg 이며, 하루 1∼3 회 투여될 수 있다.
이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다.
단, 하기 실시예들은 본 발명을 예시하는 것으로 본 발명의 내용이 실시예에 의해 한정되는 것은 아니다.
본 발명에서는 적외선 분광법, 핵자기 공명 스펙트럼, 질량 분광법, 액체크로마토그래피법, X-선 구조결정법, 선광도 측정법과 대표적인 화합물의 원소 분석 계산치와 실측치의 비교에 의해 분자 구조를 확인하였다.
반응식 1 또는 반응식 2의 출발물질 (Ⅲ)은 하기 제조예들을 통해 제조되었다.
〈제조예 1〉 (2R, 3R, 4S)-6-니트로-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노 -3,4-디하이드로-2H-1-벤조피란 및 (2R, 3S, 4R)-6-니트로-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
(단계 1) (2R)-6-니트로-2-메틸-2-디메톡시메틸-3,4-에폭시-3,4-디하이드로-2H-1-벤조피란의 제조
(2R)-6-니트로-2-메틸-2-디메톡시메틸-2H-1-벤조피란 75 g (0.28 mol)을 아세톤 1 L에 녹인 후 1 L의 물을 가하였다. 여기에 탄산수소나트륨 84 g (0.99 mol)을 넣고 10분 동안 교반시킨 후 옥손 174 g (0.28 mol)을 넣어 강하게 교반시켰다. 탄산수소나트륨과 옥손을 상기와 같은 방법으로 15분 간격마다 세 번 더 가하였다. 반응이 완결된 후 고체를 여과하고 감압하에서 아세톤을 제거한 후 여액을 에틸 아세테이트 (500 ml x 2)로 추출하였다. 무수 황산나트륨으로 유기층을 건조시켜 여과하고 감압하에서 용매를 제거한 후, 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 4:1)로 정제하여 흰색 고체인 목적화합물 76 g (수율 95%)을 이성질체 혼합물로 얻었다.
(단계 2) (2R, 3R, 4S)-6-니트로-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란 및 (2R, 3S, 4R)-6-니트로-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
상기 단계 1에서 제조한 에폭사이드 화합물 8.8 g을 포화 암모니아 에탄올 용액 250 ml에 녹이고 상온에서 교반시켜 7일 동안 반응시켰다. 용매를 제거하고 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:4)하여 출발물질 2.58 g을 회수하고 상기 목적화합물 5.6 g (수율 : 60%)을 이성질체 혼합물로 얻었다.
〈제조예 2〉 (2S, 3R, 4S)-6-니트로-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노 -3,4-디하이드로-2H-1-벤조피란 및 (2S, 3S, 4R)-6-니트로-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
(단계 1) (2S)-6-니트로-2-메틸-2-디메톡시메틸-3,4-에폭시-3,4-디하이드로-2H-1-벤조피란의 제조
(2S)-6-니트로-2-메틸-2-디메톡시메틸-2H-1-벤조피란 5 g (19 mmol)을 아세톤 100 ml에 녹인 후 물 100 ml을 가하였다. 여기에 탄산수소나트륨 5.6 g (66 mmol)을 넣고 10분 동안 교반시킨 후 옥손 11.6 g (19 mmol)을 넣고 강하게 교반시켰다. 탄산수소나트륨과 옥손을 상기와 동일한 방법으로 15분 마다 두번 더 첨가하였다. 반응이 완결된 후 고체를 여과하여 감압하에서 아세톤을 제거하였다. 여액은 에틸 아세테이트로 (100 ml x 2) 추출하고 무수 황산나트륨으로 유기층을 건조시켜 여과한 후 감압하에서 용매를 제거하였다. 잔사는 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 4:1)로 정제하여 흰색 고체인 목적화합물 5.1 g (수율 97%)을 이성질체 혼합물로 얻었다.
(단계 2) (2S, 3R, 4S)-6-니트로-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란 및 (2S, 3S, 4R)-6-니트로-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
상기 단계 1에서 제조한 에폭사이드 화합물 5.1 g을 포화 암모니아 에탄올 용액 100 ml에 녹이고 상온에서 7일 동안 교반시켜 반응시켰다. 용매를 제거하고 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:4)하여 목적화합물 4.4 g (수율 80%)을 이성질체 혼합물로 얻었다.
〈제조예 3〉 (2R, 3R, 4S)-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란 및 (2R, 3S, 4R)-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
(단계 1) (2R)-2-메틸-2-디메톡시메틸-3,4-에폭시-3,4-디하이드로-2H-1-벤조피란의 제조
(2R)-2-메틸-2-디메톡시메틸-2H-1-벤조피란 400 mg (1.82 mmol)을 DMSO 1 ml에 녹인 후 증류수 82 ㎕를 가하였다. 반응 혼합물을 0 ℃로 냉각시킨 후 N-브로모숙신이미드 (N-Bromosuccinimide) 647 mg를 조금씩 가하였다. 30분이 지난 후 물 1 ml를 가하여 에틸 아세테이트로 추출하고 무수 황산마그네슘으로 유기층을 건조시켜 여액을 여과하고 감압증류하였다. 잔사는 다시 디옥산-물 (3:1) 혼합용액 1 ml에 녹이고 수산화나트륨 146 mg을 가하여 상온에서 24시간 동안 교반시켰다. 반응 종료 후 반응 혼합물을 에틸 아세테이트로 추출하고 무수 황산마그네슘으로 건조시켜 여과하고 감압증류하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 10:1)로 정제하여 목적화합물 358 mg (수율 83%)을 이성질체 혼합물로 얻었다.
(단계 2) (2R, 3R, 4S)-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란 및 (2R, 3S, 4R)-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
상기 단계 1에서 제조한 에폭사이드 화합물 560 mg (2.37 mmol)을 포화 암모니아 에탄올 용액 20 ml에 녹이고 상온에서 7일 동안 교반시켜 반응시켰다. 반응 종료 후 용매는 제거하고 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 분리하여 목적화합물 340 mg (수율 57%)을 이성질체 혼합물로 얻었다
〈제조예 4〉 (2R, 3R, 4S)-6-니트로-2-메틸-2-히드록시메틸-3-히드록시-4-아미노 -3,4-디하이드로-2H-1-벤조피란 및 (2R, 3S, 4R)-6-니트로-2-메틸-2-히드록시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
(단계 1) (2R)-6-니트로-2-메틸-2-히드록시메틸-3,4-에폭시-3,4-디하이드로-2H-1-벤조피란의 제조
출발물질로 (2R)-6-니트로-2-메틸-2-히드록시메틸-2H-1-벤조피란 708 mg (3.20 mmol)을 사용한 것을 제외하고는 상기 제조예 1의 단계 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 2:1)로 분리하여 목적화합물 625 mg (수율 82%)을 이성질체 혼합물로 얻었다.
(단계 2) (2R, 3R, 4S)-6-니트로-2-메틸-2-히드록시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란 및 (2R, 3S, 4R)-6-니트로-2-메틸-2-히드록시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
상기 단계 1에서 얻은 에폭사이드 화합물 625 mg (2.63 mmol)을 포화 암모니아 에탄올 용액 10 ml에 녹이고 상온에서 7일 동안 교반시켜 반응시켰다. 반응 종료 후 용매를 제거하고 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:5)로 분리하여 목적화합물 328 mg (수율 49%)을 이성질체 혼합물로 얻었다.
〈제조예 5〉 (2R, 3R, 4S)-6-니트로-2-메틸-2-메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란 및 (2R, 3S, 4R)-6-니트로-2-메틸-2-메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
(단계 1) (2R)-6-니트로-2-메틸-2-메톡시메틸-3,4-에폭시-3,4-디하이드로 -2H-1-벤조피란의 제조
출발물질로 (2R)-6-니트로-2-메틸-2-메톡시메틸-2H-1-벤조피란 580 mg (2.47 mmol)을 사용한 것을 제외하고는 상기 제조예 1의 단계 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 2:1)로 분리하여 목적화합물 607 mg (수율 98%)을 이성질체 혼합물로 얻었다.
(단계 2) (2R, 3R, 4S)-6-니트로-2-메틸-2-메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란 및 (2R, 3S, 4R)-6-니트로-2-메틸-2-메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
상기 단계 1에서 얻은 에폭사이드 화합물 607 mg (2.42 mmol)을 포화 암모니아 에탄올 용액 10 ml에 녹이고 상온에서 7일 동안 교반시켜 반응시켰다. 용매를 제거하고 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:4)로 분리하여 목적화합물 345 mg (수율 53%)을 이성질체 혼합물로 얻었다.
〈제조예 6〉 (2S, 3S, 4R)-6-시아노-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노 -3, 4-디하이드로-2H-1-벤조피란의 제조
(2S)-6-시아노-2-메틸-2-디메톡시메틸-2H-1-벤조피란 1.2 g (4.90 mmol)을 출발물질로 사용한 것을 제외하고는 제조예 1의 단계 1 및 단계 2와 같은 방법에 의해 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 4:1)로 분리하여 (2S, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 0.65 g (수율 48%)을 얻었다.
〈제조예 7〉 (2S, 3R, 4S)-6-시아노-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노 -3, 4-디하이드로-2H-1-벤조피란의 제조
상기 제조예 6과 같은 방법으로 반응시킨 후, 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 4:1)로 분리하여 (2S, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 0.30 g (수율 22%)을 얻었다.
〈제조예 8〉 (2S, 3S, 4R)-6-브로모-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노 -3,4-디하이드로-2H-1-벤조피란의 제조
(2S)-6-브로모-2-메틸-2-디메톡시메틸-2H-1-벤조피란 1.6 g (5.35 mmol)을 출발물질로 사용한 것을 제외하고는 제조예 1의 단계 1 및 단계 2와 같은 방법에 의해 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:4)로 분리하여 (2S, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 1.28 g (수율 72%)을 얻었다.
〈제조예 9〉 (2S, 3S, 4R)-4-아미노-6-메탄술포닐옥시-3,4-디하이드로-3-히드록시 -2-메틸-2-디메톡시메틸-2H-1-벤조피란의 제조
(2S)-6-메탄술포닐옥시-2-메틸-2-디메톡시메틸-2H-1-벤조피란 2.52 g (8.45 mmol)을 출발물질로 사용한 것을 제외하고는 제조예 1의 단계 1 및 단계 2와 같은 방법에 의해 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:5)로 분리하여 (2S, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 1.74 g (수율 62%)을 얻었다.
〈제조예 10〉 (2R, 3S, 4R)-4-아미노-6-메탄술포닐옥시-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-1-벤조피란의 제조
(2R)-6-메탄술포닐옥시-2-메틸-2-디메톡시메틸-2H-1-벤조피란 0.79 g (2.65 mmol)을 출발물질로 사용한 것을 제외하고는 제조예 1의 단계 1 및 단계 2와 같은 방법에 의해 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:5)로 분리하여 (2R, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 0.60 g (수율 68%)을 얻었다.
〈제조예 11〉 (2S, 3S, 4R)-2-메틸-2-([1,3]디옥솔란-2-일)-6-니트로-3-히드록시 -4-아미노 -3,4-디하이드로-2H-1-벤조피란의 제조
(단계 1) (2S)-2-메틸-2-([1,3]디옥솔란-2-일)-6-니트로-2H-1-벤조피란의 제조
(2S)-2-메틸-2-디메톡시메틸-6-니트로-2H-1-벤조피란 1 g (3.77 mmol), 에틸렌글리콜 0.63 ml (11.31 mmol) 및 p-톨루엔설폰산 71.7 mg (0.377 mol)를 톨루엔 20 ml에 녹인 후 5시간 동안 환류시켰다. 반응 종료 후 반응 혼합물을 포화 NaHCO3수용액으로 세척하고 물과 에틸 아세테이트로 추출하였다. 유기층을 무수 황산마그네슘으로 건조시켜 여과하고 용매를 제거하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 6:1)로 정제하여 목적화합물 0.93 g (수율 93%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.48(s, 3H), 3.91-3.97(m, 4H), 4.95(s, 1H), 5.73(d, 1H), 6.49(d, 1H), 6.83(d, 1H), 7.86(d, 1H), 8.01(dd, 1H)
(단계 2) (2S, 3S, 4S)-2-메틸-2-([1,3]디옥솔란-2-일)-6-니트로-3,4-에폭시-3,4-디하이드로-2H-1-벤조피란의 제조
100 ml 플라스크 (one-neck flask)에 0.55 M NaOCl 용액 25.6 ml (14.08 mmol)과 0.05 M Na2HPO49.6 ml 넣어 0oC로 냉각하였다. 여기에 상기 단계 1에서 얻은 화합물 0.93 g (3.52 mmol)과 야콥슨 촉매 (Jacobsen's catalyst (S, S)) 96.22 mg (0.176 mmol)를 염화메틸렌 7 ml에 묽혀 가하고 실온에서 8시간 동안 교반시켰다. 반응 종료 후 반응용액을 셀라이트 여과 (Celite filter)하여 야콥슨 촉매를 제거하였다. 염화메틸렌층과 물층을 분리시켜 염화메틸렌층을 소금물로 세척하고 Na2SO4로 건조시켜 여과하고 용매를 제거하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 4:1)로 정제하여 목적화합물 470 mg (수율 48%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.57(s, 3H), 3.73(d, 1H), 3.80-3.90(m, 4H), 4.02(d, 1H), 4.96(s, 1H), 6.88(d, 1H), 8.13(dd, 1H), 8.29(d, 1H)
(단계 3) (2S, 3S, 4R)-2-메틸-2-([1,3]디옥솔란-2-일)-6-니트로-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
100 ml 플라스크에 상기 단계 2에서 얻은 화합물 470 mg (1.68 mmol)을 넣고 에탄올 15 ml에 녹인 후, 25% NH4OH 2.36 ml (16.3 mmol)를 가하여 25 ℃에서 5일 동안 교반시켰다. 반응 종료 후 에탄올을 제거하고, 잔사를 에틸 아세테이트로 추출하여 소금물로 씻어준 뒤 Na2SO4로 건조시켜 여과하고 용매를 제거하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:3)로 정제하여 목적화합물 400 mg (수율 80%)을 얻었다.
〈제조예 12〉 (2S, 3S, 4R)-2-메틸-2-([1,3]디옥산-2-일)-6-니트로-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
(단계 1) (2S)-2-메틸-2-([1,3]디옥산-2-일)-6-니트로-2H-1-벤조피란의 제조
(2S)-2-메틸-2-디메톡시메틸-6-니트로-2H-1-벤조피란 1 g (3.77 mmol)과 1,3-프로판다이올 2.73 ml를 사용하여 상기 제조예 11의 단계 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 6:1)로 분리하여 목적화합물 1 g (수율 96%)을 얻었다.
(단계 2) (2S, 3S, 4S)-2-메틸-2-([1,3]디옥산-2-일)-6-니트로-3,4-에폭시 -3,4-디하이드로-2H-1-벤조피란의 제조
상기 단계 1의 화합물을 출발물질로 사용한 것을 제외하고는, 제조예 11의 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 4:1)로 분리하여 목적화합물 0.57 g (수율 54%)을 얻었다.
(단계 3) (2S, 3S, 4R)-2-메틸-2-([1,3]디옥산-2-일)-6-니트로-3-히드록시 -4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
상기 단계 2의 화합물을 출발물질로 사용한 것을 제외하고는, 제조예 11의 단계 3과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:3)로 분리하여 목적화합물 0.46 g (수율 76%)을 얻었다.
〈제조예 13〉 (2S, 3S, 4R)-2-메틸-2-([1,3]-5,5-디메틸디옥산-2-일)-6-니트로-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
(단계 1) (2S)-2-메틸-2-([1,3]-5,5-디메틸디옥산-2-일)-6-니트로-2H-1-벤조피란의 제조
출발물질로서 (2S)-2-메틸-2-디메톡시메틸-6-니트로-2H-1-벤조피란 1 g (3.77 mmol)과 2,2-디메틸-1,3-프로판디올 2.80 ml을 사용한 것을 제외하고는, 상기 제조예 11의 단계 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 6:1)로 분리하여 목적화합물 1.01 g (수율 88%)을 얻었다.
(단계 2) (2S, 3S, 4R)-2-메틸-2-([1,3]-5,5-디메틸디옥산-2-일)-6-니트로 -3,4-에폭시-3,4-디하이드로-2H-1-벤조피란의 제조
상기 단계 1의 화합물을 출발물질로 사용한 것을 제외하고는, 제조예 11의 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 4:1)로 분리하여 목적화합물 0.62 g (수율 58%)을 얻었다.
(단계 3) (2S, 3S, 4R)-2-메틸-2-([1,3]-5,5-디메틸디옥산-2-일)-6-니트로 -3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
상기 단계 2의 화합물을 출발물질로 사용한 것을 제외하고는, 제조예 11의 단계 3과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:3)로 분리하여 목적화합물 0.53 g (수율 82%)을 얻었다.
〈제조예 14〉 (2S, 3S, 4R)-2-메틸-2-디에톡시메틸-6-니트로-3-히드록시-4-아미노 -3,4-디하이드로-2H-1-벤조피란의 제조
(단계 1) (2S)-2-메틸-2-디에톡시메틸-6-니트로-2H-1-벤조피란의 제조
출발물질로서 (2S)-2-메틸-2-디메톡시메틸-6-니트로-2H-1-벤조피란 1 g (3.77 mmol)과 에탄올 3.0 ml을 사용한 것을 제외하고는, 상기 제조예 11의 단계 1과 같은 방법으로 반응시켰다. 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 6:1)로 분리하여 목적화합물 1.01 g (수율 91%)을 얻었다.
(단계 2) (2S, 3S, 4R)-2-메틸-2-디에톡시메틸-6-니트로-3,4-에폭시-3,4-디하이드로-2H-1-벤조피란의 제조
상기 단계 1의 화합물을 출발물질로 사용한 것을 제외하고는, 제조예 11의 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 4:1)로 분리하여 목적화합물 0.71 g (수율 67%)을 얻었다.
(단계 3) (2S, 3S, 4R)-2-메틸-2-디에톡시메틸-6-니트로-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
상기 단계 2의 화합물을 출발물질로 사용한 것을 제외하고는, 제조예 11의 단계 3과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:3)로 분리하여 목적화합물 0.65 g (수율 86%)을 얻었다.
〈제조예 15〉 (2S, 3S, 4R)-2-메틸-2-디메톡시메틸-6-메톡시카르보닐-3-히드록시 -4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
출발물질로 (2S)-2-메틸-2-디메톡시메틸-6-메톡시카르보닐-2H-1-벤조피란 1.41 g (5.32 mmol)을 사용한 것을 제외하고는 상기 제조예 1의 단계 1 및 단계 2와 같은 방법에 의해 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:4)로 분리하여 목적화합물 0.86 g (수율 52%)을 얻었다.
〈제조예 16〉 (2R, 3S, 4R)-2-메틸-2-디메톡시메틸-6-메톡시카르보닐-3-히드록시 -4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
출발물질로 (2R)-2-메틸-2-디메톡시메틸-6-메톡시카르보닐-2H-1-벤조피란 1.27 g (4.79 mmol)을 사용한 것을 제외하고는 상기 제조예 1의 단계 1 및 단계 2와 같은 방법에 의해 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:4)로 분리하여 목적화합물 0.85 g (수율 57%)을 얻었다.
〈제조예 17〉 (3S, 4R)-2-메틸-2-디메톡시메틸-8-니트로-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란의 제조
출발물질로 (2S)-2-메틸-2-디메톡시메틸-8-니트로-2H-1-벤조피란 1.82 g (6.86 mmol)을 사용한 것을 제외하고는 상기 제조예 1의 단계 1 및 단계 2와 같은 방법에 의해 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:4)로 분리하여 목적화합물 1.31 g (수율 64%)을 얻었다.
본 발명에 의한 화학식 1의 화합물들은 하기 실시예들을 통해 제조되었다.
〈실시예 1〉 (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘의 제조
DMF 5 ml에 N-시아노-N'-(4-클로로페닐)티오우레아의 나트륨 염 508 mg과 제조예 1에서 얻은 아미노알코올 화합물 500 mg (1.68 mmol)을 녹이고 여기에 1-[3-(디메틸아미노)프로필]-2-에틸카르보디이미드 하이드로클로라이드 418 mg을 가하였다. 반응 혼합물을 상온에서 5시간 동안 교반시켜 반응시킨 후 1N HCl 10 ml를 가하고 에틸 아세테이트 (30 ml x 2)로 추출하였다. 에틸 아세테이트층을 물과 소금물로 세척하였다. 무수 MgSO4로 유기층을 건조시키고 농축시킨 후, 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 260 mg (수율 33%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.35(s, 3H), 3.36(d, 6H), 3.85(t, 1H), 4.59(s, 1H), 5.10(t, 1H), 5.97(s, 1H), 6.93(d, 1H), 7.35(dd, 4H), 7.62(d, 1H), 8.01(d, 2H), 9.44(s, 1H)
〈실시예 2〉 (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘의 제조
상기 실시예 1과 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 200 mg (수율 25%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.23(s, 3H), 3.42(d, 6H), 4.07(t, 1H), 4.48(s, 1H), 4.99(t, 1H), 5.80(s, 1H), 6.96(d, 1H), 7.36(dd, 4H), 7.76(s, 1H), 8.03(s, 2H), 9.48(s, 1H)
〈실시예 3〉 (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-클로로페닐)구아니딘의 제조
DMF 5 ml에 N-시아노-N'-(3-클로로페닐)티오우레아의 나트륨 염 508 mg과 제조예 1에서 얻은 아미노알코올 화합물 500 mg을 녹이고, 여기에 1-[3-(디메틸아미노)프로필]-2-에틸카르보디이미드 하이드로클로라이드 418 mg을 가하였다. 반응 혼합물을 상온에서 6시간 동안 교반시켜 반응시킨 후 1N HCl 10 ml를 가하여 에틸 아세테이트 (30 ml x 2)로 추출하였다. 에틸 아세테이트층은 물과 소금물로 세척하고 무수 MgSO4로 건조시켜 농축하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 230 mg (수율 29%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.35(s, 3H), 3.38(d, 6H), 3.88(s, 3H), 4.59(s, 1H), 5.11(s, 1H), 5.97(s, 1H), 6.94(d, 1H), 7.28(m, 4H), 7.79(d, 1H), 8.04(m, 2H), 9.49(s, 1H)
〈실시예 4〉 (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-클로로페닐)구아니딘의 제조
상기 실시예 3과 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 200 mg (수율 25%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.23(s, 3H), 3.42(d, 5H), 4.08(t, 1H), 4.49(s, 1H), 4.99(t, 1H), 6.98(d, 1H), 7.30(m, 4H), 7.91(d, 1H), 8.04(d, 2H), 9.6(s, 1H)
〈실시예 5〉 (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-니트로페닐)구아니딘의 제조
DMF 5 ml에 N-시아노-N'-(4-니트로페닐)티오우레아의 나트륨 염 532 mg과 제조예 1에서 얻은 아미노알코올 화합물 500 mg을 녹이고, 여기에 1-[3-(디메틸아미노)프로필]-2-에틸카르보디이미드 하이드로클로라이드 418 mg을 가하였다. 반응 혼합물을 상온에서 6시간 동안 교반시켜 반응시킨 후 1N HCl 10 ml를 가하여 에틸 아세테이트 (30 ml x 2)로 추출하였다. 에틸 아세테이트층은 물과 소금물로 세척하고 무수 MgSO4로 건조시켜 농축하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 210 mg (수율 26%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.36(s, 3H), 3.38(d, 6H), 3.88(t, 1H), 4.60(s, 1H), 5.12(t, 1H), 6.2(s, 1H), 6.97(d, 1H), 7.48(d, 1H), 8.04(dd, 1H), 8.11(s, 1H), 8.20(d, 2H), 8.33(d, 1H), 10.07(s, 1H)
〈실시예 6〉 (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸페닐)구아니딘의 제조
DMF 5 ml에 N-시아노-N'-(3-트리플루오로메틸페닐)티오우레아의 나트륨 염 500 mg과 제조예 1에서 얻은 아미노알코올 화합물 500 mg을 녹이고, 여기에 1-[3-(디메틸아미노)프로필]-2-에틸카르보디이미드 하이드로클로라이드 418 mg을 가하였다. 반응 혼합물을 상온에서 5시간 동안 교반시켜 반응시킨 후 1N HCl 10 ml를 가하여 에틸 아세테이트 (30 ml x 2)로 추출하였다. 에틸 아세테이트층은 물과 소금물로 세척하여 무수 MgSO4로 건조시키고 농축하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 250 mg (수율 29%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.34(s, 3H), 3.38(d, 6H), 3.38(t, 1H), 4.59(s, 1H), 5.10(t, 1H), 6.0(s, 1H), 6.94(d, 1H), 7.52(d, 1H), 7.57(m, 3H), 7.86(d, 1H), 8.02(dd, 1H), 8.09(s, 1H)
〈실시예 7〉 (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸페닐)구아니딘의 제조
상기 실시예 6과 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 200 mg (수율 23%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.23(s, 3H), 3.43(d, 6H), 4.08(t, 1H), 4.49(s, 1H), 5.01(t, 1H), 5.85(s, 1H), 6.98(d, 1H), 7.49(d, 1H), 7.60(m, 3H), 8.03(m, 3H), 9.7(s, 1H)
〈실시예 8〉 (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시페닐)구아니딘의 제조
DMF 5 ml에 N-시아노-N'-(4-메톡시페닐)티오우레아의 나트륨 염 500 mg과 상기 제조예 1에서 얻은 아미노알코올 화합물 500 mg을 녹이고, 여기에 1-[3-(디메틸아미노)프로필]-2-에틸카르보디이미드 하이드로클로라이드 418 mg을 가하였다. 반응 혼합물을 상온에서 5시간 동안 교반시켜 반응시킨 후 1N HCl 10 ml를 가하여 에틸 아세테이트 (30 ml x 2)로 추출하였다. 에틸 아세테이트층은 물과 소금물로 세척하고 무수 MgSO4로 건조시켜 농축하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 49 mg (수율 6%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.24(s, 3H), 3.35(d, 6H), 3.70(s, 3H), 4.08(t, 1H), 4.45(s, 1H), 5.64(d, 1H), 5.78(t, 1H), 6.93(m, 3H), 7.24(d, 2H), 8.02(d, 2H), 8.17(s, 1H), 9.59(s, 1H)
〈실시예 9〉 (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시페닐)구아니딘의 제조
상기 실시예 8과 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 190 mg (수율 24%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.33(s, 3H), 3.38(d, 6H), 3.72(s, 3H), 3.87(t, 1H), 4.58(s, 1H), 5.10(t, 1H), 5.88(s, 1H), 6.91(d, 3H), 7.20(d, 3H), 7.97(s, 1H), 9.14(s, 1H)
〈실시예 10〉 (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘의 제조
DMF 5 ml에 N-시아노-N'-(4-클로로페닐)티오우레아의 나트륨 염 508 mg과 제조예 2에서 얻은 아미노알코올 화합물 500 mg을 녹이고, 여기에 1-[3-(디메틸아미노)프로필]-2-에틸카르보디이미드 하이드로클로라이드 418 mg을 가하였다. 반응 혼합물을 상온에서 5시간 동안 교반시켜 반응시킨 후 1N HCl 10 ml를 가하여 에틸 아세테이트 (30 ml x 2)로 추출하였다. 에틸 아세테이트층은 물과 소금물로 세척하여 무수 MgSO4로 건조시키고 농축시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2S, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 260 mg (수율 33%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.35(s, 3H), 3.37(d, 6H), 3.85(t, 1H), 4.59(s, 1H), 5.11(t, 1H), 5.97(s, 1H), 6.93(d, 1H), 7.35(dd, 4H), 7.63(d, 1H), 8.01(d, 2H), 9.44(s, 1H)
〈실시예 11〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘의 제조
상기 실시예 10과 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2S, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 200 mg (수율 25%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.23(s, 3H), 3.43(d, 6H), 4.05(t, 1H), 4.48(s, 1H), 4.99(t, 1H), 5.81(s, 1H), 6.97(d, 1H), 7.37(dd, 4H), 7.76(s, 1H), 8.03(s, 2H), 9.49(s, 1H)
〈실시예 12〉 (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-클로로페닐)구아니딘의 제조
N-시아노-N'-(3-클로로페닐)티오우레아의 나트륨 염 508 mg과 제조예 2에서 얻은 아미노알코올 화합물 500 mg을 사용한 것을 제외하고는 상기 실시예 10과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2S, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 188 mg (수율 24%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.35(s, 3H), 3.43(d, 6H), 3.88(t, 1H), 4.60(s, 1H), 5.11(t, 1H), 5.97(s, 1H), 6.95(d, 1H), 7.17(d, 1H), 7.25(d, 1H), 7.34(d, 2H), 7.79(d, 1H), 8.03(m, 2H), 9.49(s, 1H)
〈실시예 13〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-클로로페닐)구아니딘의 제조
상기 실시예 12와 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2S, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 270 mg (수율 34%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.18(s, 3H), 3.43(d, 6H), 4.09(t, 1H), 4.49(s, 1H), 5.00(t, 1H), 5.85(s, 1H), 6.98(d, 1H), 7.29(d, 1H), 7.37(d, 1H), 7.40(m, 2H), 7.91(d, 1H), 8.05(m, 2H)
〈실시예 14〉 (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸페닐)구아니딘의 제조
N-시아노-N'-(3-트리플루오로메틸페닐)티오우레아의 나트륨 염 582 mg과 제조예 2에서 얻은 아미노알코올 화합물 500 mg을 사용한 것을 제외하고는 상기 실시예 10과 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2S, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 220 mg (수율 26%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.34(s, 3H), 3.43(d, 6H), 3.88(t, 1H), 4.60(s, 1H), 5.11(t, 1H), 5.95(s, 1H), 6.95(d, 1H), 7.45(d, 1H), 7.57(m, 3H), 7.88(d, 1H), 8.03(dd, 1H), 8.10(s, 1H), 9.62(s, 1H)
〈실시예 15〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸페닐)구아니딘의 제조
상기 실시예 14와 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2S, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 320 mg (수율 37%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.24(s,3 H), 3.43(d, 6H), 4.08(t, 1H), 4.49(s, 1H), 5.01(t, 1H), 5.82(s, 1H), 6.98(d, 1H), 7.47(d, 1H), 7.57(m, 3H), 7.98(d, 1H), 8.03(m, 2H), 9.67(s, 1H)
〈실시예 16〉 (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시페닐)구아니딘의 제조
N-시아노-N'-(4-메톡시페닐)티오우레아의 나트륨 염 500 mg과 제조예 2에서 얻은 아미노알코올 화합물 500 mg을 사용한 것을 제외하고는 상기 실시예 10과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2S, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 170 mg (수율 21%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.33(s, 3H), 3.36(d, 6H), 3.72(s, 3H), 3.86(t, 1H), 4.58(s, 1H), 5.09(t, 1H), 5.88(s, 1H), 6.91(d, 3H), 7.20(d, 3H), 7.97(s, 1H), 8.00(d, 1H)
〈실시예 17〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시페닐)구아니딘의 제조
상기 실시예 16과 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2S, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 270 mg (수율 34%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.22(s, 3H), 3.38(d, 6H), 3.72(s, 3H), 4.06(t, 1H), 4.45(s, 1H), 4.99(t, 1H), 5.75(s, 1H), 6.93(t, 3H), 7.20(d, 2H), 7.35(s, 1H), 8.01(s, 1H), 8.03(d, 1H), 9.19(s, 1H)
〈실시예 18〉 (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메틸페닐)구아니딘의 제조
N-시아노-N'-(4-메틸페닐)티오우레아의 나트륨 염 465 mg과 제조예 1에서 얻은 아미노알코올 화합물 500 mg을 사용한 것을 제외하고는 상기 실시예 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 158 mg (수율 21%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.34(s, 3H), 2.26(s, 3H), 3.37(d, 6H), 3.87(s, 1H), 4.59(s, 1H), 5.11(t, 1H), 5.93(s, 1H), 6.92(d, 1H), 7.16(s, 3H), 7.38(d, 1H), 8.00(1H, 2H), 9.24(s, 1H)
〈실시예 19〉 (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메틸페닐)구아니딘의 제조
상기 실시예 18과 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 250 mg (수율 33%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.22(s, 3H), 2.26(s, 3H), 3.38(d, 6H), 4.06(t, 1H), 4.46(s, 1H), 4.99(t, 1H), 5.74(s, 1H), 6.95(d, 1H), 7.16(s, 3H), 7.53(s, 1H), 8.02(d, 2H), 9.28(s, 1H)
〈실시예 20〉 (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시벤질)구아니딘의 제조
N-시아노-N'-(4-메톡시벤질)티오우레아의 나트륨 염 530 mg과 제조예 1에서 얻은 아미노알코올 화합물 500 mg을 사용한 것을 제외하고는 상기 실시예 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 134 mg (수율 16%)을 얻었다.
1H NMR (CDCl3, 300MHz) δ 1.47(s, 3H), 3.51(d, 6H), 3.77(s, 3H), 3.80(d, 2H), 4.44(t, 1H), 4.56(s, 1H), 5.32(m, 1H), 6.06(s, 1H), 6.40(d, 1H), 6.90(m, 3H), 7.12(m, 2H), 7.30(d, 1H), 8.00(dd, 1H), 8.03(s, 1H)
〈실시예 21〉 (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시벤질)구아니딘의 제조
상기 실시예 20과 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 140 mg (수율 17%)을 얻었다.
1H NMR (CDCl3, 300MHz) δ 1.32(s, 3H), 3.49(s, 6H), 3.58(t, 1H), 3.77(s, 3H), 4.04(d, 1H), 4.41(s, 1H), 4.65(s, 2H), 6.35(s, 1H), 6.88(dd, 4H), 7.26(d, 2H), 8.04(dd, 1H), 8.08(s, 1H)
〈실시예 22〉 (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
N-시아노-N'-벤질티오우레아의 나트륨 염 465 mg과 제조예 1에서 얻은 아미노알코올 화합물 500 mg을 사용한 것을 제외하고는 상기 실시예 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 260 mg (수율 34%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.24(s, 3H), 3.41(m, 1H), 3.44(d, 6H), 4.04(m, 1H), 4.51(s, 1H), 4.76(s, 2H), 5.70(s, 1H), 6.98(d, 1H), 7.32(m, 4H), 8.03(m, 2H), 8.16(s, 1H)
〈실시예 23〉 (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
상기 실시예 22과 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 200 mg (수율 26%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.26(s, 3H), 3.36(d, 6H), 3.44(d, 1H), 3.87(t, 1H), 4.44(d, 2H), 4.56(s, 1H), 5.02(t, 1H), 5.86(s, 1H), 6.94(d, 1H), 7.29(m, 4H), 7.75(t, 1H), 7.93(s, 1H), 7.99(dd, 1H)
〈실시예 24〉 (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
N-시아노-N'-벤질티오우레아의 나트륨 염 508 mg과 제조예 2에서 얻은 아미노알코올 화합물 500 mg을 사용한 것을 제외하고는 상기 실시예 10과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2S, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 170 mg (수율 22%)을 얻었다.
1H NMR (CDCl3, 300MHz) δ 1.27(s, 3H), 3.48(d, 6H), 3.5(m, 1H), 4.02(d, 1H), 4.48(s, 1H), 4.75(s, 2H), 6.0(s, 1H), 6.72(s, 1H), 6.87(d, 1H), 7.30(m, 5H), 8.0(d, 1H), 8.02(s, 1H)
〈실시예 25〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
상기 실시예 24와 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2S, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 190 mg (수율 25%)을 얻었다.
1H NMR (CDCl3, 300MHz) δ 1.31(s, 3H), 3.44(d, 6H), 3.5(m, 1H), 3.71(d, 1H), 4.47(s, 1H), 5.14(m, 2H), 5.69(s, 1H), 6.70(s, 1H), 6.58(d, 1H), 7.25(m, 5H), 8.0(d, 1H), 8.02(s, 1H)
〈실시예 26〉 (2R, 3R, 4S)-N"-시아노-N-(3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘의 제조
N-시아노-N'-(4-클로로페닐)티오우레아의 나트륨 염 508 mg과 제조예 3에서 얻은 아미노알코올 화합물 500 mg을 사용한 것을 제외하고는 상기 실시예 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 170 mg (수율 23%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.25(s, 3H), 3.37(d, 6H), 3.82(t, 1H), 4.52(s, 1H), 5.00(t, 1H), 5.45(s, 1H), 6.71(d, 1H), 6.90(t, 1H), 7.10(m, 2H), 7.24(d, 2H), 7.38(d, 2H), 7.54(d, 1H), 9.24(s, 1H)
〈실시예 27〉 (2R, 3S, 4R)-N"-시아노-N-(3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘의 제조
상기 실시예 26과 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 190 mg (수율 26%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.16(s, 3H), 3.40(d, 6H), 4.01(t, 1H), 4.43(s, 1H), 4.92(t, 1H), 5.48(s, 1H), 6.72(d, 1H), 6.90(t, 1H), 7.15(m, 3H), 7.31(m, 4H), 7.67(s, 1H), 9.29(s, 1H)
〈실시예 28〉 (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-히드록시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘의 제조
N-시아노-N'-(4-클로로페닐)티오우레아의 나트륨 염 289 mg과 제조예 4에서 얻은 아미노알코올 화합물 210 mg을 사용한 것을 제외하고는 상기 실시예 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 40 mg (수율 11%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.35(s, 3H), 3.5(m, 1H), 3.75(m, 1H), 4.95(t, 1H), 5.2(t, 1H), 6.0(s, 1H), 6.97(d, 1H), 7.4(m, 4H), 7.7(d, 1H), 8.0(m, 2H), 9.51(s, 1H)
〈실시예 29〉 (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-히드록시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘의 제조
상기 실시예 28과 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 40 mg (수율 11%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.2(s, 3H), 3.65(m, 2H), 4.11(t, 1H), 5.08(t, 1H), 5.85(s, 1H), 7.01(d, 1H), 7.4(m, 4H), 7.9(d, 1H), 8.1(d, 2H), 9.58(s, 1H)
〈실시예 30〉 (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘의 제조
N-시아노-N'-(4-클로로페닐)티오우레아의 나트륨 염 800 mg과 제조예 5에서 얻은 아미노알코올 화합물 200 mg을 사용한 것을 제외하고는 상기 실시예 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 108 mg (수율 32%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.4(s, 3H), 3.15(s, 3H), 3.45(d, 1H), 3.64(d, 1H), 3.8(t, 1H), 5.08(t, 1H), 6.09(s, 1H), 6.94(d, 1H), 7.34(dd, 4H), 7.64(s, 1H), 8.01(d, 2H), 9.5(s, 1H)
〈실시예 31〉 (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘의 제조
상기 실시예 30과 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2R, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 107 mg (수율 32%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.15(s, 3H), 3.3(s, 3H), 3.45(d, 1H), 3.6(d, 1H), 4.06(t, 1H), 5.00(t, 1H), 5.9(s, 1H), 6.96(d, 1H), 7.34(dd, 4H), 7.8(s, 1H), 8.0(m, 2H), 7.48(s, 1H)
〈실시예 32〉 (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-클로로페닐)구아니딘의 제조
N-시아노-N'-(2-클로로페닐)티오우레아의 나트륨 염 508 mg과 제조예 2에서 얻은 아미노알코올 화합물 500 mg을 사용한 것을 제외하고는 실시예 10과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2S, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 188 mg (수율 24%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.35(s, 3H), 3.43(d, 6H), 3.88(t, 1H), 4.60(s, 1H), 5.11(t, 1H), 5.97(s, 1H), 6.95(d, 1H), 7.17(d, 1H), 7.25(d, 1H), 7.34(d, 2H), 7.79(d, 1H), 8.03(m, 2H), 9.49(s, 1H)
〈실시예 33〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-클로로페닐)구아니딘의 제조
상기 실시예 32와 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2S, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 270 mg (수율 34%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.24(s, 3H), 3.43(d, 6H), 4.10(t, 1H), 4.49(s, 1H), 5.00(s, 1H), 5.85(s, 1H), 6.98(d, 1H), 7.19(d, 1H), 7.28(d, 1H), 7.35(m, 2H), 7.90(d, 1H), 8.05(d, 1H), 9.53(s, 1H)
〈실시예 34〉 (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-트리플루오로메틸페닐)구아니딘의 제조
N-시아노-N'-(2-트리플루오로메틸페닐)티오우레아의 나트륨 염 582 mg과 제조예 2에서 얻은 아미노알코올 화합물 500 mg을 사용한 것을 제외하고는 실시예 10과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2S, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 220 mg (수율 26%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.34(s, 3H), 3.43(d, 6H), 3.88(t, 1H), 4.60(s, 1H), 5.11(t, 1H), 5.97(s, 1H), 6.95(d, 1H), 7.45(d, 1H), 7.60(m, 3H), 7.87(d, 1H), 8.03(dd, 1H), 8.10(s, 1H), 9.62(s, 1H)
〈실시예 35〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-트리플루오로메틸페닐)구아니딘의 제조
상기 실시예 34와 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2S, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 320 mg (수율 37%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.24(s, 3H), 3.43(d, 6H), 4.08(t, 1H), 4.49(s, 1H), 5.00(s, 1H), 5.82(s, 1H), 6.98(d, 1H), 7.47(d, 1H), 7.61(dd, 3H), 8.03(m, 3H), 9.67(s, 1H)
〈실시예 36〉 (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-클로로벤질)구아니딘의 제조
N-시아노-N'-(2-클로로벤질)티오우레아의 나트륨 염 540 mg과 제조예 2에서 얻은 아미노알코올 화합물 500 mg을 사용한 것을 제외하고는 실시예 10과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2S, 3R, 4S)의 입체화학 구조를 갖는 목적화합물 73 mg (수율 9%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.36(s, 3H), 3.47(d, 6H), 3.68(s, 1H), 4.13(m, 1H), 4.39(s, 1H), 4.52(s, 2H), 5.57(s, 1H), 6.6(s, 1H), 6.88(m, 1H), 7.25(m, 6H), 8.01(d, 1H), 8.16(s, 1H)
〈실시예 37〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-클로로벤질)구아니딘의 제조
상기 실시예 36과 같은 방법으로 반응시킨 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 (2S, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 100 mg (수율 12%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.28(s, 3H), 3.5(d, 6H), 3.6(s, 1H), 3.98(d, 1H), 4.53(m, 3H), 5.61(d, 1H), 5.89(t, 1H), 6.88(d, 1H), 7.25(m, 3H), 7.40(d, 1H), 8.02(m, 2H), 8.14(s, 1H)
〈실시예 38〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-아세톡시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
메틸렌클로라이드 3 ml에 실시예 25에서 얻은 화합물 68 mg (0.15 mmol)을 녹이고, 여기에 아세트산 무수물 21 ㎕, 트리에틸아민 42 ㎕ 및 DMAP (4-(Dimethylamino)pyridine) 2 mg을 가하였다. 반응 혼합물은 상온에서 5시간 동안 교반시켜 반응시킨 후 물 5 ml을 가하여 에틸 아세테이트 (10 ml x 2)로 추출하였다. 유기층은 물과 소금물로 세척하여 무수 황산마그네슘으로 건조시키고 농축하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 목적화합물을 67 mg (수율 90%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.3(s, 3H), 1.25(s, 1H), 2.1(s, 3H), 3.3(s, 3H), 3.5(s, 3H), 4.35(s, 1H), 4.52(s, 2H), 5.25(m, 1H), 5.32(s, 1H), 6.98(d, 2H), 7.38(s, 5H), 8.15(d, 2H)
〈실시예 39〉 (2S)-N"-시아노-N-(6-니트로-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
실시예 38에서 얻은 화합물 54 mg (0.11 mmol)을 톨루엔 2 ml에 녹이고 DBU 24 ㎕ (0.1628 mol)을 가하여 상온에서 24시간 동안 교반시켰다. 반응 혼합물은 에틸 아세테이트와 물로 추출하고 무수 황산마그네슘으로 건조시켜 여과한 후 감압하에서 용매를 제거하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 정제하여 목적화합물 31 mg (수율 64%)을 얻었다.
1H NMR (DMSO-d6, 300MHz) δ 1.43(s, 3H), 3.29(s, 3H), 3.39(s, 3H), 4.21(s, 1H), 4.59(d, 2H), 5.45(s, 1H), 7.02(d, 1H), 7.36(m, 5H), 8.29(dd, 2H), 8.82(d, 1H)
〈실시예 40〉 (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
상기 실시예 25에서 얻은 화합물 1.11 g을 메탄올 20 ml에 녹이고 포화 아세트산구리 용액 10 ml를 가하였다. 여기에 소듐보로하이드라이드 276 mg을 천천히 가하고 상온에서 3시간 동안 교반시켰다. 반응 혼합물에 물 50 ml를 가하고 에틸 아세테이트 100 ml로 추출한 후 MgSO4로 건조시켜 용매를 제거하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:3)로 정제하여 목적화합물 576 mg (수율 56%)을 얻었다.
1H NMR (CDCl3, 300MHz) δ 1.21(s, 3H), 3.58(s, 3H), 3.59(s, 3H), 4.14(d, 1H), 4.30(s, 1H), 4.45(d, 1H), 4.47(d, 1H), 5.46(d, 1H), 6.60-6.66(m, 3H), 7.32-7.36(m, 5H)
〈실시예 41〉 (2S, 3S, 4R)-N"-시아노-N-(6-아세톡시아미노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
실시예 40에서 얻은 화합물 50 mg을 염화메틸렌 2 ml에 녹이고 트리에틸아민 25 ㎕를 가한 후 아세틸클로라이드 10 ㎕를 가하였다. 반응 혼합물을 상온에서 1시간 동안 교반시킨 후 물 10 ml를 가하여 에틸 아세테이트 20 ml로 추출하였다. 유기층은 무수 황산마그네슘으로 건조시키고 용매를 제거하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 51 mg (수율 92%)을 얻었다.
1H NMR (DMSO-d6, 200MHz) δ 1.15(s, 3H), 1.96(s, 3H), 3.38(s, 3H), 3.51(s, 3H), 3.98(m, 2H), 4.30(s, 1H), 4.38-4.49(m, 2H), 5.22(br s, 1H), 5.48(br s, 1H), 6.64(d, 1H), 7.31(br s, 5H), 7.61(br s, 1H), 7.94(s, 1H), 9.76(s, 1H)
〈실시예 42〉 (2S, 3S, 4R)-N"-시아노-N-(6-메탄설포닐아미노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
실시예 40에서 얻은 화합물 91 mg을 염화메틸렌 2 ml에 녹이고 트리에틸아민 45 ㎕를 가한 후 메탄설포닐클로라이드 20 ㎕를 가하였다. 반응 혼합물을 상온에서 2시간 동안 교반시킨 후 물 10 ml를 가하여 에틸 아세테이트 20 ml로 추출하였다. 유기층을 무수 황산마그네슘으로 건조시키고 용매를 제거하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 90 mg (수율 85%)을 얻었다.
1H NMR (CDCl3, 200MHz) δ 1.25(s, 3H), 2.90(s, 3H), 3.57(s, 6H), 4.10(d, 1H), 4.25(d, 1H), 4.34(s, 1H), 4.43(d, 1H), 4.50(d, 1H), 4.61(t, 1H), 5.83(d, 1H), 6.78(d, 1H), 7.20-7.38(m, 7H), 8.18(br s, 1H)
〈실시예 43〉 (2S, 3S, 4R)-N"-시아노-N-(6-시아노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘의 제조
제조예 6에서 얻은 (2S, 3S, 4R)-6-시아노-2-메틸 -2-디메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란 100 mg을 DMF 3 ml에 녹이고, 여기에 N-시아노-N'-(4-클로로페닐)티오우레아의 나트륨 염 92 mg과 1-[3-(디메틸아미노)프로필]-2-에틸카르보디이미드 하이드로클로라이드 89 mg을 가하였다. 반응 혼합물을 상온에서 6시간 동안 교반시키고 1N HCl 5 ml를 가하여 에틸 아세테이트 30 ml로 추출하였다. 유기층을 무수 황산마그네슘으로 건조시켜 농축시키고, 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 정제하여 목적화합물 70 mg (수율 43%)을 얻었다.
1H NMR (CDCl3, 200MHz) δ 1.36(s, 3H), 3.49(s, 3H), 3.53(s, 3H), 3.58(t, 1H), 4.34(s, 1H), 4.99(t, 1H), 5.62(s, 1H), 6.86(d, 1H), 7.25-7.55(m, 5H), 7.69(s, 1H)
〈실시예 44〉 (2S, 3R, 4S)-N"-시아노-N-(6-시아노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘의 제조
제조예 7에서 얻은 (2S, 3R, 4S)-6-시아노-2-메틸-2-디메톡시메틸-3-히드록시 -4-아미노-3,4-디하이드로-2H-1-벤조피란 99 ㎎ (0.35 mmol)을 출발물질로 사용한 것을 제외하고는 실시예 43과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 정제하여 목적화합물 68 mg (수율 42%)을 얻었다.
1H NMR (CDCl3, 200MHz) δ 1.50(s, 3H), 3.44(s, 3H), 3.48(s, 3H), 3.66(t, 1H), 4.43(s, 1H), 5.24(d, 2H), 6.84(d, 1H), 7.27-7.44(m, 4H), 7.55(s, 1H), 8.53(s, 1H)
〈실시예 45〉 (2S, 3S, 4R)-N"-시아노-N-(6-시아노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
(단계 1) (2S, 3S, 4R)-4-[[(시아노이미노)페녹시메틸]아미노]-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-1-벤조피란-6-카르보니트릴의 제조
제조예 6에서 제조한 (2S, 3S, 4R)-6-시아노-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란 150 mg을 이소프로판올-DMF 혼합용매 (2:1) 3 ml에 녹이고 다이페닐카본이미데이트 141 mg과 트리에틸아민 97 ㎕를 가하였다. 반응 혼합물을 상온에서 18시간 동안 교반시키고 물 10 ml를 가하여 에틸 아세테이트 30 ml로 추출하였다. 유기층을 무수 황산마그네슘으로 건조시키고 용매를 제거한 후 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 182 mg (수율 80%)을 얻었다.
(단계 2) (2S, 3S, 4R)-N"-시아노-N-(6-시아노-3,4-디하이드로-3-히드록시 -2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
상기 단계 1에서 얻은 화합물 182 ㎎을 DMF 2 ml에 녹이고 벤질아민 0.42 ml를 가하여 실온에서 12시간 동안 교반시켰다. 반응 혼합물에 물 20 ml을 넣어 에틸 아세테이트 50 ml로 추출한 후 무수 황산마그네슘으로 건조시켜 여과하고 용매를 제거하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 163 mg (수율 68%)을 얻었다.
1H NMR (CDCl3, 200MHz) δ 1.29(s, 3H), 3.45(s, 3H), 3.52(s, 3H), 4.09(t, 1H), 4.35(s, 2H), 4.43(d, 1H), 4.81(t, 1H), 5.94(s, 1H), 6.83(d, 1H), 7.28-7.40(m, 7H)
〈실시예 46〉 (2S, 3R, 4S)-N"-시아노-N-(6-시아노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
제조예 7에서 제조한 (2S, 3R, 4S)-6-시아노-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란 150 mg을 출발물질로 사용한 것을 제외하고는 상기 실시예 45의 단계 1 및 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 160 mg (수율 69%)을 얻었다.
1H NMR (CDCl3, 200MHz) δ 1.35(s, 3H), 3.43(s, 3H), 3.44(s, 3H), 3.75(t, 1H), 3.82(s, 2H), 4.47(s, 1H), 5.05(t, 1H), 5.60(s, 1H), 6.81(d, 1H), 7.20-7.40(m, 7H)
〈실시예 47〉 (2S, 3S, 4R)-N"-시아노-N-(6-브로모-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
제조예 8에서 얻은 (2S, 3S, 4R)-6-브로모-2-메틸-2-디메톡시메틸-3-히드록시 -4-아미노-3,4-디하이드로-2H-1-벤조피란 98 mg을 출발물질로 사용한 것을 제외하고는 상기 실시예 45의 단계 1 및 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 86 mg (수율 83%)을 얻었다.
1H NMR (CDCl3) δ 1.21(s, 3H), 3.39(s, 3H), 3.42(s, 3H), 4.10(d, 1H), 4.29(s, 1H), 4.42(dd, 2H), 4.65(m, 2H), 5.61(d, 1H), 7.20-7.40(m, 4H)
〈실시예 48〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3,4-디메톡시벤질)구아니딘의 제조
(단계 1) (2S, 3S, 4R)-4-[[(시아노이미노)페녹시메틸]아미노]-6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-1-벤조피란의 제조
제조예 2에서 얻은 화합물을 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:4)로 분리하여 (2S, 3S, 4R)-6-니트로-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란 400 mg을 분리하였다.
이렇게 분리한 (2S, 3S, 4R)-6-니트로-2-메틸-2-디메톡시메틸-3-히드록시-4-아미노-3,4-디하이드로-2H-1-벤조피란 400 mg (1.34 mmol)을 DMF 3 ml에 녹이고 다이페닐 시아노카본이미데이트 352 mg (1.48 mmol)과 트리에틸아민 243 ㎕ (1.74 mmol)을 가하였다. 반응 혼합물을 상온에서 12시간 동안 교반시키고 물 20 ml를 가하여 에틸 아세테이트 30 ml로 추출하였다. 유기층을 무수 황산마그네슘으로 건조시키고 용매를 제거하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 498 mg (수율 84%)을 얻었다.
(단계 2) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시 -2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3,4-디메톡시벤질)구아니딘의 제조
상기 단계 1에서 얻은 화합물 327 mg (0.74 mmol)을 DMF 3 ml에 녹이고 (3,4-디메톡시벤질)아민 371 mg (2.22 mmol, 3 eq)을 가하였다. 반응 혼합물을 상온에서 12시간 동안 교반시키고 물 20 ml를 가하여 에틸 아세테이트 30 ml로 추출하였다. 유기층을 무수 황산마그네슘으로 건조시켜 여과한 후 용매를 제거하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 338 mg (수율 89%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.33(s, 3H), 3.53(s, 3H), 3.57(s, 3H), 3.86(s, 3H), 3.87(s, 3H), 4.14(d, 1H), 4.38(s, 1H), 4.24-4.50(m, 2H), 4.82(br t, 1H), 6.15(s, 1H), 6.61(t, 1H), 6.84(m, 3H), 6.92(d, 1H), 8.08(dd, 1H), 8.35(s, 1H)
〈실시예 49〉 (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3,4-디메톡시벤질)구아니딘의 제조
실시예 48에서 얻은 화합물 209 mg (0.41 mmol)을 메탄올 5 ml에 녹이고 Cu(OAc)2수용액 0.5 ml (0.4 M 수용액, 0.2 mmol, 0.5 eq)를 가하였다. 반응 혼합물에 소듐보로하이드라이드 155 mg (4.1 mmol, 10 eq)을 30분에 걸쳐 상온에서 천천히 가한 후 1시간 동안 교반시켰다. 반응 종료 후 반응 혼합물에 에틸 아세테이트 10 ml를 가하고, 침전된 검은색 고체를 여과하여 제거하였다. 여과된 용액에 포화 NaHCO3수용액 10 ml를 가하고 에틸 아세테이트 30 ml로 추출하였다. 유기층을 포화 소금물로 세척하고 무수 황산나트륨으로 건조시켜 감압하에서 용매를 제거하였다. 잔사를 실리카겔 칼럼 크로마토그래피 (에틸 아세테이트:n-헥산 = 9:1)로 정제하여 목적화합물 169 mg (수율 85%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.20(s, 3H), 3.57(s, 6H), 3.87(s, 6H), 4.29(s, 1H), 4.04-4.12(m, 2H), 4.32-4.58(m, 2H), 5.46(d, 1H), 6.50-6.69(m, 3H), 6.84(m, 3H), 7.26(br s, 1H)
〈실시예 50〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시벤질)구아니딘의 제조
실시예 48의 단계 1에서 얻은 화합물 360 mg (0.81 mmol)을 출발물질로 사용하고 (3,4-디메톡시벤질)아민 대신에 4-메톡시벤질아민 333 mg (2.43 mmol)을 사용한 것을 제외하고는, 상기 실시예 48의 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 343 mg (수율 87%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.47(s, 3H), 3.51(d, 6H), 3.77(s, 3H), 3.80(d, 2H), 4.44(t, 1H), 4.56(s, 1H), 5.32(m, 1H), 6.06(s, 1H), 6.40(d, 1H), 6.90(m, 3H), 7.12(m, 2H), 7.30(d, 1H), 8.00(dd, 1H), 8.03(s, 1H)
〈실시예 51〉 (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시벤질)구아니딘의 제조
실시예 50에서 얻은 화합물 304 mg (0.62 mmol)을 출발물질로 사용한 것을 제외하고는 상기 실시예 49와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:4)로 정제하여 목적화합물 241 mg (수율 85%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.21(s, 3H), 3.58(s, 6H), 3.81(s, 3H), 4.15(d, 1H), 4.17(d, 1H), 4.30(s, 1H), 4.36-4.54(m, 3H), 5.48(d, 1H), 6.52-6.71(m, 3H), 6.88(d, 2H), 7.09(br s, 1H), 7.24(d, 2H)
〈실시예 52〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-니트로벤질)구아니딘의 제조
실시예 48의 단계 1에서 얻은 화합물 358 mg (0.81 mmol)을 출발물질로 하고(3,4-디메톡시벤질)아민 대신에 3-니트로벤질아민 염산염 458 mg (2.43 mmol)과 트리에틸아민 339 ㎕를 사용한 것을 제외하고는 상기 실시예 48의 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 302 mg (수율 74%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.18(s, 3H), 3.43(d, 6H), 4.09(t, 1H), 4.49(s, 1H), 5.00(t, 1H), 5.85(s, 1H), 6.98(d, 1H), 7.29(d, 1H), 7.37(d, 1H), 7.40(m, 2H), 7.91(d, 1H), 8.05(m, 2H)
〈실시예 53〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸벤질)구아니딘의 제조
상기 실시예 48의 단계 1에서 얻은 화합물 443 mg (1.0 mmol)을 출발물질로 하고 (3,4-디메톡시벤질)아민 대신에 (3-트리플루오로메틸)벤질아민 525 mg (3.0 mmol)을 사용한 것을 제외하고는, 상기 실시예 48의 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 497 mg (수율 95%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.33(s, 3H), 3.55(s, 3H), 3.59(s, 3H), 4.19(d, 1H), 4.38(s, 1H), 4.40(m, 1H), 4.54(d, 1H), 4.78(m, 1H), 6.48(br s, 1H), 6.84(br s, 1H), 6.94(d, 1H), 7.53(m, 5H), 8.09(dd, 1H), 8.56(s, 1H)
〈실시예 54〉 (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸벤질)구아니딘의 제조
실시예 53에서 얻은 화합물 278 mg (0.53 mmol)을 출발물질로 사용한 것을 제외하고는 상기 실시예 49와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:4)로 정제하여 목적화합물 192 mg (수율 73%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.23(s, 3H), 3.59(s, 6H), 4.16(d, 1H), 4.31(s, 1H), 4.40-4.67(m, 3H), 5.53(d, 1H), 6.57-6.74(m, 3H), 7.31(br t, 1H), 7.46-7.59(m, 5H)
〈실시예 55〉 (2S, 3S, 4R)-N"-시아노-N-(6-메탄술포닐옥시-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
(단계 1) (2S, 3S, 4R)-4-[[(시아노이미노)페녹시메틸]아미노]-6-메탄술포닐옥시-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-1-벤조피란의 제조
제조예 9에서 얻은 화합물 58 mg (0.18 mmol)을 출발물질로 사용한 것을 제외하고는 상기 실시예 48의 단계 1과 같은 방법에 의해 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 분리하여 목적화합물 64 mg (수율 74%)을 얻었다.
(단계 2) (2S, 3S, 4R)-N"-시아노-N-(6-메탄술포닐옥시-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
상기 단계 1에서 제조한 화합물 64 mg (0.13 mmol)과 벤질아민 28 ㎕ (0.26 mmol)을 사용하여, 상기 실시예 48의 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 정제하여 목적화합물 32 mg (수율 49%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.28(s, 1H), 3.21(s, 3H), 3.58(s, 3H), 3.59(s, 3H), 4.15(m, 1H), 4.35(s, 1H), 4.52(m, 1H), 4.63(m, 1H), 5.45(d, 1H), 6.87(d, 1H), 6.92(br s, 1H), 7.20-7.42(m, 6H)
〈실시예 56〉 (2R, 3S, 4R)-N"-시아노-N-(6-메탄술포닐옥시-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질 구아니딘의 제조
(단계 1) (2R, 3S, 4R)-4-[[(시아노이미노)페녹시메틸]아미노]-6-메탄술포닐옥시-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-1-벤조피란의 제조
제조예 10에서 얻은 화합물 63 mg (0.19 mmol)을 출발물질로 사용한 것을 제외하고는 상기 실시예 55의 단계 1과 같은 방법에 의해 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 분리하여 목적화합물 75 mg (수율 79%)을 얻었다.
(단계 2) (2R, 3S, 4R)-N"-시아노-N-(6-메탄술포닐옥시-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질 구아니딘의 제조
상기 단계 1에서 제조한 화합물 75 mg (0.15 mmol)을 출발물질로 사용한 것을 제외하고는 상기 실시예 55의 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 57 mg (수율 74%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.26(s, 3H), 3.16(s, 3H), 3.41(s, 3H), 3.47(s, 3H), 3.72(d, 1H), 4.43(s, 1H), 4.46(d, 1H), 5.02(t, 1H), 5.25(d, 1H), 6.59(t, 1H), 6.84(d, 1H), 7.02-7.20(m, 2H), 7.22-7.40(m, 4H)
〈실시예 57〉 (2S, 3R, 4S)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
상기 실시예 24에서 얻은 화합물 884 mg (1.94 mmol)을 출발물질로 사용한 것을 제외하고는, 상기 실시예 49와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:3)로 정제하여 목적화합물 313 mg (수율 38%)을 얻었다.
1H NMR (CDCl3, 500 MHz) δ 1.41(s, 3H), 1.75(br s, 1H), 3.39(s, 3H), 3.45(s, 3H), 3.46(d, 1H), 3.72(d, 1H), 4.40(s, 1H), 4.46(d, 2H), 4.78(d, 1H), 5.22(m, 1H), 6.41(m, 1H), 6.50(m, 1H), 6.59(d, 1H), 6.73(m, 1H), 7.30-7.37(m, 4H)
〈실시예 58〉 (2R, 3R, 4S)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
실시예 22에서 얻은 화합물 1.2 g (2.7 mmol)을 출발물질로 사용한 것을 제외하고는, 상기 실시예 49와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:3)로 정제하여 목적화합물 547 mg (수율 48%)을 얻었다.
1H NMR (CDCl3, 500 MHz) δ 1.21(s, 3H), 1.80(br s, 2H), 3.57(s, 3H), 3.58(s, 3H), 4.10-4.13(m, 1H), 4.20-4.38(m, 1H), 4.31(s, 1H), 4.48(dd, 1H), 4.50(dd, 1H), 5.60(s, 1H), 6.58-6.79(m, 2H), 7.28-7.37(m, 6H)
〈실시예 59〉 (2R, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
실시예 23에서 얻은 화합물 1.07 g (2.3 mmol)을 출발물질로 사용한 것을 제외하고는, 상기 실시예 49와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 589 mg (수율 60%)을 얻었다.
1H NMR (CDCl3, 500 MHz) δ 1.41(s, 3H), 1.75(br s, 1H), 3.39(s, 3H), 3.45(s, 3H), 3.46(d, 1H), 3.72(d, 1H), 4.40(s, 1H), 4.46(d, 2H), 4.78(d, 1H), 5.22(m, 1H), 6.41(m, 1H), 6.50(m, 1H), 6.59(d, 1H), 6.73(m, 1H), 7.30-7.37(m, 4H)
〈실시예 60〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-([1,3]디옥솔란-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
(단계 1) (2S, 3S, 4R)-4-[[(시아노이미노)페녹시메틸]아미노]-6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-([1,3]디옥솔란-2-일)-2H-1-벤조피란의 제조
제조예 11에서 얻은 화합물 400 mg (1.35 mmol)을 출발물질로 사용한 것을 제외하고는, 상기 실시예 48의 단계 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:3)로 정제하여 목적화합물 400 mg (수율 67%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.40(s, 3H), 3.2(d, 1H), 3.81-3.92(m, 4H), 4.69(s, 1H), 5.15(t, 1H), 6.98(d, 1H), 7.15-7.42(m, 5H), 8.12(dd, 1H), 8.30(d, 1H)
(단계 2) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시 -2-메틸-([1,3]디옥솔란-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
상기 단계 1에서 얻은 화합물 400 mg (0.1 mmol)을 출발물질로 사용하고 (3,4-디메톡시벤질)아민 대신에 벤질아민 0.3 ml (2.7 mmol)을 사용한 것을 제외하고는, 상기 실시예 48의 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 350 mg (수율 85%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.35(s, 3H), 3.95-4.15(m, 4H), 4.49(dd, 2H), 4.91(t, 1H), 5.05(s, 1H), 5.62(s, 1H), 6.61(t, 1H), 6.95(d, 1H), 7.29-7.41(m, 5H), 8.12(dd, 1H), 8.21(d, 1H)
〈실시예 61〉 (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸-2-([1,3]디옥솔란-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
실시예 60에서 얻은 화합물 200 mg (0.44 mmol)을 출발물질로 사용한 것을 제외하고는, 상기 실시예 49와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:3)로 정제하여 목적화합물 90 mg (수율 48%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.24(s, 3H), 3.92-4.14(m, 4H), 4.45(dd, 2H), 4.97(s, 1H), 5.51(d, 1H), 6.45-6.80(m, 3H), 7.12(s, 1H), 7.25-7.42(m, 3H)
〈실시예 62〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-([1,3]디옥산-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
(단계 1) (2S, 3S, 4R)-4-[[(시아노이미노)페녹시메틸]아미노]-6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-([1,3]디옥산-2-일)-2H-1-벤조피란의 제조
제조예 12에서 얻은 화합물 700 mg (2.26 mmol)을 출발물질로 사용한 것을 제외하고는 실시예 60의 단계 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:1)로 분리하여 목적화합물 840 mg (수율 83%)을 얻었다.
(단계 2) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시 -2-메틸-2-([1,3]디옥산-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
상기 단계 1의 화합물 840 mg (1.85 mmol)을 출발물질로 사용하고 (3,4-디메톡시벤질)아민 대신에 벤질아민 0.61 ml (5.56 mmol)을 사용한 것을 제외하고는, 상기 실시예 48의 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 750 mg (수율 87%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.31(s, 3H), 1.4-1.52(m, 1H), 2.13-2.26(m, 1H), 3.80-3.98(m, 2H), 4.18-4.31(m, 3H), 4.45(dd, 2H), 4.75(s, 1H), 4.81(t, 1H), 5.81(s, 1H), 6.75(t, 1H), 6.96(d, 1H), 7.28-7.40(m, 5H), 8.1(dd, 1H), 8.35(d, 1H)
〈실시예 63〉 (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸-2-([1,3]디옥산-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
실시예 62에서 얻은 화합물 350 mg (0.75 mmol)을을 출발물질로 사용한 것을 제외하고는, 실시예 49와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 278 mg (수율 85%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.23(s, 3H), 1.40-1.50(m, 1H), 2.12-2.22(m, 1H), 3.8-3.96(m, 2H), 4.15-4.32(m, 3H), 4.48(dd, 2H), 4.70(s, 1H), 5.41(d, 1H), 6.52-6.71(m, 3H), 7.15(s, 1H), 7.30-7.39(m, 5H)
〈실시예 64〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-([1,3]-5,5-디메틸디옥산-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
(단계 1) (2S, 3S, 4R)-4-[[(시아노이미노)페녹시메틸]아미노]-6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-([1,3]-5,5-디메틸디옥산-2-일)-2H-1-벤조피란의 제조
제조예 13에서 얻은 화합물 1.1 g (3.60 mmol)을 출발물질로 사용한 것을 제외하고는 실시예 60의 단계 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 1 g (수율 86%)을 얻었다.
(단계 2) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시 -2-메틸-2-([1,3]-5,5-디메틸디옥산-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
출발물질로서 상기 단계 1에서 얻은 화합물 1 g (2.1 mmol)과 벤질아민 0.69 ml (6.23 mmol)을 사용한 것을 제외하고는, 실시예 48의 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 900 mg (수율 87%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 0.78(s, 3H), 1.21(s, 3H), 1.34(s, 3H), 3.54(dd, 2H), 3.76(d, 2H), 4.20(d, 2H), 4.44(dd, 2H), 4.65(s, 1H), 4.81(t, 1H), 5.82(s, 1H), 6.72(t, 1H), 6.96(d, 1H), 7.29-7.41(m, 5H), 8.11(dd, 1H), 8.38(d, 1H)
〈실시예 65〉 (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸-2-([1,3]-5,5-디메틸디옥산-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
실시예 64에서 얻은 화합물 400 mg (0.81 mmol)을 출발물질로 사용한 것을 제외하고는 상기 실시예 49와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:3)로 정제하여 목적화합물 350 mg (수율 93%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 0.79(s, 3H), 1.21(s, 3H), 1.27(s, 3H), 3.51(dd, 2H), 3.74(d, 2H), 4.2(d, 1H), 4.35(d, 1H), 4.51(dd, 2H), 4.61(s, 1H), 4.73(s, 1H), 5.44(dd, 1H), 6.52-6.75(m, 3H), 7.16(s, 1H), 7.28-7.41(m, 5H)
〈실시예 66〉 (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디에톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
(단계 1) (2S, 3S, 4R)-4-[[(시아노이미노)페녹시메틸]아미노]-6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디에톡시메틸-2H-1-벤조피란의 제조
제조예 14에서 얻은 화합물 234 mg (0.72 mmol)을 출발물질로 사용한 것을 제외하고는, 실시예 48의 단계 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 237 ㎎ (수율 70%)을 얻었다.
(단계 2) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시 -2-메틸-2-디에톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
출발물질로서 상기 단계 1에서 얻은 화합물 217 mg (0.46 mmol)과 벤질아민 0.2 ml (1.84 mmol)을 사용한 것을 제외하고는, 실시예 48의 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 200 mg (수율 90%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.29(m, 9H), 3.74(m, 5H), 4.20(d, 1H), 4.50(m, 3H), 4.83(br s, 1H), 5.92(m, 1H), 6.52(m, 1H), 6.90(d, 1H), 7.34(m, 5H), 8.11(dd, 1H), 8.30(s, 1H)
〈실시예 67〉 (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸-2-디에톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
실시예 66에서 얻은 화합물 122 mg (0.25 mmol)을 출발물질로 사용한 것을 제외하고는, 상기 실시예 49와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:3)로 정제하여 목적화합물 91 mg (수율 80%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.25(m, 9H), 3.78(m, 4H), 4.18(d, 1H), 4.30(m, 4H), 5.53(d, 1H), 6.68(m, 3H), 7.18(br, 1H), 7.36(m, 5H)
〈실시예 68〉 (2S, 3S, 4R)-N"-시아노-N-(6-메톡시카르보닐-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
(단계 1) (2S, 3S, 4R)-4-[[(시아노이미노)페녹시메틸]아미노-6-메톡시카르보닐-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-1-벤조피란의 제조
제조예 15에서 얻은 화합물 399 mg (1.28 mmol)을 출발물질로 사용한 것을 제외하고는, 상기 실시예 48의 단계 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 397 ㎎ (수율 68%)을 얻었다.
(단계 2) (2S, 3S, 4R)-N"-시아노-N-(6-메톡시카르보닐-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
출발물질로서 상기 단계 1에서 얻은 화합물 397 mg (0.93 mmol)과 벤질아민 0.21 ml (1.98 mmol)을 사용한 것을 제외하고는, 실시예 48의 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 270 mg (수율 67%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.21(s, 3H), 3.55(d, 6H), 3.86(s, 3H), 4.13(d, 1H), 4.17(s, 1H), 4.48(m, 2H), 5.77(d, 1H), 6.83(m, 1H), 6.85(d, 1H), 7.33(m, 4H), 7.93(dd, 1H), 7.99(s, 1H)
〈실시예 69〉 (2R, 3S, 4R)-N"-시아노-N-(6-메톡시카르보닐-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
(단계 1) (2R, 3S, 4R)-4-[[(시아노이미노)페녹시메틸]아미노-6-메톡시카르보닐-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-1-벤조피란의 제조
제조예 16에서 얻은 화합물 121 mg (0.39 mmol)을 출발물질로 사용한 것을 제외하고는, 상기 실시예 48의 단계 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 131 ㎎ (수율 74%)을 얻었다.
(단계 2) (2R, 3S, 4R)-N"-시아노-N-(6-메톡시카르보닐-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
출발물질로서 상기 단계 1에서 얻은 화합물 131 mg (0.31 mmol)과 벤질아민 60 ㎕ (0.61 mmol)을 사용한 것을 제외하고는, 실시예 48의 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 107 mg (수율 79%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.26(s, 3H), 3.43(d, 6H), 3.82(d, 1H), 3.77(s, 3H), 4.45(s, 1H), 4.48(m, 2H), 5.64(d, 1H), 6.81(m, 1H), 6.83(d, 1H), 7.29(m, 4H), 7.80(dd, 1H), 7.84(s, 1H)
〈실시예 70〉 (3S, 4R)-N"-시아노-N-(8-니트로-3,4-디하이드로-3-히드록시- 2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
(단계 1) (3S, 4R)-4-[[(시아노이미노)페녹시메틸]아미노]-8-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-1-벤조피란의 제조
제조예 17에서 얻은 화합물 0.97 g (3.24 mmol)을 출발물질로 사용한 것을 제외하고는, 상기 실시예 48의 단계 1과 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 정제하여 목적화합물 1.16 g (수율 81%)을 얻었다.
(단계 2) (3S, 4R)-N"-시아노-N-(8-니트로-3,4-디하이드로-3-히드록시- 2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
출발물질로서 상기 단계 1에서 얻은 화합물 1.16 g (2.6 mmol)과 벤질아민 0.85 ml (7.8 mmol)을 사용한 것을 제외하고는, 실시예 48의 단계 2와 같은 방법으로 반응시켰다. 잔사를 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:2)로 분리하여 (2S, 3S, 4R)- 과 (2R, 3S, 4R)- 광학이성질체 혼합물로서 목적 화합물 0.94 g (수율 79%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.23(s, 3H), 1.32(s, 3H), 3.37-3.40(s, 3H), 3.48(s, 3H), 3.84-3.87(d, 1H), 4.17-4.21(d, 1H), 4.36-4.38(d, 1H), 4.41-4.45(d, 1H), 4.8(t, 1H), 5.04(t, 1H), 5.82(d, 1H), 6.09(d, 1H), 6.82-6.96(m, 2H), 7.27(s, 5H), 7.57-7.69(q, 1H)
〈실시예 71〉 (2S, 3S, 4R)-N"-시아노-N-(8-아미노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
실시예 70에서 얻은 광학이성질체 혼합물 298 mg (0.66 mmol)을 출발물질로 사용한 것을 제외하고는, 실시예 49과 같은 방법으로 반응시키고 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:4)로 분리하여 (2S, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 117 mg (수율 42%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.25(s, 3H), 3.58(s, 3H), 3.8(s, 1H), 4.39-4.47(m, 4H), 5.62(d, 1H), 6.58-6.61(d, 1H), 6.74-6.78(d, 1H), 7.12(s, 1H), 7.27-7.34(m, 5H)
〈실시예 72〉 (2R, 3S, 4R)-N"-시아노-N-(8-아미노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘의 제조
실시예 70에서 얻은 광학이성질체 혼합물 298 mg (0.66 mmol)을 출발물질로 사용한 것을 제외하고는, 실시예 49과 같은 방법으로 반응시키고 실리카겔 칼럼 크로마토그래피 (n-헥산:에틸 아세테이트 = 1:4)로 분리하여 (2R, 3S, 4R)의 입체화학 구조를 갖는 목적화합물 106 mg (수율 38%)을 얻었다.
1H NMR (CDCl3, 200 MHz) δ 1.46(s, 3H), 3.41(s, 3H), 3.46(s, 3H), 3.73-3.81(m, 2H), 4.44(s, 1H), 4.46(s, 1H), 4.87(m, 1H), 5.2(m, 1H), 6.59-6.60(d, 1H), 6.63-6.76(t, 2H), 7.26-7.36(m, 5H)
상기 실시예들을 통하여 제조된 본 발명의 화합물들을 하기 표 1a, 표 1b 및 표 1c에 나타내었다.
실시예번호 R1 R2 R3 R4 R5 R6 n 입체화학
치환기 위치 치환기 위치 치환기 위치
1 NO2 6 CH3 OH Cl 4 H - 0 2R,3R,4S
2 NO2 6 CH3 OH Cl 4 H - 0 2R,3S,4R
3 NO2 6 CH3 OH Cl 3 H - 0 2R,3R,4S
4 NO2 6 CH3 OH Cl 3 H - 0 2R,3S,4R
5 NO2 6 CH3 OH NO2 4 H - 0 2R,3R,4S
6 NO2 6 CH3 OH CF3 3 H - 0 2R,3R,4S
7 NO2 6 CH3 OH CF3 3 H - 0 2R,3S,4R
8 NO2 6 CH3 OH OCH3 4 H - 0 2R,3R,4S
9 NO2 6 CH3 OH OCH3 4 H - 0 2R,3S,4R
10 NO2 6 CH3 OH Cl 4 H - 0 2S,3R,4S
11 NO2 6 CH3 OH Cl 4 H - 0 2S,3S,4R
12 NO2 6 CH3 OH Cl 3 H - 0 2S,3R,4S
13 NO2 6 CH3 OH Cl 3 H - 0 2S,3S,4R
14 NO2 6 CH3 OH CF3 3 H - 0 2S,3R,4S
15 NO2 6 CH3 OH CF3 3 H - 0 2S,3S,4R
16 NO2 6 CH3 OH OCH3 4 H - 0 2S,3R,4S
17 NO2 6 CH3 OH OCH3 4 H - 0 2S,3S,4R
18 NO2 6 CH3 OH CH3 4 H - 0 2R,3R,4S
19 NO2 6 CH3 OH CH3 4 H - 0 2R,3S,4R
20 NO2 6 CH3 OH OCH3 4 H - 1 2R,3R,4S
21 NO2 6 CH3 OH OCH3 4 H - 1 2R,3S,4R
22 NO2 6 CH3 OH H - H - 1 2R,3R,4S
23 NO2 6 CH3 OH H - H - 1 2R,3S,4R
24 NO2 6 CH3 OH H - H - 1 2S,3R,4S
25 NO2 6 CH3 OH H - H - 1 2S,3S,4R
26 H 6 CH3 OH Cl 4 H - 0 2R,3R,4S
27 H 6 CH3 OH Cl 4 H - 0 2R,3S,4R
28 NO2 6 CH3 CH2OH OH Cl 4 H - 0 2R,3R,4S
29 NO2 6 CH3 CH2OH OH Cl 4 H - 0 2R,3S,4R
30 NO2 6 CH3 CH2OCH3 OH Cl 4 H - 0 2R,3R,4S
31 NO2 6 CH3 CH2OCH3 OH Cl 4 H - 0 2R,3S,4R
본 발명에 의한 화학식 1의 화합물들에 대하여 하기와 같은 실험을 실시하여 여러 가지 약리작용을 조사하였다.
〈실험예 1〉 흰쥐 적출 혈관에 대한 이완작용
본 발명에 의한 화학식 1의 화합물들이 혈관을 이완시키는 작용을 하는지 알아보기 위하여, 하기와 같은 실험을 수행하였다.
흰쥐 (350∼450 g, 한국화학연구소 실험동물실)의 후두부를 강타하여 기절시키고 경동맥을 통해 실혈시킨 다음 가슴 부분을 절개하였다. 흉곽 대동맥을 신속히 적출하여 지방조직 등을 제거하고 3 mm 길이의 대동맥 고리 (aortic ring)를 얻었다. 내피를 제거하기 위해 대동맥을 생리액 (Krebs Henseleit buffer)으로 적신 솜방망이로 가볍게 문질러 주었다. 혈관 조직을 생리액이 담긴 수조 (organ bath) 내에 걸고 2 g의 정지 장력 (resting tension)을 가하였으며, 37 ℃에서 95% O2- 5% CO2혼합기체 (carbogen)를 공급하면서 이 상태로 1시간 정도 안정화시켰다. 이후 10-5M 페닐에프린 (phenylephrine)을 가해 혈관 조직을 수축시키고 생리액으로 2회 세척하여 혈관 평활근의 수축 이완 반응이 재현성있게 유발되도록 하였다.
한편, 혈관 평활근은 3 ×10-6M 메톡사민 (Methoxamine)을 가하여 강하게 수축되도록 하였다. 메톡사민에 의해 혈관의 수축 반응이 정점에 도달하여 그대로 유지될 때 각각의 수조에 시험물질 및 대조물질을 누적되도록 (1, 3, 10, 30 μM) 가하여 약물에 의한 혈관의 이완 작용을 유도시켰다. 이 때, 대조군의 물질로는 각각 혈관 이완작용이 큰 1세대 KATP개방제인 크로마칼림 (Cromakalim)과 BMS사의 BMS-180448 (화학식 2의 화합물)을 사용하였다.
약물을 투여하기 전 메톡사민에 의한 최고 수축력의 변화율을 계산하여 농도-이완 반응곡선을 구하고, 선형회귀 (linear regression) 분석을 통해 약물 투여에 의한 50% 이완농도인 IC50를 산출하였다. 결과는 하기 표 2에 나타내었다.
화학식 1의 화합물의 혈관이완작용 및 항심장허혈작용 (심장보호작용)
약물 실험예 1 실험예 2 실험예 3
쥐 대동맥에서메톡사민 수축저해 농도(IC50, μM) 항심장허혈 작용(쥐를 사용한 생체내 실험)(0.3 mg/kg) 항심장허혈 작용(개를 이용한 생체내 실험)(2 mg/kg/40 min)
AAR/LV(%) IZ/AAR(%) AAR/LV(%) IZ/AAR(%)
용매 - 39.75 60.78 37.61 52.39
크로마칼림 0.067 - - - -
BMS-180448 1.38 38.83 39.14 37.73 38.02
실시예 15의 화합물 14.07 - - - -
실시예 24의 화합물 9.78 37.92 48.48 35.33 28.03
실시예 25의 화합물 〉30 36.88 48.55 - -
실시예 32의 화합물 3.57 42.49 44.72 - -
실시예 38의 화합물 24.48 38.26 51.13 - -
실시예 40의 화합물 〉30 33.59 30.25 - -
실시예 41의 화합물 〉30 - - - -
크로마칼림은 IC50이 0.067 μM로서 메톡사민 (3 μM)으로 수축된 흰쥐 적출 대동맥에 대해서 강력한 이완작용을 나타냈고, BMS-180448은 IC50이 1.38 μM로 나타나 크로마칼림에 비해 약 20배 정도 약한 혈관이완작용을 보였다. 반면, 본 발명의 화합물들은 IC50이 9.78 μM∼30 μM 이상까지 높게 나타나, 대조약물로 사용한 크로마칼림이나 BMS-180448보다 혈관 이완작용이 현저하게 낮았다.
본 발명에 의한 화합물은 심장에 있는 KATP에 작용하면 심장을 보호하게 되고 말초혈관에 있는 KATP에 작용하면 혈관을 이완시켜 혈압을 떨어뜨리게 된다. 따라서 본 발명의 화합물들은 혈관이완작용이 작으므로 심장보호기능이 크다는 것을 알 수 있다.
이와 같이 본 발명의 화합물들은 혈관을 이완시키는 작용이 매우 낮으므로 심장 보호기능의 선택성이 매우 향상되어 있음을 알 수 있다.
〈실험예 2〉 흰쥐의 허혈심장 모델에 대한 심장 보호작용
본 발명에 의한 화학식 1의 화합물들이 허혈 심장을 보호하는 작용을 나타내는지 알아보기 위하여, 흰쥐에 대한 항허혈 효과 (Antiischemic effects)를 하기와 같은 실험을 통해 조사하였다.
수컷 흰쥐 (350∼450 g, 한국화학연구소 실험동물실)에 펜토바비탈 (pentobarbital)을 75 ㎎/㎏로 복강주사하여 쥐를 마취시켰다. 기관절개술 (tracheotomy)을 실시한 후 10 ㎖/㎏의 일회 심박출량 (stroke volume), 분당 60 심박수로 인공호흡을 실시하였다. 대퇴정맥과 대퇴동맥에 캐뉼러를 삽입하여 각각 약물 투여 및 혈압 측정에 이용하였다. 한편 허혈성 심근손상 모델에서 체온은 결과에 중요한 영향을 미치므로, 직장에 삽입한 체온 측정용 탐침 (probe)과 항온 피복 조절 유닛 (Homeothermic blanket control unit)를 사용하여 쥐의 체온을 37 ℃로 일정하게 유지시켰다. 이후 실험기간 동안 쥐의 평균 동맥압 (mean arterial blood pressure)과 심박동수 (HR)를 계속해서 측정하였다. 이때 혈압 측정에는 슈타탐 P23XL 압력 변환기 (Statham P23XL pressure transducer, Grass Ins., MA, 미국)를 사용하고 심박동수 측정에는 혈류속도계 (tachometer, Biotachometer, Gould Inc., OH, 미국)를 사용하였다. 또한 고울드 2000 차트 리코터 (Gould 2000 chart recorder, Gould Inc.)를 사용하여 모든 변화를 연속적으로 기록하였다.
좌관상 동맥은 셀리 (Selye H.)의 방법에 의해 하기와 같이 결찰시켰다. 즉, 좌개흉술 (left thoracotomy)에 의해 쥐의 가슴 일부를 열고 오른손의 장지 (長指)로 마취된 흰쥐의 오른쪽 가슴에 압력을 가하여 심장을 외부로 밀어내었다. 이후 수술사 (5-0 silk ligature)가 부착된 봉합용 (suture) 바늘로 조심스럽게 좌심실 하행성 관상동맥 (left anterior desending coronary artery, LAD)을 뜬 뒤 재빨리 심장을 흉곽강 (thoracic cavity)에 재위치시키고 수술사 양끝을 외부에 위치시켰다. 수술사 양끝은 PE 튜브 (PE100, 2.5 ㎝)에 통과시킨 후 20분 동안 그대로 두어 안정화시켰다. 그 후 대퇴정맥에 삽입된 캐뉼러를 통해 용매 (vehicle) 또는 약물을 투여하였으며, 약물의 효과가 충분히 나타나도록 30분간 그대로 두었다. 이 때, 대조군의 약물로는 BMS-180448을 사용하였고, 시험약물 및 대조약물은 0.3 ㎎/㎏의 농도로 투여하였다.
이후 실에 끼워 놓았던 PE 튜브를 심장에 밀어 넣고 튜브의 끝부분 실을 지혈 (hemostatic) 핀셋으로 당겨 PE 튜브를 관상동맥에 수직으로 밀착시켜 압력을 가하였으며, 45분 동안 그대로 두어 관상동맥을 결찰 (occlusion)시킨 뒤 지혈 핀셋을 제거하고 90분간 재관류시켰다.
상기 방법에 의해 관상동맥을 재결찰 (reocclusion)시키고, 1% 에반스 블루 용액 (Evans blue) 2 ㎖를 정맥투여하였다. 이후 펜토바비탈을 과량 정맥 투여하여 흰쥐를 도살시키고 심장을 떼어내어 우심실과 양쪽 심방을 제거하였다. 좌심실은 심첨으로부터 5∼6 개의 절편 (slice)으로 수평 절단하고, 절편 각각의 무게를 측정하였다. 심장 절편 각각의 표면은 하이-스코프 (Hi-scope)와 화상분석용 컴퓨터 프로그램 (Image pro plus)을 이용해 컴퓨터에 입력시키고, 이로부터 각 절편에서 푸른 색으로 착색된 정상혈류 조직의 면적과 착색되지 않은 영역의 면적을 측정하였다. 각 절편의 총면적에 대하여 착색되지 않은 영역의 면적비를 구하고 여기에 각 절편의 무게를 곱하여 각 절편의 위험영역인 AAR (area at risk)을 계산하였다. 이렇게 구한 각 절편에 대한 AAR를 모두 합하고 이것을 전체 좌심실 무게로 나누어, 하기 수학식 1에 의해 AAR (%)을 구하였다.
AAR (%) = (각 절편에 대한 AAR의 합)/(전체 좌심실 무게) × 100
또한, 심장 절편을 1% 2,3,5-트리페닐테트라졸륨 클로라이드 인산 완충 용액 (2,3,5-triphenyltetrazolium chloride (TTC) phosphate buffer, 37 ℃, pH 7.4)에서 15분 동안 배양시키고 10% 포르말린 (formalin) 용액에서 20∼24시간 동안 고정 시켰다. 이렇게 함으로써 심근의 탈수소효소 (dehydrogenase)와 보조인자 (cofactor)인 NADH에 의해 2,3,5-트리페닐테트라졸륨 클로라이드가 환원되어 포르마잔 염료 (formazan dye)가 되므로, 조직의 정상 부위는 붉은 벽돌색 (brick-red color)을 띠게 된다. 반면 조직의 경색 부위에는 탈수소효소와 보조인자가 없으므로 2,3,5-트리페닐테트라졸륨 클로라이드가 환원되지 않고, 따라서 붉은 벽돌색을 띠지 않게 된다.
상기와 같이 2,3,5-트리페닐테트라졸륨 클로라이드에 의해 조직 부위가 착색되는지 여부에 의해 각 절편의 정상 영역 및 경색 영역 (Infarct zone)의 면적을 측정하였다. 이렇게 구한 각 절편에 대한 경색 영역을 모두 합하고 이것을 전체 AAR 무게 또는 전체 좌심실 무게로 나누어, 하기 수학식 2에 의해 IZ (%)를 구하였다. 이 실험 모델에 있어서는, IZ (%)가 낮을수록 시험물질의 항허혈 효과가 강한 것으로 판정하였다. 결과는 상기 표 2에 나타내었다.
IZ (%) = (각 절편에 대한 경색 영역의 합)
/(전체 좌심실 또는 전체 AAR의 무게) × 100
상기 표 2에서 볼 수 있듯이, 마취된 흰쥐를 이용하여 허혈심근 손상 모델에서 용매 투여군은 위험영역 (AAR)에 대한 심근경색율 (IZ/AAR, %)이 60.78%로서 허혈에 의한 심장근 손상이 매우 심한 것을 알 수 있다. BMS-180448를 투여한 경우 심근경색율은 39.14%로서 대조물질인 BMS-180448가 유의성 있는 항허혈 작용을 나타냄을 알 수 있었다. 반면, 본 발명의 화합물들은 심근경색율 자체만을 비교할 경우, BMS-180448과 비슷하거나 더 우수하였다. 그러나 본 발명의 화합물들은 BMS-180448와는 달리 혈관 이완작용이 현저하게 약하므로 심장 선택성 항허혈 작용이 더 우수하다는 것을 알 수 있다. 특히 실시예 40의 화합물은 혈관 이완작용이 매우 낮으면서도 (IC50〉 30 μM) 심근경색율은 30.25%로 낮게 나타나, 혈관 이완작용에 대한 심장 선택성이 BMS-180448보다 훨씬 우수하다는 것을 알 수 있다. 또한 상기 실험에서 본 발명의 화합물들은 혈압을 감소시키는 작용을 하지도 않았다. 이와 같이 본 발명의 화합물들은 허혈성 심혈관 질환에 대한 보호작용이 우수하므로, 이와 관련된 질환의 치료제로서 사용될 수 있다.
〈실험예 3〉 비글견 허혈심장 모델에 대한 심장 보호작용
본 발명에 의한 화학식 1의 화합물들이 중동물 이상에서도 허혈 심장을 보호하는 작용을 나타내는지 알아보기 위하여, 비글견에 대한 항허혈 효과를 하기와 같은 실험을 통해 조사하였다. 비글견에 대한 실험은 그로버 (Grover) 등의 방법에 따라 하기와 같이 수행하였다 [G.J. Grover et al., J. Cardiovasc. Pharmacol. 25, 40 (1995)].
웅성 실험견 (beagle dog, 8∼12 kg)에 펜토바비탈 소듐 (pentobarbital sodium) 35 mg/kg을 투여 (i.v.)하여 마취시키고, 펜토바비탈 소듐 3∼4 mg/kg을 실험이 끝날때까지 우측 머리 정맥 (cephalic vein)에 점적주사 (i.v.)하여 마취상태가 일정하게 지속되도록 하였다. 실험기간 동안 호흡을 유지시키기 위하여 기관지 카테터 (tracheal catheter)를 기도 내에 삽입하고 pCO2가 30∼35 mmHg로 유지되도록 실내 공기와 산소를 이용하여 호흡기 (SAR-830 model, CWE Inc, PA, 미국)를 통해 호흡시켰다. 대퇴동맥에 삽입한 카테터를 통하여 매시간 0.5 ㎖의 혈액을 채취하고 혈중 산소량 측정기 (Blood gas analyzer 280, Ciba-Corning, MA, 미국)로 혈중 산소량을 측정하였다. 또한 직장 내 체온 측정을 통해 실험대의 온도가 조절되도록 하여 개의 체온을 일정하게 (38 ±1℃) 유지하였다. 혈압 및 심박동수를 측정하기 위하여 헤파린 (heparin)을 처리한 카테터를 우측 대퇴동맥 내에 삽입하였다. 이때 혈압 측정에는 슈타탐 P23XL 압력 변환기 (Statham P23XL pressure transducer, Grass Ins., MA, 미국)를 사용하고 심박동수 측정에는 혈류속도계 (tachometer, Biotachometer, Gould Inc., OH, 미국)를 사용하였다. 또한 고울드 2000 차트 리코터 (Gould 2000 chart recorder, Gould Inc.)를 사용하여 모든 변화를 연속적으로 기록하였다.
제5늑간 부분을 절개하여 흉곽을 열어 주위 조직으로부터 좌심실 하행성 관상동맥 (LAD)을 분리하고 나중에 LAD를 결찰하기 위하여 비단실을 걸쳐 두었다. 비단실을 걸쳐 둔 바로 윗부분의 LAD를 주위 조직으로부터 분리하고, 혈류량을 측정하기 위한 도플러 플로우 프로브 (Doppler flow probe, Crystal Biotech, MA, 미국)를 장착한 뒤 차트 리코더 (chart recorder, 1400 Thermal chart recorder, MFE Ins, MA, 미국)로 혈류량을 기록하였다. 한편 폴리그래프 (Grass model 7E polygraph)를 이용하여 심전도를 측정, 기록하였으며 (Lead II), 시험물질을 정맥 내에 점적주사하기 위해 좌측 머리 동맥에 카테터를 삽입고정하였다. 수술 후 모든 변수 (parameter)들이 안정적인 수치를 유지할 때, 시험물질 및 용매를 하기와 같이 정맥내 주사하였다.
LAD를 결찰하기 전 실험동물은 대조군 (PEG 400)과 시험물질 투여군 (KR-31372, 50 ㎍/㎏/min)으로 나누었다. 시험물질은 LAD를 결찰하기 10분 전에 정맥 내에 점적주사하기 시작했으며, 시험물질 및 용매는 40분간 투여하였다 (총용량 2 mg/kg, 총부피 PEG 400 4 ㎖ 이하). 시험물질을 투여하기 시작하고 나서 10분이 지난 후에 LAD를 완전히 결찰하였고, 90분이 지난 뒤 다시 재관류 (reperfusion)시켜 5시간 동안 마취상태를 유지하였다. 5시간 후 LAD를 캐뉼러를 통해 투여 (cannulation)하여 링거액 (Ringer's solution)을 동물의 혈압과 같은 압력으로 관류시켰다. 한편, 블루 바이올렛 염료 (patent blue violet dye) (1 mg/kg, 10 mg/ml) 용액을 좌심방 내에 주사한 후 심장을 전기 쇼크시키고 적출하였다. 심방은 잘라내고 심실을 0.5 cm 간격으로 횡단면으로 절단한 다음, AAR을 측정하기 위하여 디지털 카메라로 영상을 읽었다. IZ을 측정하기 위하여 조직을 1% 2,3,5-트리페닐테트라졸륨 클로라이드 인산 완충 용액에 담궈 37℃에서 30분간 배양하고 다시 디지털 카메라로 영상을 불러 들였다. AAR과 IZ는 영상 분석 프로그램 (Image-Pro Plus ver 3.0.1, Media Cybernetics, Maryland, 미국)을 사용하여 측정하고 분석하였다. IZ는 AAR에 대한 백분율로서 나타내었으며 (수학식 2 참조), 이 비율이 낮아질수록 본 모델에 대한 시험물질의 효과가 강한 것으로 판정하였다. 결과는 상기 표 2에 나타내었다.
상기 표 2에서 볼 수 있듯이, 마취된 비글견을 이용한 허혈심근손상 모델에서도 본 발명의 화합물은 위험영역에 대한 심근경색율이 유의적으로 감소된 수치를 보였다. 구체적으로 용매 투여군의 경우 심근경색율이 52.39%로 높게 나타나 허혈에 의한 심장근 손상이 매우 심했고, BMS-180448 투여군의 경우 심근경색율이 38.02%로서 항허혈 작용이 있었다. 반면 본 발명에 의한 화합물을 투여한 경우, 심근경색율이 28.03% (실시예 24의 화합물)까지 낮게 나타났다. 또한 상기 실험에서 본 발명의 화합물들은 혈압을 감소시키는 작용을 하지도 않았다.
이와 같이 본 발명의 화합물들은 중동물에서도 우수한 항허혈 작용을 나타내며, 특히 대조물질인 BMS-180448보다 더 우수한 항허혈 작용을 가짐을 알 수 있었다. 따라서 본 발명의 화합물들은 허혈성 심혈관 질환에 관련된 치료제로서 사용될 수 있다.
〈실험예 4〉 신경세포 보호작용
본 발명에 의한 화학식 1의 화합물들이 철에 의한 신경세포의 손상 및 괴사를 억제하는 작용을 알아보기 위하여, 하기와 같은 실험을 수행하였다.
17∼18일 된 태아 쥐의 뇌에서 대뇌피질 신경세포 (cortical neuron)를 분리하여 5% CO2배양기 (incubator)에서 37 ℃로 7∼9일 동안 배양하였다. 신경세포를 MEM (Minimum essential medium) 배지로 두 번 씻어 혈청 (serum)의 농도를 0.2 %로 낮추고 시험 물질을 10, 30 μM가 되도록 첨가하여 30분간 전처리하였다. 이 때, 시험 물질은 DMSO에 녹인 후 배지에 희석하여 사용하였으며 DMSO의 최종 농도는 0.1%를 넘지 않도록 하였다. 대조군으로는 용매만을 첨가한 것을 사용하였다.
상기와 같은 전처리 과정 후, 최종 농도 50 μM가 되도록 FeSO4를 첨가하고 CO2배양기에서 24시간 동안 배양하였다. 배양 과정에서 철에 의해 젖산염 탈수소효소 (lactate dehydrogenase, LDH)의 양이 증가하였으며, 배지에 유리된 LDH의 양을 측정하여 철의 산화독성에 의해 세포가 사멸된 정도를 평가하였다. 시험 물질의 신경세포 보호 효과는 대조군의 LDH 양을 기준으로 했을 때 LDH의 양이 감소된 정도로 판단하였다. 결과는 하기 표 3에 나타내었다.
화학식 1 화합물의 신경세포 보호효과
화합물 첨가량 (μM) %억제율
실시예 24 30 47
10 29
실시예 25 30 69
10 -
실시예 38 30 78
10 56
실시예 40 30 97
10 45
상기 표 3에서 볼 수 있는 바와 같이, 본 발명의 화합물들은 철에 의한 신경세포 손상을 농도 의존적으로 보호하였다. 특히 실시예 38의 화합물은 10 μM의 저농도에서도 56%의 억제율을 나타내고 실시예 40의 화합물은 30 μM에서 97%의 억제율을 나타내어, 철에 의한 신경세포의 손상을 억제하는 효과가 매우 강력함을 알 수 있다.
이와 같이 본 발명의 화합물들은 우수한 신경세포 보호작용을 나타내므로, 신경세포의 손상 또는 괴사에 의해 유발되는 뇌졸중, 치매 등과 같은 신경계 질환 뿐만 아니라 관절염 등의 염증성 질환, 심근 경색증, 급만성 조직 손상의 예방제 또는 치료제로 유용하게 사용될 수 있다.
〈실험예 5〉 지질 과산화 억제 효과
(1) 철에 의해 유발되는 지질 과산화에 대한 억제효과
본 발명에 의한 화학식 1의 화합물들이 철에 의해 유발되는 지질 과산화를 억제하는 효과를 알아보기 위하여, 하기와 같은 실험을 수행하였다.
쥐 (rat)의 뇌를 크렙스 (Krebs) 완충액 (15 mM HEPES, 10 mM glucose, 140 mM NaCl, 3.6 mM KCl, 1.5 mM CaCl2, 1.4 mM KH2PO4, 0.7 mM MgCl2, pH 7.4)에 넣어 균질화한 후 12,000 rpm으로 10분간 원심분리하여 상등액인 뇌 균질물을 지질의 원료로 사용하였다. 뇌균질물에 최종 농도 400 μM가 되도록 FeCl2를 가하고 37 ℃에서 30분간 방치하여 산화를 촉진시켰다. 이 때, 시험 물질은 100 μM 씩 첨가하였고, 대조군으로는 용매만을 첨가한 것을 사용하였다.
뇌 균질물에 철이 첨가되면 산화가 촉진되어 지질 과산화 산물인 말론알데하이드 (Malonaldehyde, MDA)의 양이 증가하므로, MDA 정량법으로 지질 과산화 정도를 판단하였다. 시험 물질의 지질 과산화 억제 효과는 대조군의 MDA 양을 기준으로 했을 때 MDA의 양이 감소된 정도로 계산하였다.
한편 MDA 정량법은 시료를 TBA (2-thiobarbituric acid)와 반응시켜 530 nm에서의 흡광도를 측정하는 것이 일반적이지만, 끓이는 단계가 포함되기 때문에 대용량의 시료를 처리하기에는 부적합하다. 따라서 본 발명에서는 TBA 대신에 발색시약인 N-메틸-2-페닐인돌 (N-methyl-2-phenylindole)을 사용하였다. 이 경우 MDA 한 분자와 N-메틸-2-페닐인돌 두 분자가 반응하여 발색체를 형성하고 이 발색체는 586 nm에서 최대 흡광도를 나타내며, 끓이는 과정을 필요로 하지 않는다 (BioxytechRLPO-586 Kit로 흡광도 측정). 실험 결과는 하기 표 4a에 나타내었다.
철에 의해 유발되는 지질 과산화에 대한 억제 효과
화합물 첨가량 (μM) %억제율
실시예 7 100 70
실시예 24 100 12
실시예 25 100 2
실시예 32 100 86
실시예 38 100 4
실시예 40 100 79
상기 표 4a에서 볼 수 있는 바와 같이, 본 발명의 화합물들은 철에 의한 지질 과산화를 억제하였다. 특히 실시예 7, 실시예 32 및 실시예 40의 화합물들은 각각 70%, 85% 및 79%의 억제율을 나타내어 철에 의한 지질 과산화를 억제하는 효과가 매우 강력함을 알 수 있다.
(2) 구리에 의해 유발되는 지질 과산화에 대한 억제효과
본 발명에 의한 화학식 1의 화합물들이 구리에 의해 유발되는 저밀도 지질단백 (LDL, low density lipoprotein)의 산화를 억제하는 효과를 알아보기 위하여, 하기와 같은 실험을 수행하였다.
사람의 저밀도 지질단백 (human LDL, low density lipoprotein, sigma)을 1 mg/ml의 농도로 증류수에 녹이고, EDTA (ethylenediamine tetraacetate)를 제거하기 위하여 4 ℃ 인산염 완충액에서 18 시간 동안 투석하는데 이 때 완충액은 3 회 바꿔 주었다. EDTA를 제거한 LDL (100 μg LDL 단백/ml) 에 EDTA 가 제거된 인산염 완충액을 가하고, 산화제로 CuSO4(10 μM)를 가한 후 시험물질로 실시예 40의 화합물 또는 대조물질인 토코페롤의 최종 농도가 각각 10-9, 10-7및 10-5M이 되도록 넣어주었다. CuSO4를가하지 않은 군을 공시험군으로, CuSO4는넣고 시험물질 대신 용매를 가한 군을 용매군으로 하였다. 상기 혼합물을 37 ℃에서 18시간 배양하고 4 ℃에서 EDTA (200 μM)를 가함으로써 산화반응을 종료시켰다.
상기 실험예 5의 (1)과 마찬가지로 구리 (Cu+2)에 의한 산화에 의해 LDL의 산화 산물인 말론알데하이드 (Malonaldehyde, MDA)의 양이 증가하므로, MDA 정량법으로 지질 과산화 정도를 판단하였다. MDA 정량법은 시료를 TBA (2-thiobarbituric acid)와 반응시켜 530 nm에서의 흡광도를 측정하였으며, 1,1,3,3-테트라메톡시프로판 (1,1,3,3-tetramethoxypropane, Sigma사)을 표준물질로 사용하였다. 시험 물질의 지질 과산화 억제 효과는 단백질 mg당 MDA의 nmol량을 구하고, 대조군의 MDA 양을 기준으로 했을 때 MDA의 양이 감소된 정도로 계산하였다.
실험결과는 하기 표 4b에 나타내었다.
구리에 의해 유발되는 지질과산화에 대한 억제효과
약물의첨가량 (M) 지질과산화 억제율 (%)
실시예 40 토코페롤
10-9 7.6 18.5
10-7 24.3 21.3
10-5 27.6 29.7
상기 표 4b에서 볼 수 있듯이, 실시예 40의 화합물은 10-7및 10-5M의 농도에서 구리에 의한 LDL의 산화를 대조물질인 토코페롤과 유사한 정도로 유의성 있게 억제하였다.
(3) A7r5에 의해 매개되는 지질 과산화에 대한 억제효과
본 발명에 의한 화학식 1의 화합물들이 혈관평활근 세포인 A7r5(Rat thoracic aorta smooth muscle cell line, ATCC)에 의해 매개되는 LDL의 산화를 억제하는 효과를 알아보기 위하여, 하기와 같은 실험을 실시하였다.
A7r5 세포를 10% FBS (소태아 혈청, fetal bovine serum)와 1% 항생제를 함유한 DMEM (Dulbecco's modified Eagle's medium) 배지를 사용하여 24 웰 플레이트 (well plate)에서 배양하였다. 인산염완충액으로 세포층을 세척한 후, 10% FBS 와 1% 항생제를 함유하는 DMEM 배지를 0.5 ml/well이 되도록 가하였다. 세포 (2 x 105cells/ml)에 시험물질 (10-6- 10-4M) 또는 대조물질인 토코페롤 각각 (10-6- 10-4M)을 첨가하여 37 ℃에서 30 분간 전처리 한 후, A7r5 단독 또는 A7r5에 H2O2(10-7M)를 가하여 LDL (100 μg/ml)에 24 시간동안 노출시켰다. 시험 물질의 지질 과산화 억제 효과는 상기 실험예 5의 (2)와 마찬가지로 대조군의 MDA 양을 기준으로 했을 때 MDA의 양이 감소된 정도로 계산하였다.
실험결과는 하기 표 4c에 나타내었다.
A7r5세포에 의해 매개되는 지질과산화의 억제효과
약물 첨가량 (M) 지질과산화 억제율 (%)
LDL LDL + H2O2(10-7M)
실시예 40 10-6 40.9 49.7
10-5 51.4 62.5
10-4 57.7 64.3
토코페롤 10-6 41.1 43.2
10-5 57.0 53.0
10-4 73.7 63.9
상기 표 4c에서 보듯이 실시예 40 및 토코페롤은 실시된 모든 농도군에서 A7r5세포에서의 LDL 산화를 유의성있게 감소하였다. 특히 실시예 40의 화합물은 H2O2로산화적 스트레스를가한 경우에 LDL의 산화억제가 더욱 뚜렷하였다.
실험예 5의 (1), (2) 및 (3)과 같이 본 발명의 화합물들은 우수한 지질 과산화 억제 효과를 나타내므로, 지질 과산화가 촉진되고 신경세포 내에 산화물질이 축적되어 유발되는 뇌졸중, 치매와 같은 퇴행성 신경계 질환 및 관절염과 같은 염증성 질환, 동맥경화, 심근 경색증, 급만성 조직 손상의 예방제 또는 치료제로 유용하게 사용될 수 있다.
〈실험예 6〉 NO 생성 저해 효과
본 발명에 의한 화학식 1의 화합물들이 일산화질소 (nitric oxide, NO)의 생성을 저해하는 효과를 알아보기 위하여 하기와 같은 실험을 수행하였다.
10% FBS (fetal bovine serum)를 함유하는 RPMI1640 배지를 사용하여 쥐 매크로파지 세포주 (Murine macrophage cell line)인 RAW264.7 세포 (미국, American Type Culture Collection 사)를 37 ℃의 5% CO2배양기에서 유지시켰다. 0.5% FBS를 포함하는 RPMI1640 배지를 사용하여 상기 RAW264.7 세포의 농도를 5×105세포수/㎖로 조절하고, 96 웰 플레이트 (well plate)에 접종 (5×104세포수)하여 CO2배양기에서 20시간 동안 배양하였다. 이후 배지를 제거하고 시험물질을 포함한 배지를 33, 100 μM이 되도록 첨가하여 1시간 동안 전처리하였다. 이때 시험물질은 DMSO에 녹인 후 배지를 사용하여 각각의 농도로 희석하여 사용하였으며, 각 웰에 포함된 DMSO가 RAW264.7 세포의 일산화질소 생성에 영향을 미치지 않도록 하기 위하여 DMSO의 농도를 0.1% 이하로 하였다.
1시간의 전처리 과정이 끝난 후, 최종농도 1 ㎍/㎖이 되도록 리포폴리사카라이드 (Lipopolysaccharide, LPS, E. coli serotype 055:B5)를 첨가하여 세포를 활성화시키고 CO2배양기에서 24시간 동안 배양하였다. 이 반응에 의해 NO가 생성되었으며, 배지에 유리된 NO는 아질산 이온 (NO2 -)의 형태로 그리이스 (Griess) 시약을 사용하여 정량하였다. 대조군으로는 시험 약물 대신 동량의 용매 (vehicle)를 처리한 것을 사용하였다. 한편 아질산염 표준시약 (Nitrite standard)을 사용하여 조사한 결과 시험 약물 자체가 NO의 정량을 방해하지는 않는 것으로 나타났다.
시험 물질의 NO 생성 저해 효과는 대조군에서 LPS에 의해 증가된 NO의 양을 기준으로 했을 때 NO의 양이 감소된 정도로 계산하였다. 그 결과는 하기 표 5에 나타내었다.
화학식 1 화합물이 NO 생성을 저해하는 효과
화합물 첨가량 (μM) %억제율
실시예 7 100 88
실시예 24 100 48
33 16
실시예 25 100 54
33 39
실시예 32 100 83
실시예 38 100 85
33 56
실시예 40 100 26
상기 표 5에서 볼 수 있는 바와 같이, 본 발명의 화합물들은 LPS와 같은 내독소에 의해 NO의 생성이 촉진되는 것을 농도 의존적으로 저해하였다. 특히 실시예 38의 화합물은 33 μM의 저농도에서도 56%의 억제율을 나타내었고 100 μM에서는 85%의 높은 억제율을 나타내었다. 또한 실시예 7 및 실시예 32의 화합물은 100 μM에서 각각 88%, 83%의 높은 억제율을 나타내어, 본 발명에 의한 화학식 1의 화합물들이 NO 생성을 저해하는 효과가 매우 강력함을 알 수 있었다.
이와 같이 본 발명의 화합물들은 우수한 NO 생성 저해효과를 나타내므로, NO가 다량 생성되어 신경세포가 손상 또는 괴사됨으로써 유발되는 뇌졸중, 치매 등과 같은 신경계 질환 뿐만 아니라 관절염 등의 염증성 질환, 심근 경색증, 급만성 조직 손상의 예방제 또는 치료제로 유용하게 사용될 수 있다.
〈실험예 7〉 뇌허혈-재관류에 의한 뇌손상 보호효과
본 발명에 의한 화학식 1의 화합물들이 뇌허혈-재관류에 의한 뇌손상을 보호하는 효과를 알아보기 위하여 하기와 같은 실험을 수행하였다.
펜토바비탈 소듐 40 mg/kg을 주사하여 수컷 SD 랫트 (Sparague-Dawley Rat, 350 ± 50 g, 삼육)를 마취시킨 후, 대퇴정맥과 동맥에 세관 (PE-10 tubing)을 삽입하고 왼쪽 경동맥을 노출시켰다. 수술 5분 전에 황산 헤파린 (heparin sulfate) 20 ㎍을 복강내 주사하였다. 대퇴동맥에 혈압 측정소자를 삽입하여 지속적으로 동맥압을 측정하였다. 대퇴정맥으로 약 10 ㎖의 혈액을 빼내어 혈압을 30 mmHg까지 떨어뜨렸다. 만약 7 ㎖ 정도의 채혈이 이루어질 때까지 혈압이 100 mmHg 이하로 떨어지지 않으면 교감상태 (sympathetic tone)가 너무 높은 것으로 판단할 수 있다. 이 경우에는 혈압을 30 mmHg까지 떨어뜨릴 수 없거나 또는 성공하여도 수술 후 쥐의 사망률 (mortality)이 높으므로 실험에서 제외하였다.
혈압을 30 mmHg로 유지하면서 동맥용 겸자 (aneurysm clamp)로 왼쪽 경동맥을 20분간 폐쇄하여 허혈을 일으키고, 뽑았던 혈액과 0.84% 중탄산나트륨의 소금물 (bicarbonate saline) 5 ㎖를 사용하여 재관류하였다. 허혈을 일으키는 동안 열 담요 (thermal blanket)와 백열전등을 이용하여 쥐의 체온을 37±0.5 ℃로 일정하계 유지시켰으며, 수술 후 회복하는 동안 2 시간 이상 체온을 일정하게 유지시켜 준 뒤 완전히 회복되면 동물 관찰실로 옮겼다. 동물 관찰실은 실온 (27 ℃), 습도 (60%), 명암 주기 (light cycle) (12-12 시간) 등을 일정하게 유지시켰다.
수술 후 24시간 뒤에 쥐를 단두로 희생하여, 빠른 시간 (3분) 내에 뇌를 적출하였다. 적출된 뇌는 얼음 위에서 뇌 매트릭스 (brain matrix)를 이용하여 2 mm간격으로 잘라 관상 절단편 (coronal section) 6 개를 얻었다. 절단편은 2% 2,3,5-트리페닐테트라졸륨 클로라이드 용액을 사용하여 37 ℃에서 30 분간 염색하였다. 염색된 절단편을 사진으로 찍어 현상하고 인화한 후, 영상 분석기 (Image Analyzer)를 사용하여 전체 뇌의 면적에 대한 괴사 면적을 %로 나타내었다.
한편 시험 물질은 수술하기 30분 전과 경동맥 폐쇄 2, 4, 16시간 후에 각각의 용량으로 투여하여 모두 4번 복강 주사하였다. 총 투여양은 30 ㎎/㎏이었다. 대조군으로는 시험 물질 대신 용매 (vehicle)만을 투여한 것을 사용하였고, 비교군으로는 비경쟁적인 (noncompetitive) NMDA (N-methyl-D-aspartate) 길항제 (antagonist)인 MK 801 (RBI, (SR,10S)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo [a,d]cyclohepten-5,10-imine hydrogen maleate)을 동량 투여한 것을 사용하였다.
시험 물질이 뇌허혈-재관류에 의한 뇌손상을 보호하는 효과는 대조군에서 뇌의 %괴사면적을 기준으로 했을 때 괴사면적이 감소되는 정도 (reduction)로 계산하였다. 그 결과는 하기 표 6에 나타내었다.
화학식 1 화합물이 뇌허혈-재관류에 의한 뇌손상을 보호하는 효과
약물 투여량 (mg/kg) 경색 정도 n수
평균 ±표준편차 (%) 감소율 (%)
용매 0 39.7 ±1.6 - 10
MK801 30 29.8 ±1.5 24.8* 7
실시예 40화합물 30 23.0 ±3.3 42.0* 11
* 용매만을 투여한 대조군과 비교하여 P〈0.01
비교군인 30 ㎎/㎏의 MK801 처리군에서는 경색 부위 (infarct volume)가 29.8%로 나타나 대조군에 비해 경색 부위를 24.8% 감소시켰다. 반면 실시예 40의 화합물을 동량 처리한 경우에는 경색 부위가 23.0%로서 대조군에 비해 경색 부위를 42.0% 감소시켜, 종래의 물질인 MK801보다 뇌허혈-재관류에 의한 뇌손상을 보호하는 효과가 약 2배 우수함을 알 수 있었다.
또한 MK801 처리군에서는 쥐의 운동성이 감소하는 등의 부작용이 나타났으나, 실시예 40의 화합물을 투여한 경우에는 운동성을 포함한 어떠한 행동의 변화도 나타나지 않았다.
이와 같이 본 발명의 화합물들은 뇌허혈-재관류에 의한 뇌손상을 보호하는 효과가 우수하므로, 뇌졸중, 치매 등 뇌가 손상되어 유발되는 여러 가지 질환에 유용하게 사용될 수 있다.
〈실험예 8〉 신생혈관 형성을 억제하는 효과
본 발명에 의한 화학식 1의 화합물들이 신생혈관의 형성을 억제하는 효과를 알아보기 위하여 하기와 같은 실험을 수행하였다.
(1)99mTc-DTPA (Technetium-diethylenetriamine pentaacetic acid) 제거 (clearance) 효과
두께 5 mm, 지름 12 mm인 폴리에스테르 스폰지를 혈관 성장을 위한 매트릭스 (matrix)로 사용하였다. 각각의 스폰지 내부에 길이 5 mm인 폴리에틸렌 튜브를 실로 고정하였다. 클로랄 수화물 (Chloral hydrate) 300 mg/kg을 복강내 주사하여 스프래그-다우리계 흰쥐를 마취시켰다. 쥐의 목과 등 사이의 털을 깎은 후 10 mm를 절개하여 피하에 스폰지가 들어갈 정도의 공간을 확보하고, 빈 공간에 스폰지를 넣고 튜브가 흔들리지 않도록 고정하였다. 튜브의 구멍은 감염을 방지하기 위해 약물을 투여할 때를 제외하고는 항상 막아 두었다.
신생혈관이 형성되는 것을 유도하기 위한 약물로는 엔지오텐신 Ⅱ (AⅡ)을 사용하였다. 엔지오텐신 Ⅱ는 PBS 완충액 (phosphate buffered saline)에 녹여 사용하였으며 100 nmol의 용액 50 ㎕를 주사하였다. 시험 물질인 본 발명의 화합물은 PBS에 녹여 투여량이 각각 0.1, 0.3, 1.0 ㎎/㎏이 되도록 튜브를 통해 주입하였다. 대조군으로는 용매인 PBS만을 동량 주입한 것과 엔지오텐신 Ⅱ만을 주입한 것을 사용하였다. 신생혈관 형성 억제 효과는 시험 물질을 투여하고 7일이 지난 후에 측정하였다.
이식된 스폰지의 혈류 상태는99mTc-DTPA (Technetium-diethylenetriamine pentaacetic acid) 제거율 (clearance)을 비교하여 알 수 있었다. 시험 물질 투여 후 7일이 지나면, 쥐를 다시 클로랄 수화물 30 mg/kg으로 마취시키고 소독한 PBS에 녹인99mTc-DTPA 용액 50 ㎕ (0.5mCi)를 튜브를 통해 조심스럽게 주사하였다.99mTc-DTPA의 양은 감마 섬광 검출기로 60분간 측정하였으며, 저에너지 고분해능 장치 (Low Energy High Resolution)가 장착된 감마 카메라 (ADAC VERTEX/SOLUS Gamma Camera)로 프레임 당 60 초씩 60 프레임을 찍어 연속 영상을 컴퓨터 (Pegasys sun computer)에 수록하여 분석하였다.
99mTc-DTPA의 제거율은 하기 수학식 3으로 계산하였으며, 그 결과는 하기 표 7a에 나타내었다.
화학식 1 화합물이 신생혈관 형성을 억제하는 효과
약물 시험물질 시험물질 투여량(mg/kg) (P.O.) 99mTc 제거율 (%)
대조군 (PBS 투여군) - - 30.3
AII (100 nmol) - - 44.71
시험군(AII (100 nmol) + 시험물질 투여) 실시예 24 화합물 0.1 26.90
0.3 18.22
1.0 3.38
P.O. : per os (경구투여)
용매만을 투여한 대조군에서는99mTc-DTPA의 제거율이 30.3%인 반면 엔지오텐신 Ⅱ를 투여한 경우에는 제거율이 44.71%로 나타나 엔지오텐신 Ⅱ에 의해 신생혈관의 형성이 유도된 것을 알 수 있었다. 반면 실시예 24의 화합물을 0.1 mg/kg 투여한 경우에는 제거율이 26.90%로 나타나 본 발명의 화합물이 엔지오텐신 Ⅱ에 의해 신생혈관의 형성이 유도되는 것을 억제하는 것을 알 수 있었다. 또한 실시예 24의 화합물을 각각 0.3, 1.0 mg/kg 투여한 경우에는 제거율이 18.22%, 3.38%로서, 엔지오텐신 Ⅱ에 의한 신생혈관 형성을 농도 의존적으로 억제하였다. 특히, 실시예 24 화합물을 1.0 mg/kg 투여한 경우에는 제거율이 3.38%로 나타나 신생혈관의 형성이 거의 완벽하게 억제되었다.
(2) HUVEC 세포에서의 관형성 (Tube Formation) 억제효과
시험물질들의 혈관신생억제 활성을 세포단계에서 측정하기 위하여 다음과 같은 실험을 실시하였다. 사람 탯줄의 혈관내피세포인 HUVEC (Human Umbilical Vein Endothelial Cell)을 배양하여 메트리겔 (matrigel) 위에서 모세혈관과 같은 구조의 관형성을 시키고 각 화합물이 관형성에 미치는 영향을 용매만 처치한 대조군과 비교 관찰함으로써 혈관신생억제 작용을 간접적으로 in vitro에서 확인하였다. 결과는 하기 표 7b에 나타내었다.
HUVEC 세포에서의 관 (tube) 형성 억제효과
약물 투여량에 따른 관형성 억제효과
10 μM 100 μM
실시예 2 + ++
실시예 10 + ++
실시예 16 +/- +/-
실시예 24 ND +
실시예 40 + ++
실시예 52 +/- ++
- : 효과 없음, +/- : 미미한 억제효과+ : 중 정도 억제효과, ++ : 강한 억제효과ND : 측정안함
상기 표 7b와 같이 실시예 2, 10, 40 및 52의 화합물들은 10 μM의 농도에서 관형성 저해효과가 확인되었으며, 100 μM의 농도에서는 관형성이 강하게 저해되는 농도의존적 효과를 보였다.
이와 같이 본 발명의 화합물들은 신생혈관의 형성을 억제하는 효과가 우수하므로, 신생혈관 형성으로부터 비롯되는 류마티스성 관절염, 건선, 에이즈 합병증,암,당뇨성 망막증 등의 여러 가지 질병 치료에 유용하게 사용될 수 있다.
〈실험예 9〉 과산화수소에 의해 유발되는 세포 내 활성산소의 생성 억제효과
본 발명에 의한 화학식 1의 화합물들이 과산화수소에 의해 유발된 세포내 활성산소를 억제하는 효과를 알아보기 위하여 하기와 같은 실험을 수행하였다.
세포 내 활성산소(reactive oxygen species)에 의한 산화정도는 H2DCFDA(2',7'-dichlorodihydrofluorescein diacetate, Molecular Probes, Eugene, OR, USA)를 사용하여 측정하였다. 비극성인 H2DCFDA는 세포막을 통과하면 세포 내 에스터라제에 의하여 막 비투과성의 H2DCF (2',7'-dichlorodihydrofluorescein)로 변한다. H2DCF는 저형광성이나, 세포 내 활성산소에 의하여 고형광성의 2',7'-dichlorofluorescein(DCF)로 변하므로, H2DCFDA의 산화정도는 DCF의 생성정도로부터 알 수 있다. 실험에 사용된 세포는 내피세포인 HUVEC(정상인의 정맥 endothelial cell line, ATCC) 또는 혈관평활근 세포인 A7r5 (Rat thoracic aorta smooth muscle cell line, ATCC)이다. HUVEC은 10% FBS (소태아 혈청, fetal bovine serum), 헤파린 나트륨염 (0.1 mg/ml), 내피세포 성장보조제 (0.03-0.05 mg/ml) 및 1% 항생제를 함유하는 Kaighn's F12K 배지에서, A7r5는 10% FBS (소태아혈청, fetal bovine serum) 및 1% 항생제를 함유하는 DMEM (Dulbecco's Modified Eagle's Medium) 배지를 사용하여 배양하였다. 세포 단일층의 배지를 제거하고, 각 농도의 시험물질 (10-7-10-5M), 대조물질인 토코페롤 (10-7-10-5M) 또는 프로부콜 (10-7-10-5M)을 첨가하여 37℃에서 30 분간 전처리 한 후 최종농도 10-6및 10-5M이 되도록 H2O2를 첨가하여 20 분간 처리하였다. H2DCFDA를 5 μM 함유하는 50 mM 인산염완충액에서 37 ℃에서 2 시간 동안 빛을 차단하고 처리한 후 형광분석기 (Fluorescence reader, FL600, Biotek Instruments)로 H2DCFDA의 산화 정도를 측정하였다 (485 nm excitation, 530 nm emission). 실험결과는 하기 표 8에 나타내었다.
과산화 수소에 의해 유발된 세포 내 활성산소의 생성 억제효과
세포 약물 농도 (M) 억제율 (%)
H2O2(10-6M) H2O2(10-5M)
HUVEC 토코페롤 10-7 13.8 8.8
10-6 43.2 30.7
10-5 60.8 51.0
실시예 40 10-7 17.6 12.0
10-6 46.1 25.8
10-5 63.1 54.9
A7r5 프로부콜(probucol) 10-7 72.0 -
10-6 184.1 -
10-5 185.3 -
실시예 24 10-7 70.1 -
10-6 110.7 -
10-5 185.3 -
상기 표 8과 같이 실시예 40의 화합물은 과산화수소 (H2O2)에 의해 유발되는 HUVEC 세포에서의 활성산소 생성을 토코페롤과 유사하거나, 약간 우수한 정도로 억제하였다. 실시예 24의 화합물은 10-6M 이상의 농도에서는 A7r5 세포에서의 과산화수소에 의한 활성산소 생성을 완전하게 억제할 뿐만 아니라 제거하는 결과를 얻었다.
이와같이 본 발명의 화합물들은 활성산소 생성을 억제 또는 제거하는 항산화효과가 있으므로, 노화, 치매 등과 같은 퇴행성 신경계 질환 뿐만 아니라 관절염 등의 염증성 질환, 동맥경화, 심근 경색증, 급만성 조직 손상의 예방제 또는 치료제로 유용하게 사용될 수 있다.
〈실험예 10〉 산소 라디칼 흡수력 (ORAC) 측정
본 발명에 의한 화학식 1의 화합물들이 산소 라디칼을 흡수, 소멸시키는 효과를 알아보기 위하여 하기와 같은 실험을 수행하였다.
ORAC (oxygen radical absorbance capacity) 실험은 수용액에서 시험물질에 의한 라디칼 흡수력을 측정할 수 있는 in vitro 실험방법이다. β-피코에리스린( β-phycoerythrin, β-PE)를 지시제로 AAPH (2,2'-azobis(2-amidinoprapane) dihydrochloride)를 과산화라디칼 발생제로 사용하였다. 반응액은 75 mM 인산염 완충액 (pH 7)에 10-6및 10-4M의 시험물질, 1.76 x 10-8M의 β-PE 및 3 x 10-3M의 AAPH를 함유하며, 최종량을 2 ml로 하여 24 웰 플레이트에서 반응시켰다. 시험물질은 아세톤에 녹인 후 반응액에 가하였다. AAPH를 가한 후 37 ℃에서 반응시켰으며 5분마다 형광분석기 (Fluorescence reader, FL600, Biotek Instruments)로 형광도를 측정하였다 (485 nm excitation, 590 nm emission). ORAC 유닛 (unit)은 시험물질 존재시의 β-PE의 곡선하면적 (area under the curve)을 트로록스 (Trolox)에 의한 면적과 비교하여 계산하였다. 즉 1 ORAC 유닛은 트로록스 1 μM에 의한 보호효과 (라디칼 흡수력)를 나타낸다. 시험결과는 하기 표 9에 나타내었다.
산소라디칼 흡수 효과
약물 농도 (M) ORAC 유닛값
α-토코페롤 10-6 1.0
10-4 1.568
프로부콜 10-6 1.327
10-4 1.566
실시예 40 10-6 2.047
10-4 3.250
상기 표 9에서 보듯이 실시예 40의 화합물은 10-6및 10-4M의 농도에서 대조물질인 프로부콜 또는 토코페롤 보다 약 2배 정도의 높은 ORAC 유닛값을 나타내어 우수한 산소라디칼 흡수력을 나타내었다.
이와같이 본 발명의 화합물들은 산소 라디칼을 흡수하는 작용에 의한 항산화작용이 있으므로, 노화, 치매 등과 같은 퇴행성 신경계 질환 뿐만 아니라 관절염 등의 염증성 질환, 동맥경화, 심근 경색증, 급만성 조직 손상의 예방제 또는 치료제로 유용하게 사용될 수 있다.
〈실험예 11〉 허혈망막에 대한 세포보호효과
본 발명에 의한 화학식 1의 화합물들이 허혈망막 세포를 보호하는 효과를 알아보기 위하여 하기와 같은 실험을 수행하였다.
시험물질은 DMSO에 100 mM이 되도록 녹여 용액을 만들어둔 후 고압멸균 (autoclave)한 생리식염수로 100, 50, 30 μM의 농도로 희석하여, 허혈 유발 30 분전에 10 ㎕를 안구내에 주사하였다.
성인 쥐를 클로랄 수화물 (chloral hydrate) 400mg/kg로 마취 시킨 후 혈압계를 변형시켜 만든 압력계에 30 게이지 (guage) 주사바늘을 연결시키고, 실린더 내의 압력을 혈압(약 140 mmHg)보다 높은 160-180 mmHg로 유지시켰다. 오른쪽 눈을 1% 트로픽아미드 (tropicamide)로 3-5분 간격으로 세 번 처리하여 산동시킨 다음 30 게이지 주사바늘을 삽입하고 전방으로 압력이 흐르게 하였다. 수술현미경으로 망막의 혈관에 혈액 공급이 차단되는 것을 확인하고 짧게는 30 분 동안, 전방내의 압력을 160-180 mmHg로 유지시켰다. 허혈 유발 24 시간 후에 안구를 적출하여 망막을 분리하여 세포의 손상과정을 조사하였으며 신경절 (Ganglion) 세포층에서는 250 ㎛ X 25 ㎛ 내의 세포의 수를, 내핵층 (Inner nuclear layer)에서는 150 ㎛ X 25 ㎛ 내의 세포의 수를 세어, 정상을 100%로 하여, 본 발명의 화합물의 세포보호효과 (%)를 나타내었다. 대조군은 시술을 받지 않은 왼쪽 눈을 사용하였으며, 시험결과는 하기 표 10에 나타내었다.
허혈망막에 대한 세포보호효과
생존세포 %
신경절 세포층 내핵 세포층
정상군 100 100
허혈군 34.5 51.7
실시예 40 30 μM 40.7 54.8
50 μM 60.2 69.8
100 μM 77.9 82.6
상기 표 10에서 보듯이 실시예 40의 화합물은 망막의 신경절 (ganglion) 세포층 및 내핵 세포층 모두에서 허혈에 의한 세포사멸을 농도 의존적으로 보호하였다. 이와같이 본 발명의 화합물들은 망막허혈 의한 세포사멸을 억제하는 효과가 있으므로, 허혈에 의해 신경절 세포가 손상되는 녹내장에 유용하게 사용될 수 있다.
〈실험예 12〉 당뇨쥐에서 신경전도 속도 개선 효과
본 발명에 의한 화학식 1의 화합물들이 당뇨쥐에서 손상된 신경전도 속도를 개선하는 효과를 알아보기 위하여 하기와 같은 실험을 수행하였다.
당뇨는 쥐의 복강에 스트렙토조토신 (Streptozotocin, 65 mg/kg)을 주사하여 유발하였으며, 시험물질은 생리식염수:에탄올: 트윈80 (8:1:1) 용액 2ml에 녹여 1 일 1 회 경구 투여하였다. 자극에 의한 활동전압은 당뇨쥐를 펜토탈로 마취시킨 후 척추신경을 노출시켜, 2 개의 자극전극을 신경의 기부면끝 (proximal ends)과 말단끝 (distal ends)에 꽂고, 측정 전극을 뒷다리의 발가락 근육에 꽂아 측정하였다. 각 자극에서 활동전압까지의 잠복기의 차이로 두 자극전극 사이의 거리를 지나는 신경전도속도(MNCV, Motor Nerve Conduction Velocity)를 계산하였다. 기존에 알려져 있는 당뇨로 손상된 신경전도 속도 개선제로 리포산 (lipoic acid)을 100 mg/Kg 투여한 군을 대조군으로하여 본 발명의 화합물의 신경전도 속도 회복률을 비교하였다. 당뇨로 손상된 신경전도 속도의 회복률은 하기 수학식 4와 같이 계산되었으며, 그 결과를 하기 표 11에 나타내었다.
신경전도 회복율(%)=(약물투여군의 MNCV-당뇨군의 MNCV)/(정상군의 MNCV-당뇨군의 MNCV) × 100
당뇨쥐에서 신경전도속도의 회복효과
MNCV (msec) 회복율 (%)
정상군 51.937 100
당뇨군 40.647 -
리포산 (lipoic acid, 100 mg/Kg) 56.070 136.6
실시예 40 (30 mg/Kg) 47.756 63.0
상기 표 11에서 보듯이 당뇨군은 정상군에 비해 신경전도속도가 현저하게 감소되었으며 리포산 100 mg/Kg 투여군은 완벽하게 당뇨쥐의 신경전도속도를 회복시켰다. 실시예 40의 화합물도 30 mg/Kg 투여로 당뇨에 의해 지연된 신경전도속도를 유의성있게 회복시켰다.
〈실험예 13〉 당뇨성 신경증에 대한 동통반응 회복효과 (고온 플레이트 (Hot Plate) 시험)
본 발명에 의한 화학식 1의 화합물들이 당뇨쥐에서 손상된 동통반응을 개선하는 효과를 알아보기 위하여 하기와 같은 실험을 수행하였다.
상기 실험예 12와 같은 방법으로 당뇨를 유발시킨 당뇨쥐를 50 ℃ 고온 플레이트에 놓고 핥기 (licking) 등의 회피반사가 일어날 때까지의 잠복기를 측정하여 동통반응에 대한 실험물질의 효과를 측정하였다. 동통반응의 개선율(%)은 하기 수학식 5와 같이 계산되었으며, 그 결과를 하기 표 12에 나타내었다.
동통반응의 개선율(%)= (약물투여군의 동통반응-당뇨군의 동통반응)/(정상군의 동통반응-당뇨군의 동통반응) × 100
당뇨쥐에서의 동통반응에 대한 효과
동통반응(sec) 개선율 (%)
정상군 4.698 100
당뇨군 3.686 -
리포산 (lipoic acid) 4.371 73.1
실시예 40 4.791 121.3
고온 플레이트 실험에서 리포산은 유의성 있는 효과를 나타낸 반면, 실시예 40의 화합물은 완벽하게 당뇨에 의해 저하된 동통반응을 회복시켰다.
실험예 12 및 13의 결과로부터 항산화 작용, 신경세포 괴사 보호작용 등이 확인된 본 발명의 화합물들이 당뇨쥐에서 신경전도속도 및 동통반응을 개선시켰으므로, 본 발명의 화합물들은 당뇨성 신경증 또는 당뇨성 말초신경 장애의 예방 또는 치료제로 사용될 수 있다.
〈실험예 14〉 저산소성 뇌손상에 대한 보호효과
본 발명에 의한 화학식 1의 화합물들이 저산소성 신생백서 모델에서 뇌손상을 보호하는 효과를 알아보기 위하여 자기공명법 (MRS, magnetic resonance spectrum)을 이용하여 하기와 같은 실험을 수행하였다.
신생백서의 국소적 저산소성 뇌손상 모델은 신생아의 뇌와 비슷한 성숙도를 가지고 있으며 효과 판정에 필요한 n 수의 실험이 용이한 장점 때문에 현재 저산소성 뇌손상에 대한 기전 및 치료효과 판정에 관한 연구에 가장 많이 사용되고 있다. 이 모델에서 조직학적 검사 결과와 자기공명분광의 변화간에 유의한 상관관계가 있다는 것을 밝힌 연구결과를 이용하여 생체 내 저산소성 뇌손상에 대한 보호효과를 판정하였다[Van der A. Toorn et al.(1996) Magnetic Resonamce in Medicine, 36 , 914-922]. 허혈에 의해 뇌세포가 손상되면 혈관-뇌 장벽 (BBB, blood-brain barrier)을 포함한 뇌세포막의 파괴에 의해 자기공명스펙트럼에서 지질 농도가 증가되며 지질 농도의 증가와 세포사멸 (apoptosis)이 상관성이 있다고 보고되어 있다 [A. Bizzi et al.(1996)Magnetic Resonance Imaging, 14 581-592]. 따라서 지질의 양과 신경세포의 표지물질인 NAA (N-acetylaspartate) 및 크레아틴 (creatine)의 양을 비교한 Lipid/NAA 및 Lipid/Cr의 값은 허혈에 의한 뇌손상의 형태학적 변화 및 세포사멸과 상관성이 있음이 확인되어 있다.
체중 10-15 g 의 생후 7일 이내 되는 신생백서에 약물을 복강 내 투여하고, 약물 투여 1 시간 후에 2 시간 동안 저산소증을 유발한 후, 약물을 투여하지 않은 용매군과 저산소성 뇌손상의 보호효과를 비교하여 약물의 효과를 측정하였다.
수소 자기공명분광은 손상 후 1일째 조직학적 검사 직전에 얻어서, Lipid/NAA (N-acetyl aspartate) 또는 Lipid/Cr (creatine)를 계산하였다. Lipid/NAA 및 Lipid/Cr는 세포손상의 중요한 지표로서 값이 작을수록 뇌보호효과가 큰 것을 의미한다.
수소 자기공명분광을 이용한 저산소성 뇌손상 보호효과
Lipid/NAA Lipid/Cr
용매군 4.63 4.11
실시예 40 (50 mg/Kg) 2.51 2.33
상기 표 13에서 보듯이 실시예 40의 화합물은 저산소성 신생백서 모델에서, 수소 자기공명 분광을 측정한 결과, Lip/NAA 및 Lip/ Cr 값을 대조군과 비교시 유의성 있게 저하시켜 뇌 보호효과가 있음을 시사하였다. 이와같이 저산소성 뇌손상에 대한 보호효과가 있는 본 발명의 화합물들은 신생아 저산소증의 예방 및 치료에 유용하게 사용할 수 있다.
〈실험예 15〉 혈관평활근 세포 증식억제 효과 (DNA 합성 억제효과)
본 발명에 의한 화학식 1의 화합물들이 평활근 세포의 증식을 억제하는 효과를 알아보기 위하여 하기와 같은 실험을 수행하였다.
쥐의 대동맥 평활근 세포를 24 웰 플라이트에서 10% 소태아혈청 (FBS, fetal bovine serum)을 함유하는 DMEM (Dulbecco's modified Eagle's medium) 배지를 사용하여 3 일 동안 배양하였다. 배양된 세포가 융합을 이루면, DMEM-10% FBS를 제거하고 무혈청 DMEM 배지에서 48 시간 다시 배양하여 휴면상태 (quiescent)로 만들었다. 시험물질 (1 μM)을 전처리하고 15 분 후에 세포 증식을 촉진하는 안지오텐신 Ⅱ (angiotensin Ⅱ, 10-7M)를 처치하여 72 시간 동안 배양한 후 DNA 합성을 측정하기 위하여 [3H]-Thymidine 1 μCi/ml을 각 웰 (well)에 처리하고 4 시간 동안 배양하였다. DMEM 세포들을 3 번 씻어서 ( 2 x 1 ml) 세포에 결합되지 않은 동위원소를 제거한 후, 0.25% 트립신-EDTA (ethylenediamine tetraacetate) 0.1 ml을 30 분 동안 처치하여 세포들을 떼어내었다. 0.2 N NaOH를 0.25 ml씩 처치하여 90 분 동안 방치한 후 15% TCA (trichloroacetic acid)를 1 ml 첨가하고 2 시간 이상 37 ℃, 5% CO2하에서 다시 방치하였다. 모든 시료들을 진공 하에서 여과지 (GF/B Whatman glass microfiber filter)로 여과한 다음 여과지를 5% TCA 2 ml로 3 회씩 세척하고 여과지를 바이알에 넣어 방사선 동위원소의 활성을 액체 섬광 분석기 (Liquid Scintillation Analyzer, Packard, TRI-CARB 2100TR)로 측정하고, 합성된 DNA에 결합된 [3H]-Thymidine을 계산하여 하기 표 14에 나타내었다.
혈관평활근 세포 증식 억제효과
화합물 [3H]-Thymidine의 결합율 (%)
안지오텐신 II 100
실시예 7 37.8
실시예 5 53.6
실시예 2 59.0
실시예 14 60.6
실시예 22 64.0
상기 표 14에서 보듯이 실시예 2, 5 및 7의 화합물들은 60% 이하의 [3H]-Thymidine의 결합율을 나타내어 DNA합성이 유의성있게 억제하였으며, 특히 실시예 7의 화합물은 37.8%의 낮은 결합율을 나타내었다. 따라서 본 발명의 화합물들은 혈관 평활근 세포의 증식을 억제하는 효과가 있어 협심증, 심근경색, 동맥경화 등에 의한 관상혈관 협착의 시술 후에 높은 비율로 다시 재발되는 재협착증(Restenosis)의 예방 및 치료에 응용될 수 있다.
〈실험예 16〉 랫트에 대한 경구투여 급성 독성실험
한편 화학식 1의 화합물의 급성 독성을 알아보기 위하여 하기와 같은 실험을 수행하였다.
6주령의 특정병원부재 (SPF) SD계 랫트를 사용하여 급성독성실험을 실시하였다. 군당 2 마리씩의 동물에 실시예 1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 15, 19, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 46, 47, 48, 49, 51, 52, 57, 58, 60, 62, 64, 67, 68, 69, 71, 72로부터 얻어진 화합물을 각각 0.5% 메틸셀룰로오스 용액에 현탁하여 1 g/㎏/15㎖의 용량으로 단회 경구 투여하였다. 시험물질 투여 후 동물의 폐사 여부, 임상증상 및 체중변화 등을 관찰하고 혈액학적 검사와 혈액생화학적 검사를 실시하였으며 부검하여 육안으로 복강장기와 흉강장기의 이상여부를 관찰하였다.
시험 결과, 시험물질을 투여한 모든 동물에서 특기할 만한 임상증상은 없었고 폐사된 동물도 없었으며, 또한 체중변화, 혈액검사, 혈액생화학 검사, 부검소견 등에서도 독성변화는 관찰되지 않았다. 이상의 결과 실험된 화합물은 모두 랫트에서 1 g/㎏까지 독성변화를 나타내지 않으며 경구 투여 최소치사량 (LD50)은 1 g/㎏ 이상인 안전한 물질로 판단되었다.
상기에서 살펴본 바와 같이, 본 발명에 의한 화학식 1의 화합물들은 혈관을 이완시키지 않기 때문에 혈압을 감소시키지 않으면서도 허혈 심장에 대한 보호작용을 나타내고 활성 산소에 의한 신경세포 손상을 방지하며 NO의 생성 및 지질 과산화를 억제한다. 또한 본 발명의 화합물들은 뇌허혈-재관류에 의한 뇌손상 및 신생백서의 저산소성 뇌손상을 보호하고, 허혈망막 및 당뇨성 신경증에 대한 세포보호 작용을 나타낸다. 이외에도 신생혈관 형성을 억제하는 작용과 혈관 평활근 세포의 증식을 억제하는 작용 등의 매우 다양하고 폭넓은 약리 작용을 나타내며 부작용도 적은 장점이 있다. 따라서 본 발명에 의한 상기 화학식 1로 표시되는 벤조피라닐 구아니딘 유도체 또는 약학적으로 허용되는 그의 염을 유효성분으로 함유하는 약학적 조성물은 심장보호제, 신경세포 보호제, 뇌손상 보호제, 보관용 장기 보호제, NO 생성 저해제, 항산화제, 신생혈관 생성 억제제 또는 혈관 재협착 억제제로 사용될 수 있다.

Claims (18)

  1. 하기 화학식 1로 표시되는 벤조피라닐 구아니딘 유도체, 그의 광학 이성질체 및 약학적으로 허용되는 그의 염.
    화학식 1
    상기 식에서,
    R1은 H, 할로겐, CF3, NO2, CN, ORa,, COORa, NH2, NHS(O)mRa,또는 S(O)mRa이며, 이때 Ra는 H, C1∼C4의 직쇄 또는 측쇄 알킬 또는 아릴이고 m은 0∼2의 정수이고;
    R2는 C1∼C4의 직쇄 또는 측쇄 알킬이고;
    R3는 CH2ORa,또는이며, 이때 Ra는 상기에서 정의한 바와 같고, Rb및 Rc는 각각 독립적으로 C1∼C4의 직쇄 또는 측쇄 알킬이고, Z는 C1∼C5의 직쇄 또는 측쇄 알킬이고;
    R4는 OH, H, 할로겐, ONO2또는이며, 이때 Ra는 상기에서 정의한 바와 같고;
    R5및 R6는 각각 독립적으로 H, 할로겐, C1∼C3의 직쇄 또는 측쇄 알킬, ORa, CX3, NO2, CO2Ra,또는 SO3Ra이며, 이때 Ra는 상기에서 정의한 바와 같고 X는 할로겐이고;
    n은 0∼2의 정수이다.
  2. 제 1 항에 있어서,
    R1은 NO2, CN, NH2, 또는 S(O)mRa이며, 이때 Ra는 C1∼C2의 직쇄 또는 측쇄 알킬 또는 아릴이고 m은 0∼2의 정수이고;
    R2는 CH3이고;
    R3또는이며, 이때 Rb및 Rc는 각각 독립적으로 C1∼C3의 직쇄 또는 측쇄 알킬이고, Z는 C1∼C5의 직쇄 또는 측쇄 알킬이고;
    R4는 OH, H,이며, 이때 Ra는 C1∼C3의 직쇄 또는 측쇄 알킬이고;
    R5및 R6는 각각 독립적으로 H, 할로겐, C1∼C3의 직쇄 또는 측쇄 알킬, ORa, CX3또는 NO2이며, 이때 Ra는 C1∼C3의 직쇄 또는 측쇄 알킬이고 X는 할로겐이고;
    n은 0∼2의 정수
    인 것을 특징으로 하는 벤조피라닐 구아니딘 유도체, 그의 광학 이성질체 및 약학적으로 허용되는 그의 염.
  3. 제 1 항에 있어서, 화학식 1의 화합물은
    1) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
    2) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
    3) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-클로로페닐)구아니딘;
    4) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-클로로페닐)구아니딘;
    5) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-니트로페닐)구아니딘;
    6) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸페닐)구아니딘;
    7) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸페닐)구아니딘;
    8) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시페닐)구아니딘;
    9) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시페닐)구아니딘;
    10) (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
    11) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
    12) (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-클로로페닐)구아니딘;
    13) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-클로로페닐)구아니딘;
    14) (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸페닐)구아니딘;
    15) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸페닐)구아니딘;
    16) (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시페닐)구아니딘;
    17) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시페닐)구아니딘;
    18) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메틸페닐)구아니딘;
    19) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메틸페닐)구아니딘;
    20) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시벤질)구아니딘;
    21) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시벤질)구아니딘;
    22) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    23) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    24) (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    25) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    26) (2R, 3R, 4S)-N"-시아노-N-(3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
    27) (2R, 3S, 4R)-N"-시아노-N-(3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
    28) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-히드록시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
    29) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-히드록시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
    30) (2R, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
    31) (2R, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
    32) (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-클로로페닐)구아니딘;
    33) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-클로로페닐)구아니딘;
    34) (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-트리플루오로메틸페닐)구아니딘;
    35) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-트리플루오로메틸페닐)구아니딘;
    36) (2S, 3R, 4S)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-클로로벤질)구아니딘;
    37) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(2-클로로벤질)구아니딘;
    38) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-아세톡시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    39) (2S)-N"-시아노-N-(6-니트로-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    40) (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    41) (2S, 3S, 4R)-N"-시아노-N-(6-아세톡시아미노-3,4-디하이드로-3-히드록시 -2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    42) (2S, 3S, 4R)-N"-시아노-N-(6-메탄술포닐아미노-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    43) (2S, 3S, 4R)-N"-시아노-N-(6-시아노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
    44) (2S, 3R, 4S)-N"-시아노-N-(6-시아노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-클로로페닐)구아니딘;
    45) (2S, 3S, 4R)-N"-시아노-N-(6-시아노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    46) (2S, 3R, 4S)-N"-시아노-N-(6-시아노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    47) (2S, 3S, 4R)-N"-시아노-N-(6-브로모-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    48) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3,4-디메톡시벤질)구아니딘;
    49) (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3,4-디메톡시벤질)구아니딘;
    50) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시벤질)구아니딘;
    51) (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(4-메톡시벤질)구아니딘;
    52) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-니트로벤질)구아니딘;
    53) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸벤질)구아니딘;
    54) (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-(3-트리플루오로메틸벤질)구아니딘;
    55) (2S, 3S, 4R)-N"-시아노-N-(6-메탄술포닐옥시-3,4-디하이드로-3-히드록시 -2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    56) (2R, 3S, 4R)-N"-시아노-N-(6-메탄술포닐옥시-3,4-디하이드로-3-히드록시 -2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    57) (2S, 3R, 4S)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    58) (2R, 3R, 4S)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    59) (2R, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    60) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-([1,3]디옥솔란-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘;
    61) (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-([1,3]디옥솔란-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘;
    62) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-([1,3]디옥산-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘;
    63) (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-([1,3]디옥산-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘;
    64) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-([1,3]-5,5-디메틸디옥산-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘;
    65) (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-([1,3]-5,5-디메틸디옥산-2-일)-2H-벤조피란-4-일)-N'-벤질구아니딘;
    66) (2S, 3S, 4R)-N"-시아노-N-(6-니트로-3,4-디하이드로-3-히드록시-2-메틸 -2-디에톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    67) (2S, 3S, 4R)-N"-시아노-N-(6-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디에톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    68) (2S, 3S, 4R)-N"-시아노-N-(6-메톡시카르보닐-3,4-디하이드로-3-히드록시 -2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    69) (2R, 3S, 4R)-N"-시아노-N-(6-메톡시카르보닐-3,4-디하이드로-3-히드록시 -2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    70) (3S, 4R)-N"-시아노-N-(8-니트로-3,4-디하이드로-3-히드록시-2-메틸-2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘;
    71) (2S, 3S, 4R)-N"-시아노-N-(8-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘; 또는
    72) (2R, 3S, 4R)-N"-시아노-N-(8-아미노-3,4-디하이드로-3-히드록시-2-메틸 -2-디메톡시메틸-2H-벤조피란-4-일)-N'-벤질구아니딘
    인 것을 특징으로 하는 벤조피라닐 구아니딘 유도체, 그의 광학 이성질체 및 약학적으로 허용되는 그의 염.
  4. 하기 반응식 1과 같이 아미노알코올 화합물 (Ⅲ)과 티오우레아 화합물 (Ⅳ)을 축합제 존재 하에서 반응시켜 화합물 (I')을 얻은 것을 특징으로 하는 제 1 항의 벤조피라닐 구아니딘 유도체의 제조방법.
    반응식 1
    상기 식에서, R1, R2, R3, R4, R5, R6및 n은 앞에서 정의한 바와 같다.
  5. 제 4 항에 있어서, 축합제는 1-[3-(디메틸아미노)프로필]-3-에틸카르보디이미드 하이드로클로라이드와 같은 수용성 카르보디이미드 축합제 및 N,N'-디시클로헥실카르보디이미드를 포함하는 그룹에서 선택되는 것을 특징으로 하는 제 1 항의 벤조피라닐 구아니딘 유도체의 제조방법.
  6. 제 4 항에 있어서, 반응용매는 염화메틸렌, 클로로포름, 디메틸포름아미드, 디메틸술폭시드를 포함하는 그룹에서 선택되는 것을 특징으로 하는 제 1 항의 벤조피라닐 구아니딘 유도체의 제조방법.
  7. 1) 아미노알코올 화합물 (Ⅲ)과 디페닐시아노카본이미데이트 (Ⅹ)를 염기 존재 하에 반응시켜 화합물 (V)를 제조하는 단계 (단계 1); 및
    2) 화합물 (V)를 아민 화합물 (Ⅵ)과 반응시켜 화합물 (I')을 제조하는 단계 (단계 2)로 이루어지는 것을 특징으로 하는 제 1 항의 벤조피라닐 구아니딘 유도체의 제조방법.
    반응식 2
    상기 식에서, R1, R2, R3, R4, R5, R6및 n은 앞에서 정의한 바와 같다.
  8. 제 7 항에 있어서, 단계 1에서 염기는 트리에틸아민, N,N-디이소프로필에틸아민, 피리딘, 1,8-디아자비시클로[5.4.0]운데크-7-엔, 4-(디메틸아미노)피리딘을 포함하는 삼차아민인 것을 특징으로 하는 제 1 항의 벤조피라닐 구아니딘 유도체의 제조방법.
  9. 제 7 항에 있어서, 단계 1 또는 단계 2의 반응용매는 에탄올, 이소프로판올을 포함하는 알코올계 용매, 디메틸포름아미드 (DMF), 디메틸술폭시드 (DMSO) 및 클로로포름을 포함하는 그룹에서 선택되는 것을 특징으로 하는 제 1 항의 벤조피라닐 구아니딘 유도체의 제조방법.
  10. 제 1 항의 벤조피라닐 구아니딘 유도체 또는 약학적으로 허용되는 그의 염을 유효성분으로 함유하는 심근경색 (심장마비), 심부전증 및 협심증의 예방 및 치료를 위한 심장보호제용 약학적 조성물.
  11. 제 1항의 벤조피라닐 구아니딘 유도체 또는 약학적으로 허용되는 그의 염을 유효성분으로 함유하는 지질과산화 저해제용 약학적 조성물.
  12. 제 1 항의 벤조피라닐 구아니딘 유도체 또는 약학적으로 허용되는 그의 염을 유효성분으로 함유하는 NO 생성 저해제용 약학적 조성물.
  13. 제 1 항의 벤조피라닐 구아니딘 유도체 또는 약학적으로 허용되는 그의 염을 유효성분으로 함유하는 뇌졸중에 의한 뇌손상 보호제용 약학적 조성물.
  14. 제 1 항의 벤조피라닐 구아니딘 유도체 또는 약학적으로 허용되는 그의 염을 유효성분으로 함유하는 암 및 당뇨성 망막증의 예방 및 치료를 위한 신생혈관 생성 억제제용 약학적 조성물.
  15. 제 1 항의 벤조피라닐 구아니딘 유도체 또는 약학적으로 허용되는 그의 염을 유효성분으로 함유하는, 노화 및 치매를 포함하는 퇴행성 신경 질환 및 동맥경화의 예방 및 치료를 위한 항산화제용 약학적 조성물.
  16. 제 1 항의 벤조피라닐 구아니딘 유도체 또는 약학적으로 허용되는 그의 염을 유효성분으로 함유하는, 신생아 저산소증, 녹내장, 당뇨성 신경증, 뇌외상의 예방 및 치료를 위한 신경세포 보호제용 약학적 조성물.
  17. 제 1 항의 벤조피라닐 구아니딘 유도체 또는 약학적으로 허용되는 그의 염을 유효성분으로 함유하는 관상혈관 재협착 (restenosis) 억제제용 약학적 조성물.
  18. 제 1 항의 벤조피라닐 구아니딘 유도체 또는 약학적으로 허용되는 그의 염을 유효성분으로 함유하는, 심장, 콩팥, 간, 조직의 보관 및 심혈관계 수술시 장기 (organ) 보호제용 약학적 조성물.
KR10-2000-0060467A 1999-10-21 2000-10-13 벤조피라닐 구아니딘 유도체, 그의 제조방법 및 그를포함하는 약학적 조성물 KR100429609B1 (ko)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CNB008146551A CN1229371C (zh) 1999-10-21 2000-10-20 苯并吡喃胍衍生物,其制备方法,及其药物组合物
EP00973213A EP1228058B1 (en) 1999-10-21 2000-10-20 Benzopyranyl guanidine derivatives, process for preparation thereof, and pharmaceutical compositions containing them
CA002387727A CA2387727C (en) 1999-10-21 2000-10-20 Benzopyranyl guanidine derivatives, process for preparation thereof, and pharmaceutical compositions containing them
DE60007168T DE60007168T2 (de) 1999-10-21 2000-10-20 Benzopyranyl-guanidin-derivate, verfahren zu deren herstellung sowie diese enthaltenden pharmazeutische zusammensetzungen
MXPA02003898A MXPA02003898A (es) 1999-10-21 2000-10-20 Derivados de benzopiranilguanidina, proceso para su preparacion y composiciones farmaceuticas que los contienen.
ES00973213T ES2210009T3 (es) 1999-10-21 2000-10-20 Derivados de benzopiranil-guanidina, proceso para su obtencion y composiciones farmaceuticas que los contienen.
AU11750/01A AU1175001A (en) 1999-10-21 2000-10-20 Benzopyranyl guanidine derivatives, process for preparation thereof, and pharmaceutical compositions containing them
PCT/KR2000/001189 WO2001029023A1 (en) 1999-10-21 2000-10-20 Benzopyranyl guanidine derivatives, process for preparation thereof, and pharmaceutical compositions containing them
JP2001531823A JP3999515B2 (ja) 1999-10-21 2000-10-20 ベンゾピラニルグアニジン誘導体、その製造方法およびそれを含む薬学的組成物
BRPI0015227-7A BR0015227B1 (pt) 1999-10-21 2000-10-20 derivados de benzopiranil guanidina, processo para a sua preparaÇço e composiÇÕes farmacÊuticas contendo os mesmos.
US09/693,082 US6323238B1 (en) 1999-10-21 2000-10-20 Benzopyranyl guanidine derivatives, process for preparation thereof, and pharmaceutical compositions containing them
HK03103787A HK1051538A1 (en) 1999-10-21 2003-05-27 benzopyranyl guanidine derivatives, process for p reparation thereof, and pharmaceutical compositions containing them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR19990045871 1999-10-21
KR1019990045871 1999-10-21

Publications (2)

Publication Number Publication Date
KR20010051032A true KR20010051032A (ko) 2001-06-25
KR100429609B1 KR100429609B1 (ko) 2004-05-03

Family

ID=37696775

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0060467A KR100429609B1 (ko) 1999-10-21 2000-10-13 벤조피라닐 구아니딘 유도체, 그의 제조방법 및 그를포함하는 약학적 조성물

Country Status (1)

Country Link
KR (1) KR100429609B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100526119B1 (ko) * 2002-04-10 2005-11-08 동부한농화학 주식회사 테트라졸을 포함하는 이차아민으로 치환된 벤조피란 유도체

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100547388B1 (ko) * 2003-12-15 2006-01-31 한국화학연구원 N-(2,2'-이중치환-2h-크로멘-6-일)-n',n"-이중치환-구아니딘 유도체
KR101127158B1 (ko) 2004-12-31 2012-03-20 한국화학연구원 간섬유화 및 간경화 억제 활성을 나타내는n-(2,2-이중치환-2h-크로멘-6-일)-n,n'-이중치환구아니딘 유도체
KR100907475B1 (ko) * 2007-08-29 2009-07-13 한국화학연구원 2-메틸-2'-하이드록시메틸-6-아미도 벤조피란 유도체 또는 약제학적으로 허용 가능한 그의 염 및 그를 유효성분으로 함유하는 치매 및 뇌졸중 치료를 위한 약학적 조성물
KR101071359B1 (ko) * 2011-03-21 2011-10-07 동국대학교 산학협력단 항암 활성을 가지는 2-메틸-2-알킬-6-아미도-2h-벤조피란 유도체

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172984A (ja) * 1988-12-23 1990-07-04 Yamanouchi Pharmaceut Co Ltd クロマン誘導体
CA2015296C (en) * 1989-05-31 2001-08-07 Karnail Atwal Pyranyl cyanoguanidine derivatives
US5140031A (en) * 1989-05-31 1992-08-18 E. R. Squibb & Sons, Inc. Pyranyl cyanoguanidine derivatives

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100526119B1 (ko) * 2002-04-10 2005-11-08 동부한농화학 주식회사 테트라졸을 포함하는 이차아민으로 치환된 벤조피란 유도체

Also Published As

Publication number Publication date
KR100429609B1 (ko) 2004-05-03

Similar Documents

Publication Publication Date Title
KR100492252B1 (ko) 이미다졸을 포함하는 이차아민으로 치환된 벤조피란유도체 및 그의 제조방법
KR100526119B1 (ko) 테트라졸을 포함하는 이차아민으로 치환된 벤조피란 유도체
KR100429609B1 (ko) 벤조피라닐 구아니딘 유도체, 그의 제조방법 및 그를포함하는 약학적 조성물
US6323238B1 (en) Benzopyranyl guanidine derivatives, process for preparation thereof, and pharmaceutical compositions containing them
JP3999515B2 (ja) ベンゾピラニルグアニジン誘導体、その製造方法およびそれを含む薬学的組成物
US6413983B1 (en) Benzopyranyl heterocycle derivatives, process for preparation thereof, and pharmaceutical compositions containing them
US7420060B2 (en) Benzopyran derivatives substituted with a thioxobenzoxazole derivative, pharmaceutically acceptable salts thereof, their preparations and pharmaceutical compositions containing them
KR100545780B1 (ko) 벤즈이미다졸 유도체로 치환된 벤조피란 유도체 또는약학적으로 허용되는 그의 염, 이의 제조 방법 및 이를포함하는 약학적 조성물

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120403

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee